
Secure Authentication Protocol for Efficient Computational Offloading Service in the Mobile Cloud Computing 457

Secure Authentication Protocol for Efficient Computational

Offloading Service in the Mobile Cloud Computing

Munivel E, Kannammal A

Department of Electronics and Communication Engineering, PSG College of Technology, India

e.munivel@gmail.com, aks.ece@psgtech.ac.in*

*Corresponding Author: Munivel E; E-mail: e.munivel@gmail.com

DOI: 10.3966/160792642020032102014

Abstract

Battery-powered mobile devices are convenient to use

anywhere and anytime. Nowadays maximum people

using the mobile device, such as Smartphone, Tablet

computers to use mobile services anytime and anywhere.

Moreover, most of the Smartphone having wireless

communication like Wi-Fi and 4G. For some applications,

the requirement of computing power may be very high,

but the actual configuration of mobile devices are very

limited, such as CPU, memory, storage, and battery.

Among these computational resources, bandwidth and

battery are the most significant problems for Smartphone.

Efficient Computational Offloading is the best solution

for extending the usage of Smartphone by executing the

resource-intensive task to offload from mobile to the

remote cloud servers can extend processing capability

and support for multiple categories of application.

However, this technique is having difficulty in offloading

the process to a remote cloud server without the proven

security of entity verification. To deal with these

challenges, here we are proposing new security protocol

to authenticate mobile and cloud server with zero

knowledge proof of authentication to verify the

communication entities and recommends to offload the

service. The proposed protocol will get verify by the

University of Oxford developed verification tool Scyther.

Keywords: Authentication, Mobile cloud computing,

Smartphone, Cloud server, Computational

offloading

1 Introduction

Virtualization is a parent technology for Cloud

Computing to emulate the computing infrastructure

like real in the isolated environment [34]. Cloud

Computing is the technology will be going to

modernize the IT field shortly and will reduce the

workforce with the help of cloud automation. Also,

Cloud Computing is the technology will give

computing resources as a service over the network [1-

3]. The cloud computing is the hybrid technology to

deliver on-demand computing services over the

network [20]. This future technology will provide more

computing capacity to any user on the rental basis as

mentioned in the Figure 1 as cloud computing

architecture [20].

Figure 1. Cloud computing architecture

Mobile devices and laptops, have limited computing

resources in to use the processing ability, life of battery.

Therefore, this type of battery powered device is

inadequate to use the high-end computational tasks.

Also, there is a fast progress of based on these low

power devices and extremely curtail their battery

lifespan as an outcome when using the resource

intensive tasks. Resource intensive mobile applications

like multimedia, natural language processing and

augmented reality are becomes gradually getting

rigorous and also required to refine computational

resources [4]. Particularly at the time of using the user-

interactive applications, the mobile device has to wait

more time to complete the process execution due to the

restricted processing capabilities of the mobile cloud

device [10].

Computational offloading, which takes place of

unused computational resources available by the cloud

server, and it is becoming a capable technique to

resolve an amount of problems disturbing in the mobile

cloud computing [9]. The main idea is to offload the

processing limitation from the mobile devices through

transferring the resource intensive processes from

mobile cloud devices to the remote cloud servers. This

458 Journal of Internet Technology Volume 21 (2020) No.2

offloading method brings many prospective benefits,

like refining the performance of mobile cloud

applications and decreasing the battery usage and so on

in the mobile devices.

1.1 Cloud Characteristics

‧ Request Base Service: Cloud user can apply to get

the computing resources based on the requirement

without the intervention of any service provider [20].

‧ Broad Network Access: Plenty of services grouped

and get delivered over the network in a heterogeneous

manner to any device [20].

‧ Rapid Elasticity: Computing capabilities can

automatically provide to the user with the minimum

and maximum threshold [20].

‧ Resource Pooling: The service provider’s computing

resources like process, memory, storage, and

networking are dynamically added to serve multiple

users with on-demand [20].

‧ Metered Service: Cloud services can control

automatically with the optimized resources to the

user and will get reported correctly to the provider

and consumer [20].

1.2 The Cloud Models

‧ Cloud Software as a Service: Software services can

be delivered to the end user over the network

without installing on the dedicated device [25].

‧ Cloud Platform as a Service: Software can be

developed and deployed using any end-user device.

The services provider could manage the dependency

of development resources and libraries.

‧ Infrastructure as a Service: Infrastructure service is

one of the critical types of cloud service to offer the

virtualized computing resources like computation,

storage, and networking to the consumer over the

web. The customer can decide the requirement of

computer resources based on their application

deployment over the metered service.

1.3 Overview of Mobile Cloud Computing

The Mobile cloud is defined to use the cloud

technologies in mobile devices where processing and

data storage will be on remote cloud servers as shown

in the Figure 2 [23]. Nowadays so many mobile cloud

computing applications are using publicly like Mobile

Gmail, Google Maps, Facebook and so on [9, 32].

Figure 2. Mobile Cloud Computing Overview [23]

However, in recent years, most of the mobile

devices having massive data storage and more

processing capabilities in mobile itself [9-10]. In

upcoming years this situation will get change. With the

advancement of smartphones, the cloud market is

turning towards building the smartphone with high-end

apps, which leads to use the supercomputing power in

mobile [7-8].

