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Abstract 

Deep learning has granted remarkable breakthroughs 

on various tasks over the past few years, such as image 

segmentation, speech recognition, and nature language 

processing. One vital aspect of progress is the emergence 

of advanced neural architectures. However, Currently 

used architectures have frequently been developed 

manually by human experts, which is a time-consuming 

and laborious process. Because of this, more and more 

research is now involved in automated neural architecture 

search techniques. 

This paper studies the process of Neural Architecture 

Search (NAS) technology, summarizes the previous work 

in this research field and classifies it according to three 

aspects: search space, search strategy, and acceleration 

method. In addition, this study selects the performance 

prediction method in the NAS acceleration strategy as a 

breakthrough direction and inherits the works of 

MetaQNN network structure and the sequential 

regression prediction model (SRMs), which were 

proposed by the previous research. Firstly, based on our 

hypothesis, we successfully use the idea of the N-grams 

model of natural language processing to extract the 

sequence features belonging to the chain neural network. 

Then, based on the extracted network structure features, 

referring to the steps of SRMs, we give a new recipe for 

predicting the accuracy score of neural network models 

on the training set. Finally, through experiments and 

comparison, we prove the accuracy of this prediction 

model and the effectiveness of accelerating the neural 

architecture search process. 

Keywords: Neural architecture search, Sequence 

regression models, Performance prediction, 

Network structure feature 

1 Introduction 

The renaissance of Deep Learning Neural Networks 

(DNNs) has both created an active community of 

research in artificial intelligence and achieved many 

state-of-the-arts on intelligence processing system and 

significantly improved the performance on many 

works, for instance, image recognition [1-3], speech 

recognition [4], visual question answering [5-7], image 

or graph classification [8-9] and so on. 

Despite recent breakthroughs in the theory of DNNs, 

for a sustained success and approaching perspectives of 

DNNs, inventing an efficient and powerful neural 

architecture requires extraordinary human effort and 

takes a long time is still a challenge. The other 

challenge is how to design a lightweight network for a 

special task. 

Recently, Neural Architecture Search (NAS) has 

much attracted the interest of scientists [9-15] to deal 

with the above issues. The focus of NAS is the idea of 

using a search algorithm to get the architecture 

structure for the issue that we care about. The 

fundamental strategy is composing neural network 

architectures automatically, alternative relying heavily 

on expert experience and knowledge. 

In this work, we propose the performance predict 

technique based on network architecture for NAS. It is 

a method providing guidance for NAS. 

2 Relate Work 

The target of neural network compression and 

network architecture search is to design a smaller and 

more efficient network oriented on the practical 

application requirement. The classical neural network 

compression method includes network pruning, low-

rank decomposition, knowledge distillation, parameter 

sharing, and quantization. On the other hand, the 

network architecture search is easier to implement 

based on end to end network. 

Network pruning [16-22]. It includes removing some 

unimportant weights from the model to produce a 

sparse weight matrix, or directly removing the whole 

matrix corresponding to the attention head to realize 

pruning of the model, and some models realize pruning 

through regularization. 

Low-rank decomposition [23-26]. That is, the 

original large weight matrix decomposes multiple low-

rank small matrices to reduce the amount of 

computation. This method can be used not only in a 
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label embedding to save disk memory but also in the 

parameter matrix of the feedforward layer or self-

attention layer to speed up model training. 

Knowledge distillation [27-31]. Through the introduction 

of teacher network to motivate the training of students’ 

networks, knowledge transfer is realized. The teacher 

network has a complex structure to train the superior 

probability distribution, which is distilling the essence 

of the probability distribution from the complex 

structure, and then instructing the streamlined student 

network training, so as to realize the model 

compression, that is, knowledge distillation. In addition, 

distilling different network structures such as LSTMs 

from the Bert model, and further mining the network 

structure of teachers are expected to realize the 

continuous optimization of knowledge distillation. 

Quantization [32-34]. By decreasing the number of 

bits desired for each parameter to compress the original 

network, memory can be significantly reduced. 

Parameter sharing. Both the full connection layer and 

the self-attention layer realize parameter sharing, that 

is, all parameters in the encoder are shared, which not 

only reduces the number of parameters but also 

improves the training speed 

In the past year, many deep learning researchers and 

practitioners have spent a lot of their time considering 

what kind of architecture of a neural network is 

profitable for their particular issue. And network 

architecture search is a cornerstone when deep learning 

research is application-oriented. The vast majority of 

current works on NAS. 

