
Register Based on Large Scene for Augmented Reality System 99

Register Based on Large Scene for Augmented Reality System

Zhen-Wen Gui

Department of Information System, China Electronics Technology Group Corporation No. 7 Research Institute, China

whut_gzw@163.com*

*Corresponding Author: Zhen-Wen Gui; E-mail: whut_gzw@163.com

DOI: 10.3966/160792642020012101010

Abstract

Register is steadily gaining in importance due to the

drive from various computer vision applications, such as

augmented reality (AR), mobile computing, and human-

machine interface. Efficient keypoint-based approachs

are widely used in scene register. These approaches often

model a scene as a collection of keypoints and associated

descriptors, and then construct a set of correspondences

between scene and image keypoints via descriptor

matching. Finally, these correspondences are used as

input to a robust geometric estimation algorithm such as

RANSAC to find the transformation of the scene in the

image. This paper focuses on designing a robust and

flexible registration method for wide-area augmented

reality applications. Firstly, we propose to partition the

whole scene into several sub-maps according to the user’s

preference or the requirements of the AR applications

instead of building a global map of the wide-area scene.

Secondly a linear structured SVM classifier is used to

perform scene learning online, which allows us to quickly

adapt our model to a given environment. Finally, a hybrid

tracking strategy is implemented by combining both wide

and narrow baseline techniques. Some experiments have

been conducted to demonstrate the validity of our

methods.

Keywords: Augmented reality, Wide-area registration,

Scene recognition

1 Introduction

Augmented reality (AR) is to add virtual objects to

real environments, allowing computer-generated 3-D

graphics or 2-D information to be overlaid on the real

world in such a manner as to enhance people’s

understanding of the real word [1-2]. Registration

between real and synthetic worlds is one of the major

technological issues in order to create AR systems. As

the user moves his/her head or viewpoint, the virtual

objects must be properly aligned with the objects in the

real world, or the coexistence of the virtual world and

the real world will be compromised.

Keypoint-based method for scene register has

become a cornerstone of modern computer vision,

enabling great advances in areas such as AR and

simultaneous localization and mapping (SLAM) [3].

These register approaches model an object as a set of

keypoints which are matched independently in an input

image. Robust estimation procedures based on

RANSAC [4-6] are then used to determine

geometrically consistent sets of matches which can be

used to infer the presence and transformation of the

scene.

The applications of keypoint-based include location

recognition [7-10], autonomous robot navigation [11-

13] and augmented reality [14-16]. Broadly speaking,

there are two prevalent approaches that have been used

to achieve registration for AR. The first addresses

SLAM method, where the camera is localized within

an unknown scene. The second method use the

knowledge of a prior map or 3D scene model. Several

recent methods fall in the second method [7-8, 14, 17].

And this renewed interest has been sparked by progress

in structure from motion (SFM) [18-19], which makes

it possible to easily reconstruct large scenes in great

detail.

Despite the scalability of recent approaches [7-8, 17],

real-time keypoint-based register in large environments

remains a challenging problem. As the scene gets

larger, recognizing unique identifiable landmarks

becomes more challenging. In [7-8, 17], this difficulty

is overcome by using sophisticated image features such

as SIFT [20]. But these are too expensive to compute

in real-time. On the other hand, some visual SLAM [15,

21-22] systems are real time, but their performance

degrades in larger scenes, where map maintenance

becomes progressively expensive. These techniques

are also fragile if the camera moves too quickly, which

makes them less attractive for persistently computing a

precise camera pose over longer durations.

In this paper, we propose a new approach for

continuously register within wide area. Our algorithm

is real-time and runs over long periods with low

fluctuations in the frame-rate by avoiding the need for

scale-invariant keypoints on running. This is a key

distinction from prior approaches [7-10], which rely on

the scale-invariance of SIFT [20]. Keypoints (Binary

robust invariant scalable keypoints) [23] from one

frame are tracked in the consecutive frame by optical

flow tracker, and are recovered by matching to

100 Journal of Internet Technology Volume 21 (2020) No.1

candidate keypoints within a local search neighborhood

[24] in the next frame when they are lost.However,

matching features across different scales are important

for reliable 2D-to-3D matching, and we address this

requirement by computing redundant descriptors

during offline processing.

In this paper, we propose to employ a unified

framework for scene register such that overall

detection performance can be optimized given a set of

training images. Furthermore, because the linear

structured SVM is used to perform learning which

allows us to quickly adapt our model to a given

environment. As a result, our algorithm maintained a

good robustness and stability.

