
Performance Predict Method Based on Neural Architecture Search 385

Performance Predict Method Based on

Neural Architecture Search

Meili Zhou1, Zongwen Bai1, Tingting Yi1, Xiaohuan Chen1, Wei Wei2
1 School of Physics and Electronic Information, Yan’an University, China

2 School of Computer Science and Engineering, Xi'an University of Technology, China

zml@yau.edu.cn, whiteboy1999@sina.com, tt_y3658@163.com, GRdh1227@163.com, taneo@126.com*

*Corresponding Author: Zongwen Bai; E-mail: whiteboy1999@sina.com

DOI: 10.3966/160792642020032102007

Abstract

Deep learning has granted remarkable breakthroughs

on various tasks over the past few years, such as image

segmentation, speech recognition, and nature language

processing. One vital aspect of progress is the emergence

of advanced neural architectures. However, Currently

used architectures have frequently been developed

manually by human experts, which is a time-consuming

and laborious process. Because of this, more and more

research is now involved in automated neural architecture

search techniques.

This paper studies the process of Neural Architecture

Search (NAS) technology, summarizes the previous work

in this research field and classifies it according to three

aspects: search space, search strategy, and acceleration

method. In addition, this study selects the performance

prediction method in the NAS acceleration strategy as a

breakthrough direction and inherits the works of

MetaQNN network structure and the sequential

regression prediction model (SRMs), which were

proposed by the previous research. Firstly, based on our

hypothesis, we successfully use the idea of the N-grams

model of natural language processing to extract the

sequence features belonging to the chain neural network.

Then, based on the extracted network structure features,

referring to the steps of SRMs, we give a new recipe for

predicting the accuracy score of neural network models

on the training set. Finally, through experiments and

comparison, we prove the accuracy of this prediction

model and the effectiveness of accelerating the neural

architecture search process.

Keywords: Neural architecture search, Sequence

regression models, Performance prediction,

Network structure feature

1 Introduction

The renaissance of Deep Learning Neural Networks

(DNNs) has both created an active community of

research in artificial intelligence and achieved many

state-of-the-arts on intelligence processing system and

significantly improved the performance on many

works, for instance, image recognition [1-3], speech

recognition [4], visual question answering [5-7], image

or graph classification [8-9] and so on.

Despite recent breakthroughs in the theory of DNNs,

for a sustained success and approaching perspectives of

DNNs, inventing an efficient and powerful neural

architecture requires extraordinary human effort and

takes a long time is still a challenge. The other

challenge is how to design a lightweight network for a

special task.

Recently, Neural Architecture Search (NAS) has

much attracted the interest of scientists [9-15] to deal

with the above issues. The focus of NAS is the idea of

using a search algorithm to get the architecture

structure for the issue that we care about. The

fundamental strategy is composing neural network

architectures automatically, alternative relying heavily

on expert experience and knowledge.

In this work, we propose the performance predict

technique based on network architecture for NAS. It is

a method providing guidance for NAS.

2 Relate Work

The target of neural network compression and

network architecture search is to design a smaller and

more efficient network oriented on the practical

application requirement. The classical neural network

compression method includes network pruning, low-

rank decomposition, knowledge distillation, parameter

sharing, and quantization. On the other hand, the

network architecture search is easier to implement

based on end to end network.

Network pruning [16-22]. It includes removing some

unimportant weights from the model to produce a

sparse weight matrix, or directly removing the whole

matrix corresponding to the attention head to realize

pruning of the model, and some models realize pruning

through regularization.

Low-rank decomposition [23-26]. That is, the

original large weight matrix decomposes multiple low-

rank small matrices to reduce the amount of

computation. This method can be used not only in a

386 Journal of Internet Technology Volume 21 (2020) No.2

label embedding to save disk memory but also in the

parameter matrix of the feedforward layer or self-

attention layer to speed up model training.

Knowledge distillation [27-31]. Through the introduction

of teacher network to motivate the training of students’

networks, knowledge transfer is realized. The teacher

network has a complex structure to train the superior

probability distribution, which is distilling the essence

of the probability distribution from the complex

structure, and then instructing the streamlined student

network training, so as to realize the model

compression, that is, knowledge distillation. In addition,

distilling different network structures such as LSTMs

from the Bert model, and further mining the network

structure of teachers are expected to realize the

continuous optimization of knowledge distillation.