However, two main reasons are there, why cloud

computing get disturbed in its advancement [6]. First is

infrastructure, in India, most of the time we are using

the internet in kilobit per second and more malware on

mobile devices, especially on Android [18]. Whatever

devices using the Android operating system are not

clean android. Customized to use the application of the

mobile manufacturers or to use the service provider’s

pre-installed apps. This nature will degrade the

performance of smartphone life.

1.4 Related Work

Authentication is an essential security service in any

system or network communications [14]. It is classified

as, user authentication, remote authentication, mutual

authentication, message authentication and implicit

authentication [11]. The current authentication review

shows the different attributes, based on password, hash

value, Identity, digital signature, hierarchical model,

mobile number, group key and biometric [18, 21].

To achieve mutual authentication in mobile cloud

computing Grzonkowski et al. [28], Ahmed et al. [24]

and Todd et al. [31] are proposed different

authentication protocols in the mobile and cloud

service environment. According to the Quasim et al.

[27] scheme, the user ID is sharing using the secure

channel, but the smart card generator, generates the

public key of the user and sends along with the

randomly generated nonce to secure against the replay

attack. However, the session key is not encrypting or

not sending over a secure channel. Authentication

phase not carrying the sender and receivers ID along

with the session key. Hence, Ahmed et al. [24] and

Todd et al. [31] scheme prone to man-in-the middle

attack and phishing attack.

Computation offloading tasks from smart-phones to

remote cloud server has recently been rediscovered as

a technique to enhance the performance of Smart-

phone applications, beyond the limit of its capacity [5,

9, 26]. Mobile phones are resource constrained devices,

like a limited battery, low bandwidth, limited storage

capacity, and low-speed processor [9, 13]. These

limitations can be overcome by computational

offloading, sending the process to the cloud server and

receiving back the results from these remote servers

[29-30].

The problem of the process offloading had identified

in the general computing environment in the past [10].

This research gives an overall method to decide the

computational offloading technique and its applications.

Secure Authentication Protocol for Efficient Computational Offloading Service in the Mobile Cloud Computing 459

Computation offloading is most important for the

resource-constrained mobile devices [12, 16]. The

Certain process cannot execute on mobile devices due

to limited resources. The only possible way to use

those application programs is to offload all or part of

the computation to remote cloud servers [9]. All the

reviewed research normally emphasis on one or two

offloading tasks such as computational resource, data

storage and data transmission mark to decide the

offloading choices founded on device monitoring

applications through the cloud agent’s application

installed in the mobile cloud device.

2 Methodologies

This section explains the computations offloading

technique along with the offloading methods. Finally,

explains the proposed method of authentication with

the resistance to certain security attacks and energy

efficiency.

2.1 Computational Offloading Requirements

This section presents basic details on mobile cloud

computational offloading technique and define the key

challenges and problems related with the computational

offloading decision making.

2.1.1 Basic Computational Offloading

The basic offloading method is having multiple

modules, when user generates a request to offload the

computation from their device, few details are

collected to take decision like existing computational

capability and also the availability of networking

capability by the offloading agent. There are multiple

agents combined here as Mobile Agent required in the

computational offloading like process agent, power

agent, bandwidth agent and memory agent. Each agent

having their own responsibilities as follows,

‧ Process agents: This module collects the information’s

like amount of execution time, physical memory

utilization and required amount of data during the

execution of the applications running in the mobile

device.

‧ Bandwidth Agent: This module gathers the

information about the network bandwidth and the

status of network connection with the history of

number of times connected and disconnected.

‧ Power Agent: This module gathers the information

about the power consumption of the application

running in the mobile device also calculating the

expected time to run the application in the device

using the power monitoring applications.

‧ Memory Agent: This module monitors the total,

available and required physical memory, and also

collects the amount of physical memory required to

run during the execution of the process.

2.1.2 Computational Offloading Criteria

Computational offloading decisions are typically

taken based on a certain cost measure. This metrics

decided as energy cost to calculate the amount of

power being utilized. Storage cost is calculating as

amount of data is being used to run in per second. The

performance, robustness and safety are important

metrics which need to be take full advantage before the

offloading process begin. Among all these criteria,

power, bandwidth and performance are significant

characteristics for the concern of the mobile user.

2.1.3 Process Fragmentation and Decisions

Making

On the base of the collected details, the offloading

decision-making application takes the decision

according to the above criteria. Then the fragmentation

module is invoked to cut the process that classify the

process into local and remote portion of tasks. The

local process is executed by the mobile device and the

remote portion is offloading to the remote cloud server

over the secure channel. This application fragmentation

is done either statically or dynamically.

The mobile agent sends the fragmented tasks to the

cloud agent which is located in the remote cloud server

over the secure connection between the mobile agent in

the mobile phone and the cloud agent located in the

remote cloud server.

Cloud agent module is invoked to find a suitable

virtual server for offloading. The offloaded tasks

interact with the local tasks in the local partition when

required to share the intermediate values to complete

the process execution. When finish the execution, the

final results sent back to the mobile cloud device.

2.1.4 Offloading Scheme

The advanced computation offloading system

divides the whole process of computation into multiple

tasks without any restrict at any particular level [19].

