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Abstract 

Distributed Denial of Service (DDoS) is an attack that 

threats the availability of the healthcare related cloud 

services. In order to assure the each and every one time 

accessibility of patient’s data, propose a new solution that 

allows, firstly, the hypervisor to establish credible trust 

relationships among VMs by considering purpose and 

personal trust sources and employing vectors to aggregate 

them. Secondly Enhanced Fuzzy Particle Swarm 

Optimization (EFPSO) algorithm which guides the 

hypervisor to determine the optimal loads distribution 

among VMs in real-time that maximizes DDoS attacks’ 

detection. EFPSO algorithm which allocates incoming 

client request to available virtual machines depending on 

the load i.e. VM with least work load is found and then 

new request is allocated in the attack detection. The 

proposed EFPSO algorithm gives the hypervisor with the 

optimal detection load distribution strategy over VMs 

that maximizes the detection of DDoS attacks under a 

limited budget of resources. At finally prevention is 

performed by using Convex Support Vector Machine 

(CSVM) classifier. Experimental results are measured in 

terms of attacks’ detection, false positives, negatives, and 

CPU, memory during DDoS attacks.  

Keywords: Cloud computing, Distributed Denial of 

Service (DDoS), Load distribution, Convex 

Support Vector Machine (CSVM) and attack 

detection 

1 Introduction 

Cloud Computing is an evolving paradigm that is 

growing rapidly and is a modern model that is intended 

to provide suitable, on-demand, network access to a 

common group of configurable computing resources 

“as a service” on the Internet for fulfilling computing 

demands of the users.  

Wan et al. [1] states that “cloud computing is a new 

computing paradigm that is built on virtualization, 

distributed computing, utility computing and service-

oriented architecture.” Mell and Grance [2] have 

defined cloud computing as “Cloud computing is a 

model for enabling ubiquitous, convenient, on-demand 

network access to a shared pool of configurable 

computing resources that can be rapidly provisioned 

and released with minimal management effort or 

service provider interaction.” Security has been one of 

the most challenging issues for the IT executives 

particularly in cloud implementation. Several studies, 

including the one by Sangroya et al. [3] quote security 

as the primary level confront for cloud users. 

Most of these questions are specifically related to 

data and business logic security [4]. As data and 

business logic is located on a remote cloud server with 

no transparent control, most security concerns are not 

similar to their earlier equivalents in non-cloud 

infrastructures. Distributed Denial of Service (DDoS) 

is a major threat to Internet based killer applications for 

non-cloud computing environments, such as 

independent news web sites, e-business and online 

games [5].  

DDoS attacks are now carried out by botnets. Resent 

researches [6] have corrected a long held belief that 

hackers can easily compromise as many computers as 

they want.  

A different flavor of DoS is Distributed DoS, or 

DDoS, where attackers are a group of machines 

targeting a particular service [7]. There is a high rise in 

the number of reported incidents of DDoS, which 

makes it one of the most important and fatal threat 

amongst many [8]. To solve this problem  

Many Intrusion Detection Systems (IDSs) [9-10] 

have been advanced to identify intrusions in cloud 

environments, where most of these systems are 

developed and improved from traditional detection 

techniques used in non-cloud environments. 

In the recent work, a trust-based maxim in game is 

designed for hypervisor and DDoS attackers. The 

timely detection and prevention of DDoS attacks and 

optimal load balancing in cloud becomes very difficult 
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task. 

Load balancing optimization techniques of 

evolutionary and swarm based algorithms which will 

help to overcome the optimization problems or 

resource utilization.  

In this work, present a novel Enhanced Fuzzy 

Particle Swarm Optimization (EFPSO) algorithm 

which allocates incoming client request to available 

virtual machines depending on the load i.e. VM with 

least work load is found and then new request is 

allocated in the attack detection.  

Finally IDSs DDOSs attack detection and prevention 

is performed by using Convex Support Vector Machine 

(CSVM) classifier. 

2 Literature Review 

Sattar et al. [11] proposed a new DDoS attack 

prevention and detection. DDoS attack is occurs when 

huge amount of data or packets are sent to a server 

from various computer. Confidence Based Filtering 

(CBF) packet filtering method is used to reduce the 

storage needs and increase the processing speed on the 

server side. Finally use various techniques detecting 

and preventing the DDoS attack in cloud computing 

system. To improve availability of resources, it is 

essential to provide a mechanism to prevent DDoS 

attacks. 