Quantization [32-34]. By decreasing the number of

bits desired for each parameter to compress the original

network, memory can be significantly reduced.

Parameter sharing. Both the full connection layer and

the self-attention layer realize parameter sharing, that

is, all parameters in the encoder are shared, which not

only reduces the number of parameters but also

improves the training speed

In the past year, many deep learning researchers and

practitioners have spent a lot of their time considering

what kind of architecture of a neural network is

profitable for their particular issue. And network

architecture search is a cornerstone when deep learning

research is application-oriented. The vast majority of

current works on NAS.

Liu et al. [35] proposed a straightforward conversion

of DARTS; for those not familiar, DARTS is one of

stochastic optimization (gradient-based) way which

initializes all potential architectures at the beginning

and optimizes not only the parameters weights but also

scalar weights on each path.

Dong et al. [36] incorporate the best of both worlds

from ENAS and DARTS. DARTS already quoted as

before; ENAS [37] is an RL-based method proposed

by Pham et al. in which a giant graph is also initialized

in the beginning analogous to DARTS, rather than

additional variables on edges, the RL-based controller

chooses which path is to be activated.

Baker et al. [10] regard one of the remarkable

applications of NAS – search for architectures suit for

fast inference on mobile apparatuses. In order to obtain

that, they introduced a multi-objective optimization,

where the RL-based controller is compelled to output

an architecture not only with a super performance but

also with low latency as a test on the CPU-core of

Google Pixel 1.

It is thrilly and liberating to discover a large volume

of papers overcoming the requirements of the amount

of GPUs / TPUs you have, and achieving significant

results. It would be doubtless interesting to find how

NAS will improve and what other recipes researchers

will propose. [19, 33-34, 38].

3 Methodology

MetaQNN [10] is a meta-modeling way depended

on reinforcement learning to automatically produced

high-performing CNN architectures for a special

learning task. And the network feature extraction is via

N-grams

Inspired by DeepArchitect [17] method, we take the

N-grams method to extract MetaQNN network feature,

and N-grams widely used in natural language

processing according to the following step:

(1) The obtained neural network composed of the

chain structure and network structure character

description as input.

(2) Split the description character of the network

structure, and extract the sequence of character which

denote each layer’s type.

(3) Construct feature vector: setting appropriate

range of parameter N, where is the length of the gram,

taking N-grams algorithm to deal with all the network

character that obtained from the last step, and store the

feature in some order.

(4) Compute the feature matrix: according to the

stored vector, adapt N-grams to split rearrangement

network successive again. If the N is consistent with

the parameter that

(5) Construct feature vector, then feature vector as

row, and the matrix which takes network architecture

as column corresponding position is setting to 1, and

then we will get the feature matrix of network

architecture.

Table 1. The example feature matrix on SVHN dataset

according above step

N Size of feature matrix Sparsity of eigenmatrix

3 (1000, 24) 0.999903026

5 (1000, 94) 0.999903026

8 (1000, 344) 0.999903026

10 (1000, 621) 0.999903026

13 (1000, 1113) 0.999903026

15 (1000, 1417) 0.999903026

18 (1000, 1681) 0.999903026

Table 1 show that the parameter N directly affects

the dimension of eigenvector and feature matrix size,

and the bigger N, the more sparsity of feature matrix.

Performance predict method of sequence regression

models (SRMs) is one method that based on the

learning curve. The aim is to describe the validation

performance
T
y of the neural network configuration

d
X χ∈ ⊂ � at epoch T +

∈� using prior performance

observation ()y t , for every configuration X trained

on T epochs, here record a time series ()y T =

1 2
,

T
y y y of validation performance. we train a

population of n configurations, getting a set as :

Performance Predict Method Based on Neural Architecture Search 387

 1 1 2 2{(, ()),(, ()).......(, ())}n n

S X y T X y T X y T=

This description formulation is originated rom [41],

here extremely all architectures and hyperparameters

search algorithms naturally collect S .