Liu et al. [35] proposed a straightforward conversion 

of DARTS; for those not familiar, DARTS is one of 

stochastic optimization (gradient-based) way which 

initializes all potential architectures at the beginning 

and optimizes not only the parameters weights but also 

scalar weights on each path. 

Dong et al. [36] incorporate the best of both worlds 

from ENAS and DARTS. DARTS already quoted as 

before; ENAS [37] is an RL-based method proposed 

by Pham et al. in which a giant graph is also initialized 

in the beginning analogous to DARTS, rather than 

additional variables on edges, the RL-based controller 

chooses which path is to be activated. 

Baker et al. [10] regard one of the remarkable 

applications of NAS – search for architectures suit for 

fast inference on mobile apparatuses. In order to obtain 

that, they introduced a multi-objective optimization, 

where the RL-based controller is compelled to output 

an architecture not only with a super performance but 

also with low latency as a test on the CPU-core of 

Google Pixel 1. 

It is thrilly and liberating to discover a large volume 

of papers overcoming the requirements of the amount 

of GPUs / TPUs you have, and achieving significant 

results. It would be doubtless interesting to find how 

NAS will improve and what other recipes researchers 

will propose. [19, 33-34, 38]. 

3 Methodology 

MetaQNN [10] is a meta-modeling way depended 

on reinforcement learning to automatically produced 

high-performing CNN architectures for a special 

learning task. And the network feature extraction is via 

N-grams 

Inspired by DeepArchitect [17] method, we take the 

N-grams method to extract MetaQNN network feature, 

and N-grams widely used in natural language 

processing according to the following step: 

(1) The obtained neural network composed of the 

chain structure and network structure character 

description as input. 

(2) Split the description character of the network 

structure, and extract the sequence of character which 

denote each layer’s type. 

(3) Construct feature vector: setting appropriate 

range of parameter N, where is the length of the gram, 

taking N-grams algorithm to deal with all the network 

character that obtained from the last step, and store the 

feature in some order. 

(4) Compute the feature matrix: according to the 

stored vector, adapt N-grams to split rearrangement 

network successive again. If the N is consistent with 

the parameter that  

(5) Construct feature vector, then feature vector as 

row, and the matrix which takes network architecture 

as column corresponding position is setting to 1, and 

then we will get the feature matrix of network 

architecture. 

Table 1. The example feature matrix on SVHN dataset 

according above step 

N Size of feature matrix Sparsity of eigenmatrix 

3 (1000, 24) 0.999903026 

5 (1000, 94) 0.999903026 

8 (1000, 344) 0.999903026 

10 (1000, 621) 0.999903026 

13 (1000, 1113) 0.999903026 

15 (1000, 1417) 0.999903026 

18 (1000, 1681) 0.999903026 

 

Table 1 show that the parameter N directly affects 

the dimension of eigenvector and feature matrix size, 

and the bigger N, the more sparsity of feature matrix. 

Performance predict method of sequence regression 

models (SRMs) is one method that based on the 

learning curve. The aim is to describe the validation 

performance 
T
y  of the neural network configuration 

d
X χ∈ ⊂ �  at epoch T +

∈�  using prior performance 

observation ( )y t , for every configuration X  trained 

on T epochs, here record a time series ( )y T =  

1 2
, .....

T
y y y  of validation performance. we train a 

population of n  configurations, getting a set as : 
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 1 1 2 2{( , ( )),( , ( )).......( , ( ))}n n

S X y T X y T X y T=  

This description formulation is originated rom [41], 

here extremely all architectures and hyperparameters 

search algorithms naturally collect S . 

We also adopt a set features 
X

u  as above mentioned, 

originated from the neural network configuration X , 

according to a subset of time-series performance 

1,2...
( ) ( )

t t
y y

τ
τ

=

=  ( 1 Tτ≤ ≤ ) from S  to train a 

regression models, where each successive model takes 

one more point of the time-series validation data. 

Compared with the method of training a single model 

in the following chapters, SRMs is more efficient and 

accurate in computation. 

4 Experiment 

4.1 Datasets 

For the sake of contrast the performance on different 

datasets, we take the classical image datasets and 

natural language processing datasets. They are 

TinyImageNet [39], PTB [40], CIFA-10 [41] and 

SVHN respective and other applications [42-47]. 

