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Abstract 

The recurrent neural network can solve the time 

sequential problems and the battery discharge state is 

predicted based on the time sequential neural network. 

The main purpose is to predict the battery discharge 

condition with recurrent neural network, and then 

improve the traditional mathematical prediction method. 

Nowadays, prediction of the battery life cycle is more 

important. Compared with our models, there are the five 

fixing currents as testing experiments. The error rate has 

less than 2% and the prediction battery life is close to real 

data. 

Keywords: Deep learning, Battery life prediction, 

LSTM, RNN, GRU 

1 Introduction 

Today’s society mobile devices have become 
mainstream, and each mobile device requires a battery 
as its power supply equipment, so the condition of the 
battery will be very important. The battery discharge 
status directly affects the time a mobile device, so our 
paper will use recursive neural network (RNN [1], 
LSTM [2], GRU [3]) predicting battery discharge 
conditions. 

In this study use the same type of battery, although 
the battery model is the same, but the characteristics of 
battery are not the same, so we use 30 batteries for 
voltage measurement. There is the method of constant 
current method for voltage data collection, such as 0.2c, 
0.1c and 0.04c respectively. It had sampled every 5 
seconds to the discharge end and there is a total of 
810,000 sample points. 

Traditional battery state predictions have been good 
results from [4]. The traditional mathematical model 
predicts the battery discharge state error as 2.87%, and 
the deep neural networks handle all types of problems 
can be effectively solved, so even significantly 

improved the prediction problem has been better. In 
this study, the RMSE (root mean square error) of our 
proposed Deep-LSTM [5] model can be less than 
0.0003, and the Deep- RNN model RMSE can be less 
than 0.003 and the Deep- GRU model RMSE can be 
less than 0.002. 

2 Related Works 

2.1 Battery Equivalent Model 

The establishment of the battery model is mainly for 
the calculation and analysis of circuit simulation. A 
good model should have the ability to simulate the 
actual situation. This paper proposed a new battery 
model to accurately estimate the battery capacity.  

Generally, when we analyze the electrical 
characteristics of battery, the battery is usually 
regarded as an ideal voltage source. That is, the output 
voltage remains the same. However, the internal 
chemical properties of the battery are susceptible to 
many factors, making the battery not a simple voltage 
source. 

When the battery is discharged, the terminal voltage 
of the battery does not maintain a constant value. For 
example, the constant current discharge is one case. 
The terminal voltage of the battery will continue to 
decrease. When the tolerance of battery terminal 
voltage drift is low and you use a simple battery model 
for circuit simulation, the real problem cannot be seen. 
However, if you use a model that can fully and 
realistically present battery characteristics, you can 
predict real problems. For example, a steady state 
circuit can be added across the battery terminal voltage. 

So far, several battery models have been used such 
as ideal model, linear model, Thevenin equivalent 
model, and the equivalent capacitance model.  
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2.1.1 Ideal Model [13] 

The ideal model is shown in Figure 1. It is thought 
of the battery as a simple voltage source and output 
voltage is constant. It is completely ignoring the 
internal factors of the battery and does not reflect the 
characteristics of the battery. Vbc is the open circuit 
voltage of the battery, and Eoc is the terminal voltage of 
the battery. The equation can be derived from the 
equation as equation (1). Although this model is the 
simplest and roughest battery model, it is also the 
model that most people use in circuit simulation 
analysis. 

 Vbc = Eoc (1) 

 

Figure 1. Ideal model 

2.1.2 Linear Model [13] 

The linear model consider the internal resistance of 
the battery, the open circuit voltage (Eoc) and the 
internal battery resistance (Rin) of the battery are all 
internal factors as shown in Figure 2. There is an 
internal resistance inside the battery. Consider the 
model of the internal resistance and the estimation of 
the true capacitance, and the better rise of the voltage 
rise and fall as the output current changing as shown in 
equation (2).  