We also adopt a set features
X

u as above mentioned,

originated from the neural network configuration X ,

according to a subset of time-series performance

1,2...
() ()

t t
y y

τ
τ

=

= (1 Tτ≤ ≤) from S to train a

regression models, where each successive model takes

one more point of the time-series validation data.

Compared with the method of training a single model

in the following chapters, SRMs is more efficient and

accurate in computation.

4 Experiment

4.1 Datasets

For the sake of contrast the performance on different

datasets, we take the classical image datasets and

natural language processing datasets. They are

TinyImageNet [39], PTB [40], CIFA-10 [41] and

SVHN respective and other applications [42-47].

The Tiny ImageNet dataset is a modified subset of

the original ImageNet dataset [1]. Here, there are 200

different classes instead of 1000 classes of ImageNet

dataset, with 10,000 validation examples and100,000

training examples. The resolution of the images is just

64x64 pixels, which makes it more challenging to

extract information from it. A glance at the images

shows that it is hard for the human detect objects in

some images by eye.

The Penn Treebank (PTB) is dataset which project

selected 2,499 stories from a three year Wall Street

Journal (WSJ) and collection of 98,732 stories for

syntactic annotation. It contain 2,499 stories in the

Treebank. It consists of the raw text for each story.

And three “map” compressed files (pennTB_tipster_

wsj_map.tar.gz) are provide for users who have

licensed Treebank and give the relation between the

2,499 PTB filenames.

CIFAR-10 dataset is a elementary dataset for visual

model trainning, it include 60000 colour images in 10

classes, that is to say, 6000 images per class, and each

image pixes is 32x32. The number of training and test

images is 50000 and 1000 respectively. Forthermore,

the dataset is can be divide into five training batches

and one test batch, each contain 10000 images. The

training batches includes the remaining images with

random order. The test batch contains exactly 1000

randomly-selected images from each class. but some

training batches may contain more images from one

class than another. Between them, the training batches

contain exactly 5000 images from each class.

SVHN is a real-world image dataset oriented for

exploiting machine learning or object recognition

applications with minimal requirement on data

formatting and preprocessing. It can be view as similar

in flavor to MNIST (e.g., the images are of small

cropped digits), but integrates an order of magnitude

more labeled data (exceed 600,000 digit images) and

originate from a unsolved, markedly harder, real world

problem SVHN is collected from house numbers in

Google Street View images. The dataset include 73257

training digits, 26032 digits for testing, additional,

somewhat less difficult samples, to act as extra training

data.

4.2 Different Network Architectures

We select three typical networks on different

datasets to validate our schema.

We firstly select 500 ResNet architectures, and then

train the model on the TinyImageNet dataset (which

containing 200 classes with 500 training images and

the size is 32 × 32) for 140 epochs. We alter filter sizes,

depths and number of convolutional filter block

outputs. And the filter size is chosse from {3, 5, 7},

and the number of filter is sample from {2, 3, 4, …,

22}, and each ResNet block is composed of three

convolution layers, and batch normalization and

summation layer sequentially. The number of blocks

will shifting from 2 to 18. Network depth varies from

14 to 110. Every network trained 140 epochs via

Nesterov optimizer, the learning rate is 0.1, decay rate

is 0.1 and momentum is 0.9.

LSTM is suitable for processing sequence data and

we choose 300 LSTM models to reflect the

performance of our algorithm, and train the LSTM

model on the Penn Treebank dataset via 60 epochs, and

assessing perplexity on the validation set. We alter

number of LSTM cells and hidden layer inputs

between 10 and 1400. The step size is 20, each

network trained 60 epochs, batch size is 50, and adopt

random gradient descent to train the network. For the

sake of avoid over-fitting matter, the dropout is 0.5,

and the dictionary size is 400 to embed when dataset

vectorization.

For comparison, we select 1,000 model architectures

from the search space detailed by Baker et al. (2017)

randomly, which addmits for altering the numbers and

orderings of pooling, convolution, and fully connected

layers. For the SVHN experiment, the models are

between 1 and 12 layers, and for the CIFAR-10

experiment the models are between 1 and 18 layers.

and all the architectures is trained on SVHN and

CIFAR-10 datasets via 20 epochs.

