
Enhanced Fuzzy Particle Swarm Optimization Load Distribution (EFPSO-LD) for DDOS Attacks Detection and Prevention in Healthcare Cloud Systems 435

Enhanced Fuzzy Particle Swarm Optimization Load Distribution

(EFPSO-LD) for DDOS Attacks Detection and Prevention in

Healthcare Cloud Systems

A. Peter Soosai Anandaraj1, G. Indumathi2

1 Dept.of CSE, Ganapathy Chettiar College of Engineering and Technology, India
2 Dept.of ECE, MepcoSchelenk Engineering College, India

anandsiriya@gmail.com, indupriyanga@gmail.com*

*Corresponding Author: A. Peter Soosai Anandaraj, E-mail: anandsiriya@gmail.com

DOI: 10.3966/160792642020032102012

Abstract

Distributed Denial of Service (DDoS) is an attack that

threats the availability of the healthcare related cloud

services. In order to assure the each and every one time

accessibility of patient’s data, propose a new solution that

allows, firstly, the hypervisor to establish credible trust

relationships among VMs by considering purpose and

personal trust sources and employing vectors to aggregate

them. Secondly Enhanced Fuzzy Particle Swarm

Optimization (EFPSO) algorithm which guides the

hypervisor to determine the optimal loads distribution

among VMs in real-time that maximizes DDoS attacks’

detection. EFPSO algorithm which allocates incoming

client request to available virtual machines depending on

the load i.e. VM with least work load is found and then

new request is allocated in the attack detection. The

proposed EFPSO algorithm gives the hypervisor with the

optimal detection load distribution strategy over VMs

that maximizes the detection of DDoS attacks under a

limited budget of resources. At finally prevention is

performed by using Convex Support Vector Machine

(CSVM) classifier. Experimental results are measured in

terms of attacks’ detection, false positives, negatives, and

CPU, memory during DDoS attacks.

Keywords: Cloud computing, Distributed Denial of

Service (DDoS), Load distribution, Convex

Support Vector Machine (CSVM) and attack

detection

1 Introduction

Cloud Computing is an evolving paradigm that is

growing rapidly and is a modern model that is intended

to provide suitable, on-demand, network access to a

common group of configurable computing resources

“as a service” on the Internet for fulfilling computing

demands of the users.

Wan et al. [1] states that “cloud computing is a new

computing paradigm that is built on virtualization,

distributed computing, utility computing and service-

oriented architecture.” Mell and Grance [2] have

defined cloud computing as “Cloud computing is a

model for enabling ubiquitous, convenient, on-demand

network access to a shared pool of configurable

computing resources that can be rapidly provisioned

and released with minimal management effort or

service provider interaction.” Security has been one of

the most challenging issues for the IT executives

particularly in cloud implementation. Several studies,

including the one by Sangroya et al. [3] quote security

as the primary level confront for cloud users.

Most of these questions are specifically related to

data and business logic security [4]. As data and

business logic is located on a remote cloud server with

no transparent control, most security concerns are not

similar to their earlier equivalents in non-cloud

infrastructures. Distributed Denial of Service (DDoS)

is a major threat to Internet based killer applications for

non-cloud computing environments, such as

independent news web sites, e-business and online

games [5].

DDoS attacks are now carried out by botnets. Resent

researches [6] have corrected a long held belief that

hackers can easily compromise as many computers as

they want.

A different flavor of DoS is Distributed DoS, or

DDoS, where attackers are a group of machines

targeting a particular service [7]. There is a high rise in

the number of reported incidents of DDoS, which

makes it one of the most important and fatal threat

amongst many [8]. To solve this problem

Many Intrusion Detection Systems (IDSs) [9-10]

have been advanced to identify intrusions in cloud

environments, where most of these systems are

developed and improved from traditional detection

techniques used in non-cloud environments.

In the recent work, a trust-based maxim in game is

designed for hypervisor and DDoS attackers. The

timely detection and prevention of DDoS attacks and

optimal load balancing in cloud becomes very difficult

436 Journal of Internet Technology Volume 21 (2020) No.2

task.

Load balancing optimization techniques of

evolutionary and swarm based algorithms which will

help to overcome the optimization problems or

resource utilization.

In this work, present a novel Enhanced Fuzzy

Particle Swarm Optimization (EFPSO) algorithm

which allocates incoming client request to available

virtual machines depending on the load i.e. VM with

least work load is found and then new request is

allocated in the attack detection.

Finally IDSs DDOSs attack detection and prevention

is performed by using Convex Support Vector Machine

(CSVM) classifier.

2 Literature Review

Sattar et al. [11] proposed a new DDoS attack

prevention and detection. DDoS attack is occurs when

huge amount of data or packets are sent to a server

from various computer. Confidence Based Filtering

(CBF) packet filtering method is used to reduce the

storage needs and increase the processing speed on the

server side. Finally use various techniques detecting

and preventing the DDoS attack in cloud computing

system. To improve availability of resources, it is

essential to provide a mechanism to prevent DDoS

attacks.

