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Abstract 

Synthetic aperture radar (SAR) plays an important role 

in Satellite IoT, due to its remarkable capability of all-

weather monitoring and information acquisition under 

complicated conditions. It is well-known that SAR image 

interpretation usually requires accurate segmentation. 

However, SAR image segmentation inevitably encounters 

speckle noise because of the unique imaging mechanism 

of SAR. In order to address the problem, we proposed 

SAR images segmentation method by combined a 

hierarchical Student’s t-mixture model (HSMM) with an 

anisotropic mean template, which can divide the global 

SAR image segmentation into several sub-clustering-

issues efficiently resolved using classical algorithm. With 

the aid of a non-linear structure tensor for image contents 

analysis, the adaptive template can explore more spatial 

correlations between pixels for the purpose of improving 

HSMM robustness and segmentation accuracy. 

Experiments results both synthetic and real SAR images 

demonstrate that our proposed HSMM is more robust to 

speckle noise and obtains more accurate segmented 

images. 

Keywords: Sensor data processing, Machine learning, 

SAR image segmentation, Satellite IoT 

1 Introduction 

With the rapid development of IoT techniques and 

space exploration techniques, the satellite IoT as a new 

and high technique has drawn more attention from the 

whole world, for the reason that it can achieve global 

coverage for observing inaccessible areas and its 

sensor layout is hardly limited by space. In order to 

implement all-weather monitoring and intelligent 

abnormal perception, the satellite IoT has various 

imaging instruments. Among them, the synthetic 

aperture radar is a valuable imaging load, due to its 

capability of acquisition under complicated conditions 

[1-2]. 

Segmentation is a task of dividing an image into 

different homogeneous areas [3]. In each consistent 

region, the pixels share similar attributes and obey the 

same statistical distribution [4-6]. In SAR image 

processing and analysis chain, segmentation plays a 

very important role for subsequent stages such as 

interpretation and understanding. However, because of 

its unique imaging principles, SAR image inevitably 

suffers from speckle noise, which can be viewed as 

multiplicative noise and usually results in the 

inhomogeneity problem of image intensities. Compared 

with natural image [7], segmentation is more challenging 

for SAR image [8].  

In the past decades, variousimage segmentation 

methods for SAR-image have been proposed [9-12], 

which can be roughly divided into four categories: the 

level set based [13-15], the super-pixel based [16-18], 

the graphical model based [19-21], and the clustering 

based [22-25]. The level set method utilizes Hamilton-

Jacobi model and generates segmented results with 

binary values. This method can be viewed as a fast 

implementation of active contour model. Superpixels 

usually denote to a cluster of locally adjacent pixels 

with homogenous feature, resulting from over-

segmentation technique. Compared with the pixel 

based method, the super-pixel-based approach is robust 

to outliers. The graphical model-based method 

considers image as a graph, where its node represents 

pixel and edge stands for the relationship of pixels. 

Based on the structure, image segmentation is 

implemented through minimizing a energy function 

with optimization technique as graph-cut. Clustering 

method classifies the objects in the feature space 

according to a certain similarity criterion, with the aim 

at ensuring that similar pixels belong to the same class. 

the clustering-based image segmentation methods have 

made rapid progress in recent few years. Based on the 

observation, this work focuses the finite mixture model 

(FMM) based segmentation approach [26-28].  
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FMMs have proven to be successful for data 

clustering, which assume that the heterogeneous data 

can be represented by a mixture of a finite number of 

probability statistics functions with same type 

distribution but different parameters [29]. When the 

distribution function is selected as Gaussian 

distribution, the FMM called Gaussian mixture model 

(GMM). One can employ GMM to model observed 

data with weighted components, where the weight 

reveals the contribution of a gaussian components and 

is estimated by using expectation maximization (EM) 

algorithm along with mean and covariance matrix. 
Although Gaussian distributions computation is easy to 

explement and the related GMM its variations is efficient 

to model data and widely investigated for image 

clustering, they often encounter robustness problem, 

that is sensitive to outliers. Recently, the Student’s t-

distribution has received more and more attention in 

machine vision applications such as image recovery, 

image segmentation, feature selection and image 

classification [30-32]. Because of the heavy tail of the 

Student’s t-distribution, it can be used as component to 

improve the robustness of FMM to noise and other 

interferences, which gives rise to the Student’s t-

mixture model (SMM). Compared to GMM, SMMs 

can obtain more better performance on data modelling 

and representation. However, few of them take into 

account the spatial correlations among neighborhood 

pixels, therefore influencing their further applications. 