Lonea et al. [12] focused on detecting and analyzing 

the DDoS attacks in cloud computing environments. 

Specifically, when the attacks appear, the VM-based 

IDS will yield alerts, which will be stored into the 

MYSQL database placed within the Cloud Fusion Unit 

(CFU) of the front-end server. Proposed solution uses 

the Dempsters combination rule to fuse evidence from 

multiple independent sources.  

Jamali et al. [13] proposed a framework in which the 

defense issue is formulated as an optimization problem 

and employs the Particle Swarm Optimization (PSO) 

algorithm to optimally solve the attack problem. A 

DoS attack can be regarded as an attempt of attackers 

to prevent legal users from gaining a normal network 

service. The TCP connection management protocol 

sets a position for a classic DoS attack, namely, the 

SYN flood attack. In this attack some sources send a 

large number of TCP SYN segments, without 

completing the third handshake step to quickly exhaust 

connection resources of the under attack system.  

Wahab et al. [14] proposed a two-fold solution that 

allows, firstly, the hypervisor to establish credible trust 

relationships toward guest VMs by considering 

objective and subjective trust sources and employing 

Bayesian inference to aggregate them.  

On top of the trust model, it design a trust-based 

maxim in game solution which guides the hypervisor 

to determine the optimal detection load distribution 

among VMs in real-time that maximizes DDoS 

attacks’ detection. 

Wahab et al. [15] developed a resource-aware 

maxmin game theoretical model that guides the 

hypervisor on how the detection load should be 

optimally distributed among its guest VMs in the real-

time.  

Experimental results on Amazon Elastic Compute 

Cloud (EC2) pricing dataset reveal that model 

increases the probability of detecting distributed 

attacks, reduces the false positives, and minimizes the 

resources wasted during the detection process. 

Yu et al. [16] proposed a dynamic resource 

allocation strategy to counter DDoS attacks against 

individual cloud customers. It establishes a 

mathematical model to approximate the needs of our 

resource investment based on queuing theory. 

 A cloud usually possesses profound resources and 

has full control and dynamic allocation capability of its 

resources. Therefore, cloud offers us the potential to 

overcome DDoS attacks. The individual cloud hosted 

servers are still vulnerable to DDoS attacks if they stop 

run in the traditional way. 

Zargar et al. [17] explored the scope of the DDoS 

flooding attack problem and attempts to combat it. It 

categorizes the DDoS flooding attacks and classifies 

existing countermeasures based on where and when 

they prevent, detect, and respond to the DDoS flooding 

attacks. This primary intention for this work is to 

stimulate the research community into developing 

creative, effective, efficient, and comprehensive 

prevention, detection, and response mechanisms that 

address the DDoS flooding problem before, during and 

after an actual attack. 

Liu et al. [18] have described to take only execution 

time into consideration when scheduling the cloud 

resources, it may occur serious load imbalance 

problem between VMs in Cloud Computing 

environments. In addition to solve this problem, the 

task scheduling model is proposed which optimizes the 

task execution time in view of both the task running 

time and the system resource utilization. Based on the 

model, a PSO based algorithm is proposed and 

introduces a simple mutation mechanism and a self-

adapting inertia weight method by classifying the 

fitness values. Ramezani et al. [19] proposed a task-

based System Load Balancing method using Particle 

Swarm Optimization (TBSLB-PSO) that achieves 

system load balancing by only transferring extra tasks 

from an overloaded VM instead of migrating the entire 

overloaded VM. To evaluate the proposed method, it 

extends the cloud simulator (Cloudsim) package and 

use PSO as its task scheduling model.  

Lombardi and Di Pietro [20] proposed a 

virtualization-supported security architecture whose 

main purpose is to ensure the integrity of the VMs 

while being invisible to end users. To this end, an 

Interceptor entity is deployed into the kernel space of 

the host system to constantly monitor the VMs’ 

system-call invocations. Thereafter, a Warning 
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Recorder entity registers the suspicious activities in a 

Warning Pool whose responsibility is to prioritize the 

evaluation order of these activities. The Warning 

Recorder derives checksums for code, data, and files 

and passes them to the Evaluator entity that inspects 

the activities and takes the appropriate decision on 

whether the system’s security has been violated or not. 

