
Learning with Concept Drift Detection based on Sub-concepts from k Time Sub Windows 565 

 

Learning with Concept Drift Detection based on Sub-concepts 

from k Time Sub Windows 

Li Liu1, Nathalie Japkowicz2, Dan Tao3, Zhen Liu4 

1 School of Information Science and Technology, Huizhou University, China 
2 Department of Computer Science, American University, Washington DC, USA 

3 School of Electronic and Information Engineering, Beijing Jiaotong University, China 
4 College of Medical Information Engineering, Guangdong Pharmaceutical University, China  

liuli@hzu.edu.cn, japkowic@american.edu, dtao@bjtu.edu.cn, liu.zhen@gdpu.edu.cn* 

                                                           
*Corresponding Author: Li Liu; E-mail:liuli@hzu.edu.cn 

DOI: 10.3966/160792642020032102024 

Abstract 

Concept drift detection has attracted much interest 

recently, due to its pervasive nature in the massive 

amount of streaming data available for analysis. 

Traditional concept drift detection methods, based on the 

monitoring performance of a base learner on a whole 

time window of data stream, are not sensitive enough to 

sub-concept drifts and discover them late or not at all. 

This is because, when aggregated together, the sub-

concepts that form a concept are not precisely described. 

To solve this problem, we propose the kTSW (k Time 

Sub-concepts Window) based framework that divides 

instances from a whole time window into k sub-concept 

windows, and then builds a drift monitor for each sub-

concept window. Once a sub-concept window’s instances 

have experienced a concept drift, we update the learned 

model. We propose three schemes with different base 

learner numbers for our framework. Each of the schemes 

takes advantage of a different degree of sub-concept 

knowledge. Two real data sets are used to verify the 

validity of our method in data stream classification. 

Experimental results show that our method is able to 

obtain higher accuracy and recall than methods based on 

a whole time window. 

Keywords: Concept drift detection, Sub concept, Data 

stream 

1 Introduction 

In recent years, due to the development of intelligent 

computer networks, massive amounts of streaming data 

have been continuously generated [1-2] e.g., from 

smart mobile phone, social networks, sensor networks 

etc. Due to these innovations, data stream mining has 

received a lot of attention. An important aspect of data 

stream mining is that the underlying data distribution 

changes over time. This is known as concept drift. The 

performance of learning models will decrease when a 

concept drift occurs, so we need methods that adapt to 

these changes. Many systems were designed to adapt to 

concept drift [3-4]. A common method consists of 

performing concept drift detection and updating the 

model or retraining it with new data when a concept 

drift has been detected. 

In supervised online learning, most concept drift 

detection algorithms [5-8] are based on the evaluation 

of the learner’s performance. These algorithms monitor 

the learner’s performance, such as accuracy, and when 

that performance decreases below a given threshold, it 

is assumed that a drift may have occurred. Given that 

data streams are unlimited and that these algorithms 

only calculate statistics on the performance of a subset 

of the data stream, gathering data batches from data 

streams as time progresses is critical [8]. At present, 

using a time window is the most common method, and 

algorithms based on this method use all the data from 

the time window to calculate their statistics. We call 

these algorithms Whole Time Window (WTW) based 

methods in this paper. The drawback of WTW based 

methods is that they are not always sensitive to certain 

more subtle concept drifts that may occur only on the 

sub-concept of the overall data stream. We may be able 

to improve concept drift detection accuracy if we find a 

way to fully use sub-concept knowledge. 

For example, assuming that there exists three sub 

concepts from a data stream, and the instances 

sequences are shown in Figure 1. We highlight them as 

yellow, green and blue blocks respectively to indicate 

different sub concepts, i.e., the first instance and the 

fifth instance are represented with same yellow color, 

which means that they belong to same sub concept. We 

also assume that a drift detector monitors the error rate 

of the classification model, and the number on each 

block is the number of instances that the drift detector 

has observed. Let’s assume that at time window t, sub 

concept 3 changed suddenly, from blue to red, and the 

classification model cannot identify the drifted sub 

concept (red color). Assuming that the error rate up to 

the 9th instance at time window t-1 in the data stream is 



566 Journal of Internet Technology Volume 21 (2020) No.2 

 

0 and that the prediction of red at time t will be false, 

then the next error rates will be 0.1, 0.1, 0.1, 0.1, 0.14, 

0.14, 0.17..., i.e. the error rate obtained at t is 0+(1-

0)/10=0.1, and, more generally, the error rates can be 

computed using formula (1). 

 p_error = p_error + (pre - p_error) / num (1) 

 

Figure 1. Instances from data stream’s time window 

The value of pre is 1 or 0, where 1 indicates that the 

prediction of the classification model is false. The 

value of num is the number of instances that the drift 

detector monitor has observed to date. We can see that 

the change in error rate is slow due to the fact that it 

combines changes in all three sub concepts. In certain 

cases, this change may even be ignored by the concept 

drift detector since, relatively speaking, it is quite small. 

To solve this problem, we propose a method to 

monitor the classification model’s performance based 

on k time sub-concept windows (kTSW). If we have 

knowledge of sub-concepts, we can use three drift 

detectors to monitor the classification model’s 

performance on instances from each time sub-concept 

window. Each concept drift detector monitors a 

different time sub-concept window. As shown in 

Figure 2, in our illustration, there are three time sub-

concept windows corresponding to the three sub-

concepts. One concept drift detector will be built from 

each of these windows. In our illustration, the 3rd drift 

monitor only receives data prediction results (true or 

false) from sub concept 3, so the error rate, computed 

with formula (1), on sub concept 3 data is 0.3, 0.5, 

0.6..., which is a more significant difference than the 

one observed on the entire time window (the WTW 

based method). Therefore the sub-concept based drift 

detector can detect concept drifts earlier, if we can find 

a method that divides one concept (one time window) 

into k sub concept (sub time window) effectively.  