In order to compare the relation between regression

model and performance, we chose ordinary least

squares (OLS), Bayesian linear regression (BLR),

random forests (RF), and ν-support vector machine

regression (ν-SVR) as regression and take 25% epochs

of very 100 models.

388 Journal of Internet Technology Volume 21 (2020) No.2

Table 2. Model compare and selection

Model dataset v -SVR Random Forest OLS

MetaQNN CIFAR-10 94.22 ± 0.25 92.27 ± 0.91 93.22 ± 1.1

ResNet TinyImageNet 85.78 ± 1.82 91.37 ± 2.18 90.15 ± 1.8

LSTM Penn Treebank 83.29 ± 7.71 91.38 ± 1.97 89.8 ± 0.16

Table 2 shows that the v -SVR have the best

performace, and then, we will selecet this method to do

the next procedure.

In oder to show the different performance on vary

features, we chose features depended on architecture

parameters (AP), time-series (TS), and

hyperparameters (HP) validation performances.

Where AP include total the parameter of weights

number and layers number. HP contain all

hyperparameters that is used for training the neural

networks. For instance, the initialized learning rate and

learning rate decay. TS features expressed by the

validation performances
1,2,...

() ()
t t t

y yτ
=

= . here we

have trained the th
τ model in the SRM. the experement

show as following:

Table 3. Different feature performance on various

architecture

Feature Set MetaQNN ResNet LSTM

TS 93.98 ± 0.15 86.52 ± 1.85 97.81 ± 2.45

AP 27.45 ± 4.25 84.33 ± 1.70 16.11 ± 1.13

HP 12.60 ± 1.70 8.78 ± 1.14 3.98 ± 0.88

TS+AP 84.09 ± 1.40 88.82 ± 2.95 96.92 ± 2.80

AP+HP 27.01 ± 2.50 81.71 ± 3.90 15.97 ± 2.57

TS+AP+HP 94.44 ± 0.14 91.8+1.10 98.24 ± 2.11

Table 3 indicate that TS feature is the most

important factor for performance predication, It will

show significant value in subsequent exploration.

Based on the above analysis, we can draw a

conclusion that the main important feature is time

series among the network architecture, hyperparameter

and time series validation accuracy, but we believe that

The performance of a network architecture is closely

related to the network architecture itself, and we hope

that predict the validation accuracy by machine

learning way which depend on network architecture

itself, and the most time-consuming process of model

search is greatly reduced by obtaining the validation

accuracy of some epochs without retraining the model.

The above experiment result shown that the final

performance of networks with similar sequence

structure is also similar, this will be the basis of our

subsequent experiments. for the extraction of the

network themself feature, we take N-grams to

extraction as description before. It is important to note

that the feature extraction way is using chain network

architecture sequence, namely, the type and sequence

of each layer and the learning method is take the SRMs.

Furthermore, we utilize sequential iteration to improve

the predict accuracy [45-47].

Figure 1. Random validation accuracy on SVHN

Figure 1 show that the varying of n in the process of

feature extraction by N-grams, the network is

MetaQNN and training dataset is SVHN. The different

type denote the parameter n and corresponding size of

feature matrix.

(a) Random validation accuracy by five times sample

without normalization

(b) Random validation accuracy by five times sample

with normalization.

Figure 2. Compare the random validation accuracy

Consider the feature matrix high sparsity and large

difference in feature value, we utilize normalization

way to offset these effects, the result show as Figure 2.

When adjust the parameter n, the predict accuracy will

Performance Predict Method Based on Neural Architecture Search 389

be changing, but it does not indicate that the bigger n

the better performance, and too large n will decrease

the predict accuracy.

Figure 2 show that normalization will promote the

variance diminish when take same parameter and

dataset. Figure 2(a) is the random validation accuracy

by five times sample without normalization and Figure

2(b) is the random validation accuracy by five times

sample with normalization.

Figure 3. Random validation accuracy on CIFAR-10

Figure 3 shows the performance of random

validation accuracy on CIFAR-10 dataset under ten

times sample, here n = 2, 3, 4.