In the review work, trust-based maxim in game is 

designed for hypervisor and DDoS attackers. The 

timely detection and prevention of DDoS attacks and 

optimal load balancing in cloud becomes very difficult 

task. 

3 Proposed Methodology 

Propose a new solution that allows, firstly, the 

hypervisor to establish credible trust relationships 

among VMs by considering personal trust sources and 

employing classifier to aggregate them. Secondly 

Enhanced Fuzzy Particle Swarm Optimization (EFPSO) 

algorithm which guides the hypervisor to determine the 

optimal detection load distribution among VMs in real-

time that maximizes DDoS attacks’ and TCP flood 

attacks detection. At finally prevention is performed by 

using Convex Support Vector Machine (CSVM) 

classifier. Attackers distribute their attacks over a set of 

malicious VMs to minimize the detection probability, 

while hypervisors distribute the detection load over the 

set of guest VMs to maximize this minimization. 

Graphical formulation of the above-mentioned 

problem is given in Figure 1.  

 

Figure 1. Attack scenario 

In the proposed work, hypervisor monitors the VMs’ 

CPU, memory, and network bandwidth consumption 

directly from the hosting infrastructure and applies the 

Interquartile Range (IQR) statistical measure to 

identify any abnormal usage. This constitutes the 

objective source of trust which is of prime importance 

in the field of trust and reputation to avoid biased 

and/or subjective judgments [21]. 

Cloud Model  

Let 
1

( , ..., )
n

HY hy hy=  be a finite set of hypervisors, 

where each hypervisor 
i

hr H∈ hosts a set of virtual 

machines 
1 1 1

( , ..., )VM vm vm= . Note that when ‘i’ is 

not important or can be induced from the context, also 

simply use VM instead of 
i

VM . Each virtual machine 

j
vm VM∈  residing on hi is owned by a client from the 

set 
1

( , ..., )
m

CL Cl Cl= . A hypervisor 
i

hr H∈  is a 

software agent that stays between the cloud system’s 

hardware and the VMs and whose role is to emulate a 

set of hardware resources 
1 2

( , ,..., )
n

I I I I=  and 

schedule the access of the VMs to it in order to enable 

the synchronous running of multiple VMs on a shared 

cloud infrastructure. A virtual machine is a pair <O, 

A>, where O represents the underlying Operating 

System (OS) and A denotes the set of applications 

running inside ‘VM’. 

As a first stage, the hypervisor seeks to establish 

trust relationships toward its guest VMs. 

To do so, it first monitors and analyzes the CPU, 

memory, and network bandwidth utilization of each 

vm VM∈ . This allows the hypervisor h to build an 

initial support vector machine in each VMs 

trustworthiness denoted as vm

hyISVM .  

Each recommendation [0,1]
vm

s
R ∈  denotes a certain 

source s’s recommendation on the behaviour of a VM 

based on their previous interactions.  

Note that each source s enjoys a fixed number of 

inquiries it is allowed to make from every (other) 

hypervisor hy′  and is denoted by Inq( s hy′→ ). 

Initially, all sources enjoy an equal amount of inquiries, 

where this amount is updated later during the trust 

establishment process. Now, the hypervisor ‘hy’ 

aggregates the results of the monitoring phase with the 

results of the recommendations phase using the 

classifier technique to come up with a final SVM 
vm

hyFSVM in each VMs trust worthiness. 

4 Optimal Detection Load Distribution 

Strategy 

In this section now proceed with developing the 

utility functions of both the hypervisor and DDoS 

attackers and introducing the new security based on 
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classifier. 

The utility of a hypervisor hy quantifies its success 

in protecting the monitored virtual machines VM, of 

worth W(vm) each, inversely proportional to hy’s in 

each vm’s.  

The utility function of hy at time t2+1 that comes 

after the considered window of time [t1, t2] is 

computed as follows: 

 1 2

2 1

[ , ]
( )

( )
t t

t vm VM vm

hy

W vm ADR
U hy

ISVM+
∈

×
= Σ  (1) 

where ( )W vm  represents the worth of each virtual 

machine vm (e.g., price, criticality of the applications 

running on it), vm

hyISVM denotes the SVM of hy in vm’s, 

and 
1 2

[ , ]t t
ADR is the average detection rate of the IDS 

agent running on h during the time window [t1, t2] and 

is computed as per Eq. (2). 