Rather than using the simple error rate method 

described previously to illustrate our idea, the kTSW 

based method was combined with more powerful 

concept drift algorithms, such as DDM [5], EDDM [6], 

HDDM [7]etc. We tested kTSW on real world data sets, 

and compared its performance to that of the WTW 

based method. Our experimental results show that the 

kTSW based method obtains higher performance than 

the WTW based methods. The main contributions of 

this paper are:  

 

Figure 2. Instances from data stream’s k time sub-

concept window 

We propose a concept drift detection method based 

on kTSW which can be used as a front-end to error rate 

based concept drift detection algorithms, such as DDM, 

EDDM etc.  

Based on [9]and [10], we propose three schemes to 

implement our kTSW based concept drift detection 

framework, and each scheme makes use of a different 

degree of knowledge about the sub-concept structure of 

the data. 

 We test our method on two real word data sets : 

ELEC2 data set [11] and mobile traffic data set [12]. 

The experimental results show that our three schemes 

for kTSW based concept drift detection outperform 

WTW based concept drift detection. 

2 Error Based Drift Detection 

Many concept drift detection methods have been 

developed. Lu et al. [13] have classified these 

algorithms into three categories, including error rate-

based drift detection, data distribution-based drift 

detection and multiple hypothesis test drift detection. 

Our work is related to the first category of algorithms 

that monitor the online error rate of a base decision 

model. If the change of error rate is statistically 

significant and reaches the threshold of drift, then a 

learning process for the new decision model will be 

triggered. 

Since data streams are unlimited, it is impossible to 

compute test statistics or train a model over the entire 

data stream. Most strategies use time windows to 

compute the test statistics over a subset from a specific 

time interval of the data stream and select the sub data 

set for training. Taking the Drift Detection Method 

(DDM) [5] as an example, we explain how it uses time 

windows to detect a concept drift. For each point i in 

the data stream, DDM tracks the online error rate pi 

(the probability of observing a False decision) of the 

decision model and standard deviation si which is given 



Learning with Concept Drift Detection based on Sub-concepts from k Time Sub Windows 567 

 

by (1 ) /
i i i
s p p i= − . DDM manages two registers 

(pmin and smin) during the time window period. These 

values are updated when pi + si < pmin + smin. It defines 

the following levels and the conditions associated with 

that level are triggered: 

‧ Warning level: pi + si ≥ pmin + 2*smin, the time point 

is denoted as tw. 

‧ Drift level: pi + si ≥ pmin + 3*smin, the time point is 

denoted as td. 

When the sum of error rates and standard deviations 

reach the drift level, a new decision model is induced 

using only the subset of the data stream collected from 

tw to td. The values for pmin and smin are reset and a new 

time window begins. DDM calculates the test statistics 

with all the examples contained in a time window of 

the data stream. It does not calculate the test statistics 

separately for each sub-concepts. Error rate based drift 

detection algorithms that use the same windowing 

method as DDM are the Early Drift Detection Method 

(EDDM), Hoeffding’s inequality based Drift Detection 

Method (HDDM), EWMA for Concept Drift Detection 

(ECDD), ADaptive WINdowing (ADWIN) and Fuzzy 

Windowing Drift Detection Method (FW-DDM). 

EDDM [6] uses the distance-error-rate of the base 

learner to identify whether a drift has occurred. EDDM 

improved upon DDM by introducing slow gradual 

changes. HDDM [7] uses Hoeffding’s inequality to 

identify the region of a concept drift. ECDD [14] uses 

an Exponentially Weighted Moving Average (EWMA) 

chart to monitor the error rate of the base learner. 

ADWIN [15] can recompute the size of the time 

window online according to the variation of error rate 

observed from the data in the window itself. FW-DD 

[8] assigns different grades to instances from a time 

window, and calculates the test statistics with the 

instances’ grades. In contrast to all these algorithms, 

our kTSW based method divides the whole time 

window into k sub-concept windows based on the sub-

concept knowledge. The instances from each time sub-

concept window belong to the same sub concept. Our 

method then calculates test statistics over instances 

from each time sub-concept window separately. 

3 Problem Definitions and Description 

We define a data stream as a sequence of data 

objects with time stamps 
1 2

{ , , , , }
i

t t t
DS x x x= … … , 

where ti < ti+1 for all i. 
i
t
x  is the data object at time 

point ti, and 
i
t
x ⋅X= {x1,  x2, ..., xc}, where X is the set 

of features or covariates. For classification learning, 

each data object xi has a class label yi ⋅Y= {y1, y2, ..., 

yc}. In this case, data streams are defined over X∪Y, 

which represents the joint distribution X and Y, and are 

denoted as a sequence of <xt, yt>.  

Definition 1: concept= P(X, Y) 

A concept is defined as the joint probability 

distribution P(X, Y) over objects and class labels [16-

17]. 

Definition 2 (concept drift): ( , ) ( , ).≠
i jt t

P PX Y X Y
 

Data streams are usually non-stationary, which 

implies that their underlying distribution can change 

dynamically over time. This is known as concept drift 

[16-17]. Formally the joint probability distribution 

( , )
i
t
P X Y  is not equal to ( , )

jt
P X Y , where ti ≠ tj when 

concept drift happens. This is a kind of WTW based 

concept drift. 

Definition 3: O
1

k

ii
O

=

=∪ . 

We assume that there are k sub concepts. And the 

instances from the ith sub-concept are denoted by Oi. 

And all Oi compose the all instances in a time window.  

Definition 4: sub-concept=P(Oi)  

The concept over a time window is denoted as 

P(O)=P(X, Y) and the concept from a time sub-concept 

window as P(Oi). In a time window ti, each upcoming 

instance would be assigned to the nearest sub-concept 

according to the distance from the instance to the 

centers of existing sub-concepts. When a sub-concept 

drift is detected, the P(Oi) (i=1,…k) would be updated 

based on newly arrived instances as shown in 

Algorithms 2 and 4. 

Definition 5 (sub-concept drift): ( ) ( ).
i i
≠

j kt t
P O P O

  

Sub-concept drifts are detected by computing test 

statistics within each time sub-concept windows. This 

way, the test statistics of a sub-concept is more 

sensitive than that of a concept on the whole domain. 

When ( )
jt i

P O  is not equal to ( )
k
t i
P O , a sub-concept 

drift between time point tj and time point tk occurs. This 

is a kind of kTSW based concept drift. 