Lonea et al. [12] focused on detecting and analyzing

the DDoS attacks in cloud computing environments.

Specifically, when the attacks appear, the VM-based

IDS will yield alerts, which will be stored into the

MYSQL database placed within the Cloud Fusion Unit

(CFU) of the front-end server. Proposed solution uses

the Dempsters combination rule to fuse evidence from

multiple independent sources.

Jamali et al. [13] proposed a framework in which the

defense issue is formulated as an optimization problem

and employs the Particle Swarm Optimization (PSO)

algorithm to optimally solve the attack problem. A

DoS attack can be regarded as an attempt of attackers

to prevent legal users from gaining a normal network

service. The TCP connection management protocol

sets a position for a classic DoS attack, namely, the

SYN flood attack. In this attack some sources send a

large number of TCP SYN segments, without

completing the third handshake step to quickly exhaust

connection resources of the under attack system.

Wahab et al. [14] proposed a two-fold solution that

allows, firstly, the hypervisor to establish credible trust

relationships toward guest VMs by considering

objective and subjective trust sources and employing

Bayesian inference to aggregate them.

On top of the trust model, it design a trust-based

maxim in game solution which guides the hypervisor

to determine the optimal detection load distribution

among VMs in real-time that maximizes DDoS

attacks’ detection.

Wahab et al. [15] developed a resource-aware

maxmin game theoretical model that guides the

hypervisor on how the detection load should be

optimally distributed among its guest VMs in the real-

time.

Experimental results on Amazon Elastic Compute

Cloud (EC2) pricing dataset reveal that model

increases the probability of detecting distributed

attacks, reduces the false positives, and minimizes the

resources wasted during the detection process.

Yu et al. [16] proposed a dynamic resource

allocation strategy to counter DDoS attacks against

individual cloud customers. It establishes a

mathematical model to approximate the needs of our

resource investment based on queuing theory.

 A cloud usually possesses profound resources and

has full control and dynamic allocation capability of its

resources. Therefore, cloud offers us the potential to

overcome DDoS attacks. The individual cloud hosted

servers are still vulnerable to DDoS attacks if they stop

run in the traditional way.

Zargar et al. [17] explored the scope of the DDoS

flooding attack problem and attempts to combat it. It

categorizes the DDoS flooding attacks and classifies

existing countermeasures based on where and when

they prevent, detect, and respond to the DDoS flooding

attacks. This primary intention for this work is to

stimulate the research community into developing

creative, effective, efficient, and comprehensive

prevention, detection, and response mechanisms that

address the DDoS flooding problem before, during and

after an actual attack.

Liu et al. [18] have described to take only execution

time into consideration when scheduling the cloud

resources, it may occur serious load imbalance

problem between VMs in Cloud Computing

environments. In addition to solve this problem, the

task scheduling model is proposed which optimizes the

task execution time in view of both the task running

time and the system resource utilization. Based on the

model, a PSO based algorithm is proposed and

introduces a simple mutation mechanism and a self-

adapting inertia weight method by classifying the

fitness values. Ramezani et al. [19] proposed a task-

based System Load Balancing method using Particle

Swarm Optimization (TBSLB-PSO) that achieves

system load balancing by only transferring extra tasks

from an overloaded VM instead of migrating the entire

overloaded VM. To evaluate the proposed method, it

extends the cloud simulator (Cloudsim) package and

use PSO as its task scheduling model.

Lombardi and Di Pietro [20] proposed a

virtualization-supported security architecture whose

main purpose is to ensure the integrity of the VMs

while being invisible to end users. To this end, an

Interceptor entity is deployed into the kernel space of

the host system to constantly monitor the VMs’

system-call invocations. Thereafter, a Warning

Enhanced Fuzzy Particle Swarm Optimization Load Distribution (EFPSO-LD) For DDOS Attacks Detection and Prevention in Healthcare Cloud Systems 437

Recorder entity registers the suspicious activities in a

Warning Pool whose responsibility is to prioritize the

evaluation order of these activities. The Warning

Recorder derives checksums for code, data, and files

and passes them to the Evaluator entity that inspects

the activities and takes the appropriate decision on

whether the system’s security has been violated or not.

In the review work, trust-based maxim in game is

designed for hypervisor and DDoS attackers. The

timely detection and prevention of DDoS attacks and

optimal load balancing in cloud becomes very difficult

task.

3 Proposed Methodology

Propose a new solution that allows, firstly, the

hypervisor to establish credible trust relationships

among VMs by considering personal trust sources and

employing classifier to aggregate them. Secondly

Enhanced Fuzzy Particle Swarm Optimization (EFPSO)

algorithm which guides the hypervisor to determine the

optimal detection load distribution among VMs in real-

time that maximizes DDoS attacks’ and TCP flood

attacks detection. At finally prevention is performed by

using Convex Support Vector Machine (CSVM)

classifier. Attackers distribute their attacks over a set of

malicious VMs to minimize the detection probability,

while hypervisors distribute the detection load over the

set of guest VMs to maximize this minimization.

Graphical formulation of the above-mentioned

problem is given in Figure 1.