 

2

1 2

1

[ , ]

1 2

( ( ) ( ))
( ) 1

t

x x

t t vm VM

x t

A vm B vm
ADR hy

t t
∈

=

−
= − Σ

−
∑  

 for each ( ) ( )
x x

A vm B vm>   (2) 

Distributed over VM with probability ( )
x

A vm  with 

k attacks, optimal detection load probability 

distribution vector VM ( )
x

B vm . The results of the 

( )
x

A vm  & ( )
x

B vm  us determined via the algorithms 

such as CSVM and EFPSO. 

5 Enhanced Fuzzy Particle Swarm 

Optimization (EFPSO)  

Based on a unique search characteristic of PSO, this 

study proposes an Enhanced Fuzzy Particle Swarm 

Optimization (EFPSO), which aims to filter the 

unnecessary structural analyses in the optimization 

process.  

In the proposed work, the hypervisor monitors the 

VMs’ CPU, memory, and network bandwidth 

consumption directly from the hosting infrastructure 

and applies the Interquartile Range (IQR) statistical 

measure [14]. Each particle monitors the hypervisor 

directly to record the information for optimal load 

detection.  

The EFPSO considers a fuzzy categorization step 

into the usual PSO before evaluating the optimal load 

detection of the particles (hypervisors).  

The hypervisor into two sets in each iteration step. 

EPSO only evaluates the optimal load violation (IQR) 

for the particles with enhanced objective values 

( ( ))W vm  compared to their corresponding personal 

best load distribution results for each VM, and thus 

reduces the number of constraint evaluations 

significantly.  

Figure 2 illustrates a particle’s flying trace in three 

consecutive iterations as solving a load distribution 

with VMs’ CPU, memory, and network bandwidth 

consumption constraints. 

 

Figure 2. Particle swarm optimization position and velocity update in three iterations with two different constraints 

The particle starts in the load distribution space at 

1
pos , goes through 

2
pos  and 

3
pos , and arrives at 

4
pos  after three iterations.  

The arrows with solid lines are the three velocity 
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components as expressed in Equation (7) and those 

with dashed lines represent the direction of these 

velocity components. The particle’s search rule 

depends only on the personal best (Pbest) value of load 

distribution results, the global best (Gbest) and the 

initial velocity in the previous iteration according to 

the procedure of PSO as prescribed in Equations (6) 

and (7).  

As indicated in Figure 2, 
2

pos  is a position with a 

deteriorating load distribution value compared to its 

Pbest and locates in the load distribution space in 

Figure 2(a) and in the infeasible load distribution space 

in Figure 2(b).  

Based on PSO’s search rule, the two hypervisors in 

Figure 2(a) and Figure 2(b) have the same moving 

traces from 
2

pos  to 
3

pos  while neglecting the 

stochastic property of the PSO search rule.  

The feasible load distribution space check for a 

hypervisor with a worse distribution space value than 

its current Pbest thus becomes redundant.  

However, upon reaching 
3

pos , where their load 

distribution worth values are better than their present 

Pbest, PSO has to evaluate the load distribution 

violation to check whether 
3

pos  can replace the 

present Pbest.  

Therefore, the load distribution violation evaluation 

depends only on the value of the hypervisors current 

objective ( )W vm . From the above statement, a particle 

in PSO can be spitted into four states. 

Figure 3 shows the four possible states of a 

hypervisor from iteration step k to k + 1. 1

1

k
pos

+  

denotes the new position in the feasible load 

distribution space with an IQR value worse than the 

current Pbest. 1

2

k
pos

+  Indicates the new position in the 

infeasible load distribution space with an IQR value 

worse than the current Pbest, 1

3

k
pos

+  represents. 

 

Figure 3. Four possible states of a particle after position update for a constrained problem 

The new position in the feasible space with an 

objective value better than the current Pbest, and 
1

4

k
pos

+  corresponds to the new position in the 

infeasible load distribution space with an objective 

value better than the current Pbest. According to the 

above, PSO only needs to evaluate the particles’ load 

distribution violation condition for 1

3

k
pos

+  and 1

4

k
pos

+  

before updating the Pbest. The feasibility of load 

among VM is verified via the use of hypervisor checks 

for 1

1

k
pos

+  and 1

2

k
pos

+  is redundant. Therefore, this 

study proposes a particle fuzzy categorization step that 

separates the particles into two sets in each iteration 

step based on the value of their objective value. Only 

the potential set, which contains all the particles with 

better objective values than the Pbest, implements the 

load distribution violation evaluation. This EFPSO 

method reduces, consequently, the number of structural 

analyses in EPSO for structural optimization. Since the 

particle fuzzy categorization step does not change the 

search rule of the algorithm, the search ability of the 

EFPSO depends on the version of PSO. Figure 4 

depicts the steps of the proposed EEPSO, which is 

extended from EPSO [22-23]. The proposed EFPSO 

anticipates a reduction in the number of structural 

analyses. This study defines a factor ‘R’, which 

measures the efficiency of EPSO: 

