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Abstract 

Compressed video sensing (CVS) is one of the 5G 

application of compressed sensing (CS) to video coding. 

Block-based residual reconstruction is used in CVS to 

explore temporal redundancy in videos. However, most 

current studies on CVS focus on random measurements 

without quantization, and thus they are not suitable for 

practical applications. In this study, an efficient rate-

control scheme combining measurement rate and 

quantization for residual reconstruction in CVS is 

proposed. The quantization effects on CS measurements 

and recovery for video signals are first analyzed. Based 

on this, a mathematical relationship between quantitative 

distortion (QD), sampling rate (SR), and the quantization 

parameter (QP) is derived. Moreover, a novel distortion 

model that exhibits the relationship between QD, SR, and 

QP is presented, if statistical independency between the 

QD and the CS reconstruction distortion is assumed. 

Then, using this model, a rate–distortion (RD) optimized 

rate allocation algorithm is proposed, whereby it is 

possible to derive the values of SR and QP that maximize 

visual quality according to the available channel 

bandwidth. 

Keywords: Residual reconstraction compressed video 

sensing, Rate-distortion model, Quantitative 

parameters, Sampling rate 

1 Introduction 

A key demanding aspect of 5G solutions is to 

provide capabilities that must extend far beyond what 

available in the previous generations of mobile 

communications. Such aspects involve very high data 

rates, very low latency, ultra-high reliability, energy 

efficiency and extreme device densities. In particular, 

5G will be the cornerstone for the connectivity in the 

upcoming applications made possible by the 

progressive implementations of the Internet of Things 

and Smart Cities concepts, paving the way to the so-

called Networked Society [1-3]. For these reasons, 

security and privacy represent two demanding aspects 

that 5G solutions must provide in order to become a 

platform for the future above-mentioned networked 

infrastructures for public communication and people 

empowerment. Specifically, 5G will have to face novel 

requirements in terms of security and privacy imposed 

by the upcoming applications, and will have to face a 

novel threat landscape and an increased concern for 

privacy. The security level provided by the current 4G 

systems is high and standardized with built-in security 

functions since the second generation (GSM) systems. 

However, the novel upcoming applications will surely 

require additional capacity, so in 5G the offered 

security capacities cannot be the carbon copy of the 

ones in 4G, but must be their evolution, as in any other 

aspect mentioned before. It is important, therefore, to 

point out these novel requirements, determining if the 

existing 4G security capacity are sufficient, and/or 

determining the novel solutions so as to have a step 

forward to meet the demands in the security and 

privacy of wireless communications [4-7]. 

In traditional video acquisition, Shannon’s sampling 

theorem is applied to uniformly sample a large amount 

of data at or above the Nyquist sampling rate. To 

facilitate efficient storage and/or transmission of 

videos, compression algorithms are applied to remove 

redundancy and convert a large amount of raw data 

into a relatively small bit stream. Compressed sensing 

(CS) [8-9] is a framework for signal sensing and 

compression that provides a new scheme for collecting 

data at a rate that could be below the Nyquist rate. It 

has attracted increasing attention over the past few 

years. Based on CS, compressed video sensing (CVS) 

[10-12] is suitable for low-complexity applications, 

owing to the great reduction of the sampling rate (SR), 

power consumption, and computational complexity.  
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As in the case of rate control [13] for conventional 

video coding schemes, rate allocation also plays an 

important role in the CVS framework. Without rate 

control, underflow and overflow of the client buffer 

may occur owing to the mismatching between the 

encoding bit rate and the available channel bandwidth. 

A large number of rate allocation algorithms for CVS 

have recently been developed. A novel method was 

proposed in [14]; it adaptively allocates the SR 

according to the ratio of the image block variance to 

the frame variance. However, these techniques only 

explore the spatial redundancy within frames by 

independently considering each frame in the sequence 

and fail to address temporal redundancy in videos. To 

explore the temporal correlation and achieve higher 

sampling efficiency, in [15] a block-based adaptive 

framework is proposed for CVS that classifies blocks 

into different types depending on their inter-frame 

correlation and adjusts the sampling and reconstruction 

strategy accordingly.  

However, all of the above rate control algorithms 

focus on SR allocation for real-valued measurements 

without considering the effect of quantization 

distortion and coding rate. In practice, however, the 

measurements are mapped to finite bits. Thus, in 

addition to SR, QP (quantization parameter) is another 

important factor for CVS in that it can regulate the 

encoded bit stream. QP can be effectively used to 

control the bit rate, so that the coding efficiency may 

be maximized with the constraints imposed by the 

channel rate, the encoder buffer size, and the decoder 

buffer size. To the best of the authors’ knowledge, only 

the method introduced in [16] is designed for an 

adaptive CVS framework with a simple mode-based 

rate allocation, where SR and quantization bit-depth 

are jointly optimized. Although it can improve the 

coding efficiency of fixed quantization and accurately 

reach the target bit rate, it is still based on fitting the 

experimental data to rough models for computing the 

parameters. 

To overcome these limitations, it is highly desirable 

to develop a more efficient distortion model that 

exhibits the relationship between distortion, SR, and 

QP for rate control in the CVS encoder. In this study, 

uniform scalar quantization is introduced into residual 

reconstruction CVS framework (RRCVS), and a more 

efficient method is proposed for realizing rate control. 

The proposed technique first uses the statistical and 

theoretical analysis of quantitative distortion ( qD ) 

caused only by uniform scalar quantization to the 

measurements. Then, the CS reconstruction distortion 

(
q

CS
D ) caused by the quantization error is considered. 