Figure 1. Attack scenario

In the proposed work, hypervisor monitors the VMs’

CPU, memory, and network bandwidth consumption

directly from the hosting infrastructure and applies the

Interquartile Range (IQR) statistical measure to

identify any abnormal usage. This constitutes the

objective source of trust which is of prime importance

in the field of trust and reputation to avoid biased

and/or subjective judgments [21].

Cloud Model

Let
1

(, ...,)
n

HY hy hy= be a finite set of hypervisors,

where each hypervisor
i

hr H∈ hosts a set of virtual

machines
1 1 1

(, ...,)VM vm vm= . Note that when ‘i’ is

not important or can be induced from the context, also

simply use VM instead of
i

VM . Each virtual machine

j
vm VM∈ residing on hi is owned by a client from the

set
1

(, ...,)
m

CL Cl Cl= . A hypervisor
i

hr H∈ is a

software agent that stays between the cloud system’s

hardware and the VMs and whose role is to emulate a

set of hardware resources
1 2

(, ,...,)
n

I I I I= and

schedule the access of the VMs to it in order to enable

the synchronous running of multiple VMs on a shared

cloud infrastructure. A virtual machine is a pair <O,

A>, where O represents the underlying Operating

System (OS) and A denotes the set of applications

running inside ‘VM’.

As a first stage, the hypervisor seeks to establish

trust relationships toward its guest VMs.

To do so, it first monitors and analyzes the CPU,

memory, and network bandwidth utilization of each

vm VM∈ . This allows the hypervisor h to build an

initial support vector machine in each VMs

trustworthiness denoted as vm

hyISVM .

Each recommendation [0,1]
vm

s
R ∈ denotes a certain

source s’s recommendation on the behaviour of a VM

based on their previous interactions.

Note that each source s enjoys a fixed number of

inquiries it is allowed to make from every (other)

hypervisor hy′ and is denoted by Inq(s hy′→).

Initially, all sources enjoy an equal amount of inquiries,

where this amount is updated later during the trust

establishment process. Now, the hypervisor ‘hy’

aggregates the results of the monitoring phase with the

results of the recommendations phase using the

classifier technique to come up with a final SVM
vm

hyFSVM in each VMs trust worthiness.

4 Optimal Detection Load Distribution

Strategy

In this section now proceed with developing the

utility functions of both the hypervisor and DDoS

attackers and introducing the new security based on

438 Journal of Internet Technology Volume 21 (2020) No.2

classifier.

The utility of a hypervisor hy quantifies its success

in protecting the monitored virtual machines VM, of

worth W(vm) each, inversely proportional to hy’s in

each vm’s.

The utility function of hy at time t2+1 that comes

after the considered window of time [t1, t2] is

computed as follows:

 1 2

2 1

[,]
()

()
t t

t vm VM vm

hy

W vm ADR
U hy

ISVM+
∈

×
= Σ (1)

where ()W vm represents the worth of each virtual

machine vm (e.g., price, criticality of the applications

running on it), vm

hyISVM denotes the SVM of hy in vm’s,

and
1 2

[,]t t
ADR is the average detection rate of the IDS

agent running on h during the time window [t1, t2] and

is computed as per Eq. (2).

2

1 2

1

[,]

1 2

(() ())
() 1

t

x x

t t vm VM

x t

A vm B vm
ADR hy

t t
∈

=

−
= − Σ

−
∑

 for each () ()
x x

A vm B vm> (2)

Distributed over VM with probability ()
x

A vm with

k attacks, optimal detection load probability

distribution vector VM ()
x

B vm . The results of the

()
x

A vm & ()
x

B vm us determined via the algorithms

such as CSVM and EFPSO.

5 Enhanced Fuzzy Particle Swarm

Optimization (EFPSO)

Based on a unique search characteristic of PSO, this

study proposes an Enhanced Fuzzy Particle Swarm

Optimization (EFPSO), which aims to filter the

unnecessary structural analyses in the optimization

process.

In the proposed work, the hypervisor monitors the

VMs’ CPU, memory, and network bandwidth

consumption directly from the hosting infrastructure

and applies the Interquartile Range (IQR) statistical

measure [14]. Each particle monitors the hypervisor

directly to record the information for optimal load

detection.

The EFPSO considers a fuzzy categorization step

into the usual PSO before evaluating the optimal load

detection of the particles (hypervisors).

The hypervisor into two sets in each iteration step.

EPSO only evaluates the optimal load violation (IQR)

for the particles with enhanced objective values

(())W vm compared to their corresponding personal

best load distribution results for each VM, and thus

reduces the number of constraint evaluations

significantly.

Figure 2 illustrates a particle’s flying trace in three

consecutive iterations as solving a load distribution

with VMs’ CPU, memory, and network bandwidth

consumption constraints.

Figure 2. Particle swarm optimization position and velocity update in three iterations with two different constraints

The particle starts in the load distribution space at

1
pos , goes through

2
pos and

3
pos , and arrives at

4
pos after three iterations.