The proposed technique divides the tasks into remote

tasks, and local tasks such that the remote tasks run on

the cloud server and the local tasks run on the end-user

device, and also the domestic tasks and the remote

tasks execute in a distributed way in the way of the

actual flow of sequential control. The Figure 3

describes, how the mobile agent transfers the tasks to

remote cloud server. The cloud agent is deciding the

number of virtual machines to maintain the process

offloading beneficial. Also, in the proposed model is

transferring the piece of process over the secure

channel to maintain confidentiality in the public

network.

460 Journal of Internet Technology Volume 21 (2020) No.2

Figure 3. Computational offloading

2.1.5 Process Migration

The Mobile agent in computation offloading scheme

will migrates the running process from mobile to cloud

servers to get more processing capability in the

resource-constrained device. The process of offloading

computation helps to increase the client device

computation performance and to save power on the

end-user device [17].

Energy saving in the end-user device: Mobile phone

is the first option for many users to use day to day

activities. Using high-end applications in mobile

devices will consume more power as well as

processing, but this can be solved using computational

offloading to cloud servers. Finally, mobile users can

use the high-performance computing application with

the help of offloading to cloud servers.

To solve the primary thin client or a centralized

computing model of computational offloading problems,

proposing a Selective Computational Offloading to use

the customer device efficiently and complete the

offloading with limited bandwidth.

Offloading computation to another device is not a

new technique, already the thin client uses this way but

dynamically offloading the task to the cloud server and

the process offloading based on a specific threshold

condition like running process increases more than

80%. Moreover, the efficient use of local resources is

essential. So, always offloading the tasks to the remote

server is not efficient one, like when running jobs are

less than 30% of its capacity. If the running tasks are

more than 80% will get offloaded fully. If the task

level is average like in between of 30% to 80%, can be

offloaded based user request to the cloud server.

2.2 Zero Knowledge Proof (ZKP)

The zero-knowledge protocol is a method-based

proof of verifying the originality of the prover without

disclosing further knowledge about the prover to the

verifier. The Zero-knowledge protocol is based on

Zero-knowledge proofs and can classify as Interactive

Zero-knowledge and Non-Interactive Zero-knowledge

based on the working methods [33]. The Interactive

Zero-knowledge protocol uses multiple authentication

steps of communications between the prover and

verifier. The non-interactive Zero-knowledge protocol

uses only one communication message called proof

between the prover and verifier [33].

The Properties of zero-knowledge proof can be

distinguished as follows,

‧ Completeness: “If requested statement is correct, the

honest verifier will prove that the requested

statement is true to the honest verifier” [22].

‧ Soundness: “If the requested statement is false, there

is no way to fake the result to the verifier that the

requested statement is true” [22].

‧ Zero-knowledge: “If the requested statement is right,

the verifier may not know anything about the prover

other than that the requested statement is true” [22].

2.3 Proposed Security Framework

This section presents the new framework to verify

the communication entities before the computational

offloading process begin. In the proposed method new

concept is introduced as cloudlet. Cloudlet is an

emerging research concept of cloud and mobile

computing technique to deploy the cloud-in-a-box in

the nearest location of the mobile user, also called as

portable private edge cloud server. Here, using the

cloudlet for the different propose to implement the

mobile cloud service in specific location like office,

home, class room or any private location. This service

could be used preferably over the home, office or

institutional Wi-Fi.

Aim of this proposed framework is to build and

maintain a cloned copy of mobile phone in the cloudlet

with synchronization of mobile cloud client device and

the mobile phone, the cloned virtual machine of the

cloudlet synchronizes with the mobile device when

needed. Another way to present, cloudlet maintains one

cloned copy of the mobile cloud application of the

mobile phone. The virtual machine of the cloudlet and

mobile phone is working as twin mobile (only in the

cloud application perspective), both synchronized and

communicating over the secure private network.

Cloudlet maintain the same version of android

mobile operating system as virtual machine. Also,

maintain the cloned copy of mobile cloud application.

The given group g is having set of values. g0, g1 are

the carrier set of random elements of group g. Hence,

the public key may be the g, g0.

The group g is a carrier set cordiality of the order of

Group |g| [21-23].

2.3.1 System Model

A typical cloud authentication system model of the

proposed cloud scheme shown in Figure 4. Here, using

three roles in the proposed method.

Secure Authentication Protocol for Efficient Computational Offloading Service in the Mobile Cloud Computing 461

Figure 4. System model

‧ Mobile User (Ui): He / She is a mobile user,

registering as a cloud user with the Cloudlet (U)

using mobile device verification to confirm the

device identity with full permission of the device

over the private connection.

‧ Cloudlet (U): This is a clone of User Ui’s mobile

device, registering as a new user with the

Authentication Server (S) through the Cloudlet

(Cloned User) (U) using email verification to

confirm the initial identity. Then the user using its

user ID and password, to generate the Public Key

with using mobile cloud application, then sending

the digest value of the user ID and public key to the

VDI Server.

‧ Authentication Server (AS): TTP is working as

Authentication Server (AS), responsible for

verifying requested user and the Cloud Service

Provider (CSP). After initial verification, it is

receiving the public key from the cloud user.