For handling the above-mentioned problem in 

FMMs recently, Markov random field (MRF) [33-35] 

technique has been combined with the FMMs [36-40], 

which attempt to introduce spatially local dependent 

information into the segmentation process of FMMs. 

For instance, [34] early introduced a spatially 

constrained FMM, which describes the pixel label as a 

random variable and assumes that the label variable 

conforms to the Markov prior field. In the work, the 

maximum posterior probability estimation (MAP) and 

the EM algorithm are used as the model parameter 

optimization method. This method enhances the spatial 

smoothness of the pixel label and enables segmentation 

spatially continuous. Later, a spatially variant FMM 

(SVFMM) based image segmentation algorithm was 

presented by Blekas [40] to improve the computation 

of pixel label values through quadratic programming. 

Recently, a new approach with the hidden Markov 

random model (HMRF) was proposed by Zhang [35] 

for image segmentation. However, the state of HMRF 

is not observable directly and needs to estimation and 

calculation. Moreover, HMRF based image 

segmentation methods are time consuming and 

difficult to implement [41]. In addition, an extra 

parameter requires to estimate for tuning the image 

smoothing extent. In fact, the optimal value of the 

parameter is difficult to determine. It should be set 

sufficiently large to tolerate the noise in image. 

However, if one attempts to preserve image details and 

textured contents, the value of the tuning parameter 

must be set small enough. Obviously, the two 

conditions are hard to fulfil, simultaneously. It should 

be note that the aforementioned image segmentation 

methods using FMM and MRF frequently utilized 

Gaussian distribution, hence leading to limited 

performance. To handle the issue, a SAR image 

segmentation approach with SMM called MSMM was 

presented by Zhang et al [25], which employed a mean 

template to explore spatial local correlation and 

introduced it into SMM. Based on the work of [25], a 

modified version of MSMM was suggested in [42], 

which followed the idea of hierarchical mixture of 

experts scheme [37] and replaced the SMM with a 

hierarchical Student’s mixture model (HSMM). The 

variant method can enhance segmentation performance 

of MSMM. However, the mean template fails to be 

adaptive to image contents and the behavior of SMM 

jointed with it is isotropic.  

Based the above-mentioned observation, a weighted 

mean template is introduced in this work, which used 

linear structure tensor [43-44] to analyze and estimate 

image contents with the aim at improving the 

performance of MSMMs on SAR images. The 

structure tensor is popular used in computer vision 

filed to analyze image structures. In this work, a non-

linear structure tensor to construct new weighted mean 

template to make it more better adaptive to image 

structures. In other words, the template is content-

aware and therefore truly geometric and improve the 

segmentation accuracy of MSMM method in SAR 

images. Our proposed method decomposes the 

clustering problem into two levels to solve. We break 

up the clustering problem into smaller sub-problems, 

and then deal with these sub-problems. Then, we 

utilize the EM algorithm for parameters optimization, 

considering its simplicity and stability. Moreover, 

more experiments are conducted to evaluate the herein 

proposed segmentation approach.  

The rest of this paper is organized as follows. In 

Section 2, we shortly introduce the Student’s t-

distribution and the FMM, respectively. A new 

weighted mean template using adaptive structure 

tensor is presented in Section 3. Section 4 describes 

our proposed SAR image segmentation method, i.e., 

HSMM in details. Segmentation experimental results 

are shown in Section 6. Finally, we conclude our work 

in Section 7. 

2 Preliminaries 

2.1 Student’s t-Distribution 

Generally, one-dimensional Student’s t-distribution 

can be obtained as follows: take out the conjugate 

transcendental of the accuracy of one-dimensional 

Gaussian distribution, and then integrate the precision 

variables. Thus, it can be linearly represented by 
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multiple Gaussian distribution functions with the same 

mean parameter but different variance parameters, 

written as follows:  
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where x is a one-dimensional observed variable, µ  

denotes the mean parameter of Gaussian distribution, 

ε  refers to the precision, and τ  stands for the freedom 

degree. Especially, when 1,τ =  the Student’s t-

distribution can be viewed as the Cauchy-distribution. 