The arrows with solid lines are the three velocity

Enhanced Fuzzy Particle Swarm Optimization Load Distribution (EFPSO-LD) For DDOS Attacks Detection and Prevention in Healthcare Cloud Systems 439

components as expressed in Equation (7) and those

with dashed lines represent the direction of these

velocity components. The particle’s search rule

depends only on the personal best (Pbest) value of load

distribution results, the global best (Gbest) and the

initial velocity in the previous iteration according to

the procedure of PSO as prescribed in Equations (6)

and (7).

As indicated in Figure 2,
2

pos is a position with a

deteriorating load distribution value compared to its

Pbest and locates in the load distribution space in

Figure 2(a) and in the infeasible load distribution space

in Figure 2(b).

Based on PSO’s search rule, the two hypervisors in

Figure 2(a) and Figure 2(b) have the same moving

traces from
2

pos to
3

pos while neglecting the

stochastic property of the PSO search rule.

The feasible load distribution space check for a

hypervisor with a worse distribution space value than

its current Pbest thus becomes redundant.

However, upon reaching
3

pos , where their load

distribution worth values are better than their present

Pbest, PSO has to evaluate the load distribution

violation to check whether
3

pos can replace the

present Pbest.

Therefore, the load distribution violation evaluation

depends only on the value of the hypervisors current

objective ()W vm . From the above statement, a particle

in PSO can be spitted into four states.

Figure 3 shows the four possible states of a

hypervisor from iteration step k to k + 1. 1

1

k
pos

+

denotes the new position in the feasible load

distribution space with an IQR value worse than the

current Pbest. 1

2

k
pos

+ Indicates the new position in the

infeasible load distribution space with an IQR value

worse than the current Pbest, 1

3

k
pos

+ represents.

Figure 3. Four possible states of a particle after position update for a constrained problem

The new position in the feasible space with an

objective value better than the current Pbest, and
1

4

k
pos

+ corresponds to the new position in the

infeasible load distribution space with an objective

value better than the current Pbest. According to the

above, PSO only needs to evaluate the particles’ load

distribution violation condition for 1

3

k
pos

+ and 1

4

k
pos

+

before updating the Pbest. The feasibility of load

among VM is verified via the use of hypervisor checks

for 1

1

k
pos

+ and 1

2

k
pos

+ is redundant. Therefore, this

study proposes a particle fuzzy categorization step that

separates the particles into two sets in each iteration

step based on the value of their objective value. Only

the potential set, which contains all the particles with

better objective values than the Pbest, implements the

load distribution violation evaluation. This EFPSO

method reduces, consequently, the number of structural

analyses in EPSO for structural optimization. Since the

particle fuzzy categorization step does not change the

search rule of the algorithm, the search ability of the

EFPSO depends on the version of PSO. Figure 4

depicts the steps of the proposed EEPSO, which is

extended from EPSO [22-23]. The proposed EFPSO

anticipates a reduction in the number of structural

analyses. This study defines a factor ‘R’, which

measures the efficiency of EPSO:

max

1

1

max

iter

i

iiter p

n
R

N
=

= ∑ (3)

Where maxitet is the total iteration steps,
i
n denotes

the number of the particles which require the constraint

violation evaluation in the ith iteration step, and

p
N refers to the population of the particles. R in

Equation (3) thus equals the ratio between the numbers

of structural analyses required by.

440 Journal of Internet Technology Volume 21 (2020) No.2

Figure 4. Flowchart representation of proposed EFPSO algorithm

6 Initialization of Feasible Particles

The following steps detail the improved opposition-

based initialization strategy [24] which aims to

generate the feasible particles:

Generate a particle P via the use of hypervisor

randomly in the total space.

Calculate the opposite point of P, denoted by OP, by

the following equation:

 op upper lower pX X X X= + − (4)

Where
upper

X and
lower

X denote the vector of the

upper and lower bound of design variables,

respectively.
p

X is the randomly generated design in

Step 1 and
op

X is the opposite position of P in the

design space.

If P locates in the infeasible load distribution space,

the OP will have a higher possibility of residing in the

feasible load distribution space compared with the

randomly generated particle.

Evaluate the constraint violation of the two particles

P and OP and calculate their objective values,

respectively.

If both particles locate in the feasible space, select

the one with a better objective IQR value and go back

to Step 1. If only one of them is feasible, preserve the

feasible particle and go back to Step 1. If both of the

particles violate the constraints, go back to Step 1.

Repeat the loop until the number of selected particles

equals the population of the particles predefined in

PSO.

In the equation (4) decision value of
op

X is

determined via the use of the fuzzy parameter. Fuzzify

all input VMs’ CPU, memory, and network bandwidth

consumption ranges into fuzzy membership functions.