‧ Cloud Service Provider (CSP): CSP provides

services computation service to the Cloudlet (Cloned

User). It verifies the user request with its URI. If

URI is on the approved list, it will ask the TTP to

verify. Then TTP verifies the mobile number, the

user ID. Finally, the user ID, TTP nonce, and public

key will send to CSP to confirm the Cloud User.

The proposed mutual authentication is a type of

zero-knowledge proof technique and its system model

shown in the Figure 4. This technique is not going to

share the user’s real password to the remote cloud

server. Moreover, to initiate the authentication or to

verify the mutual authentication, a remote cloud server

is sharing the random value as a one-time key to the

mobile cloud user. Based on the one-time server key,

the cloud user starting the authentication process as per

the following method.

2.3.2 Initial Registration

The proposed authentication scheme has three

phases. The first phase creates a group called G and its

members. TTP shares the elements of the group to the

communication entities. The Second phase handles the

registration of Cloud User and CSP with the

authentication server or trusted a third party. The third

phase verifies the cloud user and the service provider

to achieve the mutual authentication. Also, the notation

and description used in the offloading service is shown

in the Table 1.

Table 1. Notations used in the Proposed Protocol

Notaion Description

|| Concatenation

⊕ XOR Operation

h(U) Hash Value of User ID

h(PW) Hash Value of Password

Ui Mobile Cloud User

U Cloudlet (Cloned) User

S Cloud Service Provider

AS Authentication Server

Uid Client URI with Mobile No

sk(U) Private Key of User

pk(U) Public Key of User

sk(S) Private Key of User

pk(S) Public Key of User

AuthID Fresh Authentication ID

R Random Value Gen by User

Na, Nu1, Nu2, Nu3 Fresh Nonce

h() Hash Function

2.3.3 Registration Phase

The new user generates a request with the

Authentication Server (AS) with its e-mail is original

identity. AS verify the available list of available

registered e-mail number. If the e-mail is new, the AS

sends the OTP else terminates the communication. The

entered OTP will get verified with AS. Once OTP

verified; then the user enters the new user ID and

password, the mobile browser generates the hash value

of the user ID as H1 and generates a hash value of

Password as H2. Client browser generates the Public

Key P using the hash value of the User Password H2.

Finally, the user sends the Hash value of User ID H1

and Public Key P along with Mobile Number (as Client

URL) to register in the trusted user list of AS over the

secure channel as shown in the Figure 3. All the above

communications are happening over the secure channel

between User and AS. New Cloud Service Provider

(CSP) generates a new request to AS. AS verify the

existence of the new domain in the existing list. If free,

the AS accept the request and generates the domain tag

with the new unique one-time key. Domain tag sends

to the CSP. Moreover, the CSP has to keep the tag in

the Document Root of its domain and verifies with the

AS. If AS verifies the domain tag, accepts the

registration request and stores the Hash value of

Domains URI in the trusted list and share the CSP

Public Key to AS.

2.3.4 Authentication Phase

In this phase, Authentication Server (AS) and

462 Journal of Internet Technology Volume 21 (2020) No.2

Mobile Cloud User (U) are participating to verify each

other to achieve mutual authentication without

revealing the real password. Table 1, describes the

notations used in the authentication phase of the

proposed protocol.

In this phase, Authentication Server (AS) and

Mobile Cloud User (U) are participating to verify each

other to achieve mutual authentication without

revealing the real password.

Step 1: User U requests the service or visit the service.

Hence, the user enters the login and clicks the register

button

1

: , ,U S U S N− > (1)

Step 2: Cloud Service Provider S sends the random

token Sid as Communication ID to the user’s request

after verifying the Client’s IMEI number.

1

: , , , ()S U S U Sid h N− > (2)

Step 3: User enters user ID and password in the mobile

agent app. The app generates the hash value of User’s

Password. Based on this hash values, the app generates

the value x as follows. Hence, the password is not

leaving the client app.

 ()
u

x h PW= (3)

Then the user computes Pu (Public Key of User U)

with using x and the shared group
0

g

0

x

Pu g= (4)

Then the user generates the random value r g∈ and

calculates Q

0

x
r

Q g= (5)

By using Q, user calculates the value C and Zx as

follows

 (, ,)C h Pu Q Ns= (6)

 Zx Rx Cx= − (7)

Finally, the user sends the C and Zx to the Server.

 : ,U S C Zx− > (8)

The Server S calculates the value Q as follows

1. Server receives C and Zx

2. The server has the users Sid, Public Key Pu and

shared group element
0

g

The server calculates Q,

0

C Zx
Q Pu g= (9)

Then the server S checks the C

 (, ,)C h Pu Q Ns=

In this proposed protocol the random value r is

generated by the user, but this value r is constructed

by the Server S with using above values as follows.

As per the 5th equation,
0

x
r

Q g=

And Zx Rx Cx= −

So, we can prove with using simple substitution as

follows, above equation

0

x
r

Q g= and
0

C Zx
Q Pu g=

0

x
r

g =
0

C Zx
Pu g As per above equation

0

x

Pu g=

 ()

0 0 0()x
r x c rx cx

g g g
−

= (10)

0 0 0

x
r cx rx cx

g g g
−

= (11)

0 0

x
r cx rx cx

g g
+ −

= (12)

0 0

x
r rx

g g= (13)

Now User’s random value r is constructed by the

server S to verify that the User is genuine or not and

also User proves that the server’s random value Sid is

known by the Mobile Cloud User to achieve the mutual

authentication.