Figure 4 compare the random validation performance

on CIFAR-10, it is clear that compare with the random

predicate just as figure1 and figure 2 shows, add one or

two epochs is promote predicate accuracy notable

Figure 4. Random validation accuracy on CIFAR-10

5 Conclusion

From above experiment we can get the following

conclusion to facilitate the process of NAS:

Using SRMs predicate network architecture by

network structure description as feature extraction, the

performance approximate 40% as take MetaQNN

network training on SVHN dataset, Comparatively

speaking, the performance will close to 50%-60%

when take the same network on CIFAR-10 dataset, and

have stable performance. It indicate that the model

depend on datasets.

For the MetaQnn network training on CIFAR-10,

the predicate performance will close to 72% by add

one epoch with same predicate model, However, if

only use one epoch to predicate the performance, the

accuracy is only 50%. Further exploration, using two

epochs and add two epochs within same condition,

predicate accuracy increased from 75% to 92%. all the

result illustrate that increase the training epochs is the

better way to make better performance.

Acknowledgements

I would like to thank all reviewers of this paper for

their hard work, which motivated me a lot. I would like

to thank the anonymous referee that provided the

preliminary study.

This work was supported by the National Natural

Science Foundation of China (Grant No. 61941112,

61761042, 61763046), Key Research and Development

Program of Yanan (Grant No. 2017KG-01, 2017WZZ-

04-01). This job is supported by the Key Research and

Development Program of Shaanxi Province (No.

2018ZDXM-GY-036), This job is also supported by

the Key Research and Development Program of Yanan

university (No. CXY201909, YDZ2019-05) and Shaanxi

Key Laboratory of Intelligent Processing for Big

Energy Data (No. IPBED7, IPBED10).

References

[1] K. He, X. Zhang, S. Ren, J. Sun, Deep Residual Learning for

Image Recognition, Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition, Las Vegas, NV,

USA, 2016, pp. 770-778.

[2] A. Krizhevsky, I. Sutskever, G. E. Hinton, Imagenet

Classification with Deep Convolutional Neural Networks,

25th International Conference on Neural Information

Processing Systems (NIPS), 2012, Lake Tahoe, Nevada, USA,

pp.1097-1105.

[3] B. Fang, Y. Li, H. Zhang, J. C.-W. Chan, Hyperspectral

Images Classification Based on Dense Convolutional

Networks with Spectral-Wise Attention Mechanism, Remote

Sensing, Vol. 11, No. 2, Article 159, January, 2019.

[4] G. Hinton, L. Deng, D. Yu, G. E. Dahl, A.-r. Mohamed, N.

Jaitly, A. Senior, V. Vanhoucke, P. Nguyen, T. N. Sainath, B.

Kingsbury, Deep Neural Networks for Acoustic Modeling in

Speech Recognition: The Shared Views of Four Research

Groups, IEEE Signal Processing Magazine, Vol. 29, No. 6,

pp. 82-97, November, 2012.

[5] P. Wang, Q. Wu, C. Shen, A. Dick, A. van den Hengel, Fvqa:

Fact-based Visual Question Answering, IEEE Transactions

on Pattern Analysis and Machine Intelligence, Vol. 40, No.

10, pp. 2413-2427, October, 2018.

[6] Q. Wu, C. Shen, P. Wang, A. Dick, A. van den Hengel, Image

390 Journal of Internet Technology Volume 21 (2020) No.2

Captioning and Visual Question Answering Based on

Attributes and External Knowledge, IEEE Transactions on

Pattern Analysis and Machine Intelligence, Vol. 40, No. 6, pp.

1367-1381, June, 2018.

[7] P. Wang, Q. Wu, C. Shen, A. van den Hengel, The VQA-

machine: Learning How to Use Existing Vision Algorithms to

Answer New Questions, IEEE Conference on Computer

Vision and Pattern Recognition (CVPR), Honolulu, HI, USA,

2017, pp. 3909-3918.

[8] D. Wang, Y. Li, L. Ma, Z. Bai, J. C.-W. Chan, Going Deeper

with Densely Connected Convolutional Neural Networks for

Multispectral Pansharpening, Remote Sensing, Vol. 11, No.

22, Article 2608, November, 2019.

[9] Z. Bai, J. Tu, Y. Shi, An Improved Algorithm for the vertex

Cover P3 Problem on Graphs of Bounded Treewidth,

Discrete Mathematics & Theoretical Computer Science, Vol.