2 Related Work

SLAM and online SFM are two kinds of prevalent

techniques that have been used to achieve wide-area

registration for AR [25]. Visual SLAM systems have

recently been used for realtime AR [26], by utilizing

parallel threads for tracking and mapping (PTAM) [15],

using multiple local maps [21] and performing fast

relocalization through random ferns [22]. However,

these approaches are susceptible to the problem of drift

and error accumulation in the pose estimate, and

existing solutions for fast relocalization do not scale to

larger scenes. SFM is used to estimate 3D coordinates

for the landmarks in recent work [7-8, 17]. The

approaches scale well and some variants by

introducing the GPU [7]. However, these methods

address only the single-image registration problem, and

are not fast enough for real-time registration from

video.

Real-time registration approaches for AR on smart

vehicles have also been recently proposed [16, 21, 27].

However, these approaches derive their speedup from

tracking relatively fewer features which make them

less suitable for continuous 6-DOF localization in

larger scenes or over longer durations. An efficient

approach for tracking and registration in video was

proposed in [15, 28] employ online SFM to get denser

and larger maps to improve tracking quality. The

tracking techniques attempt to construct a global 3-D

map that covers the whole observed scene to realize

camera tracking in wide-area environments. However,

a global map is often not getable due to the complexity

of natural scene or the immaturity of mapping

techniques.

Some research has been carried on scene learning

and recognition problems for AR applications [29-31].

Lee and Hollerer [31] proposed to solve the online

scene recognition problem by matching SIFT features

between input frame and previously stored features

directly. The scene has the maximum number of

matched features among all scenes which is returned as

the recognition result if the number of matched

features exceeds a certain threshold. Klein and Murray

[15, 28] proposed to facilitate the scene recognition

processes by using keyframes. Each keyframe is

represented by a descriptor which will be compared to

the input frame’s descriptor by using NCC to find the

closest match to assistant the scene recognition

processes. Experimental results indicate that the

methods can deal with hundreds of keyframes in real-

time. However, this is not enough to meet the

requirement of our research since our system may

contain thousands or even tens of thousands of

keyframes. In our research, we proposed to deal with

scene learning problem by using SVM classifiers. Each

scene is represented by a predefined numbers of 3D

points and local binary features detected from the ten

keyframes. These local features will be used to train

the multi-index table built in advance for online scene

recognition. In this paper, we demonstrate that the

tasks can be separated as individual threads to further

improve tracking performance on scene learning and

camera tracking.

3 Natural Features Detecting and Matching

This section introduces the natural features detecting

and matching methods used in our system. In 2011, the

BRISK [23] are found to be eminently suitable for low-

power device because of its feature detection speed and

memory efficiency. They are been chose for real-time

AR systems in general.

Nearest neighbor (NN) search on binary codes has

been widely applied in image recognition [24, 32],

local features matching [33-34] and parameter

estimation [35] recently. There has been growing

interest in mapping image data onto compact binary

codes for fast near neighbor search in scene

recognition [32, 34, 36]. Because binary codes

comparisons require just a small number of machine

instructions; millions of binary codes can be compared

to a query in less than a second. But the most

compelling reason for binary codes which are used as

direct indices (addresses) into a hash table, yielding a

dramatic increase in search speed compared to an

exhaustive linear scan as shown in [37]. In practice,

using binary codes as hash indices is not necessarily

efficient. To find near neighbors one needs to examine

all hash table entries (or buckets) within some

Hamming ball around the query. And the number of

such buckets grows near-exponentially with the search

radius. Later, in order to improve the search speed

compared to linear scan, many researchers like Greene

et. Al [37] and Mohammad et al. [38], who present an

algorithm to search exact K-nearest neighbor on binary

codes and implement a form of multi-index hashing, in

which binary codes from the database are indexed m

times into m different hash tables. Given a query code,

entries that fall close to the query in at least one such

substring are considered to be the neighbor candidates,

which are then checked for validity using the entire

Register Based on Large Scene for Augmented Reality System 101

binary code to remove any non-r-neighbors presented

in [38]. While promising, there are some disadvantages:

The first one is large computational cost. Because the

searching algorithm will be expensive to examine all

buckets within r bits of a query even if the vast

majority of the buckets in a full hash table will be

empty with n binary codes of b bits by using their

algorithm to build hash table, since 2b
n� . The

second disadvantage is the complexity of algorithm.