The equation is changed as the below:

 op fuzzy pX X X= − (5)

The standard PSO consists of four parameters: the

number of particles (hypervisors) NP, the acceleration

coefficients
1

ac and
2

ac , and the inertia weight iw. NP

depends on the dimension and complexity of the

optimization problem, with a typical range from 10 to

40, or 50 to 100 for some challenging and special

problems [25]. The other three parameters,
1

ac ,
2

ac

and iw, balance the exploration and exploitation

capability of PSO.
1

ac And
2

ac affect the PSO global

convergence, while the inertia weight iw influences the

local search capability. The first is the fixed values for

the three parameters, with
1 2

0.8ac ac= = and

0.92iw = . Equation (6) describes a linear time-

Enhanced Fuzzy Particle Swarm Optimization Load Distribution (EFPSO-LD) For DDOS Attacks Detection and Prevention in Healthcare Cloud Systems 441

dependent estimation, while Equation (7) shows a

quadratic, time-dependent rule to calculate iw:

max min

max

max
t

iter

iw iw
iw iw t

−

= −
 (6)

2

max max min

2
()[()]

max max
t

iter iter

t t
iw iw iw iw= + − − (7)

Where maxiter is the maximum number of iterations

and t is the current iteration number. The numerical

procedure assumes
max

iw = 0.9 and
min

iw = 0.4 [26].

7 Convex Support Vector Machine

(CSVM)

In this work proposed a novel CSVM algorithm that

converges to the Hard Margin SVM solution for

detecting attack rate. Consider a training set composed

of several numbers of users (Usa) and corresponding

classes 1
a
y ± . When the training data is separable, the

convex hulls formed by the positive and negative

attackers are disjoint. Figure 5 illustrates the

geometrical formulation of SVMs [27-28].

Figure 5. Geometrical interpretation of SVMs

Consider two different types of users
p

Us and
n

Us

belonging to each convex hull. Make them as close as

possible without allowing them to leave their

respective convex hulls.

The median hyperplane of these two different types

of users is the maximum margin separating hyperplane.

The users
p

Us &
n

Us has been formulate as below:

1 0
p a p a a a p a a

Us Usα α α
∈ ∈

= Σ Σ = ≥
 (8)

 1 0
n b n b b b n b b

Us Usα α α
∈ ∈

= Σ Σ = ≥ (9)

Where sets P and N respectively contain the indices

of the positive and negative users. The optimal

hyperplane is then obtained by solving

2min || ||
a p n

Us Us− (10)

Under the constraints of the parameterization (10).

The separating hyperplane is then represented by the

following linear discriminant function:

()
() ()

2

n n p p

p n

Us Us Us Us
y us Us Us Us

−

= − + (11)

Since
p

Us and
n

Us are represented as linear

combination of the training patterns, both the

optimization criterion (10) and the discriminant

function (11) can be expressed using dot products

between patterns. Sometimes finding the attackers in

the current classifier becomes very difficult task.

To solve this problem when a new misclassified

sample arrives, Huller attempts to make this new

sample become a support vector and removes another

support vector from the current classifier via the update

of the nearest points of the convex hulls.

The proposed method tries to select the vertices of

the convex hulls of the current training cloud users in

the off-line step and then retrains the classifier using

these selected samples and newly arrived cloud users.

The procedure of the CSVM algorithm is shown in

Figure 6.

Figure 6. Schematic representation of CSVM

algorithm

The convex hull of the set
1

{ }n d

s a a
CH Us

=

= ⊂ � is

defined as:

1

1

() { | ,

1, 0, 1, ... }

n

s a a a s

a

n

a a

a

convex CH a Us Us CH

a a a n

=

=

= ∈

= ≥ =

∑

∑

 (12)

Given a set
s

CH and a point Us, the Euclidean

distance between Us and ()
s

convex CH can be

computed by solving the following quadratic

optimization:

1
min . . 1, 0

2

t t t

a a
a Q c a s t e a a− = ≥ (13)

where = [1, 1, ..., 1] T, Q = UsTUsand c = UsTuswith

Us = [us1, ..., usn]. Suppose the optimal solution of (13)

is *

α . Then the convex hull distance between x and

conv(P) is given by

442 Journal of Internet Technology Volume 21 (2020) No.2

* * *

(, ())

2

c s

T t T

dis us conves CH

us us c a a Qa a= − + +

 (14)

Consider the problem from the attacker’s point of

view, the latter’s objective is to minimize the

hypervisor’s maximal probability of detection.

The maximum that the hypervisor can realize is

equivalent to the minimum that the attacker.

8 Experimentation Results

In this section, describe the experimental setup and

present experimental results by comparing proposed

work with a benchmark consisting of the Price based

maximin [15], and Bayesian inference [14].

Provide experimental results to test the performance

of model and validate the theoretical and numerical

results obtained in the previous sections.

To these ends, conduct the experiments using

CloudSim [29] in a 64-bit Windows 7 environment on

a machine equipped with an Intel Core i7-4790 CPU

3:60 GHz Processor and 16 GB RAM. To build the

cloud, create a datacenter whose VMs’ configuration is

inspired by Amazon EC2 X-large instances [30].

Practically, the created datacenter hosts five physical

machines each of which is assigned with a number of

VMs varying from 10 to 50 of image size amounting to

10000 MB each.

Every VM is equipped with 5-core CPU of 1000

Millions of Instructions Per Second (MIPS) each. [31]

Each VM has a memory RAM capacity of 16 GB,

hard drive storage of 976:5625 GB, and network

bandwidth share of 50000 Kbit/s.