21, No. 4, Article 17, November, 2019.

[10] B. Baker, O. Gupta, N. Naik, R. Raskar, Designing Neural

Network Architectures Using Reinforcement Learning,

International Conference on Learning Representation (ICLR),

Toulon, France, 2017, pp. 1-18.

[11] L. Chen, M. Collins, Y. Zhu, G. Papandreou, B. Zoph, F.

Schroff, H. Adam, J. Shlens, Searching for Efficient Multi-

scale Architectures for Dense Image Prediction, Advances in

Neural Information Processing Systems (NIP), Montreal,

Canada, 2018, pp. 8713-8724.

[12] K. Kandasamy, W. Neiswanger, J. Schneider, B. Poczos, E.

Xing, Neural Architecture Search with Bayesian Optimisation

and Optimal Transport, Advances in Neural Information

Processing Systems (NIPS), Montreal, Canada, 2018, pp.

2020-2029.

[13] X. Li, Y. Zhou, Z. Pan, J. Feng, Partial Order Pruning: For

Best Speed/Accuracy Trade-off in Neural Architecture Search,

Proceedings of the IEEE Conference on Computer Vision and

Pattern Recognition (CVPR), Long Beach, CA, USA, 2019,

pp. 9137-9145.

[14] R. Luo, F. Tian, T. Qin, E. Chen, T. Liu, Neural Architecture

Optimization, Advances in Neural Information Processing

Systems (NeurIPS), Montreal, Canada, 2018, pp.7827-7838.

[15] W. Wei, Z. Sun, H. Song, H. Wang, X. Fan, X. Chen, Energy

Balance-based Steerable Arguments Coverage Method in

WSNs, IEEE Access, Vol. 6, pp. 33766-33773, March, 2017.

[16] J. Yoon, S. Hwang, Combined Group and Exclusive Sparsity

for Deep Neural Networks, I 34th International Conference

on Machine Learning (ICML 2017), Sydney, NSW, Australia,

2017, pp. 3958-3966.

[17] J. Luo, J. Wu, W. Lin, Thinet: A Filter Level Pruning Method

for Deep Neural Network Compression, IEEE International

Conference on Computer Vision, Venice, Italy, 2017, pp.

5068-5076.

[18] M. Ren, A. Pokrovsky, B. Yang, R. Urtasun, Sbnet: Sparse

Blocks Network for Fast Inference, IEEE Conference on

Computer Vision and Pattern Recognition (CVPR), Salt Lake

City, UT, USA, 2018, pp. 8711-8720.

[19] Z. Liu, J. Li, Z. Shen, G. Huang, S. Yan, C. Zhang, Learning

Efficient Convolutional Networks through Network

Slimming, IEEE International Conference on Computer

Vision, Venice, Italy, 2017, pp. 2755-2763.

[20] Y. He, X. Zhang, J. Sun, Channel Pruning for Accelerating

Very Deep Neural Networks, IEEE International Conference

on Computer Vision, Venice, Italy, 2017, pp. 1398-1406.

[21]X. Sun, X. Ren, S. Ma, H. Wang, Meprop: Sparsified Back

Propagation for Accelerated Deep Learning with Reduced

Overfitting, 34th International Conference on Machine

Learning, Sydney, NSW, Australia, 2017, pp. 3299-3308.

[22] D. Molchanov, A. Ashukha, D. Vetrov, Variational Dropout

Sparsifies Deep Neural Networks, 34th International

Conference on Machine Learning, Sydney, NSW, Australia,

2017, pp. 2498-2507.

[23] W. Wang, Y. Sun, B. Eriksson, W. Wang, V. Aggarwal,

Wide Compression: Tensor Ring Nets, IEEE Conference on

Computer Vision and Pattern Recognition, Salt Lake City, UT,

USA, 2018, pp. 9329-9338.

[24] J. Yim, D. Joo, J. Bae, J. Kim, A Gift from Knowledge

Distillation: Fast Optimization, Network Minimization and

Transfer Learning, IEEE Conference on Computer Vision and

Pattern Recognition, Honolulu, HI, USA, 2017, pp. 7130-

7138.

[25] I. Oseledets, Tensor-train Decomposition, SIAM Journal on

Scientific Computing, Vol. 33, No. 5, pp. 2295-2317,

September, 2011.