In equation (1), ( )Γ •  is the gamma function written as 
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For multivariate observed data ,

L
y R∈  its probability 

density function (PDF) of Student’s t-distribution can 

be defined by multivariate Gaussian distribution 

function with the Wishart prior as 
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In (3), when τ  is to be ,τ →∞  Student’s t-

distribution degenerates to a Gaussian distribution. As 

known that the Student’s t-distribution offers a form of 

generalization of the Gaussian distribution and has 

heavy tail which enable its maximum likelihood 

parameters more robust to outliers. Moreover, 

compared with GMM, SMM can improve performance 

of FMM on model parameter estimation, and achieve 

better computational efficiency and stability [39]. 

2.2 FMM 

FMMs are mixtures of density functions to describe 

observed data, which is a linear superposition of 

multiple distribution function with the same family of 

distribution but different parameters. Let 
1

{ }K
j

J k
=

=  be 

the class labels of an image, 
1

{ }M
d

D d
=

=  stands for 

image intensity value range, and X =  

{ : ( )}
i i
x x Q and i N∈ ∈  denotes the Label set of image 

Y. Denote 
1

{ }N
i i

Y y
=

=  be a SAR image with size of N, 

which can be partitioned intro K clusters. 
i
y  refers to 

the observed value at pixel i and 
i
x  is the related class 

label. The probability that 
i
x  belongs to class j can be 

written as: 

 ( )
i j

p x i π= =  (4) 

where 
j

π  stands for the prior probability of pixel i 

which satisfies the constrains: 
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Denote Θ  the set of model parameter in FMM, that 

is { ; | }.
j j

j Qπ θΘ = ∈  The joint distribution of class 

label and image pixel is calculated as follows: 
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when 
i i
Y y= , the marginal distribution function can be 

defined by: 
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FMM has drawn much attention in estimation of 

data distributions and clustering analysis owing to its 

capability of approximating and modelling complex 

distributions. However classical FMM merely applies 

histogram classification scheme for image 

segmentation, which often suffers from the problem of 

error segmentation. In practice, images with same 

histogram contain totally different contents in many 

cases. Therefore, more content-aware related information 

requires to be explored and introduced into FMM to 

enhance its performance. 

3 Adaptive Structure Tensor Based Mean 

Template 

In this work, a novel mean template is proposed and 

introduced into SMM, which utilizes the adaptive 

nonlinear structure tensor to estimate image contents in 

the neighborhood of current pixel and therefore can 

enhance the capability of mean template in exploring 

correlations between pixels. With our mean template, 

(7) can be rewritten as follows: 
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where 
i

Λ  stands for the set of pixels among the 

neighborhood center around pixel i, and 
i
r  denotes the 

normalization factor calculated by 
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where 
q

w  refers to the weight coefficient, which can 

be computed using the Euclidean distance [42], that is 
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q  pixels. It is worth noting that 

the Euclidean distance only computes the distance 

information among pixels, which is hard to describe 

pixel similarity. In fact, image similarity computation 

often plays an important role in regularization. In the 

herein proposed paper, we employ structure tensor to 

represent and calculate 
m

w  as follows: 
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where 
qi

E  is a local energy measure (LEM) defined by 

the difference of the traces of matrices 
q

S  and 
i

S , 
i

S  

is the linear structure tensor calculated through 

convolving 
1 1 1 2

1 2 2 2
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with smoothing scale ρ , and 
1 1 2

( , )TY Y Y∇ =  is the 

image gradient. 

Structure tensor, a smoothed second-moment matrix 

of image, has been shown to be a useful tool for image 

analysis in computer vision. Its eigenvectors and 

eigenvalues are usually been employed and exploited 

to discriminate image edges, corners and flat regions. 

In this paper, we utilize it to describe image similarity 

between the current pixel i and pixel q among the 

neighborhood of the current pixel i.  

Here define the two eigenvalues of structure tensor S, 

as 
1
λ  and 

2
,λ  the two corresponding orthogonal 

eigenvectors as 
1
γ  and 

2
γ . Then, they can be 

calculated by: 
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where 
1
s , 

2
s and 

3
s  denotes 

1 1
YY , 

1 2
YY  and 

2 2
Y Y , 

respectively. Based on the two eigenvalues and 

eigenvectors, structure tensor S can be rewritten as: 
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T T
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With structure tensor S, one can use its eigenvalues to 

detect image local contents such as flat regions, corners, 

textures and edges. In addition, the eigenvectors are 

often employed to represent the direction of image 

structure. 