Authentication is satisfied based on the above steps.

Once communication entities verified, the mobile

cloud user starts to offload the process. The Figure 5

explains the detail sequential diagram of the two stages

of proposed protocol.

2.3.5 Secure Computational Offloading

Computational offloading is a method to moderating

resource intensive computation to remote cloud servers.

This is valuable from the performance and energy

perception, it positively shows different trials in terms

of security due to increased bandwidth over networks

with possibly attacks. Privacy is a main concern in

mobile cloud computational offloading. Once the user

tasks are offloaded to the remote cloud that are not

under the users’ control, privacy is having the

important role in keeping the data is secure. In the

midst of probable security problems are authentication

and the confidentially related attacks which can be

rectified by the presented scheme by the ZKP methods,

once the communication entities are authenticated, then

the cloudlet offload the tasks into the CSP over the

private network establishing for the specific sessions.

But every communication is verifying the sender and

the receiver tags to confirm the sender and the receiver

URL to verify the over communication is secure.

Hence, encrypting the computation offloading tasks is

still a study.

2.3.6 Testing Various Attacks

One of the key developments related to ZKP-based

authentication protocols in the computational

offloading contexts also relates to the application of

Secure Authentication Protocol for Efficient Computational Offloading Service in the Mobile Cloud Computing 463

(a) Authentication Phase-I (b) Authentication – Phase-II (Mutual Authentication)

Figure 5. Sequential diagrams of two stages of authentication

 their core characteristic to the realistic problem of

the development of cloud technology and the

increasing importance of mobile devices a cloud

service accessing device. Hence, security is one of

the important concerns during the offloading, also,

the offloading process must be resistance to the

major attacks. This system is non-formally proved to

resist against the significant attacks in the following

items,

‧ User Anonymity: One of the important issues in the

mobile cloud computing is user anonymity. Hence,

the user anonymity is to be considered to secure the

privacy of the Cloudlet (Cloned User). User

anonymity means that a remote user’s actual user

identity will be disguised throughout the

authentication phase and the original identity cannot

be traced by unauthorized users, and he/she cannot

be linked or traced by any intruders. Hence, in this

authentication scheme the real user identity is

hashed with the user profile as a Tag. It cannot be

extracted without the server Tag. Hence, this scheme

is secure against the the user anonymity.

‧ Password Guessing Attack: In this scheme the user

US is password is not sending to the Server S or any

other communication entities. This scheme is

generating the Public key using the User U User Id

and the Password. This password only known by the

User U only. Server is verifying the communication

by using the user public key and other parameters

using in this multi-identity scheme. So, the access

privileges to a mobile and authentication server are

negotiated by trying several combinations of

usernames and the corresponding passwords till the

hacker crack. So, in this scheme brute force and the

dictionary cannot guess or crack anything. Hence,

this scheme is secure against the password guessing

attack.

‧ Impersonation Attack: In this scheme an

impersonation attack is considered to avoid. In this

scheme the user and server communication are

actively verified by the tags of communication

entities. Hence, the impersonation from the server

side to user as well as user impersonation to server

also monitor by every communication of the scheme.

Hence, the user and server impersonation attacks

cannot attempt by attacker in this scheme.

‧ Phishing Attack: Capturing user identity and

password by using fake websites or mobile

application, etc. used in this technology world.

Hence, the communication must be secure and

should satisfy the authentication service with

phishing resistance. In the proposed scheme, the

user password is not sharing in any means, to any

destinations, it sharing only the computed blind

value from the user U to server S is C, Zx. With

these values attackers cannot construct any value. So,

this scheme is secure against the phishing attack.

‧ Forward Secrecy: This scheme uses the asymmetric

cryptographic method is to generate the keys of user

Identity and to construct the intermediate values C,

Zx to get authenticate with the server. Hence, in this

scheme forward secrecy cannot compromised.

‧ Mutual Authentication: This scheme is mutuality

verify the user U with the server S. User U is

verified by the server by U’s public key which is

encrypted by the U’s private key and random value

R. Also, Server S is verifying by the User U, when

fresh AuthID sends to U and construct the values by

using its private key, finally send the C, Zx to Server

S. The server S reconstruct with using U’s Public

Key and AuthID to get the U’s random value R. So,

both parties verify each other to confirm mutually

authenticated.

464 Journal of Internet Technology Volume 21 (2020) No.2

3 Analysis and Verification

This section presents the formal security verification

using Scyther tool, followed by computational

offloading analysis and energy saving using the cloud

simulation tool called GreenCloud as follows.

3.1 Security Verification Using Scyther

The security features associated with ZKP-based

protocol in offloading systems correspond closely with

their inherent characteristics and their most salient

features as specific protocols. Namely, these benefits

relate to their simplicity, their difficulty in terms of

being replicated, and their ability to be utilized within

multi-user cloud environment.

The scheme is verified using the automated protocol

verification tool called Scyther, developed by Cremers

et al. Scyther is having the features like Unbounded

verification, Attack finding, visualisation, also supports

the classical properties like secrecy, agreement,

aliveness and synchronisation. The code of the

proposed scheme is written in security protocol

description language. This authentication phase is

verified by the scyther and display the resistance

against the significant attacks in the Figure 6.