Because it is not all items in the merged buckets that

are r-neighbors of the query. As in actual query, it

becomes complex when searching algorithm need to

cull any candidate that is not a true r-neighbor. The

final disadvantage is memory efficiency. The same

binary codes are indexed m times into m different hash

tables based on m disjoint binary substrings and have

been stored repeatedly in hash table.

By considering the above-mentioned discussions,

this paper focuses on the searching efficiency and

scalability of binary code indexed when it runs on the

smartphone. Firstly the binary ordinal is used as the

index node to create multi-level index and sub-vector

numbers (1, 2, ···, c) which are used as the keywords

for inverted list as shown in Figure 1. Different from

[39], this matching algorithm means that the retraining

of the entire sampling descriptors are not needed when

the number of the sampling images increase and only

the training of the sub-vectors of the descriptors

dynamically inserted to the corresponding list without

changing the index. Finally, the index is used for the

cluster center and radius R is used as the hamming

threshold of the sub-vectors so as to all the sub-vectors

of image descriptors are assigned to the corresponding

linked list. Detailed steps are:

(1) Calculate hamming distances between the sub-

vectors and the cluster center.

(2) When the hamming distance is less than or equal

to the threshold R, descriptor ID and image ID of sub-

vector are inserted into the inverted list according to

the serial number of sub-vectors.

Figure 1. Ordinal multi-index list

In order to avoid search in the whole sampling

datasets, the binary descriptor vector E is divided into c

disjoint sub-vectors and the linking of these sub-

vectors in sequence will form the original vector E. If

the binary descriptor vector E comprising s bits is

partitioned into n disjoints sub-vectors
1 2
, , ,

n
E E E� ,

each sub-vector length is s

n

⎢ ⎥
⎣ ⎦ or s

n

⎡ ⎤
⎢ ⎥bits. Based on the

proposition in [39], if two binary descriptor vectors A

and B differ by r bits or less, at least one of their n sub-

vectors must differ by at most r

n

⎡ ⎤
⎢ ⎥ bits, i.e. when

H
A B r− ≤ , there exists a sub-vector i, 1 ,i m≤ ≤ as

follows:

 i i
H

r
A B

n

⎢ ⎥
⊕ ≤ ⎢ ⎥⎣ ⎦

 (1)

Proof of (1) follows straightforwardly from the

Pigeonhole Principle. If Hamming distance between

each of the m substrings is strictly greater than r

n

⎢ ⎥
⎣ ⎦ ,

then
H

A B− must be larger than r and vice versa.

The significance of (1) arises from the fact that the

sub-vector has only s
n

 bits, and the required search

radius in each substring will reduce to r

n

⎢ ⎥
⎣ ⎦ . For

example, if A and B differ by 5 bits or less and n = 6,

then at least one of the 5 sub-vectors must be identical.

If they differ by at most 9 bits, they will differ by no

more than 1 bit in at least one sub-vector, which means

102 Journal of Internet Technology Volume 21 (2020) No.1

that when searching a Hamming radius of 9 bits only a

radius of 1 bit on each of 6 sub-vectors is searched.

More generally, instead of examining L (s, r) ordinal

tables, it suffices to examine (),
s rL
n n

⎢ ⎥
⎣ ⎦

index nodes

in each of n sub-vector ordinal tables.

One ordinal table is built for each of the n sub-

vectors of the binary descriptors in a given dataset. For

a query Q with sub-vectors{ }
1

n

i i
Q

=

, the ith sub-vector

ordinal table for index entries that are within a

Hamming distance r

n

⎢ ⎥
⎣ ⎦ to Qi is searched, thereby

image and feature id is retrieved as a set of candidates

which are denoted as Ti(Q). According to the above-

mentioned proposition, the union operation on the n

sets T(Q) = UiTi(Q) is used to obtain the nearest

neighboring descriptor set of Q. The last step of the

algorithm is to compute the Hamming distance

between Q and each candidate in T(Q), and retain the

top 50 sample descriptors of the shortest distance

which satisfy the hamming distance threshold.

4 Scene Building and Training

Many steps including scene reconstruction and

reference image detection are completed in the offline

stage which is foundation of the online registration

process. This stage includes: a set of images are

required to select by capturing from a different

perspective views. These images are called key-frame

which recording a variety of important known

information for scenes. As shown in Figure 2, ten

different perspective views are selected as a set of key

frames.