 Vbc = Eoc + VRin (2) 

 

Figure 2. Linear model 

2.1.3 Thevenin Equivalent Model [13] 

The Thevenin equivalent model is shown in Figure 3. 
It considers the dynamic characteristics of the battery 

when it is charged. This battery model includes the 
unloaded voltage Eoc (ideal voltage source), the internal 
resistance Rin, the resistance Rov(overvoltage resistance), 
and capacitor Covv (Overvoltage capacitance) are 
parallelly grouped. The state is to express the 
phenomenon of equivalent voltage overvoltage of the 
battery, so the model will be more realistic in the 
process of simulating the battery charging. This model 
improves the shortcomings of the linear model, and 
therefore it is more accurate than the linear model. The 
Thevenin equivalent model is superior to the above 
two battery models, but the phenomenon of self-
discharge of the battery and the influence of 
temperature on the battery characteristics are still not 
considered. 

 
Figure 3. The thevenin equivalent model 

2.1.4 Equivalent Capacitance Model [13] 

This model corrects the absence of the Thevenin 
equivalent model, as shown in Figure 4. The equivalent 
capacitance model can exhibit self-discharge. R and C 
parallel circuit replaces the ideal voltage source in the 
Thevenin model. Vbc is the open-circuit voltage of the 
battery that is the terminal voltage when the battery is 
not connected to the load. Rsd is a self-discharge 
resistance, and its value is related to the battery 
terminal voltage, initial battery capacity, temperature, 
and it is very sensitive to temperature changes. When 
the battery is in an open state, the internal battery will 
still perform a slow discharge behavior inside due to 
the self-forming loop system. When the temperature 
rises, the chemical reaction will become intense, and 
the self-discharge condition will be more serious. The 
state of discharge is represented by the magnitude of 
the self-discharge resistance. Under normal conditions, 
the self-discharge resistance value is inversely 
proportional to the temperature, inversely proportional 
to the open circuit voltage of the battery, and inversely 
proportional to the remaining capacity of the battery. 
Rin is the internal resistance of the battery, and the 
concept is the same as the internal resistance in the 
Thevenin equivalent circuit. Cbc is battery capacitance, 
representative of the battery energy storage element. 
Rov and Cov are connected in parallel to express the over 
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-voltage effect of the battery, which can show the 
phenomenon that the terminal voltage rises and falls 
when the battery is charged and discharged, and Vov is 
the voltage value of the over-voltage phenomenon.  

 
Figure 4. Equivalent capacitance model 

2.2 Electricity Estimation Method  

There are many ways to estimate the battery power. 
According to the accuracy requirements, there will be 
different measurement methods, and even more than 
two types of power estimation methods can be used to 
achieve higher accuracy and immediate measurement. 
The basic power estimation method is described as 
follows: 

2.2.1 Discharge Test Method [14] 

Completely discharge the fully charged battery and 
continuously detect the discharged electricity during 
the discharge process. Using this process, the amount 
of electricity contained in the battery can be calculated. 
This method is more suitable for calculating the initial 
capacitance, or on a device that is often used for a full 
charge and discharge cycle.  

2.2.2 Coulomb Method 

Using the principle that the outflow is equal to the 
incoming charge, continuously detecting the battery 
current to record the remaining battery power, this 
method requires an accurate current detector. When the 
battery is charging, it can be accumulated by the initial 
battery power and to get the battery power at any time 
of charging. When the battery is discharged, the 
ampere-hour method can also be used to reduce the 
initial charge of the battery. The battery level is 
expressed as equation (3): 

 C(tn ) = C(t0) ± ∫i(t) d(t) (3) 

There is t as the current discharge time, t0 as the 
initial time, and tn as the current time, C(t0) is the initial 
capacitance, C(tn) is the current charge, and i(t) is the 
discharge current. Since the Coulomb method cannot 
detect the self-discharge of the battery and the power 
consumption caused by aging or other factors, if you 
want to reduce the cumulative error and improve the 
accuracy of long-term operation, it must be combined 
with other methods such as open circuit voltage 

method. 