Using these definitions, we construct a method able 

to detect sub-concept drifts based on sub-concept 

knowledge. This way we are able to find concept drifts 

early and find some drifts that may be ignored by 

WTW based methods.  

4 Concept Drift Detection Based on k 

Time Sub-Concept Windows 

4.1 The Framework of kTSW Based Concept 

Drift Detection  

Concept drift detection based on kTSW includes the 

following three components: a Divide Module, a Base 

Learner and a Drift Monitor. The framework’s 

structure is shown in Figure 3. The divide module can 

divide instances from a whole time window into k time 

sub-concept windows. This means that the divide 

module can identify the sub-concepts. The base learner 

predicts the value of each unknown instance. The drift 

monitors (actually, sub drift monitors) observe the 

performance evaluation over instances from the sub-



568 Journal of Internet Technology Volume 21 (2020) No.2 

 

concept windows. The number of drift monitors 

needed is equal to the number of time sub-concept 

windows which is, itself, determined by domain 

knowledge or by inspection. When an instance arrives, 

the system first determines which sub drift monitor 

should be used, then submits the predicted result to that 

sub drift monitor. It outputs a drift level (Normal/ 

Warning/Drift) based on the sub drift monitors’ 

feedback. If one of the Sub Drift Monitors’ feedback is 

“Drift”, then our method outputs “Drift” and resets the 

whole system; Else if one of Sub Drift Monitors’ 

feedback is “Warning”, then it outputs “Warning”; 

Otherwise it outputs “Normal”. 

 

Figure 3. the framework structure chart of kTSW 

based concept drift detection 

The divide module. The first step of Concept drift 

detection with the k time sub-concept window method 

is to divide instances from the whole time window into 

k time sub-concept windows. Based on Definitions 3 to 

5, we can transform this problem into dividing 

concepts into sub-concepts. Sharma et al. [9] explored 

sub-concepts structure and applied it to one class 

classification. Moulton et al. [10] adapted that idea to 

data streams. They identified three levels of knowledge 

of the sub-concepts structure, including complete 

knowledge, fuzzy knowledge and no knowledge. When 

we have knowledge of the sub-concepts structure, we 

can use that knowledge to identify sub-concepts. This 

knowledge can be used in both the initial and the 

online phases. If we have fuzzy knowledge of the sub-

concept structure, we can use it to identity sub-

concepts in the initial phase. This information, 

however, does not carry to the online phase. Finally, if 

we have no knowledge of the sub-concepts but there 

exists an underlying sub-concepts structure, we can use 

a clustering algorithm during both the initial and online 

phase to identify the sub-concepts [18].  

The base learner and drift monitor. Base learners are 

the inductive learning models that learn from the data 

stream. The drift monitor is the module which tracks 

the performance of the base learner, and then checks 

whether a concept drift has occurred. In our method, 

the concept from the data stream is divided into sub-

concepts, which means that the instances from the data 

stream are divided into sub sets. As a result, we can use 

one or multiple base learners in our method.  

The drift monitor consists of the k Sub Drift 

Monitors whose number k is equal to the k number of 

time sub-concept windows. In our method, we can use 

any concept drift algorithm as Sub Drift Monitor. 

These algorithms could be DDM, EDDM etc. which 

are error based algorithm. They output the drift level 

(Normal/ Warning/Drift) of the stream (or sub stream) 

they are monitoring.  

In order to apply sub-concepts structure to improve 

concept drift detection and the performance of 

classification under the proposed method, this paper 

utilizes three schemes based on different numbers of 

base learners, and presents strategies for each scheme 

which take advantage of the kind of sub-concepts 

structure knowledge that Sharma et al. [9] defined. In 

scheme I, there are multiple drift monitors, but only 

one whole base learner. In scheme II, there are multiple 

drift monitors and multiple sub base learners. Scheme 

III is the combination of scheme I and scheme II. There 

are multiple drift monitors with one whole base learner 

and multiple sub base learers. When predictions of 

whole base lerner and sub base learner are all true, then 

submit true to sub drift monitor, otherwise submit false 

to sub drift monitor. We will describe the algorithms of 

scheme I and II in the next section.  

4.2 Scheme I: Multiple Drift Monitors with 

One Base Learner 

In this scheme, there is only one base learner for all 

instances or subsets. This means that all initial 

instances are used to build one base learner in the 

initial phase. We track this base learner’s error-rate 

over each subset in the online concept drift monitoring 

phase. 

There are generally three levels of knowledge of the 

sub-concepts structures [10]. In the complete 

knowledge scenario, the number of Sub Drift Monitors 

is equal to the number of classes or categories, and 

each Sub Drift Monitor tracks the performance of the 

base learner over one class or category. The sub-

concept’s index can be calculated by the sub-concepts’ 

knowledge. In the fuzzy knowledge scenario, we first 

obtain the number of classes or categories which we 

can then use as the number of sub-concepts. In the no 

knowledge scenario, we cannot get any knowledge 

about the sub-concepts structure, so we use a clustering 

model to identify the underlying sub-concepts structure. 

The initial phase and online phase of the algorithm 

with one base leaner is shown as Algorithm 1 and 

Algorithm 2 respectively, where N is the number of 

training instances to be used during initialization; k is 

the number of time sub-concept windows determined 

by domain knowledge or by inspection; DriftM is the 

concept drift monitor chosen to detect sub-concepts; 

CLASS is the base classifier; CLUS is the cluster 

model used to divide the concept into sub-concepts. 

During the initiation phase, the first N instances are 

buffered, and used to build a base classifier whose 

performance will be tracked over future data stream 



Learning with Concept Drift Detection based on Sub-concepts from k Time Sub Windows 569 

 

instances. In order to divide instances from the whole 

time window into sub-concept windows, a clustering 

model needs to be built with parameter k in the case of 

fuzzy knowledge or no knowledge. In the case of fuzzy 

knowledge, the value of k will depend on prior 

knowledge. In algorithm 1, Lines 1 to 4 cache the 

initiation instances. Line 5 builds the base classifier. 

Lines 6 to 11 build the clustering (CLUS) when there 

is fuzzy or no knowledge.1 Lines 12 to 16 return the 

clustering models built in each of the knowledge levels.  