Figure 6. Auto verification result of proposed protocol

3.2 Performance and Computation Cost

Analysis

In the mobile cloud authentication schemes,

performance is one of the important factors to

concentrate, due to the use of battery powered device.

In the proposed scheme, the size of identity is assumed

as 32 bits and hash size is 160 bits (uses SHA-1). As

mentioned above, Initial Registration or Stage One

authentication is only once in one user cycle. Hence,

here consider only Stage Two authentication (Login or

Authentication Phase) for calculating the computation

and communication. During the Stage Two or the

authentication phase, Step 1: user sends the

authentication request as mentioned in the equation no.

1, the size of the identity and the request is 128 bits.

Step 2: Server S verifies as mentioned in the equation

no. 2, the size of the user identity and Fresh

Authentication ID is again 128 bits only. Step 3: user

device calculates the values C and Zx as explained in

the equations no. 3 to 4. Then sends the C and Zx to

the Server S, size of the identity is 64 and the hash

values of C, Zx is 160+160. Last communication

message size is 448(128+160+160) bits. Hence the

total transmission size is 704 bits in 3 communication).

Also, the above listed Table 2 shows the proposed

scheme is efficient than the recent similar authentication

schemes.

Table 2. Performance analysis with recent schemes

Sl No. Schemes No. of Bits
No. of

Messages

1 Lee et al. (Lee et al. 2015) 1184 7

2 Dey et al. (Dey et al. 2016) 1280 4

3 Lin et al. (Lin et al. 2017) 1536 4

4 Roy et al. (Roy et al. 2017) 864 2

5
Binu et al. (Binu et al.

2018)
2304 7

6 Our Scheme 704 3

In the proposed authentication scheme performance

analysis, used few cryptographic operations and its

notations as follows,

‧ Hash Function as Th

‧ Multiplication or Key Generation or Verification as

Tm

The SHA-1 is used to calculate the Hash Function

Th, used ECC to Multiplication, Key Generation and

Verification Tm to compute the C and Zx values. As

per the equation nos from 3 to 7 are using to compute

the values C and Zx. Here, 2 Th, 2 Tm used in Mobile

Device. The cost of XOR operation is ignored due to

negligible computation load. The Table 3 explains and

compare the Computation cost of Multiplication Tm

and Hash function Th with recent smiler schemes.

Table 3. Computation cost analysis with recent

schemes

Sl No. Schemes Cost of Computation

1 Lee et al. (Lee et al. 2015) 4T h + 3T m

2 Dey et al. (Dey et al. 2016) 5T h + 4T m

3 Lin et al. (Lin et al. 2017) 10T h + 2T m

4 Roy et al. (Roy et al. 2017) 9T h + 1T m

5 Binu et al. (Binu et al. 2018) 9T h + 3T m

6 Our Scheme 2T h + 2T m

The Table 2 and Table 3 shows our scheme is using

fewer number of message communication with tiny

data between communication entities. As well as, our

scheme using fewer number of mathematical functions

to achieve best computation cost and efficient Security

in Mobile Devices.

Secure Authentication Protocol for Efficient Computational Offloading Service in the Mobile Cloud Computing 465

3.3 GreenCloud

GreenCloud is a cloud simulator developed for the

study of cloud computing environments by the

University of Luxembourg and it is a sophisticated

packet-level simulator for energy-aware cloud

computing data centers with a focus on cloud

communications. It offers a detailed fine-grained

modeling of the energy consumed by the data center IT

equipment, such as computing servers, network

switches, and communication links.

‧ Energy Efficiency: The Green Cloud, simulator is

designed to capture details of the energy consumed

by data center modules (servers, switches and links)

as well as packet-level communication patterns in

realistic setups.

‧ Other Features: It has the facility to define detailed

modelling of the energy consumption by virtual

server and virtual switches. GreenCloud offers a

thorough investigation of process and bandwidth

workload distributions among other virtual cloud

servers.

3.4 Energy Saving in the Mobile Cloud

The main problems of the mobile cloud computing

technologies cannot complete the tasks in time due to

limited processing capability with less power and

bandwidth [17, 27]. The Figure 7, explains the

offloading process load, before and after the process

offloading, as well as the energy status, before and

after the process offloading. Mobile cloud computing

achieves the efficiency and save the energy in the

mobile device when resource-intensive tasks are

moving to the server, some applications like image

processing, video conversion, and editing [11, 15-16,

32-34]. Multimedia applications running in the mobile

phone will consume more energy and will offload to

save energy to increase the battery life [33]. Some

basic approaches for saving energy in cell phones,

‧ Save the energy by turning off the mobile, when not

in need.

‧ Execute programs slowly: which decreases the

processor’s clock speed, so power is getting saved.

‧ Computation Offloading: Move the computation

away from the mobile device, when the user wants

to use more.

(a) Before Process Offloading (b) After Process Offloading

(c) Before offloading the energy state (d) After offloading the energy state

Figure 7. Green cloud simulation result

4 Conclusion

In this paper, zero knowledge proof-based

authentication scheme is proposed to increase the

security of computation offloading from the mobile to

the cloud server.