Based on this, a useful statistic about the relations 

between 
q

CS
D , SR, and QP is obtained and a new SR–

QP–
q

CS
D  model is derived. Moreover, the CS 

distortion (
cs

D ) caused only by compressed sampling 

without considering quantization is discussed, and a 

SR–QP–
cs

D  model is constructed. Furthermore, a 

novel SR–QP–D model is presented that exhibits the 

relationship between distortion, SR, and QP based on 

the assumption of statistical independency between 

q

CS
D  and 

cs
D . Using this model, an RD-optimized rate 

allocation algorithm is proposed, whereby the values of 

SR and QP are derived so as to maximize the visual 

quality according to the available channel bandwidth. 

Then, an adaptive RRCVS framework with RD 

optimized rate allocation is presented that primarily 

comprises four modules: residual variance feedback, 

block type determination, bit allocation, and residual 

reconstruction. Experimental results demonstrate that 

the proposed scheme significantly improves the RD 

performance compared to the conventional methods.  

The remainder of this paper is organized as follows. 

In Section 2, the basic compressed sensing theory is 

reviewed and the proposed adaptive RRCVS 

framework is introduced. In Section 3, a novel SR–

QP–D model that exhibits the relationship between 

distortion, SR, and QP is proposed for block-based 

RRCVS. Based on the proposed model, a joint 

sampling rate and quantization optimization method is 

presented in Section 4. In Section 5, some 

experimental results are provided to evaluate the 

proposed algorithm. Finally, Section 6 concludes the 

paper. 

2 Adaptive RRCVS Framework 

2.1 Compressed Sensing  

Compressive sensing is a framework for 

reconstruction of signals that have sparse 

representations. A signal x  is called S-sparse if it has 

at most S nonzero entries. That is, a signal N
x∈ℜ  can 

be sparsely represented with respect to some basis 

[ ]1 2, ,N N Nψ ψ ψ
×

Ψ = � , where iψ  represents the i-th 

basis column vector, if x α= Ψ  and the transform 

coefficient N
α ∈ℜ  has only S N<<  nonzero elements. 

Given a signal N
x∈ℜ  that is S-sparse with respect to 

Ψ , compressed sensing explores the sparsity of the 

signal and takes only M N<<  measurements during 

the sampling process. According to CS theory, the 

signal can be acquired through the linear random 

projections 

 y x α= Φ =ΦΨ  (1) 

where Φ  is an M N×  measurement matrix, and 
M

y∈ℜ  is the resulting measurement vector. As for 

compressive image, scrambled block Hadamard 

ensembles (SBHEs) [17-18], are mostly considered 

appropriate choices for Φ . As M N<< , compressed 

sampling is a dimension reduction process, that is, it 
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facilitates the reduction of the size of the collected data. 

Here, the sampling rate of the signal is defined as 

 /SR M N=  (2) 

According to CS, the reconstruction can be 

formulated as an 1l -minimization problem [9] by 

solving 

 
1

ˆ argmin . .s t yα α α= = ΦΨ  (3) 

where 
1

α  is the 1l  norm of α . According to [9], when 

Φ  is drawn randomly from a Gaussian or Bernoulli 

distribution and Ψ  is an orthobasis, the solution 

ˆ ˆ

N
x a= Ψ ∈ℜ  to (3) is unique with overwhelming 

probability. To solve this optimization problem, 

several techniques have been proposed, e.g., 

orthogonal matching pursuit (OMP) [19] and gradient 

projection for sparse reconstruction (GPSR) [20]. 

Furthermore, with high probability, we have the 

approximation 

 

0.5 1/

2
ˆ

log

p

R p

M
D x x C

N
α

−

⎛ ⎞
= − ≤ ⎜ ⎟

⎝ ⎠
 (4) 

where 
p

α  is the pl -norm of the transform 

coefficient α , and C is a constant depending only on 

(0, 2)P∈ . Substituting (2) in (4) yields  

 

0.5 1/

2
ˆ

log

p

R p

SR N
D x x C

N
α

−

⎛ ⎞
= − ≤ ⎜ ⎟

⎝ ⎠
 (5) 

2.2 Block-based Compressed Video Sensing 

Videos involve a large amount of redundancy, which 

provides the basis for CS algorithms. However, CS 

faces several challenges including a computationally 

expensive reconstruction process and large memory 

requirements for storing the random sampling matrices. 

For video, these problems can be even further 

exacerbated owing to the increased dimension of the 

data. Fortunately, the sampling-operator memory issue 

was addressed for still images in [21] by using block-

based sampling (BCS). Additionally, in [21], block-

based CS with smooth projected Landweber (BCS-SPL) 

was proposed for fast reconstruction and smoothness 

with the goal of improving the quality of the 

reconstructed image by eliminating blocking artifacts. 

Experimental results in [21] demonstrated that BCS-

SPL reconstruction usually offers at least the same 

quality of recovery as other state-of-the-art approaches 

with greatly increased execution speed. From the 

perspective of the incoherence principle in CS, block-

based measurements appear to be less efficient than 

frame-based measurements. However, by sacrificing a 

part of the incoherence, BCS can preserve local 

information, thus facilitating the construction of more 

accurate side information (SI) by the decoder, based on 

the interframe sparsity model and sparsity-constraint 

block prediction for CVS. Recently, a distributed 

compressive video sensing (DCVS) framework has 

been proposed by Mun and Fowler [22], where the 

block-based measurement of a CS-frame is used to 

form a block-by-block MH motion-compensated 

prediction of the CS-frame. In [23], an alternative 

strategy for incorporating MH prediction into BCS-

SPL video reconstruction was proposed. 

In this study, an adaptive BCS-SPL residual 

reconstruction CVS framework with RD optimized rate 

allocation is proposed, where both SR and QP can be 

computed using a novel distortion model. Thereby, the 

optimal values of SR and QP can be adaptively 

assigned to each block using a feedback channel, thus 

resulting in improved RD performance.  