In the created datacenter, x86 has been used as a

system architecture, Linux as an operating system, and

Xen as a Virtual Machine Monitor (VMM).

To populate the trust recommendations regarding

VMs, resort to the use of the Epinions data set [32] that

has been long used in cloud computing and many other

domains for representing trust [33].

The data set comprises 664; 824 ratings given by 49;

290 agents on 139; 738 items.

The Datacenter Properties are represented in Table 1.

Table 1. Datacenter properties

Parameter Value

Number of physical hosts 5

System architecture x86

Operating system Linux

Virtual machine monitor Xen

Number of VMs 10,20,30, 40 and 50

Number of CPU cores per VM 5

CPU speed per VM 1000 MIPS

RAM memory per VM 16 GB

Hard drive storage per VM 976.56 GB

Network bandwidth share per VM 50000 Kbit/seconds

Figure 7 reveals that CSVM classifier with the

EFPSO outperforms in terms of attack detection. The

proposed work gives higher attack detection rate of

93.6%, whereas other methods such as price based

maximin and Bayesian inference provides only 75.23%

and 87.12% for 10 number of VMs.

Figure 7. Attack detection rate vs. Number of Virtual

Machines (VMs)

Figure 8 measures the false negative percentage that

quantifies the percentage of attacks that the system was

not able to capture during the detection process. The

proposed work gives lesser false negative rate of

6.58%, whereas other methods such as price based

maximin and Bayesian inference provides higher of

18.25% and 9.12% for 10 number of VMs.

Figure 8. False Negative Rate (FNR) vs. Number of

Virtual Machines (VMs)

Figure 9 measures the percentage of false positive

incurred by the studied detection methods. The

proposed work gives lesser false positive rate of 8.63%,

whereas other methods such as price based maximin

and Bayesian inference provides higher of 19.53% and

12.89% for 10 number of VMs.

Enhanced Fuzzy Particle Swarm Optimization Load Distribution (EFPSO-LD) For DDOS Attacks Detection and Prevention in Healthcare Cloud Systems 443

Figure 9. False Positive Rate (FPR) vs. Number of

Virtual Machines (VMs)

Figure 10 is introduced to study the effectiveness of

the proposed model in minimizing the cloud system’s

resources consumption when this system faces DDoS

attack methods. The proposed work gives lesser CPU

usage of 20.15%, whereas other methods such as price

based maximin and Bayesian inference provides higher

of 43.52% and 35.25% for 10 number of VMs.

Figure 10. CPU usage vs. Number of Virtual

Machines (VMs)

Figure 11 demonstrates that applying CSVM

classifier reduces the memory consumption of cloud

when compared to models. The proposed work gives

lesser memory usage of 12.25%, whereas other

methods such as price based maximin and Bayesian

inference provides higher of 28.56% and 22.05% for

10 number of VMs.

Figure 11. Memory usage vs. Number of Virtual

Machines (VMs)

Figure 12 shows that CSVM classifier decreases the

network bandwidth’s consumption compared to the

other two methods. This is due to the effectiveness of

CSVM classifier in identifying attacks, which reduces

the flux of the malicious traffic on the datacenter’s

network. The proposed work gives lesser bandwidth

usage of 15.56%, whereas other methods such as price

based maximin and Bayesian inference provides higher

of 24.36% and 21.05% for 10 number of VMs.

Figure 12. Bandwidth usage vs. Number of Virtual

Machines (VMs)

Figure 13 measures the execution time of the three

studied models with the variation in the number of

VMs. The proposed work gives lesser execution time

of 2.15 seconds, whereas other methods such as price

based maximin and Bayesian inference provides higher

of 0.96 seconds and 1.35 seconds for 10 number of

VMs.

Figure 13. Execution time vs. Number of Virtual

Machines (VMs)

444 Journal of Internet Technology Volume 21 (2020) No.2

9 Conclusion and Future Work

In this work, Enhanced Fuzzy Particle Swarm

Optimization (EFPSO) algorithm is proposed which

guides the hypervisor to determine the optimal

detection load distribution among VMs in real-time

that maximizes DDoS attacks’ detection.

In the proposed work, the hypervisor monitors the

VMs’ CPU, memory, and network bandwidth

consumption directly from the hosting infrastructure.

At finally prevention is performed by using Convex

Support Vector Machine (CSVM) classifier. The

proposed work gives higher attack detection rate of

93.6%, whereas other methods such as price based

maximin and Bayesian inference provides only 75.23%

and 87.12% for 10 number of VMs.

Conduct the experiments using Cloud Sim in a 64-

bit Windows 7 environment. The detection methods

results are measured using the metrics like detection

rate metrics like attack detection, false positive and

false negative percentages. Moreover, CSVM solution

proves to be able to minimize the cloud system’s CPU

consumption, memory consumption, and network

bandwidth consumption under DDoS scenarios.

Spoofing attack detection in the CC environment is left

as scope of future work.