Classical SMM based clustering methods assume 

that pixels in image are independent to each other, 

which still fails to achieve satisfying results. To 

address the problem, the mean template technique was 

introduced into SMM to explore more information in 

neighbourhood of current pixel. Although the SMM 

with mean template can enhance the perform of SMMs, 

the mean template is linear. In other word, this 

technique tests each pixel in the same manner, which is 

not adaptive. Our proposed template is content-aware, 

where the weighting coefficients are adaptive to image 

structures due to analysis of structure tensor to image 

contents. 

4 Proposed HSMM Based SAR Image 

Segmentation 

In this section, we introduce a novel hierarchical 

Student’s t-mixture model (HSMM) for SAR image 

segmentation. First, to incorporate more image content 

information, the prior probability 
j

π  can be modified 

as 
ij

π , then the conditional probability (8) is rewritten 

as 
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where 
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π  is prior with the constraint conditions as 

follows: 
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It is well-known that image segmentation with 

traditional FMM is a statistics method based on an 

image histogram. The aforementioned models 

including the GMM, the SMM and theirs variations 

view the histogram as to be isotropic. In other words, 

the shape of image histogram is usually assumed to be 

symmetric. However, in practical applications, with the 

advent of high-resolution imaging devices, for many 

acquired images, their histograms are not symmetric. 
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To handle this issue, we introduce a novel SMM with 

the aim of accurately representing the image histogram 

with non-symmetric shape of distribution. Our 

proposed HSMM can be defined by: 
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where ( | )i jkS y θ  is defined with equation (3). Its full 

form is given in (18): 
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The model parameter { , , }
jm jm jm jm

vθ μ= Σ . In (17), 

ijm
k  is a sub-prior probability with the following 

constraints as: 
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With Eq. (17), the likelihood function of SAR image 

with N pixels is defined as follows: 
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The logarithmic likelihood function is obtained by 

taking a natural logarithm of (20): 
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According to [23], we optimize the complete data 

function (21) through setting the model parameters 

{ , , , , , , }
ij ijm ij ijm jm jm jm
k zπ η μ τΦ = Σ , hence achieving 

an objective function given in (22). 

An advantage of the proposed method is the 

establishment of (17) which jointly consider the pixel 

intensity values and image content information. 

Another improvement is that we introduce a weight 

mean template into the conditional probability to try to 

utilize more image prior knowledge during 

neighborhood pixels. The contributions we proposed 

are summarized as follows: 

1. Introduce a hierarchical FMM for image 

segmentation to enhance the standard FMM robustness 

to the noise. 

2. Utilize the multivariate Student’s t-distribution to 

calculate the conditional probability. 

3. Consider the effect of the spatial information on 

the image pixels. 

4. Incorporate a weight mean template into the 

conditional probability. 

5 Parameters Estimation 

In this section, we introduce the parameter 

estimation method through utilizing EM algorithm to 

solve Eq. (22).  
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In E-step, we respectively calculate the posterior 

probability and sun-posterior probability as follows: 
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To exploit image content information in the 

neighborhood pixels, the proposed mean template 

combined with adaptive structure tensor is introduced 

into the probabilities of posterior and sub-posterior, 

respectively. Thus, the probabilities in (23) and (24) 

can be modified as 

 

1

( | , , )

( | , , )

q

i

i

q

i

i

w

R

ij i

q

ij w

K R

ih i

h q

p y k

p y k

π π θ

η

π π θ

∈Λ

= ∈Λ

=

∏

∑ ∏

 (25) 

 

( | , , )

( | , , )

q

i

i

q
j

i

i

w

R

ijk i jk jk jk

q

ijm wM

R

ijn i jn jn jn

n q

k S y v

z

k S y v

µ

µ

∈Λ

∈Λ

Σ

=

Σ

∏

∑ ∏

 (26) 



620 Journal of Internet Technology Volume 21 (2020) No.3 

 

A Student’s t-distribution ( , , )
jm jm jm

S vµ Σ  is used 

for the conditional probability in the HSMM. Actually, 

the Student’s t-distribution can be viewed as a 

Gaussian distribution ( , , )
jm jm ijm

g uµ Σ  with an 

accurate scale factor u which obeys the following 

distribution as 
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Then, in M-step, the prior 
ij

π  is estimated at first. 