2.3 Proposed RRCVS Framework with RD 

Optimized Rate Allocation 

The proposed framework is illustrated in Figure 1. 

The frames of a video sequence are divided into two 

categories: key frames (also called K-frames) and non-

key frames (also called CS-frames). Each frame is 

divided into several non-overlapping blocks of size 

n n× . Each block in the K-frames is sampled and 

reconstructed using the regular compressed sensing 

technique, as shown at the bottom of Figure 1, whereas 

each block in the CS-frame is encoded with the 

assigned SR and QP. From the view point of the joint 

sparsity model in distributed compressed sensing (DCS) 

[24], SR is set higher in K-frames than in CS-frames, 

as the K-frames are usually reconstructed with better 

quality. The difference of the measurements 

(measurement residuals) between the block in a CS-

frame and that at the same position in the previous K-

frame is transmitted to the decoder, as video signals 

have large temporal redundancy and the inter-frame 

difference is significantly sparser than in the original 

frame. 

Residual variance feedback. Based on the assumption 

that two successive frames in a video should be similar, 

the sparsity of each residual block is exploited to 

estimate the sparsity of the spatially co-located residual 

block that will be subsequently encoded. Alternatively, 

based on the fact that the complexity and the sparsity 

of an image are highly correlated, the variance of each 

block is proposed for rate–distortion analysis. Hence, 

the variance of the reconstructed residual block ( RV ) at 

the decoder is computed and is fed back to the encoder.  

Rate-distortion analysis. As shown in Figure 1, for 

the first CS-frame, the blocks are first sampled with the 

assigned SR and reconstructed using the regular 

compressed sensing technique. Then, the residual 

variance is computed and the block is classified. A 

novel rate–distortion model that exhibits the 

relationship between QD, SR, and QP is presented with 

the assuming statistical independency between the 
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quantitative distortion (QD) and the CS reconstruction distortion. 

 

Figure 1. Proposed RRCVS framework with rate–distortion analysis 

Bit allocation. SR and QP will be computed by the 

proposed distortion model according to the given target 

bit-rate. Thus, the RD optimized sampling rate can be 

estimated for video acquisition. 

Residual reconstruction. After the video is adaptively 

acquired at TR , the residual measurements are de-

quantified and used for BCS-SPL [21] reconstruction 

to generate the residual frame in a block-by-block 

fashion. Then, the CS-frame is reconstructed by adding 

the residual reconstructed frame to the previously 

reconstructed K-frame.  

3 Modeling Distortion for RRCVS 

In this section, the effect measurement quantization 

on reconstruction distortion for video signals is first 

analyzed. Based on this, a mathematical relationship 

between quantitative distortion (QD), SR, and QP is 

derived. Then, the sampling rate effects on 

reconstruction distortion. 

Moreover, the joint distortion caused by compressed 

sampling and quantization is analyzed. To this end, a 

novel distortion model that exhibits the relationship 

between distortion, SR, and QP is proposed.  

3.1 Modeling Quantitative Distortion for 

Block-based Video Compressed Sensing 

Herein, the distortion caused only by uniform scalar 

quantization to the measurements without considering 

the CS reconstruction is discussed. The measurement 

testing system for quantization distortion is shown in 

Figure 2. The frames of a video sequence are divided 

into two categories: K-frames and CS-frames. Both K-

frames and CS-frames adopt consistent block-based 

random measurement, and we have  

 CS K CS Ky y y x x x= − = Φ −Φ =Φ  (6)  

where CSy  and Ky  are the measurement vectors of CSx  

and Kx , respectively. The difference between the 

current block CSx  in a CS-frame and its co-located 

block in Kx  in a K-frame is denoted by x . The residual 

information x  is not available at the decoder in real 

systems. In this study, the same SBHE matrix [17] is 

used as the measurement matrix Φ for all blocks. 

 

Figure 2. Testing system for measurement quantization distortion 

Let Q  denote the quantization function. Thus, 

quantifying the measurements y  at the encoder can be 

denoted by  

 ( )qy Q x= Φ  (7) 

Let now IQ  denote the inverse quantization 

function. Then ( )ˆ
qy IQ y=  is achieved at the decoder. 

Thus, the error yqd  caused by measurement 

quantization is 

 ˆ
yqd y y= −  (8) 

where, { }1 2
,

B

yq yq yq

N
yqd d d d= � ，

yq

j
d  is the error 

vector for the i-th block of the original frame, and BN  

is the total number of blocks in a frame. For uniform 

quantization with quantization step size 2QPΔ = , yqd  

follows a uniform distribution with mean 0 and 

variance 2
/12.Δ  Reconstructing ŷ  without considering 
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the error caused by the CS reconstruction algorithm, 

we have  

 ^

ˆ ˆx y
−

= Φ  (9) 

where ^−

Φ  is the pseudo-inverse matrix of 

/MR M N= . Therefore, the distortion caused by 

quantization qd  is 

^ ^ ^ ^ˆ ˆ ˆ( )q yqd x x y y y y d− − − −

= − = Φ − Φ =Φ − = Φ  (10) 

Here, 
q

j
d  is the distortion vector for the j-th block 

and can be represented as 

{ }^

1 2, , , , ,

j j j j j
q yq yq yq N yqd d d d dφ φ φ−

′
= Φ = �  (11) 

where { }1 2, , Nφ φ φ�  is the row vector of ^−

Φ  and N is 

the number of pixels in each block. The k-th element of 

q

j
d ， ( )j

qd k  can be represented as 

 
1

( ) , ( ) ( )
M

j j j
q k yq k yq

m

d k d m d mφ φ
=

= = ⋅∑  (12) 

where M  is the total number of measurements in each 

block. As the measurement matrix Φ  must satisfy the 

restricted isometry property (RIP) [8], an i.i.d. 