References

[1] Z. Wan, J. E. Liu, R. H. Deng, HASBE: A Hierarchical

Attribute-based Solution for Flexible and scalable Access

Control in Cloud Computing, IEEE Transactions on

Information Forensics and Security, Vol. 7, No. 2, pp. 743-

754, April, 2012.

[2] P. Mell, T. Grance, The NIST Definition of Cloud Computing,

Report No. SP 800-145, September, 2011.

[3] A. Sangroya, S. Kumar, J. Dhok, V. Varma, Towards

Analyzing Data Security Risks in Cloud Computing

Environments, International Conference on Information

Systems, Technology and Management, Bangkok, Thailand,

2010, pp. 255-265.

[4] L. M. Kaufman, Data Security in the World of Cloud

Computing, IEEE Security & Privacy, Vol. 7, No. 4, pp. 61-

64, July-August, 2009.

[5] T. Peng, C. Leckie, K. Ramamohanarao, Survey of Network

Based Defence Mechanisms Countering the DoS and DDoS

Problems, ACM Computing Survey, Vol. 39, No. 1, pp. 1-42,

April, 2007.

[6] M. A. Rajab, J. Zarfoss, F. Monrose, A. Terzis, My Botnet Is

Bigger Than Yours (Maybe, Better Than Yours): Why Size

Estimates Remain Challenging, Proceedings of the FIRST

Conference on First Workshop Hot Topics in Understanding

Botnets, Cambridge, MA, USA, 2007, pp.1-8.

[7] J. Mirkovic, P. Reiher, Taxonomy of DDoS Attack and DDoS

Defence Mechanisms, ACM SIGCOMM Computer

Communication Review, Vol. 34, No.2, pp. 39-53, April,

2004.

[8] S. Mansfield-Devine, The Growth and Evolution of DDoS,

Network Security, Vol. 2015, No. 10, pp. 13-20, October,

2015.

[9] U. Tupakula, V. Varadharajan, N. Akku, Intrusion Detection

Techniques for Infrastructure as a Service Cloud, IEEE Ninth

International Conference on Dependable, Autonomic and

Secure Computing, Sydney, Australia, 2011, pp. 744-751.

[10] J. Nikolai, Y. Wang, Hypervisor-based Cloud Intrusion

Detection System, International Conference on Computing,

Networking and Communications, Honolulu, HI, USA, 2014,

pp. 989-993.

[11] I. Sattar, M. Shahid, Y. Abbas, A Review of Techniques to

Detect and Prevent Distributed Denial of Service (DDoS)

Attack in Cloud Computing Environment, International

Journal of Computer Applications, Vol.115, No. 8, pp. 23-27,

April, 2015.

[12] A. M. Lonea, D. E. Popescu, H. Tianfield, Detecting DDoS

Attacks in Cloud Computing Environment, International

Journal of Computers Communications & Control, Vol. 8,

No. 1, pp. 70-78, February, 2013.

[13] S. Jamali, G. Shaker, Defense against SYN Flooding DoS

Attacks by Employing PSO Algorithm, Computers &

Mathematics with Applications, Vol. 63, No.1, pp. 214-221,

January, 2012.

[14] O. A. Wahab, J. Bentahar, H. Otrok, A. Mourad, Optimal

Load Distribution for the Detection of VM-based DDoS

Attacks in the Cloud, IEEE Transactions on Services

Computing, Vol. 17, No. 1, pp.1-1, April, 2017.

[15] O. A. Wahab, J. Bentahar, H. Otrok, A. Mourad, How to

Distribute the Detection Load among Virtual Machines to

Maximize the Detection of Distributed Attacks in the Cloud,

IEEE International Conference on Services Computing (SCC),

San Francisco, CA, USA, 2016, pp. 316-323.

[16] S. Yu, Y. Tian, S. Guo, D. O. Wu, Can We Beat DDoS

Attacks in Clouds, IEEE Transactions on Parallel and

Distributed Systems, Vol. 25, No. 9, pp. 2245-2254,

September, 2014.

[17] S. T. Zargar, J. Joshi, D. Tipper, A Survey of Defense

Mechanisms against Distributed Denial of Service (DDoS)

Flooding Attacks, IEEE Communications Surveys &

Tutorials, Vol. 15, No. 4, pp. 2046-2069, November, 2013.

[18] Z. Liu, X. Wang, A PSO-based Algorithm for Load

Balancing in Virtual Machines of Cloud Computing

Environment, International Conference in Swarm Intelligence,

Shenzhen, China, 2012, pp. 142-147.

[19] F. Ramezani, J. Lu, F. K. Hussain, Task-based System Load

Balancing in Cloud Computing Using Particle Swarm

Optimization, International Journal of Parallel Programming,

Vol. 42, No. 5, pp. 739-754, October, 2014.

[20] F. Lombardi, R. Di Pietro, Secure Virtualization for cloud

Computing, Journal of Network and Computer Applications,

Vol. 34, No. 4, pp. 1113-1122, July, 2011.