The presented results so far satisfy the authentication

without sharing the user password to the server. The

proposed authentication confirms the zero knowledge-

466 Journal of Internet Technology Volume 21 (2020) No.2

based technique to complete the verification mutually

between the mobile and cloud server without sharing

the actual password to the authentication server. Also,

the simulation result of the GreenCloud proves the

energy-efficient computational offloading technique

saves more energy and allows to use more processing

in the cloud server. The proposed authentication

method is verified with Scyther tool and confirms the

resistance of significant security attacks. Also, the

experiments and evaluations with the GreenCloud

simulator given a better result and the computation-

intensive applications like multimedia conversion

application will get easy to use in the smartphone with

proven security.

The proposed method verifies the authentication and

then, transfer the offloading task over the secure

channel to the remote cloud server. Moreover, the

proposed method ensures the privacy of process

offloading between the communication entities.

References

[1] S. A. Haque, S. Islam, M. J. Islam, J.-C. Grégoire, An

Architecture for Client Virtualization: A Case Study,

Computer Networks, Vol. 100, pp. 75-89, May, 2016.

[2] M. Alizadeh, S. Abolfazli, M. Zamani, S. Baharun, K.

Sakurai, Authentication in Mobile Cloud Computing: A

Survey, Journal of Network and Computer Applications, Vol.

61, pp. 59-80, February, 2016.

[3] S. L. Albuquerque, P. R. L. Gondim, Security in Cloud-

Computing-Based Mobile Health, IT Professional, Vol. 18,

No. 3, pp. 37-44, May-June, 2016.

[4] J. Zhang, Z. Zhang, H. Guo, Towards Secure Data

Distribution Systems in Mobile Cloud Computing, IEEE

Transactions on Mobile Computing, Vol. 16, No. 11, pp.

3222-3235, November, 2017.

[5] A. ur R. Khan, M. Othman, A. N. Khan, J. Shuja, S. Mustafa,

Computation Offloading Cost Estimation in Mobile Cloud

Application Models, Wireless Personal Communications, Vol.

97, No. 3, pp. 4897-4920, December, 2017.

[6] S. Merlin, A. Chandrasekar, Towards Mobile Cloud

Authentication and Gait Based Security Using Time Warping

Technique, Cluster Computing, pp. 1-10, September, 2017.

[7] K. Akherfi, M. Gerndt, H. Harroud, Mobile Cloud Computing

for Computation Offloading: Issues and Challenges, Applied

Computing and Informatics, Vol. 14, No. 1, pp. 1-16, January,

2018.

[8] J. Wei, X. Hu, W. Liu, An Improved Authentication Scheme

for Telecare Medicine Information Systems, Journal of

Medical Systems, Vol. 36, No. 6, pp. 3597-3604, December,

2012.

[9] K. Kumar, J. Liu, Y.-H. Lu, B. Bhargava, A Survey of

Computation Offloading for Mobile Systems, Mobile

Networks and Applications, Vol. 18, No. 1, pp. 129-140,

February, 2013.

[10] D. Huang, P. Wang, D. Niyato, A Dynamic Offloading

Algorithm for Mobile Computing, IEEE Transactions on

Wireless Communications, Vol. 11, No. 6, pp. 1991-1995,

June, 2012.

[11] S. Grzonkowski, A. Mosquera, L. Aouad, D. Morss,

Smartphone Security: An Overview of Emerging Threats,

IEEE Consumer Electronics Magazine, Vol. 3, No. 4, pp. 40-

44, October, 2014.

[12] W. Zhang, Z. Zhang, H.-C. Chao, Cooperative Fog

Computing for Dealing with Big Data in the Internet of

Vehicles: Architecture and Hierarchical Resource Management,

IEEE Communications Magazine, Vol. 55, No. 12, pp. 60-67,

December, 2017.

[13] N. Aminzadeh, Z. Sanaei, S. H. A. Hamid, Mobile Storage

Augmentation in Mobile Cloud Computing: Taxonomy,

Approaches, and Open Issues, Simulation Modelling Practice

and Theory, Vol. 50, pp. 96-108, January, 2015.

[14] S. Grzonkowski, P. M. Corcoran, Sharing Cloud Services:

User Authentication for Social Enhancement of Home

Networking, IEEE Transactions on Consumer Electronics,

Vol. 57, No. 3, pp. 1424-1432, August, 2011.

[15] I. Elgendy, W. Zhang, C. Liu, C.-H. Hsu, An Efficient and

Secured Framework for Mobile Cloud Computing, IEEE

Transactions on Cloud Computing, pp. 1-10, June, 2018.

[16] S. Guo, J. Liu, Y. Yang, B. Xiao, Z. Li, Energy-Efficient

Dynamic Computation Offloading and Cooperative Task

Scheduling in Mobile Cloud Computing, IEEE Transactions

on Mobile Computing, Vol. 18, No. 2, pp. 319-333, February,

2019.

[17] M. Shiraz, A. Gani, A. Shamim, S. Khan, R. W. Ahmad,

Energy Efficient Computational Offloading Framework for

Mobile Cloud Computing, Journal of Grid Computing, Vol.

13, No. 1, pp. 1-18, March, 2015.