[26] Y. Kim, E. Park, S. Yoo, T. Choi, L. Yang, D. Shin,

Compression of Deep Convolutional Neural Networks for

Fast and Low Power Mobile Applications, https://arxiv.org/

abs/1511.06530.

[27] S. Zagoruyko, N. Komodakis, Paying More Attention to

Attention: Improving the Performance of Convolutional

Neural Networks Via Attention Transfer, https://arxiv.org/abs/

1612.03928.

[28] G. Chen, W. Choi, X. Yu, T. Han, M. Chandraker, Learning

Efficient Object Detection Models with Knowledge

Distillation, Advances in Neural Information Processing

Systems, Long Beach, CA, USA, 2017, pp. 742-751.

[29] Z. Lu, V. Sindhwani, T. Sainath, Learning Compact

Recurrent Neural Networks, 2016 IEEE International

Conference on Acoustics, Speech and Signal Processing

(ICASSP), Shanghai, China, 2016, pp. 5960-5964.

[30] C. Leng, Z. Dou, H. Li, S. Zhu, R. Jin, Extremely Low Bit

Neural Network: Squeeze the Last Bit Out with Admm,

Thirty-Second AAAI Conference on Artificial Intelligence,

New Orleans, Louisiana, USA, 2018, pp. 3466-3473.

[31] Q. Hu, P. Wang, J. Cheng, From Hashing to Cnns: Training

Binary Weight Networks Via Hashing, Thirty-Second AAAI

Conference on Artificial Intelligence, New Orleans, Louisiana,

USA, 2018, pp. 3247-3254.

[32] P. Wang, Q. Hu, Y. Zhang, C. Zhang, Y. Liu, J. Cheng, Two-

step Quantization for Low-bit Neural Networks, IEEE

Conference on Computer Vision and Pattern Recognition,

Salt Lake City, UT, USA, 2018, pp. 4376-4384.

[33] U. Köster, T. Webb, X. Wang, M. Nassar, A. K. Bansal, W.

Constable, O. Elibol, S. Hall, L. Hornof, A. Khosrowshahi, C.

Kloss, R. Pai, N. Rao, Flexpoint: An Adaptive Numerical

Performance Predict Method Based on Neural Architecture Search 391

Format for Efficient Training of Deep Neural Networks,

Advances in Neural Information Processing Systems, Long

Beach, CA, USA, 2017, pp. 1742-1752.

[34] D. Alistarh, D. Grubic, J. Li, R. Tomioka, M. Vojnovic,

QSGD: Communication-Efficient SGD via Gradient

Quantization and Encoding, In Neural Information

Processing Systems, Long Beach, CA, USA, 2017, pp. 1709-

1720.

[35] C. Liu, L-C. Chen, F. Schroff, H. Adam, W. Hua, A. Yuille, F.

Li, Auto-DeepLab: Hierarchical Neural Architecture Search

for Semantic Image Segmentation, IEEE Conference on

Computer Vision and Pattern Recognition, Long Beach, CA,

USA, 2019, pp. 82-92.

[36] X. Dong, Y. Yang, Searching for a Robust Neural

Architecture in Four GPU Hours, IEEE Conference on

Computer Vision and Pattern Recognition (CVPR), Long

Beach, CA, USA, 2019, pp. 1761-1770.

[37] H. Pham, M. Guan, B. Zoph, Q. Le, J. Dean, Efficient Neural

Architecture Search via Parameter Sharing, Proceedings of

the 35th International Conference on Machine Learning,

Stockholm, Sweden, 2018, pp. 4092-4101.

[38] M. Tan, B. Chen, R. Pang, V. Vasudevan, M. Sandler, A.

Howard, Q. V. Le, MnasNet: Platform-Aware Neural

Architecture Search for Mobile, The IEEE Conference on

Computer Vision and Pattern Recognition, Long Beach, CA,

USA, 2019, pp. 2815-2823.

[39] L. Yao, J. Miller, Tiny Imagenet Classification with

Convolutional Neural Networks, CS 231N, http://cs231n.

stanford.edu/reports/2015/pdfs/leonyao_final.pdf, 2015.