 

max

1

1

max

iter

i

iiter p

n
R

N
=

= ∑  (3) 

Where maxitet is the total iteration steps, 
i
n  denotes 

the number of the particles which require the constraint 

violation evaluation in the ith iteration step, and 

p
N refers to the population of the particles. R in 

Equation (3) thus equals the ratio between the numbers 

of structural analyses required by. 
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Figure 4. Flowchart representation of proposed EFPSO algorithm 

6 Initialization of Feasible Particles  

The following steps detail the improved opposition-

based initialization strategy [24] which aims to 

generate the feasible particles: 

Generate a particle P via the use of hypervisor 

randomly in the total space.  

Calculate the opposite point of P, denoted by OP, by 

the following equation: 

 op upper lower pX X X X= + −  (4) 

Where 
upper

X  and 
lower

X  denote the vector of the 

upper and lower bound of design variables, 

respectively. 
p

X  is the randomly generated design in 

Step 1 and 
op

X  is the opposite position of P in the 

design space.  

If P locates in the infeasible load distribution space, 

the OP will have a higher possibility of residing in the 

feasible load distribution space compared with the 

randomly generated particle.  

Evaluate the constraint violation of the two particles 

P and OP and calculate their objective values, 

respectively.  

If both particles locate in the feasible space, select 

the one with a better objective IQR value and go back 

to Step 1. If only one of them is feasible, preserve the 

feasible particle and go back to Step 1. If both of the 

particles violate the constraints, go back to Step 1. 

Repeat the loop until the number of selected particles 

equals the population of the particles predefined in 

PSO. 

In the equation (4) decision value of 
op

X  is 

determined via the use of the fuzzy parameter. Fuzzify 

all input VMs’ CPU, memory, and network bandwidth 

consumption ranges into fuzzy membership functions. 

The equation is changed as the below:  

 op fuzzy pX X X= −  (5) 

The standard PSO consists of four parameters: the 

number of particles (hypervisors) NP, the acceleration 

coefficients 
1

ac  and 
2

ac , and the inertia weight iw. NP 

depends on the dimension and complexity of the 

optimization problem, with a typical range from 10 to 

40, or 50 to 100 for some challenging and special 

problems [25]. The other three parameters, 
1

ac , 
2

ac  

and iw, balance the exploration and exploitation 

capability of PSO. 
1

ac  And 
2

ac  affect the PSO global 

convergence, while the inertia weight iw influences the 

local search capability. The first is the fixed values for 

the three parameters, with 
1 2

0.8ac ac= =  and 

0.92iw = . Equation (6) describes a linear time-
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dependent estimation, while Equation (7) shows a 

quadratic, time-dependent rule to calculate iw: 

 

max min

max

max
t

iter

iw iw
iw iw t

−

= −
 (6) 

 
2

max max min

2
( )[ ( ) ]

max max
t

iter iter

t t
iw iw iw iw= + − −  (7) 

Where maxiter is the maximum number of iterations 

and t is the current iteration number. The numerical 

procedure assumes 
max

iw  = 0.9 and 
min

iw  = 0.4 [26]. 

7 Convex Support Vector Machine 

(CSVM) 

In this work proposed a novel CSVM algorithm that 

converges to the Hard Margin SVM solution for 

detecting attack rate. Consider a training set composed 

of several numbers of users (Usa) and corresponding 

classes 1
a
y ± . When the training data is separable, the 

convex hulls formed by the positive and negative 

attackers are disjoint. Figure 5 illustrates the 

geometrical formulation of SVMs [27-28]. 

 

Figure 5. Geometrical interpretation of SVMs 

Consider two different types of users 
p

Us  and 
n

Us  

belonging to each convex hull. Make them as close as 

possible without allowing them to leave their 

respective convex hulls.  

The median hyperplane of these two different types 

of users is the maximum margin separating hyperplane. 