[18] M. B. Mollah, M. A. K. Azad, A. Vasilakos, Security and

Privacy Challenges in Mobile Cloud Computing: Survey and

Way Ahead, Journal of Network and Computer Applications,

Vol. 84, pp. 38-54, April, 2017.

[19] F. Berg, F. Dürr, K. Rothermel, Increasing the Efficiency of

Code Offloading in n-tier Environments with Code Bubbling,

Mobile Networks and Applications, Vol. 23, No. 5, pp. 1364-

1375, October, 2018.

[20] D. Huang, H. Wu, Mobile Cloud Computing, Morgan

Kaufmann, 2018.

[21] F. Hao, P. Ryan, J-PAKE: Authenticated Key Exchange

without PKI, Transactions on Computational Science XI-

Lecture Notes in Computer Science, Springer-Heidelberg,

2010.

[22] A. Miller, Zero-Knowledge Proof Notation and Vocabulary,

Lecture Series- Zero Knowledge Proofs- Cryptocurrency

Security, 2016.

[23] D. Huang, H. Wu, Mobile Cloud Security: Attribute-Based

Access Control, Mobile Cloud Computing, Morgan

Kaufmann, 2018.

[24] A. Alzahrani, N. Alalwan, M. Sarrab, Mobile Cloud

Computing: Advantage, Disadvantage and Open Challenge,

7th Euro American Conference on Telematics and

Information Systems (EATIS ’14), Valparaiso, Chile, 2014,

Secure Authentication Protocol for Efficient Computational Offloading Service in the Mobile Cloud Computing 467

Article No. 21.

[25] M. C. Murphy, M. McClelland, Computer Lab to Go: A

“Cloud” Computing Implementation, ISECON/CONISAR

2008, Phoenix, Arizona, 2008, pp. 1-10.

[26] K. Sinha, M. Kulkarni, Techniques for Fine-Grained, Multi-

site Computation Offloading, 2011 11th IEEE/ACM

International Symposium on Cluster, Cloud and Grid

Computing (CCGRID ’11), Newport Beach, CA, USA, 2011,

pp. 184-194.

[27] Q. B. Hani, J. P. Dichter, Secure and Strong Mobile Cloud

Authentication, 2016 SAI Computing Conference (SAI),

London, UK, 2016, pp. 562-565.

[28] S. Grzonkowski, P. M. Corcoran, T. Coughlin, Security

Analysis of Authentication Protocols for Next-generation

Mobile and CE Cloud Services, 2011 IEEE International

Conference on Consumer Electronics -Berlin (ICCE-Berlin),

Berlin, Germany, 2011, pp. 83-87.

[29] M. AbdelAty, A. Mokhtar, A Computational Offloading

Framework for Object Detection in Mobile Devices,

Proceedings of the International Conference on Advanced

Intelligent Systems and Informatics 2017, Cairo, Egypt, 2017,

pp. 97-107.

[30] S. Kosta, A. Aucinas, P. Hui, R. Mortier, X. Zhang, ThinkAir:

Dynamic Resource Allocation and Parallel Execution in the

Cloud for Mobile Code Offloading, 2012 Proceedings IEEE

INFOCOM, Orlando, FL, 2012, pp. 945-953.

[31] T. Steiner, An Introduction to Securing a Cloud Environment,

Sans Institute, Information Security Reading Room,

November, 2012.

[32] Z. Ahmad, K. E. Mayes, S. Dong, K. Markantonakis,

Considerations for Mobile Authentication in the Cloud,

Information Security Technical Report, Vol. 16, No. 3-4, pp.

123-130, August-November, 2011.

[33] B. L. J. Jun, Implementing Zero-Knowledge Authentication

with Zero Knowledge, The Python Papers Monograph, Vol. 2,

Article No. 9, 2010.

[34] P. England, J. Manferdelli, Virtual Machines for Enterprise

Desktop Security, Information Security Technical Report, Vol.

11, No. 4, pp. 193-202, June, 2006.

Biographies

Munivel E, Completed M.E. from

Anna University, Chennai, India in

2008, followed by Master of Science

in Computer Science, in 2006.

Currently working as Scientist at

National Institute of Electronics and

Information Technology (MeitY, Govt.

of India). His interests include Virtualization, Cloud

Infrastructure, System Security, Mobile Cloud Security

and Virtual Training Environment.

Kannammal A, completed her Ph.D.

in Engineering from Anna University

Chennai in 2014, M.E. degree from

Thiagarajar College of Engineering,

Madurai, India in 2004. B.E. degree in

ECE, in 2002. Presently she is

working as Associate Professor in the

Dept. of Electronics and Communication Engineering

at PSG College of Technology, Coimbatore, India. Her

interests include Medical Image Processing and

Medical image security.

468 Journal of Internet Technology Volume 21 (2020) No.2

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (Adobe RGB \0501998\051)
 /CalCMYKProfile (Japan Color 2001 Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHT <FEFF005b683964da300c9ad86a94002851fa8840002b89d27dda0029300d005d0020005b683964da300c8f3851fa0033003000300064002851fa88400029300d005d00204f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks true
 /AddPageInfo false
 /AddRegMarks false
 /BleedOffset [
 8.503940
 8.503940
 8.503940
 8.503940
]
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MarksOffset 9.354330
 /MarksWeight 0.141730
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed true
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