 

Algorithm 1. One base learner-initiation phase 

Input: Datastream, N, k 

OutPut: CLASS, CLUS 

1. While (DS has more instances && numInst < N) 

do 

2.     Add next instance to Buffer 

3.     numIns++ 

4. End While   

5. Build classifier model (CLASS) in Buffer 

6. If fuzzy knowledge then 

7.     k= the number of instances’ class or category 

8. End if  

9. If no Knowledge or fuzzy knowledge then 

10.    Build Cluster model (CLUS) in Buffers with k 

11. End if  

12. If Complete Knowledge then 

13.     Return CLASS 

14. Else 

15.     Return CLASS, CLUS 

16. End if 

 

During the online phase, our method uses existing 

concept drift detection methods, such as DDM and 

EDDM, to create k sub-concept drift monitors. The 

performance of CLASS over each sub-concept instance 

set will be tracked by drift monitors. It checks whether 

a drift occurs by considering the information output by 

the drift monitors. In algorithm 2, Lines 1 to 3 reset the 

value of k in the case of fuzzy knowledge. Line 4 

creates k sub-concept drift monitors (DriftM). Lines 6 

to 10 compute the instance’s sub concepts index 

(subWindowIndex). Lines 11 to 12 get the predictive 

result. Lines 13 to 19 check the drift level based on the 

drift results of the drift monitors (DriftM). Line 20 to 

22 update the clustering model and the classifier if a 

drift occurs. 

 

Algorithm 2. One base learner-online phase 

Input: Datastream, k, DriftMonitor, CLASS, CLUS 

OutPut: Level (Normal/ Warning/Drift) 

1. If complete knowledge or fuzzy knowledge then 

2.      k= the number of instances’ class 

                                                           
1 In the case of complete knowledge, no clustering algorithm 

needs to be applied as we already know how to divide the data 
into separate classes. 

3. End if 

4. Use DriftMonitor to create k SubConcept Drift 

Monitors DriftM [k]; 

5. While (DS has more instances) do 

6.       If  complete knowledge then 

7.           subWindowIndex= instance’s class or 

category 

8.       Else 

9.           subWindowIndex=CLUS (instance) 

10.       End if 

11.       predictValue=CLASS (instance)  

12.       submit predictResult (true/false) to DriftM 

[subWindowIndex] 

13.       If DriftM [subWindowIndex] drift then 

14.            Level=“Drift” 

15.       ElseIf DriftM [subWindowIndex] warning 

then 

16.            Level=“Warning” 

17.       Else   

18.            Level=“Normal” 

19.      End If 

20.      If Level==“Drift” then 

21.          Use Instances from Warning to Drift to 

update  CLUS and CLASS 

22.      End If 

23.      OutPut Level 

24. End While 

 

4.3 Scheme II: Multiple Drift Monitors with 

Multiple Base Learners 

In this scheme, there are multiple base learners. That 

is, a base learner and a drift monitor are built for 

instances from each time sub-concept window that 

describe different sub-concepts. The number of base 

learners is equal to the number of time sub-concept 

windows and the number of drift Monitors. In the 

initial phase, the initial instances are divided into 

subsets, we build a base learner for each subset. In the 

online phase, we monitor the error-rate of each base 

learner over the instances from the corresponding time 

sub-concept window. 

In the complete knowledge scenario, we build a base 

learner for each sub-concept data set, and track the 

base learner’s error-rate over the sub-concepts sets. In 

the fuzzy knowledge scenario, we cannot get the sub-

concept information of novel instances from the data 

stream. We identify the underlying sub-concepts using 

a clustering algorithm, and the number of clusters k can 

be obtained from domain knowledge. In the no 

knowledge scenario, we cannot get the sub-concept 

knowledge of all the instances from the data stream. 

We use a clustering model to identify the underlying 

sub-concepts structure as well as the number of 

clusters.  

The initial and online phases of the algorithm with 

multiple base leaners are as shown in Algorithm 3 and 



570 Journal of Internet Technology Volume 21 (2020) No.2 

 

Algorithm 4, respectively, where the meaning of the 

parameters are same as in Algorithm 2 and Algorithm 

3. During the initialization phase, we first divide the 

first N data stream instances into sub-concept sets, and 

build classifiers over each subset. If we have fuzzy or 

no knowledge, we should build a clustering model to 

learn the sub-concept instances sets. 

 

Algorithm 3. Multi base learner-initiation phase 

Input: Datastream, N, k  

OutPut: subCLASS, CLUS 

1. While (DS has more instances && numInst < N) 

do 

2.     Add next instance to Buffer 

3.     numIns++ 

4. End While 

5. If complete knowledge or fuzzy knowledge then 

6.      k= the number of instances’ class or category 

7. End if 

8. If fuzzy knowledge or no knowledge then 

9.     Build Cluster model (CLUS) with k 

10.     IF no knowledge then  

11.          Run CLUS to divide Buffer into k subBuffers 

[k] 

12.      End if 

13. End if 

14. If complete knowledge or fuzzy knowledge then 

15.     divide Buffer into k subBuffers [k] with the sub-

concept knowledge of instances  

16. End if 

17. Build classifier models (subClass [k]) in each 

subBuffer 

18. If Complete Knowledge then Return subCLASS 

19. Else  Return subCLASS, CLUS 

 

In algorithm 3, lines 1 to 4 cache the initiation 

instances. Lines 5 to 16 build the clustering (CLUS) in 

the case of fuzzy or no knowledge, and divide Buffer 

into subBuffers with CLUS when there is no 

knowledge. Line 17 builds k base classifiers on each 

subBuffer. Lines 18 to 19 return the model for the 

different knowledge levels. 

During the online phase, our method creates k drift 

monitors which will track the performance of the k 

base learners to detect concept drift. In algorithm 4, 

line 4 creates k sub-concept drift monitors. Lines 5 to 

24 detect concept drifts based on data from the sub 

time windows. If a drift is detected, then the updating 

of the cluster and sub classifier will be triggered.  