Using the Lagrange multiplier 
i

λ , the derivative of the 

prior probability 
ij

π  for each data point can be written 

as 
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Using (22), (28) can be written 
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π  can be calculated by 
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In addition, we incorporate the weighted mean 

template into (30) then obtain 
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Similarity, with constrained multiplier ,
ij

β  we compute 

the derivative of 
ijm
k  as 
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Under the constrains (19), 
ijm
k  is compute by 
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The adaptive structure tensor based weight mean 

template is also incorporated into (33), and then we 

have: 
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To make the objective function (22) more detailed, 

we use (18) in (22) to get the Equation (35). Following 

[15], we obtain 
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Parameters ( , , )
jm jm jm

μ τΣ  are estimated through 

solving Eq.(35) which can be modified by omitting 

some constant entries shown in Eq. (37) - (39) 

respectively. The derivatives of parameters 
jm

µ  and 

jm
Σ  can be gained through Eq.(37) and Eq. (38), and 

their update are calculated as follows: 
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At last, the derivative of vjkJ  with respect to jkv  is 

set to be zero and we have 
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For clarity, we summarize the proposed method as 

follows: 

(1) Initialize the parameter set { , , , , }
ij ijm jm jm jm
kπ μ τΦ= Σ . 

(2) E-step: 

‧ Use equation (25) to compute the posterior 

probability 
ij

η ; 

‧ Use equation (26) to compute the sub-posterior 

probability 
ijm
z ; 

‧ Use equation (27) to compute the factor 
ijm

µ . 

(3) M-step: update the parameter set Φ . 

‧ Use equation (31) to update the prior 

probability 
ij

π ; 

‧ Use equation (34) to update the sub-prior 

probability 
ijm
k ; 

‧ Use equations (40), (41), (42) to update the 

quantities , , ,
jm jm jm

μ τΣ  respectively. 

(4) Repeat steps 2 to 4 until the objective function 

converges. 

6 Experimental Results 

In experiments, in addition to the synthetic SAR 

image set, our proposed HSMM based segmentation 

was also evaluated on general-used real SAR image 

sets including SAR Sea-Ice Image set, RADARSAT-1 

SAR image set and Pauli RGB Image set. Three 

representative FMM based image segmentation 

approaches such as MSMM [25], SVFMM [40] and 

HMRF [41] were compared with our method. The 

above-mentioned for methods were implemented in a 

platform with Intel 2.2 GHZ CPU, Corsair 2 GB 

RAM, and MATLAB 2009b software. we set the 

number of classes K to 8, the paramters Φ =  

{ , , , , }
ij ijm jm jm jm
kπ μ τΣ  was initialized by K-means 

algorithms.  

6.1 Synthetic Images 

This experiment evaluates the four aforementioned 

FMM based approaches on a synthetic SAR image 

with size of 512×512, which in fact composes of four 

classes. Figure 1(a) shows the original clean SAR 

image. Figure 1(b) is generated by adding speckle 

noise into the Figure 1(a). Its peak-signal-to-noise-ratio 

is 5.15 dB. In addition, the overall accuracy ratio 

(OAR) index was employed for quantitative 

comparison of segmentation performance, which is the 

ratio of the number corrected segmented pixels to the 

number of whole image pixels, defined by 

number of corrected segmented pixels
100%

number of whole image pixels

OAR

= ×

 (43) 

Higher OAR value, better performance of the SAR 

image segmentation approach. Obviously, the range of 

OAR value is from 0 to 100.  

In this experiment, we used the traditional k-means 

clustering technique to initialize the four segmentation 

algorithms. Figure 1(c) to Figure 1(f) display the 

experimental results of HMRF, MSMM, SVFMM and 

our proposed HSMM, respectively. We can see from 

Figure 1 that the four approaches can generate 

relatively good segmentation results on the whole. 