[21] O. A. Wahab, J. Bentahar, H. Otrok, A. Mourad, A Survey on

Trust and Reputation Models for Web Services: Single,

Composite, and Communities, Decision Support Systems, Vol.

Enhanced Fuzzy Particle Swarm Optimization Load Distribution (EFPSO-LD) For DDOS Attacks Detection and Prevention in Healthcare Cloud Systems 445

74, pp. 121-134, June, 2015.

[22] R. E. Perez, K. Behdinan, Particle Swarm Approach for

Structural Design Optimization, Computers & Structures, Vol.

85, No. 19, pp. 1579-1588, October, 2007.

[23] H. Cao, X. Qian, Z. Chen, H. Zhu, Enhanced Particle Swarm

Optimization for Size and Shape Optimization of Truss

Structures, Engineering Optimization, Vol. 49, No. 11, pp.

1939-1956, November, 2017.

[24] H. Jabeen, Z. Jalil, A. R. Baig, Opposition Based

Initialization in Particle Swarm Optimization (O-PSO),

Proceedings of the Annual Conference Companion on

Genetic and Evolutionary Computation Conference: Late

Breaking Papers, Québec, Canada, 2009, pp. 2047-2052.

[25] V. Plevris, M. Papadrakakis, A Hybrid Particle Swarm—

Gradient Algorithm for Global Structural Optimization,

Computer-Aided Civil and Infrastructure Engineering, Vol.

26, No.1, pp. 48-68, January, 2011.

[26] L. J. Li, Z. B. Huang, F. Liu, Q. H. Wu, A Heuristic Particle

Swarm Optimizer for Optimization of Pin Connected

Structures, Computers & Structures, Vol. 85, No. 7, pp. 340-

349, April, 2007.

[27] K. P. Lin, M. S Chen, On the Design and Analysis of the

Privacy-preserving SVM Classifier, IEEE Transactions on

Knowledge and Data Engineering, Vol. 23, No.11, pp. 1704-

1717, November, 2011.

[28] A. Alkan, M. Günay, Identification of EMG Signals Using

Discriminant Analysis and SVM Classifier, Expert Systems

with Applications, Vol. 39, No. 1, pp. 44-47, January, 2012.

[29] R. N. Calheiros, R. Ranjan, A. Beloglazov, C. A. De Rose, R.

Buyya, Cloudsim: A Toolkit for Modeling and Simulation of

Cloud Computing Environments and Evaluation of Resource

Provisioning Algorithms, Software: Practice and Experience,

Vol. 41, No. 1, pp. 23-50, January, 2011.

[30] Amazon Web Services, Amazon EC2, https://aws.amazon.

com/ec2/details/.

[31] SPEC Java Virtual Machine Benchmark 2008, http://www.

spec.org/jvm2008/.

[32] J. Leskovec, Epinions Social Network, https://snap.stanford.

edu/data/soc-Epinions1.html.

[33] S. Deng, L. Huang, G. Xu, Social Network-based Service

Recommendation with Trust Enhancement, Expert Systems

with Applications, Vol. 41, No. 18, pp. 8075-8084, December,

2014.

Biographies

A. Peter Soosai Anandaraj received

his bachelor’s degree (B.E-Bachelor

of Computer Science and Engineering)

from Raja College of engineering and

Technology, Madurai, and affiliated

to Anna University, Chennai, in 2010

and then Completed his Master

Degree in computer science and engineering from

Pandian Saraswathi Yadav Engineering College,

Sivagangai, affiliated to Anna University, Chennai, in

2012. He is currently working as an Asst Prof in

Ganapathy Chettiar College of Engineering and

Technology, Paramakudi. He is also pursuing Ph.D. in

Information Communication Engineering, Anna

University, and Chennai. He has 5 years of teaching

experience in Computer Science and Engineering. His

current research interests include the area of Network

and its Security

G. Indumathi obtained Bachelor’s

degree in Electronics and

Communication Engineering and

Master’s Degree in Communication

Systems both from Madurai Kamaraj

University, Madurai, India in 1990

and 1997 respectively. She received doctoral degree

from Anna University, Chennai for her research work

in the domain of Information and Communication engg

in the year 2012 presently she is working as a

Professor in the department of Electronics and

Communication Engineering in Mepco Schelenk

Engineering College, Sivakasi. She has published

many International Journals and National Journals. Her

current research interests are in the areas of Wireless

and Network Security and Digital signal Processing.

She is a Life member in Indian Society for Technical

Education and Fellow in Institution of Electronics and

Telecommunications Engineers.

446 Journal of Internet Technology Volume 21 (2020) No.2

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (Adobe RGB \0501998\051)
 /CalCMYKProfile (Japan Color 2001 Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHT <FEFF005b683964da300c9ad86a94002851fa8840002b89d27dda0029300d005d0020005b683964da300c8f3851fa0033003000300064002851fa88400029300d005d00204f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks true
 /AddPageInfo false
 /AddRegMarks false
 /BleedOffset [
 8.503940
 8.503940
 8.503940
 8.503940
]
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MarksOffset 9.354330
 /MarksWeight 0.141730
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed true
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