 

Algorithm 4. Multi base learner-online phase 

Input: Datastream, N, k, DriftMonitor, subCLASS, 

CLUS 

OutPut: Level: Concept drift level (Normal/ 

Warning/ Drift) 

1. If complete or fuzzy knowledge then 

2.    k= the number of instances’ class 

3. End if 

4. UseDriftMonitor to create k SubConcept Drift 

Monitors DriftM [k]; 

5. While (DS has more instances) do 

6.    If  complete knowledge then 

7.       subWindowIndex= instance’s class or category

8.    Else 

9.       subWindowIndex=CLUS (instance) 

10.    End if 

11.    predictValue=subCLASS [subWindowIndex] 

(instance)  

12.    submit predictResult (true/false) to DriftM 

[subWindowIndex] 

13.    If DriftM [subWindowIndex] drift then 

14.        Level=“Drift” 

15. ElseIf DriftM [subWindowIndex] warning then 

16.        Level=“Warning” 

17.    Else  Level=“Normal” 

18.    End If 

19.    If Level==“Drift” then 

20.        Use Instances in Buffer from Warning to Drift 

to update   CLUS 

21.        Use Instances in subBuffer 

[subWindowIndex]  from  

Warning to Drift to update   subCLASS 

[subWindowIndex] 

22.    End If 

23.    OutPut Level 

24. End While 

 

5 Experiments  

In our experiments, we implemented the algorithms 

described in the previous section using WEKA 

(available at https://www.cs.waikato.ac.nz/ml/weka/) 

and MOA [19] (available athttps://moa.cms.waikato. 

ac.nz/). To evaluate our method, we compared our 

proposed algorithm, kTSW, outfitted with DDM [5] 

and EDDM [6] to the standard whole window 

algorithm, WTW, also outfitted with DDM and 

EDDM on classification tasks. These experiments were 

carried out on two real world data sets. All experiments 

were conducted on a computer with 1.8GHz CPU and 

16GB RAM. In addition, we used k-means as the base 

clustering system and HoeffdingTree as the base 

learner (classifier). In our experiments, k was set in the 

range of 2 to10. The parameters of the compared 

algorithms were set to the default values suggested by 

their authors. The meaning of the acronyms used to 

describe the compared methods is shown in Table 1. 

 

 

 

 



Learning with Concept Drift Detection based on Sub-concepts from k Time Sub Windows 571 

 

Table 1. Meaning of methods’ acronyms  

Method Name Means 

WTW-*** Concept drift detection algorithm (***) based on Whole instances from Time Window 

kTSW-***-C 
Concept drift detection algorithm (***) based on instances from k Sub-concept Time Windows in 

Complete knowledge scenario 

kTSW-***-F 
Concept drift detection algorithm (***) based on instances from k Sub-concept Time Windows in 

Fuzzy knowledge scenario 

kTSW-***-N 
Concept drift detection algorithm (***) based on instances from k Sub-concept Time Windows in No 

knowledge scenario 

kTSW-***-One 
Concept drift detection algorithm (***) based on instances from k Sub-concept Time Windows with 

One base learner (Scheme I) 

kTSW-***-Multi 
Concept drift detection algorithm (***) based on instances from k Sub-concept Time Windows with 

Multiple base learner (Scheme II) 

kTSW-***-Com 
Concept drift detection algorithm (***) based on instances from k Sub-concept Time Windows with 

Scheme III (Combining Scheme I and II) 

 

 

5.1 Experiment1: ELEC2  

The ELEC2 dataset [11] contains 45,312 instances, 

7 attributes and 2 classes. On this data set, 5% of the 

instances are used as initial instances. The 

classification results are shown in Table 2 to Table 4. 

Table 2 shows the results using scheme I. Table 3 

shows the results using scheme II. Table 4 shows the 

results using scheme III. Because the ELEC2 data set 

only has two classes, Schemes II and III are not 

suitable to this data set in the case of complete 

knowledge. Indeed, with knowledge of the instances’ 

labels, the classification accuracy of the sub base 

learner is very high and we will fail to detect concept 

drift by tracking its error rate. 

Table 2. Classification results with scheme I on ELEC2 

Methods name Accuracy Recall Time(s) Methods name Accuracy Recall Time(s) 

WTW-DDM 0.798801 0.784419 0.11558+0.03283 WTW-EDDM 0.768788 0.758974 0.07662+0.02801 

kTSW-DDM-C 0.802611 0.797760 0.13811+0.03926 kTSW-EDDM-C 0.776128 0.772554 0.08224+0.03127 

kTSW-DDM-F 0.807606 0.802561 0.19338+0.09949 kTSW-EDDM-F 0.767022 0.765618 0.11925+0.07231 

kTSW-DDM-N 0.814482 0.810034 0.38722+0.12828 kTSW-EDDM-N 0.796223 0.794449 0.31095+0.11218 

Table 3. Classification results with scheme II on ELEC2 

Methods name Accuracy Recall Time(s) Methods name Accuracy Recall Time(s) 

WTW-DDM 0.798801 0.784419 0.11558+0.03283 WTW-EDDM 0.768788 0.758974 0.07662+0.02801

kTSW-DDM-F 0.795503 0.781201 0.18578+0.07076 kTSW-EDDM-F 0.739215 0.733695 0.18248+0.07346

kTSW-DDM-N 0.812600 0.805781 0.35757+0.10123 kTSW-EDDM-N 0.794945 0.793371 0.35205+0.17954

Table 4. Classification results with scheme III on ELEC2 

Methods name Accuracy Recall Time(s)  Methods name Accuracy Recall Time(s) 

WTW-DDM 0.798801 0.784419 0.11558+0.03283 WTW-EDDM 0.768788 0.758974 0.07662+0.02801 

kTSW-DDM-F 0.821892 0.8184415 0.32651+0.18189 kTSW-EDDM-F 0.796989 0.793024 0.27710+0.09118 

kTSW-DDM-N 0.819755 0.8124215 0.54086+0.18096 kTSW-EDDM-N 0.798825 0.781092 0.48046+0.13164 

 

From tables 2 to 4, we can see that our methods 

(kTSW outfitted with DDM and EDDM) outperform 

traditional windowing methods (WTW outfitted with 

DDM and EDDM). The results show that the 

knowledge of sub-concepts can improve the 

performance of DDM and EDDM, and yield higher 

accuracy and recall. But the time consumption is 

greater. The time consumption mainly includes the 

time used in building the base learner model (A), in 

building the clustering model (B), in monitoring the 

drift (C), in updating the base learner (D) and in 

updating the cluster model (E). The time consumption 

details are shown in Table 5. When a concept drift is 

detected, the base learner and the clustering need to be 

updated, so the greater the number of concept drifts 

detected, the greater the time cost. From this, we can 

conclude that the reason our methods are improving 

the classification accuracy is that they can detect more 

concept drifts. The underlying reason is that our 

methods monitor the instances from the k sub concept 

time window, so they are more sensitive to sub concept 

drifts than traditional methods.  