The Tiny ImageNet dataset is a modified subset of 

the original ImageNet dataset [1]. Here, there are 200 

different classes instead of 1000 classes of ImageNet 

dataset, with 10,000 validation examples and100,000 

training examples. The resolution of the images is just 

64x64 pixels, which makes it more challenging to 

extract information from it. A glance at the images 

shows that it is hard for the human detect objects in 

some images by eye. 

The Penn Treebank (PTB) is dataset which project 

selected 2,499 stories from a three year Wall Street 

Journal (WSJ) and collection of 98,732 stories for 

syntactic annotation. It contain 2,499 stories in the 

Treebank. It consists of the raw text for each story. 

And three “map” compressed files (pennTB_tipster_ 

wsj_map.tar.gz) are provide for users who have 

licensed Treebank and give the relation between the 

2,499 PTB filenames. 

CIFAR-10 dataset is a elementary dataset for visual 

model trainning, it include 60000 colour images in 10 

classes, that is to say, 6000 images per class, and each 

image pixes is 32x32. The number of training and test 

images is 50000 and 1000 respectively. Forthermore, 

the dataset is can be divide into five training batches 

and one test batch, each contain 10000 images. The 

training batches includes the remaining images with 

random order. The test batch contains exactly 1000 

randomly-selected images from each class. but some 

training batches may contain more images from one 

class than another. Between them, the training batches 

contain exactly 5000 images from each class. 

SVHN is a real-world image dataset oriented for 

exploiting machine learning or object recognition 

applications with minimal requirement on data 

formatting and preprocessing. It can be view as similar 

in flavor to MNIST (e.g., the images are of small 

cropped digits), but integrates an order of magnitude 

more labeled data (exceed 600,000 digit images) and 

originate from a unsolved, markedly harder, real world 

problem SVHN is collected from house numbers in 

Google Street View images. The dataset include 73257 

training digits, 26032 digits for testing, additional, 

somewhat less difficult samples, to act as extra training 

data. 

4.2 Different Network Architectures 

We select three typical networks on different 

datasets to validate our schema. 

We firstly select 500 ResNet architectures, and then 

train the model on the TinyImageNet dataset (which 

containing 200 classes with 500 training images and 

the size is 32 × 32) for 140 epochs. We alter filter sizes, 

depths and number of convolutional filter block 

outputs. And the filter size is chosse from {3, 5, 7}, 

and the number of filter is sample from {2, 3, 4, …, 

22}, and each ResNet block is composed of three 

convolution layers, and batch normalization and 

summation layer sequentially. The number of blocks 

will shifting from 2 to 18. Network depth varies from 

14 to 110. Every network trained 140 epochs via 

Nesterov optimizer, the learning rate is 0.1, decay rate 

is 0.1 and momentum is 0.9. 

LSTM is suitable for processing sequence data and 

we choose 300 LSTM models to reflect the 

performance of our algorithm, and train the LSTM 

model on the Penn Treebank dataset via 60 epochs, and 

assessing perplexity on the validation set. We alter 

number of LSTM cells and hidden layer inputs 

between 10 and 1400. The step size is 20, each 

network trained 60 epochs, batch size is 50, and adopt 

random gradient descent to train the network. For the 

sake of avoid over-fitting matter, the dropout is 0.5, 

and the dictionary size is 400 to embed when dataset 

vectorization. 

For comparison, we select 1,000 model architectures 

from the search space detailed by Baker et al. (2017) 

randomly, which addmits for altering the numbers and 

orderings of pooling, convolution, and fully connected 

layers. For the SVHN experiment, the models are 

between 1 and 12 layers, and for the CIFAR-10 

experiment the models are between 1 and 18 layers. 

and all the architectures is trained on SVHN and 

CIFAR-10 datasets via 20 epochs. 

In order to compare the relation between regression 

model and performance, we chose ordinary least 

squares (OLS), Bayesian linear regression (BLR), 

random forests (RF), and ν-support vector machine 

regression (ν-SVR) as regression and take 25% epochs 

of very 100 models. 
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Table 2. Model compare and selection 

Model dataset v -SVR Random Forest OLS 

MetaQNN CIFAR-10 94.22 ± 0.25 92.27 ± 0.91 93.22 ± 1.1

ResNet TinyImageNet 85.78 ± 1.82 91.37 ± 2.18 90.15 ± 1.8

LSTM Penn Treebank 83.29 ± 7.71 91.38 ± 1.97 89.8 ± 0.16

 

Table 2 shows that the v -SVR have the best 

performace, and then, we will selecet this method to do 

the next procedure. 