Gaussian matrix is often used. In this situation, the 

distribution of CS coefficients would be expected to be 

Gaussian. By the central limit theorem, the (weighted) 

sum of identically distributed random variables can be 

well approximated by a Gaussian random variable. 

Therefore, by (11) and (12), qd  follows a Gaussian 

distribution with mean 0 and variance 
2

12
M C

Δ
⋅ ⋅ . 

Consequently, 

 

( )
2

2
21

( )
2

qd

qp d e
σ

πσ

⎧ ⎫
⎪ ⎪
−⎨ ⎬

⎪ ⎪⎩ ⎭
=  (13) 

Substituting M SR N= ⋅  into 
2

2

12
M Cσ

Δ
= ⋅ ⋅  

yields 

 2 2

12

N
C SRσ = ⋅ ⋅ ⋅ Δ  (14) 

Where c is a constant, and the video SR is defined 

by /SR M N= . The experiment indicates that qd  

shown in (13) approximately follows a Gaussian 

distribution with mean 0 and variance 2

12

N
C SR⋅ ⋅ ⋅ Δ , 

which is not associated with sequences. Thus, the 

average quantization distortion qD  is 

 2

2

2

22

( ) ( ) ( )

1
( ) ( )

2

q

q q q q

d

q q

D d p d d d

d e d d
σ

σ

πσ

∞

−∞

⎧ ⎫⎪ ⎪
−⎨ ⎬∞

⎪ ⎪⎩ ⎭

−∞

=

= =

∫

∫
 (15) 

Substituting (14) into (15) yields 

 

2

2

1

/12

/12 4

qD N C SR

N C SR QP k SR QP

= ⋅ ⋅ ⋅ Δ

= ⋅ ⋅ ⋅ ⋅ = ⋅ ⋅

 (16) 

The above formula models the relationship between 

qD , the quantization step size Δ  (or QP) and SR. The 

testing results for qD  in Figure 1 under different SR 

for four sequences with N = 256 are shown in Figure 3, 

where QP is 4 and 8. It can be seen that the 

reconstruction error caused by quantization is 

associated with QP and MR, and is sequence-

independent. 
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Figure 3. qD SR−  curve with fixed 
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The CS reconstruction distortion 
q

CS
D  caused by 

measurement quantization error for is now discussed. 

The 
q

CS
D  testing system is shown in Figure 4. From the 

above discussion, the relationship between 
q

CS
D , QP, 

and SR is modeled by (16), that is 

 2q

CSD k SR QP= ⋅ ⋅  (17) 

 

 

Figure 4. Testing system for CS distortion 

The testing results for 
q

CS
D  under different QP for 

four sequences with N = 256 are shown in Figure 5. 

QP was fixed, and the average distortion 
q

CS
D  was 

calculated when SR increases from 0.1 to 0.8 for the 

“Foreman” and “Mother–daughter” QCIF and CIF 

sequences. It can be seen that 
q

CS
D  is associated with 

the sequence format and is sequence-independent. 

The testing results for 
q

CS
D  under different QP for 

four sequences with N = 256 are shown in Figure 5. 

QP was fixed, and the average distortion 
q

CS
D  was 

calculated when SR increases from 0.1 to 0.8 for the 

“Foreman” and “Mother–daughter” QCIF and CIF 

sequences. It can be seen that 
q

CS
D  is associated with 

the sequence format and is sequence-independent. 
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(b) qcif 
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Figure 5. qD SR−  curve with fixed QP 
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To evaluate the accuracy of the fitting, the Pearson 

correlation coefficient (PCC) was calculated, as well as 

the root mean square error (RMSE) between the 

measured and predicted 
q

CS
D .Table 1 presents the 

parameters of model (17) obtained by least squares 

fitting with fixed quantization parameters (QP =1, 2, 4, 

8, 16, 32, 64, 128, and 256) when B increased from 0.1 

to 0.8 with step 0.1. It can be seen that the model (17) 

has high PCC and low RMSE on average. 

Table 1. Parameters and performance of model (17) 

Foreman.qcif Foreman.cif Mother-daughter.qcif Mother-daughter.cif 
QP 

C1 PCC RMSE C1 PCC RMSE C1 PCC RMSE C1 PCC RMSE 

1 0.5837 0.9993 0.0004 0.5832 0.9992 0.0004 0.5828 0.9992 0.0004 0.5834 0.9993 0.0004 

2 0.5842 0.9993 0.0008 0.5838 0.9992 0.0008 0.5881 0.9992 0.0008 0.5834 0.9993 0.0008 

4 0.5909 0.9986 0.0019 0.5831 0.9992 0.0017 0.6184 0.9988 0.0018 0.5833 0.9992 0.0017 

8 0.6089 0.9972 0.0049 0.5832 0.9992 0.0034 0.6516 0.9984 0.0039 0.5841 0.9992 0.0035 

16 0.6352 0.9967 0.0109 0.5832 0.9992 0.0067 0.6746 0.9986 0.0077 0.5831 0.9993 0.0068 

32 0.6633 0.9976 0.0200 0.5828 0.9992 0.0134 0.6887 0.999 0.0136 0.5848 0.9994 0.0122 

64 0.6859 0.9986 0.0341 0.5823 0.9992 0.027 0.6968 0.9993 0.0245 0.5902 0.9977 0.0344 

128 0.7011 0.999 0.0726 0.5870 0.9991 0.0457 0.7011 0.9994 0.049 0.6127 0.9937 0.1089 

256 0.7179 0.9974 0.2832 0.6125 0.9991 0.1116 0.7096 0.9979 0.224 0.6666 0.9957 0.3169 