The users 
p

Us  & 
n

Us  has been formulate as below: 

 

1 0
p a p a a a p a a

Us Usα α α
∈ ∈

= Σ Σ = ≥
 (8) 

 1 0
n b n b b b n b b

Us Usα α α
∈ ∈

= Σ Σ = ≥  (9) 

Where sets P and N respectively contain the indices 

of the positive and negative users. The optimal 

hyperplane is then obtained by solving 

 

2min || ||
a p n

Us Us−  (10) 

Under the constraints of the parameterization (10). 

The separating hyperplane is then represented by the 

following linear discriminant function: 

 

( )
( ) ( )

2

n n p p

p n

Us Us Us Us
y us Us Us Us

−

= − +  (11) 

Since 
p

Us  and 
n

Us  are represented as linear 

combination of the training patterns, both the 

optimization criterion (10) and the discriminant 

function (11) can be expressed using dot products 

between patterns. Sometimes finding the attackers in 

the current classifier becomes very difficult task.  

To solve this problem when a new misclassified 

sample arrives, Huller attempts to make this new 

sample become a support vector and removes another 

support vector from the current classifier via the update 

of the nearest points of the convex hulls.  

The proposed method tries to select the vertices of 

the convex hulls of the current training cloud users in 

the off-line step and then retrains the classifier using 

these selected samples and newly arrived cloud users. 

The procedure of the CSVM algorithm is shown in 

Figure 6. 

 

Figure 6. Schematic representation of CSVM 

algorithm 

The convex hull of the set 
1

{ }n d

s a a
CH Us

=

= ⊂ �  is 

defined as:  

     

1

1

( ) { | ,

1, 0, 1, ... }

n

s a a a s

a

n

a a

a

convex CH a Us Us CH

a a a n

=

=

= ∈

= ≥ =

∑

∑

 (12) 

Given a set 
s

CH  and a point Us, the Euclidean 

distance between Us and ( )
s

convex CH  can be 

computed by solving the following quadratic 

optimization: 

 

1
min . . 1, 0

2

t t t

a a
a Q c a s t e a a− = ≥   (13) 

where = [1, 1, ..., 1] T, Q = UsTUsand c = UsTuswith 

Us = [us1, ..., usn]. Suppose the optimal solution of (13) 

is *

α . Then the convex hull distance between x and 

conv(P) is given by 
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* * *

( , ( ))

2

c s

T t T

dis us conves CH

us us c a a Qa a= − + +

  (14) 

Consider the problem from the attacker’s point of 

view, the latter’s objective is to minimize the 

hypervisor’s maximal probability of detection.  

The maximum that the hypervisor can realize is 

equivalent to the minimum that the attacker. 

8 Experimentation Results  

In this section, describe the experimental setup and 

present experimental results by comparing proposed 

work with a benchmark consisting of the Price based 

maximin [15], and Bayesian inference [14]. 

Provide experimental results to test the performance 

of model and validate the theoretical and numerical 

results obtained in the previous sections.  

To these ends, conduct the experiments using 

CloudSim [29] in a 64-bit Windows 7 environment on 

a machine equipped with an Intel Core i7-4790 CPU 

3:60 GHz Processor and 16 GB RAM. To build the 

cloud, create a datacenter whose VMs’ configuration is 

inspired by Amazon EC2 X-large instances [30]. 

Practically, the created datacenter hosts five physical 

machines each of which is assigned with a number of 

VMs varying from 10 to 50 of image size amounting to 

10000 MB each.  

Every VM is equipped with 5-core CPU of 1000 

Millions of Instructions Per Second (MIPS) each. [31]  

Each VM has a memory RAM capacity of 16 GB, 

hard drive storage of 976:5625 GB, and network 

bandwidth share of 50000 Kbit/s.  

In the created datacenter, x86 has been used as a 

system architecture, Linux as an operating system, and 

Xen as a Virtual Machine Monitor (VMM).  

To populate the trust recommendations regarding 

VMs, resort to the use of the Epinions data set [32] that 

has been long used in cloud computing and many other 

domains for representing trust [33].  

The data set comprises 664; 824 ratings given by 49; 

290 agents on 139; 738 items. 

The Datacenter Properties are represented in Table 1. 