However, carefully observing the results, one can find 

out that HMRF and SVFMN fail to overcome the 

influence of speckle noise. Both of the regions framed 

in red and yellow show the drawbacks of the two 

methods. From Figure 1(c) to Figure 1(f), we can see 

that compared with other three FMM based clustering 

method, the HSMM gives rise to the most accurate 

partition image and is robust to speckle noise. It should 

be addressed that the time consumption of our method 

is also satisfying, with 36.45s. Although this speed is 

higher than that of MSMM’s, the OAR value of our 

segmentation result can obtain 95.35%. Better 

performance comes at a cost. 
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(a) Original synthetic SAR image  (b) SAR image with speckle noise, PSNR = 5.15 dB 

  

(c) HMRF, OAR = 87.52% (d) SVFMM, OAR = 89.48% 

  

(e) MSMM, OAR = 92.18% (f) HSMM, OAR = 94.29% 

Figure 1. Comparison of image segmentation on synthetic image 

6.2 Synthetic Images 

In this experiment, a real SAR image of the Gulf of 

St. Lawrence on 20th Feb, in 1998, was employed to 

evaluate the segmentation performance of the our 

methods in accuracy and robustness, which was 

captured by the RADARSAT ScanSAR, a SAR 

working at C-Band with pixel spacing of 100 m. The 

SAR Image contains four clusters: land cluster, water 

cluster, gray ice cluster and gray-white ice cluster. The 

land appears at the bottom of image in white; water 

centers around the land region in dark; gray ice the 

image almost occupies the top half of the image; gray-

white ice appears the rest of the SAR image. See 

Figure 2(a) for details. 

The reason for selecting this SAR image lies in the 

observation there are many narrow belts in the gray ice 

area which is proper to assess the capability of 

segmentation algorithm in terms of accuracy. Figure 

2(b) displays the ground truth of the sea-ice SAR 

image segmentation, which was labeled manually by 

specialty researcher. The image segmentation results 
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by the four methods, i.e., SVFMM, HMRF, MSMM 

and HSMM, are illustrated in Figure 2(c) to Figure 2(f), 

respectively. From the results shown in Figure 2(c), we 

can clearly see that the result yielded by SVFMM 

contains much noise. The SVFMM based segmentation 

method performs poor for SAR image. Its OAR value 

is 80.92%. By contrast, HMRF and MSMM show good 

performance in segmentation accuracy, shown in 

Figure 2(d) and Figure 2(e). They can gain high OAR 

values. The OAR values of HMRF and MSMM is 

83.88% and 91.29%, respectively. However, HMRF is 

time consuming. Figure 2(f) shows the performance of 

our proposed HSMM. Again, we observe that the 

HSMM gains the best segmentation results. Although 

its computation time is slight higher than HSMM, its 

OAR value is the highest. 

 

   

(a) SAR Original image of the Gulf 

of St. Lawrence, and acquired by a 

RADARSAT ScanSAR 

(b) ground truth (c) SVFMM, OAR = 80.92% 

   

(d) HMRF, OAR = 83.88% (e) MSMM, OAR = 91.29% (f) HSMM, OAR = 95.24% 

Figure 2. Comparison of image segmentation on the sea-ice SAR image

6.3 RADARSAT-1 Image 

In this experiment, we assessed the quality of 

segmentation results by different methods on the 

RADARSAT-1 SAR image. Researched and developed 

by Canada, RADARSAT-1 is a complicated Earth 

observation and radar satellite that can detect 

environmental changes and natural resources of our 

planet. The original SAR image of RADARSAT-1 

(Figure 3(a)) shows one part of Northwest Territories 

(NWT) in Canada, which is the second largest territory 

in Canada with an area of ~ 1.17×106 km2. The upper 

part of the image shows Franklin Mountain, while the 

lower part shows Mackenzie Mountain. Both 

mountains are separated by Mackenzie River, which is 

the dark region in the middle of the image. The river is 

1800 kilometers long and 1.6 kilometers wide on 

average (in some places, it is 6 kilometers wide). It is 

8-9 meters deep and covers a drainage area of ~ 

1.8×106 km2. 

We set the number of classes to 3. Figire 3(b) to 

Figire 3(e) show the results of different methods. The 

SVFMM obviously yields bad segmentation while the 

other methods seem to segment the image clearly. 

From Figure 3(c) to Figire 3(d), the HMRF tends to 

over-segment (for better or for worse), and is quite 

computationally intensive; the MSMM exhibits better 

segmentation, but it omits some regions of the 

mountains (from the bottom left in Figure 3(d)). From 

Figure 3(e), the HSMM can segment the image better 

than the MSMM, some details are clearer, and the 

computation time is the shortest across all methods. 