In oder to show the different performance on vary 

features, we chose features depended on architecture 

parameters (AP), time-series (TS), and 

hyperparameters (HP) validation performances. 

Where AP include total the parameter of weights 

number and layers number. HP contain all 

hyperparameters that is used for training the neural 

networks. For instance, the initialized learning rate and 

learning rate decay. TS features expressed by the 

validation performances 
1,2,...

( ) ( )
t t t

y yτ
=

= . here we 

have trained the th
τ  model in the SRM. the experement 

show as following: 

Table 3. Different feature performance on various 

architecture  

Feature Set MetaQNN ResNet LSTM 

TS 93.98 ± 0.15 86.52 ± 1.85 97.81 ± 2.45

AP 27.45 ± 4.25 84.33 ± 1.70 16.11 ± 1.13

HP 12.60 ± 1.70 8.78 ± 1.14 3.98 ± 0.88 

TS+AP 84.09 ± 1.40 88.82 ± 2.95 96.92 ± 2.80

AP+HP 27.01 ± 2.50 81.71 ± 3.90 15.97 ± 2.57

TS+AP+HP 94.44 ± 0.14 91.8+1.10 98.24 ± 2.11

 

Table 3 indicate that TS feature is the most 

important factor for performance predication, It will 

show significant value in subsequent exploration. 

Based on the above analysis, we can draw a 

conclusion that the main important feature is time 

series among the network architecture, hyperparameter 

and time series validation accuracy, but we believe that 

The performance of a network architecture is closely 

related to the network architecture itself, and we hope 

that predict the validation accuracy by machine 

learning way which depend on network architecture 

itself, and the most time-consuming process of model 

search is greatly reduced by obtaining the validation 

accuracy of some epochs without retraining the model. 

The above experiment result shown that the final 

performance of networks with similar sequence 

structure is also similar, this will be the basis of our 

subsequent experiments. for the extraction of the 

network themself feature, we take N-grams to 

extraction as description before. It is important to note 

that the feature extraction way is using chain network 

architecture sequence, namely, the type and sequence 

of each layer and the learning method is take the SRMs. 

Furthermore, we utilize sequential iteration to improve 

the predict accuracy [45-47]. 

 

Figure 1. Random validation accuracy on SVHN 

Figure 1 show that the varying of n in the process of 

feature extraction by N-grams, the network is 

MetaQNN and training dataset is SVHN. The different 

type denote the parameter n and corresponding size of 

feature matrix. 

 

(a) Random validation accuracy by five times sample 

without normalization 

 

(b) Random validation accuracy by five times sample 

with normalization. 

Figure 2. Compare the random validation accuracy  

Consider the feature matrix high sparsity and large 

difference in feature value, we utilize normalization 

way to offset these effects, the result show as Figure 2. 

When adjust the parameter n, the predict accuracy will 
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be changing, but it does not indicate that the bigger n 

the better performance, and too large n will decrease 

the predict accuracy. 

Figure 2 show that normalization will promote the 

variance diminish when take same parameter and 

dataset. Figure 2(a) is the random validation accuracy 

by five times sample without normalization and Figure 

2(b) is the random validation accuracy by five times 

sample with normalization. 

 

Figure 3. Random validation accuracy on CIFAR-10 

Figure 3 shows the performance of random 

validation accuracy on CIFAR-10 dataset under ten 

times sample, here n = 2, 3, 4. 

Figure 4 compare the random validation performance 

on CIFAR-10, it is clear that compare with the random 

predicate just as figure1 and figure 2 shows, add one or 

two epochs is promote predicate accuracy notable  

 

Figure 4. Random validation accuracy on CIFAR-10 

5 Conclusion 

From above experiment we can get the following 

conclusion to facilitate the process of NAS: 

Using SRMs predicate network architecture by 

network structure description as feature extraction, the 

performance approximate 40% as take MetaQNN 

network training on SVHN dataset, Comparatively 

speaking, the performance will close to 50%-60% 

when take the same network on CIFAR-10 dataset, and 

have stable performance. It indicate that the model 

depend on datasets. 

For the MetaQnn network training on CIFAR-10, 

the predicate performance will close to 72% by add 

one epoch with same predicate model, However, if 

only use one epoch to predicate the performance, the 

accuracy is only 50%. Further exploration, using two 

epochs and add two epochs within same condition, 

predicate accuracy increased from 75% to 92%. all the 

result illustrate that increase the training epochs is the 

better way to make better performance. 
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