572 Journal of Internet Technology Volume 21 (2020) No.2 

 

Table 5. The time cost details of difference methods 

Method Name A B C D E 

WTW-*** YES NO YES YES NO 

kTSW-***-C YES NO YES YES NO 

kTSW-***-F YES YES YES YES YES 

kTSW-***-N YES YES YES YES YES 

 

It costs time to update the base learner and the 

clustering algorithm when a concept drift occurs is 

different from one scheme to the other. That cost is the 

lowest in scheme II, because it only updates one base 

learner and the other base learners do not need to be 

updated. However, the time cost of forming the initial 

clusters of instances for scheme II is higher than in 

scheme I because the instances are divided into k 

subsets, and each subset must satisfy the minimum 

number of training instances required. 

5.2 Experiment2: Mobile Traffic Data Set 

The Mobile traffic data set [12] includes 11,8020 

instances, 36 attributes and 12 classes. The distribution 

of the mobile traffic data set is shown in Table 6. This 

data set is an imbalanced one, so we also use the G-

mean to evaluate our methods. We use 1%, 5% and 

20% of the data set as initial instances. The knowledge 

of the sub-concepts is the category of instances. 

Category I is QQ, WeChat, Facebook, Weibo, Youku, 

Category II is Youku, TencentVideo, MgTV, Browser, 

Category III is JdShop, VipShop, and Category IV is 

QQMail and YahooMail. So the value of k is 4 for 

complete or fuzzy knowledge. The classification 

results are shown in Table 7 to Table 9. 

Table 6. The detail of instance number in each class 

Class Name QQ WeChat Facebook Weibo Youku Tencent Video MgTV Browser JdShop VipShop QQMail Yahoo Mail 

Instances Number 17104 13631 1401 25407 5825 1593 14046 25512 4008 4577 1432 3484 

Table 7. Classification results with scheme I on MobileDS 

Methods name Accuracy Recall G-means Methods name Accuracy Recall G-means 

WTW-DDM 0.638737 0.584183 0.574169 WTW-EDDM 0.625873 0.576908 0.563337 

kTSW-DDM-C 0.649170 0.601099 0.591877 kTSW-EDDM-C 0.630820 0.585996 0.575952 

kTSW-DDM-F 0.663266 0.615754 0.606624 kTSW-EDDM-F 0.640979 0.572255 0.553894 

kTSW-DDM-N 0.672193 0.621638 0.611802 kTSW-EDDM-N 0.651883 0.588673 0.577138 

Table 8. Classification results with scheme II on MobileDS 

Methods name Accuracy Recall G-means Methods name Accuracy Recall G-means 

WTW-DDM 0.658773 0.607162 0.595651 WTW-EDDM 0.667924 0.611037 0.600456 

kTSW-DDM-C 0.781224 0.7508643 0.741349 kTSW-EDDM-C 0.767354 0.74213991 0.732557 

kTSW-DDM-F 0.665454 0.613998 0.602731 kTSW-EDDM-F 0.667862 0.615320 0.603631 

kTSW-DDM-N 0.668031 0.613603 0.602203 kTSW-EDDM-N 0.666997 0.616512 0.607364 

Table 9. Classification results with scheme III on MobileDS 

Methods name Accuracy Recall G-means Methods name Accuracy Recall G-means 

WTW-DDM 0.653586 0.601903 0.590203 WTW-EDDM 0.646977 0.597031 0.586200 

kTSW-DDM-C 0.796804 0.7726095 0.763369 kTSW-EDDM-C 0.793467 0.778905 0.770425 

kTSW-DDM-F 0.670098 0.6246085 0.614381 kTSW-EDDM-F 0.659814 0.600604 0.589136 

kTSW-DDM-N 0.672291 0.617889 0.606754 kTSW-EDDM-N 0.670374 0.607260 0.617848 

 

From Table 7 to Table 9, we can see that our method 

can improve the performance of concept drift monitors 

when compared to WTW. Especially, when we have 

complete knowledge we can obtain higher accuracy, 

recall and G-mean. This demonstrates that the 

knowledge of sub-concepts is useful to sub-concepts 

drift detection. But in scheme I, the advantage of 

knowledge is not much obvious. So when we have 

enough initial instances and multiple classes, we can 

choose scheme II or III for higher classification 

accuracy. The mobile traffic data set has 12 classes. To 

explore the performance of our methods in different 

classes, we compare the accuracy of the different 

methods on each class. The experimental results are 

shown as Figure 4 to Figure 9. We can see that our 

method can improve the performance of most classes 

using either DDM or EDDM, especially, when using 

scheme II and III with complete knowledge. For 

example, in scheme III, when we have complete 

knowledge and use kTSW outfitted with DDM, the 

accuracy improves on all classes; when we have fuzzy 

knowledge and we use kTSW outfitted with DDM, the 

accuracy improves on 8 out of 12 classes; when we 

have no knowledge and we use kTSW outfitted with 

DDM the accuracy improves in 6 out of 12 classes. 