Table 1. Datacenter properties 

Parameter  Value  

Number of physical hosts 5 

System architecture  x86 

Operating system  Linux  

Virtual machine monitor  Xen 

Number of VMs 10,20,30, 40 and 50 

Number of CPU cores per VM 5 

CPU speed per VM 1000 MIPS 

RAM memory per VM 16 GB 

Hard drive storage per VM 976.56 GB 

Network bandwidth share per VM 50000 Kbit/seconds

 

Figure 7 reveals that CSVM classifier with the 

EFPSO outperforms in terms of attack detection. The 

proposed work gives higher attack detection rate of 

93.6%, whereas other methods such as price based 

maximin and Bayesian inference provides only 75.23% 

and 87.12% for 10 number of VMs. 

 

Figure 7. Attack detection rate vs. Number of Virtual 

Machines (VMs) 

Figure 8 measures the false negative percentage that 

quantifies the percentage of attacks that the system was 

not able to capture during the detection process. The 

proposed work gives lesser false negative rate of 

6.58%, whereas other methods such as price based 

maximin and Bayesian inference provides higher of 

18.25% and 9.12% for 10 number of VMs. 

 

Figure 8. False Negative Rate (FNR) vs. Number of 

Virtual Machines (VMs) 

Figure 9 measures the percentage of false positive 

incurred by the studied detection methods. The 

proposed work gives lesser false positive rate of 8.63%, 

whereas other methods such as price based maximin 

and Bayesian inference provides higher of 19.53% and 

12.89% for 10 number of VMs. 
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Figure 9. False Positive Rate (FPR) vs. Number of 

Virtual Machines (VMs) 

Figure 10 is introduced to study the effectiveness of 

the proposed model in minimizing the cloud system’s 

resources consumption when this system faces DDoS 

attack methods. The proposed work gives lesser CPU 

usage of 20.15%, whereas other methods such as price 

based maximin and Bayesian inference provides higher 

of 43.52% and 35.25% for 10 number of VMs.  

 

Figure 10. CPU usage vs. Number of Virtual 

Machines (VMs) 

Figure 11 demonstrates that applying CSVM 

classifier reduces the memory consumption of cloud 

when compared to models. The proposed work gives 

lesser memory usage of 12.25%, whereas other 

methods such as price based maximin and Bayesian 

inference provides higher of 28.56% and 22.05% for 

10 number of VMs. 

 

Figure 11. Memory usage vs. Number of Virtual 

Machines (VMs) 

Figure 12 shows that CSVM classifier decreases the 

network bandwidth’s consumption compared to the 

other two methods. This is due to the effectiveness of 

CSVM classifier in identifying attacks, which reduces 

the flux of the malicious traffic on the datacenter’s 

network. The proposed work gives lesser bandwidth 

usage of 15.56%, whereas other methods such as price 

based maximin and Bayesian inference provides higher 

of 24.36% and 21.05% for 10 number of VMs. 

 

Figure 12. Bandwidth usage vs. Number of Virtual 

Machines (VMs) 

Figure 13 measures the execution time of the three 

studied models with the variation in the number of 

VMs. The proposed work gives lesser execution time 

of 2.15 seconds, whereas other methods such as price 

based maximin and Bayesian inference provides higher 

of 0.96 seconds and 1.35 seconds for 10 number of 

VMs. 

 

Figure 13. Execution time vs. Number of Virtual 

Machines (VMs) 
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9 Conclusion and Future Work 

In this work, Enhanced Fuzzy Particle Swarm 

Optimization (EFPSO) algorithm is proposed which 

guides the hypervisor to determine the optimal 

detection load distribution among VMs in real-time 

that maximizes DDoS attacks’ detection.  

In the proposed work, the hypervisor monitors the 

VMs’ CPU, memory, and network bandwidth 

consumption directly from the hosting infrastructure. 

At finally prevention is performed by using Convex 

Support Vector Machine (CSVM) classifier. The 

proposed work gives higher attack detection rate of 

93.6%, whereas other methods such as price based 

maximin and Bayesian inference provides only 75.23% 

and 87.12% for 10 number of VMs.  

Conduct the experiments using Cloud Sim in a 64-

bit Windows 7 environment. The detection methods 

results are measured using the metrics like detection 

rate metrics like attack detection, false positive and 

false negative percentages. Moreover, CSVM solution 

proves to be able to minimize the cloud system’s CPU 

consumption, memory consumption, and network 

bandwidth consumption under DDoS scenarios. 

Spoofing attack detection in the CC environment is left 

as scope of future work. 
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