2.2.3 Open Circuit Voltage Method [15] 

When the battery is charged and discharged and the 
load is changed, the terminal voltage that changes over 
a period of time will be gradually stable. As long as the 
battery is unloaded and stable, the measured open 
circuit voltage can be used to check the “open circuit 
voltage corresponding electricity” which is the curve 
data by finding the remaining maximum power. Since 
the battery terminal voltage drops and rises with time 
after the battery charging and discharging behavior is 
stopped, the tested battery needs to wait for a long 
static stabilization period before detecting. The lithium 
ion battery takes about 30 minutes. Therefore, it takes a 
long time to measure the curve data of the open circuit 
voltage corresponding to the power. The battery is 
continuously tested, and the battery is continuously 
recorded, waiting for the voltage to stabilize, or 
discharging, waiting for the voltage stability program 
to record the battery power. The drawback is that the 
battery cannot be measured during charging and 
discharging.  

2.2.4 Linear Model [16] 

The linear parameter of the battery voltage is 
calculated to the power with the least square method. 
To improve the accuracy, more data is needed to 
express the various operating conditions of the system, 
such as considering different discharge rates and 
temperatures and other factors. It must use more input 
and calculate a more complex linear model. 

2.2.5 Impedance Spectrum [17] 

Different signals are applied to the battery to analyze 
the response of the battery, and the internal resistance 
of the battery is measured to determine the current state 
of the battery. When charging, the internal resistance 
of the battery will increase as the battery is fully 
charged. When discharging, the internal resistance will 
decrease as the stored electricity in the battery is 
completely discharged. Therefore, when detecting the 
power, it is only necessary to judge the internal 
resistance of the battery. This method is applicable to a 
variety of batteries, but requires additional power to 
generate drive signals and expensive spectrum analysis, 
so it is not suitable for portable devices. 

2.2.6 Recurrent Neural Network 

Using the concept of a recurrent neural network [6-
9], several input and output parameters are developed. 
The fuel gauge generates parameters through training 
and learning before using, and these parameters allow 
the fuel gauge to understand the characteristics of the 
battery. This method can be applied to a variety of 
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batteries, the relative input and output parameters of 
what to use and how to train and learn is a university 
question, and the recurrent neural network algorithm is 
usually very complicated. 

[20] aims at evaluating the effects of lithium-ion 
nickel manganese cobalt/carbon (NMC/C) battery state 
of health (SOH). [21] developed an effective health 
indicator to indicate lithium-ion battery state of health 
and moving-window-based method to predict battery 
remaining useful life. [22] proposed a semi-empirical 
lithium-ion battery degradation model that assesses 
battery cell life loss from operating profiles. 

3 The Proposed Method 

With the rapid development of deep learning, timing 
problems (translation, climate prediction, speech 
recognition, sensor network [18-19] and predict the 
charge and discharge) are to be an effective solution to 
these problems in recent years, the recursive neural 
network is as RNNs, LSTM, GRU. The research of 
many scholars has improved these related technologies 
and the accuracy is getting better. The sequential 
neural network is discussed as below. 

3.1 RNN 

The hidden layer of RNNs [10] is connected to the 
conventional neural network in the hidden layer node 
is no longer independent, so each layer RNNs 
parameters are shared between the output and input.  

RNNs link the hidden layers of the neural network, 
so that the nodes in the hidden layer are no longer 
independent making the output and input related. 
Therefore, each layer parameter in the RNNs is shared. 

From Figure 5, the equation (4) indicates that the 
hidden vector ht of each layer completes the memory 
chain by the product of the hidden vector of the 
previous state (t-1) and the input [11]. The σ() is 
activation function. 

 1( )t h t h t hh U X W h bσ
−

= × + + +  (4) 

ht is the hidden layer activations in time t. 

Xt is the input vector. 
Uh is the weight of input vector. 
Wh is the weight of hidden layer activations. 
bh is the bias. 

 

Figure 5. The architecture of RNN 

3.2 Long Short Term Memory 

The LSTM is recurrent network and it has “LSTM 
cells”. There are an internal recurrence (a self-loop) in 
the cells. In addition, it is the outer recurrence of the 
RNN. There is the same inputs and outputs for each 
cell. There are more parameters to control the flow of 
information [24]. 

There are three gates of long short term memory as 
shown in Figure 6. 

 

Figure 6. The architecture of LSTM 

Forgotten gate. There are an internal recurrent (a self-
loop) in the LSTM cells and the forgotten gate control 
it. It is useful for the forgotten gate to forget the old 
state [24]. The forgotten gate is input by the hidden 
vector of the previous state (t-1) and the current state 
(Xt) as equation (5). 