Learning with Concept Drift Detection based on Sub-concepts from k Time Sub Windows 573 

 

 

Figure 4. The accuracy of each class with scheme I and DDM 

 

Figure 5. The accuracy of each class with scheme I and EDDM  

 

Figure 6. The accuracy of each class with scheme II and DDM 

 

Figure 7. The accuracy of each class with scheme II and EDDM 



574 Journal of Internet Technology Volume 21 (2020) No.2 

 

 

Figure 8. The accuracy of each class with scheme III and DDM 

 

Figure 9. The accuracy of each class with scheme III and EDDM 

5.3 Parameter Discussion 

5.3.1 The Value of k 

The value of k represents the number of time sub-

concept windows. When we have knowledge of the 

number of sub-concepts, we know the value of k. To 

explore the performance of our methods with different 

values of k, we compare the accuracy of our methods 

with value of k varying from 1 to 12. The experimental 

results are shown in Figure 10 to Figure 13. When the 

value of k is 1, our method is the same as the WTW 

based method, for example, Figure 10 is the results of 

kWST-DDM, when the value of k is 1, the kWST-

DDM equal to WTW-DDM. In Figures10 to Figure 13, 

we can see that most of values of k can improve 

accuracy, especially on the mobile traffic data set. 

Since the underlying sub-concepts for mobile traffic 

are more complex, the division offered by the sub-

concepts methods performs well on the problem of 

detecting concept drift in mobile traffic data. 

  

Figure 10. The accuracy of kWST-DDM with 

difference value of k on ELEC2 

 

Figure 11. The accuracy of kWST-EDDM with 

difference value of k on ELEC2   



Learning with Concept Drift Detection based on Sub-concepts from k Time Sub Windows 575 

 

  

Figure 12. The accuracy of kWST-DDM with 

difference value of k on MobileDS 

   

Figure 13. The accuracy of kWST-EDDM with 

difference value of k on MobileDS 

5.3.2 The Number of Initial Data from Data 

Stream 

Because error-based concept drift detection methods 

detect concept drift by tracking the error rate of the 

base learner, we set a fixed number of instances for 

building the base learner. This section compares the 

classification accuracy under different numbers of 

initial training instances to study the performance of 

our method. The experimental results under the 

situation with no sub-concepts knowledge are shown in 

Figure 14 and Figure 15. The x-axis represents the 

ratio of the number of initial training instances to the 

whole experimental data set, and the y-axis is the 

classification accuracy. The results in Figure 14 

represent the comparison of WTW-DDM and kTSW-

DDM when the value of k is 6. We can see that our 

method can obtain higher accuracy than WTW-DDM 

in most cases. Scheme II’s accuracy is lower when the 

initial ratio is lower than 0.03, because scheme II needs 

to build multiple base learners, and therefore, it needs 

more initial instances than scheme I. We can also see 

that the effect of the number of initial instances on 

scheme I is not significant. 

 

Figure 14. The methods with DDM accuracy comparison under difference ratio initial data 

The results in Figure 15 represent the comparison 

between WTW-EDDM and kTSW-EDDM. The 

accuracy of kTSW-EDDM is higher with k from 2 to 

20 in Figure 15. We can see that kTSW-EDDM can 

obtain higher accuracy than WTW-DDM in most cases 

as well. But when the ratio of initial to whole training 

data equals 0.06, 0.07, 0.09 and 0.1, some of our 

schemes perform worse than WTW-DDM. This is 

because the minimum number of errors of EDDM is 

set to 30. If the instances are divided into multiple time 

sub-concept windows and the change is slow, the 

detection of a concept drift will be delayed and that 

will negatively influence the classification accuracy. 

So how to divide instances from the data stream is 

crucial to our method when we have no knowledge of 

sub-concepts 



576 Journal of Internet Technology Volume 21 (2020) No.2 

 

 

Figure 15. The methods with EDDM accuracy comparison under difference ratio initial data 

6 Conclusions 

This paper explores the idea of a concept-drift 

detection method based on sub concepts. Our method 

divides the data from a whole time window into k time 

sub-concept windows. Three schemes are proposed to 

improve the performance of error rate-based concept 

drift detection algorithms. The advantage of our 

method is that it can take full advantage of any 

knowledge it has of the sub-concepts structure to detect 

sub-concepts drift that maybe be ignored by the whole 

time window methods.  

We tested our method on two real world data sets. 

From our experimental results, we can see that the 

accuracies and recalls of kTSW-DDM and kTSW-

EDDM are higher than those of WTW-DDM and 

WTW-EDDM respectively. The characteristics of our 

schemes and the results we obtained are summarized 

below. 

(1) Scheme I uses multiple drift monitors with one 

base learner, it obtains higher classification accuracy 

than scheme II when we have no knowledge of the 

sub-concepts structure, and it needs a smaller number 

of initial instances than scheme II. On the other hand, 

its time consumption is greater than that of scheme II.  

(2) Scheme II uses multiple drift monitors with 

multiple base learners. It obtains higher classification 

accuracy than scheme I when we have complete 

knowledge of the sub-concept structure, and its time 

consumption is lower. However, it needs more initial 

instances than scheme I.  

(3) Scheme III is the combination of Scheme I and II. 

It obtains higher classification accuracy than scheme I 

and II, but its time consumption is more than that of 

scheme I and II.  

(4) As a whole, our experimental results show that 

the proposed kTSW based concept drift detection 

method can achieve higher classification accuracy and 

recall—no matter which scheme it uses—than WTW 

based methods. It performs especially well when we 

have complete knowledge of the sub-concepts structure.  

In this paper we only use k-means to divide the 

original window. We will investigate other clustering 

algorithms in future.  

Acknowledgments 

This work was partly supported by the National 

Natural Science Foundation of China under Grant No. 

61872027 and No. 61501128. 

References 

[1] D. Tao, T. Y. Wu, J. G. Jiang, P. P. Liu, uIP Stack based 

Embedded Network Control System for Bridge Safety 

Detection, Journal of Internet Technology, Vol. 17, No. 6, pp. 

1109-1116, November, 2016. 

[2] R. Z. Wang, D. Tao, Context-Aware Implicit Authentication 

of Smartphone Users Based on Multi-Sensor Behavior, IEEE 

ACCESS, Vol. 7, No. 1, pp. 119654-119667, August, 2019. 

[3] A. S. Iwashita, J. P. Papa, An Overview on Concept Drift 

Learning, IEEE Access, Vol. 7, pp. 1532-1547, December, 

2018. 

[4] Y. Sun, K. Tang, Z. Zhu, X. Yao, Concept Drift Adaptation 

by Exploiting Historical Knowledge, IEEE Transactions on 

Neural Networks and Learning Systems, Vol. 29, No. 10, pp. 