 

3.2 Modeling CS Distortion for Block-based 

Video Compressed Sensing 

Herein, the CS distortion (
cs

D ) caused only by 

compressed sampling without considering the 

quantization is discussed. The testing system for CS 

distortion is shown in Figure 6. For each block in a CS-

frame, the difference in the measurements (residual 

measurements) between a block in a CS-frame and that 

at the same position in the previous K-frame is 

transmitted to the decoder. Residual measurements are 

used for BCS-SPL [21] reconstruction to generate the 

residual frame. Then, the CS-frame is reconstructed by 

adding the residual frame to the reconstructed K-frame, 

as shown at the top of Figure 6. The testing results of 

cs
D  under different SR for the “Football”, “Foreman”, 

“News” and “Mother–daughter” sequences with N = 

256 are shown in Figure 6, where the two sets of CIF 

and QCIF sequences are used. 

 

Figure 6. CS distortion testing system 

As shown in Figure 7, the average distortion 
cs

D  is 

calculated as SR increases from 0.1 to 0.8 for the 

above four sequences. It can be seen that for the 

“Football” sequence with fast or complex motion, the 

distortion is rapidly reduced. However, for sequences 

with slow motion and relatively simple scene 

composition, such as the “Mother–daughter sequence”, 

SR is slowly reduced. The average residual variance, 

denoted by RV , for the blocks of the “Football”, 

“Foreman”, “News”, and “Mother–daughter” CIF 

sequences is 20.9529, 5.3328, 1.2745, and 1.3162, 

respectively. The average RV  for the blocks of the 

“Football”, “Foreman”, “News”, and “Mother–

daughter” QCIF sequences is 28.1829, 3.1301, 1.1498, 

and 0.8229, respectively. Moreover, it can also be 

observed that 
cs

D  increases as RV  increases. Thus, 
cs

D  

is related to SR and RV . 
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Figure 7. CSD SR−  curve without quantization. (a) cif (b) qcif 

cs
D  is assumed to depend on SR and the sparsity of 

the signal. Based on the fact that the complexity and 

sparsity of an image are highly correlated, RV  is used 

to approximately express sparsity. For the “Foreman”, 

“News”, and “Mother–daughter” sequences, it can be 

seen from Figure 7 that 
cs

D  increases with SR 

approximately linearly because these sequences have 

simple motion, and residual blocks can be sparsely 

represented. More sparse blocks require fewer 

measurements. Thus, SR = 0.1 is sufficiently large to 

obtain high reconstruction quality. Hence, it is assumed 

that  

 1 2( . )cs RD V k SR k= ⋅ +  (18) 

The parameters are estimated by least squares fitting 

for the data obtained. To quantify the accuracy of the 

fitting, PCC is calculated, as well as the RMSE 

between the measured and predicted 
cs

D . Table 2 

summarizes the model parameters obtained by least 

squares fitting, and shows that the model provides a 

PCC of 0.972 and a RMSE of 0.7984 on average. 

However, for the “Football” The experimental data for 

model (19) for both QCIF and CIF video sequences are 

shown in Figure 8, where both the measured and the 

predicted results are plotted. It can be observed that the 

model provides a reasonable approximation of the 

relationship.sequence with complex motion, which 

requires more measurements, 
cs

D  decreases rapidly as 

SR increases. That is, 
cs

D  changes with SR nonlinearly. 

Equation (5) suggests that the relationship between 
cs

D  

and the two factors can be modeled as  

 
4

4

3

1 1 2 5

3

1 2

( . )

( ' . ' )

cs R R R
k

R R
k

k
D w V k SR k V V k

SR

k
V k SR k V

SR

= ⋅ ⋅ + + ⋅ + ⋅

= ⋅ + + ⋅

 (19) 

Table 2. Parameters and performance of model (18) 

CIF QCIF 
 

Football News 
Mother 

daughter 
Forman Football News 

Mother 

-daughter 
Forman 

Average

1k  −1.2743 −2.2877 −0.2961 −1.2114 −1.1146 −2.3032 −1.1555 −1.3385

2k  −1.0534 −2.4218 −0.3368 −1.2477 −1.0572 −2.3797 −1.4157 −1.3396
 

PCC −0.9570 −0.9501 −0.9745 −0.9881 −0.9694 −0.9770 −0.9784 −0.9815 0.9720 

RMSE −2.8457 −0.0652 −0.0193 −0.0880 −3.2291 −0.0535 −0.0151 −0.0714 0.7984 

 

Table 3 summarizes the model parameters obtained 

by least squares fitting, and shows that the model has 

high PCC and small RMSE on average. From Tables 2 

and 3, it can be observed that the RMSE (2.8457) for 

model (19) for “Football” is significantly smaller than 

the RMSE (1.1475) for model (18). However, it can 

also be observed that the RMSE remains stable for the 

other three sequences. Thus, model (18) is better suited 

for sequences with simple motion, whereas model (19) 

for sequences with complex motion. 
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Table 3. Parameters and performance of model (19) 

CIF QCIF Average 
 

Football News 
Mother 

-daughter
Forman Football News 

Mother 

-daughter 
Forman  

1'k  −0.4729 −2.5853 −1.2852 −0.9704 −0.5951 −2.6227 −1.4592 −1.1625  

2'k  −0.0012 −1.1800 −0.5021 −0.3017 −0.0764 −1.1642 −0.6856 −0.3788  

3k  −0.4517 −1.4882 −0.9270 −0.7558 −0.5808 −1.4799 −0.9811 −0.8210  

4k  −0.3986 −0.0807 −0.0415 −0.1028 −0.2438 −0.0876 −0.1305 −0.0716  

PCC −0.9935 −0.9996 −0.9987 −0.9901 −0.9944 −0.9976 −0.9987 −0.9956 0.9960 

RMSE −1.1475 −0.0636 −0.0192 −0.0760 −2.1149 −0.0524 −0.0148 −0.0688 0.4447 

 

3.3 Modeling Distortion for Block-based 

Video Compressed Sensing 

Herein, the joint distortion (D) caused by 

compressed sampling and quantization is discussed. 