 
1

( )t xf t hf t ff W X W h bσ
−

= × + × +  (5) 

ft is the current forgotten gate. 
Xt is the current input vector. 

Wxf is the current weight of input vector. 
Whf is the weight of the hidden vector. 
ht-1 is the weight of hidden vector in time t-1. 
bf is the bias. 

Input gate. To Update st via input gate, the input gate 
is also the same as the forgotten gate. It is related with 
the hidden vector and the current state (Xt) input of the 
previous state (t-1) as equation (6). The function of 
forgotten gate is to forget important information, and 
then update the storage unit by the input gates as 
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equation (7). The activation function is tanh(). The 
equation (7) is internal state as following. 

 
1

( )
t xi t hi t i
i W X W h bσ

−

= × + × +  (6) 

it is the external input gate. 

 
1 t t 1

* ( ) f *
t t xs t hs t s
s i W X W h b sσ

− −

= × + × + +  (7) 

st is the internal state. 

Output gate Ot. The purpose of the output gate can be 
calculated ht for the next state (t+1) as equation (8) and 
(9). 

 
1

( )
t XO t ho t o

O W X W h bσ
−

= × + × +  (8) 

 ( )
t t t
h O tanh s= ×  (9) 

Ot is the output gate. 
ht is the output. 

3.3 Gated Recurrent Unit [12] 

Update gate. To update gate (Zt) [9] is a state 
information for the degree of influence on the 
determination of the current state. It is like the forget 
gate and input gate of LSTM, but the update gate of 
GRU is simpler to make convergence efficiently as 
shown in Figure 7. 

 
1

( )
t z t z t z

Z W X W h bσ
−

= × + × +  (10) 

Zt is the update gate. 

 

Figure 7. The architecture of GRU 

Reset gate. The reset gates control which parts of the 
state get used to compute the next target state, 
introducing an additional nonlinear effect in the 
relationship between past state and future state [24]. 
Reset gate (Rt) for ignoring previous state is compared 
to the extent of the update information as equation (11). 

 ( 1 )
t r t r t r

R W X W h bσ= × + × − +  (11) 

Rt is the reset gate. 

Candidate activation. When Rt approaches zero, reset 
gate is off. Then, the gate will forget information of the 
last state [9]. 

 � ( 1)
t h t t t
h tanh W X R h= × + −�  (12) 

 �(1 ) 1
t t t t t
h Z h Z h= − × − + ×  (13) 

3.4 Our Experiment of Dataset 

Our collected dataset is total of 30 batteries at a 
constant current, and the sampling rate is 5 seconds, so 
we have collected 810000 data samples. To avoid 
overfitting, we separate the dataset to 10 as training set, 
10 as validation set and 10 as testing set. The 10-fold 
cross validation is adopted. Recursive neural network 
is very sensitive to the value of information, and it can 
speed up the convergence between normalized to 0 to 1. 

The tools python-sklearn is efficient with our 
information and the data is normalized to between 0 
and 1. 

3.5 Network Architecture 

In this study we can know that the recursive network 
has better results in the deep model, so we try to 
establish a deep network architecture to more fit 
battery life circle. The recurrent neural network 
architecture is as shown in Figure (4). The recurrent 
model of our proposed network architecture is the 
same with architecture of the LSTM, RNN and GRU 
as shown in Figure 8. 

 

Figure 8. Our neural network architecture 

The Multi-Layer Perceptron (MLP) is adopted to 
compare with our recurrent model. There is input-
output relationship of the MLP network and it can 
define a mapping from an m-dimensional Euclidean 
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input space to an M-dimensional Euclidean output 
space. It can also define infinitely continuously 
differentiable when the activation is likewise [23]. The 
architecture of MLP is as shown in Figure 9, and the 
output layer of MLP is one output for function 
approximation. The model of MLP network including 
a nonlinear activation function, and it can be 
differentiable. There are also one or more layers to 
connect the both input and out nodes [23]. The first 
hidden layer is 60 neurons, and the second hidden layer 
is 30 neurons, and the third hidden layer is 10 neurons. 
The activation function of each layer is sigmoid. The 
loss function adopts root mean square error (RMSE), 
and the optimized algorithm is Adam. 