4822-4832, October, 2018. 

[5] J. Gama, P. Medas, G. Castillo, P. Rodrigues, Learning with 

Drift Detection, 17th Brazilian Symposium on Artificial 

Intelligence, São Luis, Maranhão, Brazil, 2004, pp. 286-295. 

[6] M. Baena-García, J. del Campo-Ávila, R. Fidalgo, A. Bifet, R. 

Gavaldà, R. Morales-Bueno, Early Drift Detection Method, 

Fourth International Workshop on Knowledge Discovery 

from Data Streams, 2006, pp. 77-86. 

[7] I. Frias-Blanco, J. d. Campo-Avila, G. Ramos-Jimenez, R. 

Morales-Bueno, A. Ortiz-Diaz, Y. Caballero-Mota, Online 

and Non-parametric Drift Detection Methods Based on 

Hoeffding’s Bounds, IEEE Transactions on Knowledge and 

Data Engineering, Vol. 27, No. 3, pp. 810-823, March, 2015. 



Learning with Concept Drift Detection based on Sub-concepts from k Time Sub Windows 577 

 

[8] A. Liu, G. Zhang, J. Lu, Fuzzy Time Windowing for Gradual 

Concept Drift Adaptation, 26th IEEE International 

Conference on Fuzzy Systems, Naples, Italy, 2017, pp. 1-6. 

[9] S. Sharma, A. Somayaji, N. Japkowicz, Learning over 

Subconcepts: Strategies for 1-class Classification, 

Computational Intelligence, Vol. 34, No. 2, pp. 440-467, May, 

2018. 

[10] R. H. Moulton, H. L. Viktor, N. Japkowicz, J. Gama, 

Contextual One-Class Classification in Data Streams, CoRR 

abs/1907.04233, July, 2019. 

[11] M. Harries, Splice-2 Comparative Evaluation: Electricity 

Pricing, Report No. UNSW-CSE-TR-9905, University of 

New South Wales, July, 1999. 

[12] R. Y. Wang, Z. Liu, Y. M. Cai, D. Tang, J. Yang, Z. Yang, 

Benchmark Data for Mobile App Traffic Research, Mobile 

and Ubiquitous Systems Conferenc, New York, USA, 2018, 

pp. 402-411. 

[13] J. Lu, A. Liu, F. Dong, F. Gu, J. Gama, G. Zhang, Learning 

under Concept Drift: A Review, IEEE Transactions on 

Knowledge and Data Engineering (Early Access), October, 

2018, pp. 1-18. 

[14] G. J. Ross, N. M. Adams, D. K. Tasoulis, D. J. Hand, 

Exponentially Weighted Moving Average Charts for 

Detecting Concept Drift, Pattern Recognition Letters, Vol. 33, 

No. 2, pp. 191-198, January, 2012. 

[15] A. Bifet, R. Gavalda, Learning from Time-changing Data 

with Adaptive Windowing, 2007 SIAM International 

Conference on Data Mining, Minneapolis, Minnesota, USA, 

2007, pp. 443-448. 

[16] J. Gama, I. Zliobaite, A. Bifet, M. Pechenizkiy, A. 

Bouchachia, A Survey on Concept Drift Adaptation, ACM 

Computing Surveys, Vol. 46, No. 4, pp. 44/1-37, April, 2014. 

[17] G. I. Webb, R. Hyde, H. Cao, H. L. Nguyen, F. Petitjean, 

Characterizing Concept Drift, Data Mining and Knowledge 

Discovery, Vol. 30, No. 4, pp. 964-994, July, 2016. 

[18] R. H. Moulton, H. L. Viktor, N. Japkowicz, J. Gama, 

Clustering in the Presence of Concept Drift, European 

Conference on Machine Learning and Knowledge Discovery 

in Databases (ECML PKDD), Dublin, Ireland, 2018, pp. 339-

355. 

[19] A. Bifet, G. Holmes, R. Kirkby, B. Pfahringer, MOA: 

Massive Online Analysis, The Journal of Machine Learning 

Research, Vol. 11, pp.1601-1604, May, 2010. 

Biographies 

Li Liu currently works as an associate 

professor in the School of Information 

Science and Technology, Huizhou 

University, Huizhou, China. She 

received the M.S. degree in School of 

Computer Science, Guangxi, Nanning, 

China in 2004. Her research interests are in the areas of 

machine learning, image retrieval and mobile traffic 

classification.  

 

Nathalie Japkowicz is a Professor 

and Chair in the Computer Science at 

American University. She was 

previously with the School of 

Electrical Engineering and Computer 

Science at the University of Ottawa 

where she led the Laboratory for 

Research on Machine Learning for Defense and 

Security. Over the years, she has published over 100 

articles, papers and books.  

 

Dan Tao currently works as a 

professor in the School of Electronic 

and Information Engineering, Beijing 

Jiaotong University, Beijing, China. 

She received the Ph.D. degree in 

School of Computer Science, Beijing 

University of Posts and 

Telecommunications, Beijing, China in 2007. Her 

research interests include wireless network, IoT, 

mobile computing and big data security.  

 

Zhen Liu received the Ph.D. degree 

from the School of Computer Science 

and Technology of South China 

University of Technology, China, in 

2013. She is now a Lecturer in the 

School of Medical Information 

Engineering, Guangdong Pharmaceutical 

University, Guangzhou, China. Her 

research interests are in the areas of machine learning, 

mobile traffic classification  

 

 



578 Journal of Internet Technology Volume 21 (2020) No.2 

 

 



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (Adobe RGB \0501998\051)
  /CalCMYKProfile (Japan Color 2001 Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness false
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHT <FEFF005b683964da300c9ad86a94002851fa8840002b89d27dda0029300d005d0020005b683964da300c8f3851fa0033003000300064002851fa88400029300d005d00204f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks true
      /AddPageInfo false
      /AddRegMarks false
      /BleedOffset [
        8.503940
        8.503940
        8.503940
        8.503940
      ]
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles true
      /MarksOffset 9.354330
      /MarksWeight 0.141730
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /LeaveUntagged
      /UseDocumentBleed true
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