Figure 2. 3D scene reconstruction

4.1 Scene Building

Before scene reconstruction, internal parameters of

the camera need to be calibrated. Zhang [33] have

proposed a calibration method which is widely applied

in teaching and research region because it relatively

easy to implement and has fewer restrictions by the

environment. And the popular OPENCV (Open source

computer vision library) is developed by Intel which

includes the Zhang’s method as the primarily

calibration method. So, the Zhang’s method is also

used in this paper and the camera’s internal parameters

are kept unchanging for subsequent registration in the

online tracking.

In this paper, the SFM algorithm is used to

reconstruct three-dimensional structure of the scene as

in [34] and capture 10 key-frames at different view

point for every scene, as shown in Figure 3. The

inherent difficulty in extracting suitable features from

an image lies in balancing two competing goals: high

quality description and low computation. BRISK

algorithm [23] has a significant speed advantage in the

key-point detection, description and matching as well

as scale invariant to a significant extent which achieves

high quality performance comparable to the state-of-

the-art algorithms while dramatically reducing

computational cost. So this approach can be applied to

the object recognition and matching, 3D scene

reconstruction and motion tracking in particular for

tasks with hard real-time constraints or limited

computation power.

Register Based on Large Scene for Augmented Reality System 103

Figure 3. 2D-3D map table

Scene building is to get the data (key-frames and 3D

features) that will be used in key-frames learning and

real time registration. We use the camera phone to get

the video of the scene in which virtual objects will be

augmented, and then build the structure of this scene

on a PC by using key-frames based SFM technique.

Once the recognized scene structure is loaded, the next

step is to initialize the camera for tracking use.

4.2 2D-3D Mapping Table Construction

Before feature tracking, the 2D-3D mapping table

needs to be constructed in order that the 3D points of

scene are fast found by the corresponding 2D features

of key-frame on the same scene. And each 3D point

may be corresponding to multiple 2D features on key-

frames, so the mapping table only stores key-frame ID,

3D points and the corresponding 2D pointer in order to

reduce memory in practical applications, such as

Figure 3.

As illustrated in Figure 4, when the image ID and

the two-dimensional (2D) feature sequence of image

are known, the storage location of three-dimensional

points can be obtained. So the three-dimensional point

information including space coordinate, weights which

can be accessed by the three-dimensional point

location. The weights of 3D point will be obtained by

SVM training in the next section. The 2D feature

includes a two-dimensional coordinates in the image

and a bit-string descriptor of length 512. After the

mapping table has been established, all three-

dimensional points and their corresponding feature

descriptors are saved in files for online registration.

4.3 Training 3D Point Weights

In order to calculate the correct transformation

between scene model and the current image, the

correspondence of 2D feature and matching 3D points

need to be ensured precision. The larger correct

matching pairs, the more accurate the transformation

between scene model and the current image. The

common methods are used to choose the optimal

transformation matrix P by calculating the highest

score or counting max number of matching points to

match up the transformation matrix as in (2). If these

methods are directly used to implement, they are may

be unfeasible for smartphones because all related

transformation matrix is calculated with expensive

computational cost. In this paper, firstly the 3D points

are set an initial weights to calculate the highest score

of transformation matrix. Secondly, the cycle times are

set like PROSAC approach when the scoring values do

not increase as the termination condition. This method

avoid computing scores for all transformation matrix

[40]. The detail implementation as equation (3), (4), (5),

(6), { }1 2
, ...,

k
I x x x= is provided for the 2D point

coordinate of the image, { }1 2
, ...,

k
D d d d= is the

corresponding descriptors, { }1 2
, ...,

k
M x x x= is the

3D points, (){ }, , | , ,j k jk j k jkC X x s X M x I s R= ∈ ∈ ∈

is the matching set for 2D points and 3D points, Sjk is

their matching score, R is the set of scores.

 '

(, , ')argmax
P T

P S M I P
∈

=

(2)

Where M represents a scene model, I represents the

scene image, 'P is a transformation matrix between

scene model and the image, T represents a collection of

all the transformation matrices, S represents the score

function, P represents the transformation matrix of the

maximum value.