 

Figure 9. Our MLP architecture 

5 Experiment Result 

Our method compared with predictions of a 
mathematical model closer to real data. The error can 
be well controlled, and it can be seen that the deep 
learning algorithm have very significant effects in data 
analysis. 

In the Figures 10-13, red is the prediction result. The 
blue is the original data. There is the y- axis as the 
voltage, the x- axis as the number of data, and the 
Figure 10 is the voltage prediction of our proposed 
LSTM. The testing of RMSE error is about 0.01. 
Figure 11 is the voltage prediction of our proposed 
GRU. The testing of RMSE is about 0.009. Figure 12 
is the voltage prediction of our proposed RNN, and the 

testing of RMSE is about 0.02. Figure 13 is the voltage 
prediction of our proposed MLP. The voltage testing of 
RMSE is approximately 0.013. Table 3 shows the 
average RMSE of the four algorithms and we can find 
the average RMSE of GRU is better than the other 
algorithms. 

 

Figure 10. Deep LSTM 

 

Figure 11. Deep GRU 

 

Figure 12. Deep RNN 

 

Figure 13. MLP 

Table 1. The RMSE of training data 

 
Training data 

number 

LSTM Training 

RMSE 

GRU Training 

RMSE 
RNN Training RMSE

MLP Training 

RMSE 

0.1c-1 07046 0.006418 0.002214 0.0096685 0.058960 

0.1c-2 06681 0.000533 0.002135 0.0021060 0.003060 

0.1c-3 06936 0.001008 0.003187 0.0033540 0.002188 

0.1c-4 07606 0.001732 0.003445 0.0041020 0.003120 

0.2c 03538 0.000546 0.007320 0.0016900 0.002299 

0.04c-1 17849 0.000590 0.011352 0.0010690 0.001158 

0.04c-2 17152 0.000223 0.002058 0.0017920 0.003066 

0.5c 01442 0.044898 0.006253 0.0745810 0.010544 

1.5c 00473 0.042234 0.006834 0.0601400 0.023545 

1c 00727 0.010549 0.003599 0.0862050 0.015128 
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Table 2. The RMSE of testing data 

 
Testing data 

number 

LSTM Testing 

RMSE 

GRU Testing 

RMSE 

RNN Testing 

RMSE 
MLP Testing RMSE

0.1c-1 3800 0.007053 0.002384 0.010138 0.062280 

0.1c-2 2900 0.000641 0.002633 0.002259 0.003569 

0.1c-3 3400 0.001193 0.003532 0.003916 0.002761 

0.1c-4 2460 0.001961 0.003779 0.004274 0.003598 

0.2c 7700 0.000676 0.009450 0.001835 0.002783 

0.04c-1 1500 0.001310 0.012847 0.001394 0.001688 

0.04c-2 1100 0.000676 0.002428 0.002975 0.003169 

0.5c 3020 0.071206 0.011955 0.074168 0.012782 

1.5c 3680 0.042356 0.031265 0.060410 0.024701 

1c 3340 0.022374 0.018815 0.083041 0.017021 

Table 3. The average RMSE  

 Data  

number 

LSTM 

RMSE 

GRU 

RMSE 

RNN 

RMSE 

MLP 

RMSE 

Training 69450 0.0108730 0.0048397 0.0244705 0.0123068 

Testing 32900 0.0149446 0.0099088 0.024441 0.0134352 

 

4 Conclusion 

From the Table 1 and Table 2, we can see that the 
results of our proposed recurrent model (LSTM, GRU, 
RNN) prediction rate is better than the results of the 
MLP. To predict the discharge state of battery, there is 
a good performance. In the testing data, experiments 
have shown that the effect of increasing the number of 
sampling points back to the network. Finally, the deep 
learning method is efficient to the battery discharge life 
cycle, and according to the prediction method 
development can solve many problems in the real 
world, and the battery devices have become an 
essential item for everyone. The evaluation of battery 
power is an important issue. In the future, we will 
further analyze the battery aging research with data, 
and believe that deep learning can bring us a more 
convenient life. 
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