The testing system for CS distortion is shown in Figure 

9, which is similar to Figure 6, except for considering 

quantizing in the measurements.  

It is assumed that the distortion caused by 

quantization and MR are independent. According to 

(17) and (19), the RD model based on CS can be 

expressed as 

6

5

2 3

5

2 2 3 1 2

4

1 2 3

( ' . ' )

( . )

q

CS

cs

R R
k

R R
C

D w D w D

k
w k SR QP w V k SR k V

SR

C
C SR QP V C SR C V

SR

= ⋅ + ⋅

⎡ ⎤
= ⋅ ⋅ ⋅ + ⋅ ⋅ + + ⋅⎢ ⎥⎣ ⎦

= ⋅ ⋅ + ⋅ + + ⋅

                                     (20) 
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Figure 8. CSD SR−  curve for CIF format sequence without quantization 
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Figure 9. CS distortion testing system 

The data is fitted to model (20), and the parameters 

are computed by least squares fitting. After the 

experiments, it can be observed that parameter 4C  

approaches zero as QP increases, particularly for the 

sequences with simple motion. The most obvious 

reason is that as QP increases, the distortion caused by 

compressed sampling can be neglected and D  is 

mainly caused by the effect of quantization. Hence, 

using 4 0C ≈ , model (20) can be simplified as 

 1 2 3( . )RD C SR QP V C SR C= ⋅ ⋅ + ⋅ +  (21) 

Furthermore, the system shown in Figure 9 was run 

numerous times with varying QP and SR, and the 

reconstruction distortion for QCIF and CIF sequences 

with different temporal and spatial characteristics was 

observed. The data was fitted to the models, and the 

parameters were computed by least squares fitting. To 

evaluate the performance of the two models, their 

RMSE were experimentally compared. To quantify the 

accuracy of the fitting, their RMSE were also 

compared with those in Liu et al. [16]. Table 4 shows 

the results with fixed quantization parameters (QP = 1, 

2, 4, 8, 16, 32, 64, 128, and 256) as B increases from 

0.1 to 0.8 with step 0.1. It can be seen that both model 

(20) and model (21) have better fitting performance 

than that in Liu et al. [16]. 

Table 4. Performance of model (20), model (21), and the model in [16] 

 Foreman.cif Mother-daughter.cif News.cif Football.cif 

RMSE 

 

QP 

Model 

(20) 

Model 

(21) 

Liu et al. 

[16] 

Model

(20) 

Model

(21) 

Liu et al. 

[16] 

Model 

(20) 

Model 

(21) 

Liu et al. 

[16] 

Model 

(20) 

Model 

(21) 

Liu et al. 

[16] 

1 0.0172 0.0188 0.0779 0.0091 0.0091 0.0283 0.0138 0.0138 0.0297 0.0684 0.1072 0.2405

2 0.0166 0.0189 0.0744 0.0097 0.0098 0.0269 0.0127 0.0132 0.0258 0.0678 0.1080 0.2375

4 0.0155 0.0194 0.0675 0.0100 0.0105 0.0242 0.0129 0.0130 0.0204 0.0662 0.1097 0.2306

8 0.0142 0.0212 0.0591 0.0087 0.0095 0.0197 0.0100 0.0111 0.0150 0.0626 0.1103 0.2195

16 0.0142 0.0236 0.0490 0.0063 0.0070 0.0241 0.0069 0.0075 0.0144 0.0568 0.1100 0.2042

32 0.0143 0.0227 0.0548 0.0061 0.0065 0.0653 0.0119 0.0146 0.0298 0.0487 0.1062 0.1771

64 0.0141 0.0181 0.1419 0.0120 0.0121 0.1590 0.0251 0.0288 0.0638 0.0405 0.0897 0.1643

128 0.0231 0.0237 0.3522 0.0246 0.0246 0.3715 0.0499 0.0478 0.1675 0.0691 0.0798 0.3175

256 0.1156 0.1170 0.9461 0.1013 0.1024 0.9727 0.2029 0.1141 0.2349 0.2215 0.2244 0.8975

 

Moreover, model (20) has the best fitting 

performance and the smallest RMSE for sequences 

with complex motion, e.g., the “Football” sequence. 

Furthermore, as QP increases, the improvement of the 

performance for model (20) is negligible and even fails 

when QP = 128 and 256 for the “News” sequence. The 

most obvious reason is that as QP increases, the 

distortion is primarily due to the effect of quantization. 

Thus, model (20) is suitable for sequences with 

complex motion when QP < 5; otherwise, model (21) 

is better for sequences with slow motion. Here, 

“Mother–daughter” and “News” were tested in the 

simulations using model (21). The results are shown in 

Figure 10, where QP was set to 1, 2, 4, 8, and 16. It can 

be observed that model (21) provides a reasonable 

approximation of the relationship for sequences with 

slow motion. 
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(a) Model (20) for News.cif 
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(b) Model (21) for News.cif 
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(c) Model (20) for Football.cif 
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(d) Model (21) for Football.cif 
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(e) Model (20) for Mother-daughter.cif 
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(f) Model (21) for Mother-daughter.cif 

Figure 10. D SR−  curve for three sequences with fixed QP 

To quantify the accuracy of the fitting, the PCC 

between the measured and predicted values was 

computed. The performance comparison for sequences 

including “Foreman”, “Mother–daughter”, and “News” 

between model (21) and Liu et al. [16] under the same 

conditions is shown in Tables 5-7. It can be seen that 

for CIF sequences, the average RMSE of model (21) is 

smaller by 0.7128 compared with that obtained by Liu 

et al. [16] (0.6665 for “Foreman”, 0.8224 for “Mother–

daughter”, and 0.6495 for “News”) as SR increases 

from 0.1 to 0.8. For QCIF sequences, the average 

RMSE of model (21) is smaller by 0.7606 compared 

with that obtained by Liu et al. [16] (0.7604 for 

“Foreman”, 0.8253 for “Mother–daughter”, and 0.6941 

for “News”). It can also be seen that for QCIF 

sequences, the average PCC of model (21) is larger by 

approximately 0.0335 compared with that in Liu et al. 