2

(,)

(,) (|| () ||)
j k

k j

X x C

S C P E x P X τ

∈

= − <∑

(3)

2

(,)

(,) (|| () ||) , (,)
j k

w k j

X x C

S C P E x P X w L C Pτ

∈

= − < =< >∑ (4)

2
(,) :|| () ||

(,)
0 otherwise

k j k k j

j

d X x C x P X
L C P

τ∃ ∈ − <⎧ ⎫
= ⎨ ⎬
⎩ ⎭

 (5)

104 Journal of Internet Technology Volume 21 (2020) No.1

1 2
(,) [(,), (,) , (,)] L (1)T

J j
L C P L C P L C P L C P j J= ≤ ≤…

 (6)

Where
1 2

[, ,]
T

J
w w w w= … represent a collection of

weight for the 3D point and P is chosen as best

projection matrix when his score is maximum. The 10

sample images are acquired to learn, the more

prominent points, the higher the performance of the set

weights. L(C, P) consists of a set of feature descriptors

corresponding to 3D points.

The weights w of 3D point are obtained by training

the samples { }
1

(,)
N

i i i
I P

=

 as in [42]. They are used to

distinguish the real transformation matrix Pi and the

other alternative matrices by maximizing the score of

these matrices as in (7).

 2

1
,

|| ||min
2

N

i i

w

w

ξ

λ
ξ

=

+∑ (7)

 i, P P : () (,)i

i w i i
S P P Pδ ξ∀ ∀ ≠ ≥ Δ −

() (,) (,)i

w w i w i i
S P S C P S C Pδ = −

(8)

Where λ is balance factor, which keep the trade-off

of the training accuracy and weight vector

regularization. (,)
i
P PΔ is the loss function which is

used punish wrong choice P in place of Pi as (14) by

using the difference of the matching points between the

projection matrix P and Pi to pay penalties.

 (, ') | (,) (, ') |
I
P P S C T S C TΔ = − (9)

5 Online Learning and Tracking

The online ultimate goal is to achieve registration

for tracking scenes. On this stage, we firstly need to

load scene structure, mapping table, key-frame

descriptors into memory that have been completed on

offline stage. If these have already in memory, we

would not have loaded. The main processes are

described as follows:

Step (1) Get the current image, detect feature and

describe the image;

Step (2) Recognize scene by searching multi-index

list;

Step (3) Calculate the initial camera pose. When the

current scene is identified, online learning is run to

establish the corresponding relationship between image

2D points and scene 3D points for computing the initial

pose matrix of the camera;

Step (4) Track the feature points of the subsequent

frame by optical flow method. Online learning is still

continued to carry out for the current image which

establish the correspondence between the image 2D

point and scene 3D point for the subsequent frame. So

as to compute the current camera pose relative to initial

position;

Step (5) Build registration matrix by assembling two

pose matrix;

Step (6) Restore the lost feature or restart the scene

recognition, when the number of tracking feature

points is less than a threshold value.

5.1 Acquiring Current Images

The current images are obtained by an external

camera and preprocessed to 320 240∗ grayscale

images and 320 240∗ RGB images simultaneously.

The grayscale images are used for scene recognition

and registration. The RGB images are used to overlay

virtual objects. The BRISK algorithm is run to extract

features of the current image using the OpenCV2.4.7

library.

5.2 Scene Recognition

We now turn to the online recognition problems

with the above modified matching method. The

features are firstly extracted from the current frame.

Then all features are rotated according to the

orientations of BRISK descriptors to resist camera

rotations and smoothed by Gaussian filter which

reduce the influence of image noise. The transformed

features are compared with each feature from the

sample images to find candidate matching features

based on Hamming distance of their feature vectors. A

scene is identified by considering the sum of the

matching points (subject to a threshold) between the

current frame features { }1 2
, , ,

N
f f f� and the sample

image features { }1 2
, , ,

M
e e e� . The image with the

maximum matching points in the sample library is

selected to decide the scene category corresponding to

current frame. The matching points of sample images L

are counted as (10):

{ }1 2

1 1

(, , ,) arg max ,
M N

N l i j

i j

class f f f pairs e f
= =

= < >∑∑�

1, ,l L= �

(10)

5.3 Scene Learning

In the tracking process, the algorithm of online

scene learning is performed to update w weights to

adapt to the changing environment. The main steps of

the online learning process can be summed up as

follows:

Firstly, the method of Section 4 is used to match the

detected BRISK features between an active frame and

previously stored features. The similar key frame is

identified according to the matching points.

Secondly, we look up 2D- 3D mapping table to

obtain the correspondence between the 3D point of the

scene and the features of the current image according

to relative information of the scene and the key frame;

Thirdly, the RANSAC algorithm is performed to

remove the mismatching points for the current image

Register Based on Large Scene for Augmented Reality System 105

and the key frame. With the obtained RANSAC

intermediate results, we calculate the score as Section 4

and select the matching point pairs with the maximum

matching score to compute the three-dimensional

registration matrix;

Finally, the weight w is subsequently updated to

adapt to environmental changes. The weight updating

algorithm [42] is applied to renew the w for each 3D

point of the scene by computing a transform matrix

between the current image and the 3D scene, With the

transform matrix computed, we choose two

transformation matrices with the highest score and the

second highest, and use these scores to update the

weights w, given as follows.