6.4 Pauli RGB Image 

Finally, to assess the segmentation quality of 

HSMM on the polarimetric synthetic aperture radar 

(POLSAR) image, we extracted the red-green-blue 

(RGB) composite of Pauli decomposition from 

polarimetric L-band data, NASA/JPL AIRSAR in 

Flevoland, Netherlands (http://earth.eo.esa.int/polsarpro/  
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(a) Original image (b) SVFMM (c) HMRF 

  

(d) MSMM (e) HSMM 

Figure 3. Segmentation of a RADARSAT-1 SAR image that represents a portion of the Northwest Territories 

(NWT) in Canada 

datasets.html.). Yu et al. utilized the sub-image and 

mask [45]. We adopted the same Pauli RGB image 

(282×383) as well as the real image of the Earth’s 

surface (Figure 4(a) to Figure 4(b)). 

To compare segmentation performance of the 

different methods, every generic label is required to be 

closely connected with a ground-truth class, which is 

color-coded. We completed the connection by finding 

a mapping of generic labels, which helped to maximize 

the OAR and is defined in equation (40). The mapping 

is completed by trying every possible mapping of 

generic labels with ground-truth labels and selecting 

the most accurate label. It is worth noting that there are 

no labels for pixels of the Pauli RGB image provided 

by the ground-truth in Figure 4(b). As a result, OAR 

can be calculated when the truth offers a label. Figure 

4(c) to Figure 4(e) show the segmentation results for 

the HMRF, MSMM, and HSMM, respectively. We can 

conclude that that: (1) the HMRF yields bad segmentation, 

with some noise; (2) the MSMM and HSMM both 

exhibit better performances. However, when comparing 

Figure 4(d) with Figure 4(e), we find that the MSMM 

misclassifies one box in the center of the image, i.e. the 

blue-color box, even though better segmentation is 

obtained on the image’s margin. Nevertheless, a visual 

inspection suggests that the HSMM is much preferable 

than the MSMM. 

In addition, we compared the computation time of 

the different methods, and these times are shown in 

Table 1. From Table 1 we can clearly see that our 

proposed HSMM method is faster than both the 

SVFMM and HMRF, and acceptably slower than the 

MSMM. 

7 Conclusions 

This work introduced a segmentation method for 

SAR image using the herein proposed HSMM, which 

can improve the performance of FMM based image 

segmentation on robustness to speckle noise. The 

proposed HSMM can accurately represent image class 

with anisotropic distribution. This is mainly contributed 

to the incorporated mean template, which employs a 

non-linear structure tensor to enhance its adaptability 

to image contents. The HSMM based image 

segmentation model was solved by the EM algorithm 

and experimental results show that our HSMM is more 

robust compared to the existing popular FMM based 

SAR image segmentation approaches. 
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(a) Original image (b) Ground truth, based on [26] (c) HMRF, OAR = 87.72% 

  

(d) MSMM, OAR = 98.17% (e) HSMM, OAR = 98.43% 

Figure 4. Segmentation of a Pauli RGB image (282×383 pixels) extracted from the polarimetric L-band data, 

NASA/JPL AIRSAR of Flevoland, Netherlands 

Table 1. Computation time of different methods, on various types of SAR images (s) 

Image/Methods SVFMM HMRF MSMM HSMM 

Synthetic SAR image 153.87 566.1 22.38 47.23 

Sea-Ice SAR image 40.34 534.74 16.65 29.38 

RADARSAT-1 image 25.44 245.81 9.58 12.34 

Pauli RGB image - 711.86 48.63 72.88 

 

In addition to I IoT satellite system, our method can 

be also used to space exploration. Space exploration is 

a necessary way for human beings to grope after the 

universe and seek long-term development. Carrying 

out space exploration of lunar and farther stars has 

become one of important human space activities, 

recently. As an extremely important exploration tool, 

space detectors are developing rapidly towards the 

aspects of intelligentization, multi-loads and long-life. 

In space exploring process, the space detectors often 

carry limited energy. For making full use of energy and 

efficient realization of its application, an alternative 

way is to intelligently coordinate and control the 

various imaging loads in space detectors for observing 

and monitoring planets. Specifically, it is non-essential 

for the detectors to boot up imaging instruments at the 

same time. Observation imagery from a certain 

imaging instrument could well be analyzed and 

identified by central control systemin detector to select 

and boot up an appropriate imaging-load for long-term 

object-of-interest observation and monitoring. SAR is a 

proper candidate, due to its capability of acquisition 

under complicated conditions. The proposed method 

can be applied to online intelligent perception of SAR 

satellite to control various imaging instruments of 

space detector for efficiently improving energy usage. 
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