[40] E. K. Ringger, R. C. Moore, E. Charniak, L. Vanderwende, H.

Suzuki, Using the Penn Treebank to Evaluate Non-Treebank

Parsers, Proceedings of the Fourth International Conference

on Language Resources and Evaluation (LREC’04), Lisbon,

Portugal, 2004, pp. 867-870.

[41] A. Krizhevsky, Learning Multiple Layers of Features from

Tiny Images, Technical Report TR-2009, University of

Toronto, Toronto, Canada, April, https://www.cs.toronto.

edu/~kriz/learning-features-2009-TR.pdf, 2009.

[42] Y. Netzer, T. Wang, A. Coates, A. Bissacco, B. Wu, A. Y. Ng,

Reading Digits in Natural Images with Unsupervised Feature

Learning, NIPS Workshop on Deep Learning and

Unsupervised Feature Learning, Granada, Spain, 2011, pp. 1-9.

[43] W. Wei, Y. Qi, Information Potential Fields Navigation in

Wireless Ad-Hoc Sensor Networks, Sensors, Vol. 11, No. 5,

pp. 4794-4807, May, 2011.

[44] W. Wei, Y. Qiang, J. Zhang, A Bijection between Lattice-

Valued Filters and Lattice-Valued Congruences in Residuated

Lattices, Mathematical Problems in Engineering, Vol. 2013,

Article ID 908623, July, 2013.

[45] W. Wei, X. Yang, B. Zhou, J. Feng, P. Shen, Combined

Energy Minimization for Image Reconstruction from Few

Views, Mathematical Problems in Engineering, Vol. 2012,

Article ID 154630, October, 2012.

[46] Q. Ke, J. Zhang, H. Song, Y. Wan, Big Data Analytics

Enabled by Feature Extraction Based on Partial Independence,

Neurocomputing, Vol. 288, pp. 3-10, May, 2018.

[47] W. Wei, X. Fan, H. Song, X. Fan, J. Yang, Imperfect

Information Dynamic Stackelberg Game based Resource

Allocation Using Hidden Markov for Cloud Computing,

IEEE Transactions on Services Computing, Vol. 11, No.1, pp.

78-89, January-February, 2018.

Biographies

Meili Zhou received the M.S. degree

in signal and information processing

from the yanan university in 2008.

She is a associate Professor with the

School of physics and electronic

information, yanan University. Her

Interests cover signal processing,

computer vision and image processing.

Zongwen Bai received the MS degree

in yanan university 2008. He is

currently pursuing the Ph.D. degree

with the School of Computer Science,

Northwestern Polytechnical University,

Xi’an. He is an associate professor

with the School of physics and

electronic information, Yanan University, His research

interests cover computer vision, nature language

processing and deep learning.

Tingting Yi received the B.E. from

Baoji University of Arts and Sciences,

Shaanxi, China. She has been a

graduate student major in

Communication and information

System at Yan'an University. Her

research interests include AI, machine

learning and deep learning.

Xiaohuan Chen received the B.S

degree from Baoji Universty, major:

Electronic Information Engineering.

Since 2019, she has been a graduate

student in Singnal and Information

Processing at Yan’an University. Her

research interests include compuer

vision and AI.

Wei Wei (SM’17) received the M.S.

and Ph.D. degrees from Xi’an

Jiaotong University, Xi’an, China, in

2005 and 2011, respectively. He is

currently an Associate Professor with

the School of Computer Science and

Engineering, Xi’an University of

Technology, Xi’an. His current

research interests include the area of wireless networks,

wireless sensor networks application, image processing,

mobile computing. He has published around 100

392 Journal of Internet Technology Volume 21 (2020) No.2

research papers in international conferences and

journals.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (Adobe RGB \0501998\051)
 /CalCMYKProfile (Japan Color 2001 Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHT <FEFF005b683964da300c9ad86a94002851fa8840002b89d27dda0029300d005d0020005b683964da300c8f3851fa0033003000300064002851fa88400029300d005d00204f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks true
 /AddPageInfo false
 /AddRegMarks false
 /BleedOffset [
 8.503940
 8.503940
 8.503940
 8.503940
]
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MarksOffset 9.354330
 /MarksWeight 0.141730
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed true
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