[16] (0.0309 for “Foreman”, 0.0351 for “Mother–

daughter”, and 0.0346 for “News”). For QCIF 

sequences, the average PCC of model (21) is larger by 

approximately 0.0343 compared with that in Liu et al. 

[16] (0.0327 for “Foreman”, 0.0354 for “Mother–

daughter”, and 0.0349 for “News”). Additionally, the 

performance of model (20) was compared with that in 
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Liu et al. [16] using the “Football” CIF and QCIF 

sequence. Table 8 shows that the average RMSE of 

model (20) is smaller by approximately 0.5946 and 

0.4550 compared with that in Liu et al. [16] for the 

“Football” CIF and QCIF sequences, respectively. Its 

average PCC is larger by approximately 0.0266 and 

0.0173 compared with that in Liu et al. [16] for the 

“Football” CIF and QCIF sequences, respectively. 

Table 5. Performance of model (21) and the model in [16] for “Foreman” 

Foreman.cif Foreman.qcif 
 

Model (21) Liu et al. [16] Model (21) Liu et al. [16] 

SR PCC1 RMSE1 PCC2 RMSE2 PCC1 RMSE1 PCC2 RMSE2 

0.1 0.9937 0.1327 0.9673 0.2303 0.9956 0.1186 0.9660 0.2766 

0.2 0.9956 0.1644 0.9673 0.3537 0.9967 0.1506 0.9660 0.3907 

0.3 0.9985 0.1154 0.9673 0.5147 0.9985 0.1210 0.9660 0.5711 

0.4 0.9990 0.1043 0.9673 0.6786 0.9993 0.0897 0.9660 0.7373 

0.5 0.9994 0.0961 0.9673 0.6567 0.9996 0.0768 0.9660 0.9560 

0.6 0.9996 0.0876 0.9673 1.0956 0.9998 0.0645 0.9660 1.1424 

0.7 0.9997 0.0802 0.9673 1.2567 0.9998 0.0570 0.9660 1.2998 

0.8 0.9998 0.0725 0.9673 1.3984 0.9999 0.0512 0.9660 1.4388 

Average 0.9982 0.1066 0.9673 0.7731 0.9987 0.0912 0.9660 0.8516 

Table 6. Performance of model (21) and the model in [16] for “News” 

News.cif News.qcif 
 

Model (21) Liu et al. [16] Model (21) Liu et al. [16] 

SR PCC1 RMSE1 PCC2 RMSE2 PCC1 RMSE1 PCC2 RMSE2 

0.1 0.9976 0.0963 0.9648 0.3144 0.9976 0.0962 0.9645 0.3244 

0.2 0.9986 0.0993 0.9648 0.4624 0.9990 0.0828 0.9645 0.4672 

0.3 0.9995 0.0719 0.9648 0.5854 0.9995 0.0666 0.9645 0.5920 

0.4 0.9997 0.0588 0.9648 0.6700 0.9997 0.0535 0.9645 0.6888 

0.5 0.9998 0.0494 0.9648 0.7955 0.9998 0.0458 0.9645 0.8326 

0.6 0.9999 0.0398 0.9648 0.8818 0.9999 0.0364 0.9645 0.9414 

0.7 0.9999 0.0316 0.9648 0.9507 0.9999 0.0301 0.9645 1.0308 

0.8 100.00 0.0254 0.9648 0.3144 10.000 0.0261 0.9645 1.1131 

Average 0.9994 0.0591 0.9648 0.7086 0.9994 0.0547 0.9645 0.7488 

Table 7. Parameters and performance of model (20) for “Football” 

Football.cif Football.qcif 
 

Model (21) Liu et al. [16] Model (21) Liu et al. [16] 

SR PCC1 RMSE1 PCC2 RMSE2 PCC1 RMSE1 PCC2 RMSE2 

0.1 0.9771 0.2387 0.9697 0.3707 0.9703 0.2472 0.9726 0.3977 

0.2 0.9874 0.2584 0.9697 0.4016 0.9798 0.3013 0.9726 0.3864 

0.3 0.9915 0.2741 0.9697 0.5258 0.9885 0.2836 0.9726 0.4323 

0.4 0.9958 0.2167 0.9697 0.6543 0.9928 0.2571 0.9726 0.5201 

0.5 0.9976 0.1829 0.9697 0.8706 0.9953 0.2383 0.9726 0.7162 

0.6 0.9986 0.1556 0.9697 1.0416 0.9968 0.2193 0.9726 0.8970 

0.7 0.999 0.1391 0.9697 1.1839 0.9977 0.2017 0.9726 1.0457 

0.8 0.9993 0.1275 0.9697 1.3010 0.9983 0.1845 0.9726 1.1775 

Average 0.9933 0.1991 0.9697 0.7937 0.9899 0.2416 0.9726 0.6966 

 

4 Joint Sampling-rate and Quantization 

Optimization 

For 8-bit sequences, the number of bits can be 

derived by 

 ( ) ( )2, 8 logRR f SR B SR N QP= = ⋅ ⋅ −  (22) 

where N  is the size of the block vector. Using 

( ),RR f SR B=  and ( ),DD f SR B= , Figures. 11-13 

show the RD curve for the “Forman”, “Mother–

daughter”, and “News” sequences (CIF and QCIF 

formats) under the system shown in Figure 9 with fixed 

SR (from 0.1 to 0.8) as QP = 1, 2, 4, 8, 16, 32, 64, 128. 

For the same curve, different markers express different 

QP, and the eight markers from lower right to upper 

left correspond to QP = 1–256. Moreover, the solid 

line denotes the fitting curve based on the proposed RD 

model. From Figure 11, it can be seen that the practical 
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RD performance fits the proposed RD model (20) very 

well. Furthermore, Figures. 11-13 show that the 

distortion increases dramatically as QP increases from 

16 to 128. Consequently, it is sensible to select 

[ ]1,16QP∈ . Given fixed tR , SR, and QP are the 

tradeoff of performance [24]. Additionally, for the 

same tR , the minimum distortion is achieved without 

quantization if 0.1SR ≥  for the “Forman” and 

“Mother–daughter” sequences, which contain simple 

motion. This is primarily because the distortion caused 

by compressed sampling can be neglected when 

0.1SR ≥  for simple motion sequences. Consequently, 

it is suggested that QP = 1 be selected when 0.1SR ≥  

for simple motion sequences. 
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(b) Foreman.qcif 

Figure 11. RD curve for “Foreman” sequences 
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(a) Mother-daughter.cif 
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(b) Mother-daughter.qcif 

Figure 12. RD curve for “Mother–daughter” sequences 
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(a) News.cif 
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(b) News.qcif 

Figure 13. RD curve for “News” sequences 
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5 Simulation Results 

Several numerical tests were conducted to evaluate 

the performance of the proposed algorithm within the 

framework shown in Figure 1. Several different video 

sequences, including “Mother–daughter”, “Foreman”, 

and “Football” (QCIF or CIF format), were tested in 

the simulations, and processing was carried out only on 

the luminance component. The size of GOP was set to 

2, and the frame rate was fixed at 15 fps. The target 

bit-rate and the actual bit-rate by using the proposed 

rate allocation algorithm are shown in Table 8.  

Table 8. Comparison between target measurement bit-rate and actual measurement bit-rate 

QCIF CIF 

Actual bit-rate (Kbps) Actual bit-rate(Kbps) Target bit-

rate 

(Kbps) 
Mother-daughter Forman Football 

Target bit-

rate 

(Kbps) 
Mother-daughter Forman Football 

300 0300.3650 0304.1280 0285.1212 1000 0998.2360 0995.5247 0973.2096 

500 0496.6048 0486.6048 0513.2256 2000 1995.6321 2003.2645 2007.2448 

800 0800.7328 0790.7328 0798.3467 3000 2979.3241 3001.5697 2919.6288 

1000 1003.6224 1003.6224 1064.4576 4000 4011.3625 4023.6214 4044.4896 

1200 1196.0992 1186.0992 1208.9146 5000 4956.3215 4968.3652 4896.4608 

1500 1502.6400 1520.6400 1529.8179 6000 5981.2365 5985.6984 5960.9088 

 

Finally, Figure 14 shows an example of the 

recovered 2nd frames in the “Football” QCIF sequence 

by using the conventional method with QP = 1 and SR 

= 0.6, and the rate allocation scheme with the target 

bit-rate set to 1800 kbps， which results in the average 

QP=4 and SR=0.8. Figure 15 shows the reconstructed 

2nd frames in the “Forman” QCIF sequence by the 

conventional method with QP = 1 and SR = 0.2, and 

the rate allocation scheme with the target bit-rate set to 

600 kbps， which results in the average QP=4 and 

SR=0.8. From Figures. 14 and 15, it can be seen that 

the subjective visual quality can be obviously 

improved by using the proposed rate allocation 

algorithm by approximately a 0.9~3.2 dB increase in 

PSNR (and smaller numbers of bits are required). That 

is, based on the above simulation results, it can be 

concluded that the proposed scheme has better RD 

performance by using the presented adaptive 

compressive sampling with rate allocation. 

 

Figure 14. Recovered 2nd frame of “Football” (QCIF). (Left) Original frame. (Middle) Conventional scheme (QP 

= 1, SR = 0.6) 1835136 bits and 28.5991 dB. (Right) Proposed scheme (average QP = 4, SR = 0.8) 1824763 bits 

and 31.8660 dB. 

  

Figure 15. Recovered 2nd frame of “Forman” (QCIF). (Left) Original frame. (Middle) Conventional scheme (QP = 

1, SR = 0.2) 611712 bits and 34.3779 dB. (Right) Proposed scheme (average QP = 4, SR = 0.275) 607888 bits and 

35.2008 dB. 
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6 Conclusion 

5G wireless access solutions will consist of an 

evolution of LTE in combination with new radio 

access technologies. A rate control algorithm based on 

feedback channel was proposed to improve 5G 

wireless communication, so as for the RD performance 

of the DCVS system. A relatively accurate RD model 

was first established based on the assumption that the 

quantization distortion and the reconstruction distortion 

are independent, and then a training method was used 

to determine the parameters of the RD model at the 

decoder. Finally, the RD model as well as the target 

rate were applied to determine the optimal QP and SR, 

and then feed them back to the encoder as the 

parameters for the following frame. Experimental 

results demonstrated that the proposed method could 

improve the RD performance in the DCVS system 

without increasing the complexity of the encoder and 

time-delay. 
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