{ }1 (1) ((,) () 0)max
t

t t i t

j t j t w t j
P P

w w E P P S Pη λ δ η α+

≠

← − + Δ − >

{ }*

'

'

() (1 , 0)max
t

j t j k k t j
k k

E u C E w d d vη β
≠

+ ∈ − < − > (11)

 �(,) (,)t

j j t t j t
L C P L C Pα = − (12)

�

t

j k k
d dβ = − (13)

 � { }(,) ()arg max
i

i

i w

P P

P P P S Pδ
≠

= Δ − (14)

 � { }
'

'

1 ,arg max j k k
k k

k w d d
≠

= − < − > (15)

where j is 3D point number and t is the current

frame number. t

j
w is the weight of the feature j for the

current frame and 1t

j
w

+ is the weight for the next frame.

Pt represents the transformation matrix with the highest

score for the current frame . 1/
t

tη λ= is the step size

and λ is balance factor which is used to weigh training

accuracy and weight vector regularization.

If the weight calculated algorithm [42] is directly

used to update the weight w, all present transform

matrices need to be computed to select the two

matrices with the highest score and the second highest

value for the current frame, which produce heavy

computation.

In this paper, the algorithm is improved to reduce

the computation cost for scoring by using the

intermediate results of the RANSAC algorithm to

calculate the maximum score and the second maximum

score for updating w. The maximum score is

approximately computed by the inliers and 3D points

after the RANSAC algorithm performed as in (4). The

second maximum score is obtained by the intermediate

second largest value which is less than the approximate

maximum score.

5.4 Pose Estimating

With the obtained mapping relationship for the

current image features mt and the 3D points Mt of

corresponding scene , the internal parameters K of the

camera K is known, we compute a more robust and

stable camera pose [|]T R t= by using PNP [41]

algorithm, as follows:

 [|]
t t

m K R t Mλ= (16)

Where R represents the rotation matrix, t is the

translation matrix. Tukey M-estimation [42] algorithm

is used to calculate the camera pose so as to improve

the accuracy of parameter estimation and strengthen

tolerance for error matching. The general M-estimator

minimizes the residual
1

min ()
n

i
T

i

rρ

=

∑ for error function

to obtain the optimal estimator of parameters. Where

σ is the Tukey biweight objective function which can

be computed as:

2

2 3

2

| | , () [1 (1 ())]
6 6

| | , ()
6

c x
if x c x

c
if x c x

σ

σ

⎧ ⎫
≤ = − −⎪ ⎪⎪ ⎪

⎨ ⎬
⎪ ⎪> =
⎪ ⎪⎩ ⎭

　　　　　　　

 (17)

Where c is the standard deviation derived from all

the residuals. The pose matrix T can be calculated by

the iterative optimization method.

5.5 Augmented Display

Registration between real and synthetic worlds is

one of the major technological issues in order to create

AR systems. As the user moves his/her head or

viewpoint, the virtual objects must be properly aligned

with the objects in the real world, or the coexistence of

the virtual world and the real world will be

compromised. In order to achieve the accurate overlay

for virtual objects, we need to obtain the

transformation matrix Tcp between the current camera

coordinate and the world coordinate. The

transformation matrix Tcp can be obtained as

 cp ck kpT T T= • (18)

Where Tck as the initial registration matrix between

original camera coordinate and the world coordinate,

Tkp is the transformation matrix between current

camera position and the initial camera position.

With the obtained registration matrix, you can use

OpenGL (Open Graphics Library) to achieve mapping

for virtual objects to the surrounding environments

which are superimposed onto the correct position.

5.6 Feature Tracking

In augmented reality registration process, if each

pose computation needs to detect, describe and match

points which spend a large of memory and time

making the performance of algorithm deterioration.

However, in practical applications, the user move

relatively gentle and do not abruptly or violently shake

106 Journal of Internet Technology Volume 21 (2020) No.1

of the camera or move significantly the camera in a

scene, so the pose change is very little between

adjacent frames. The positions of the points are

continuity between adjacent frames which can be

efficiently estimated in the next frame and be used to

quickly calculate the pose of the camera. The optical

flow algorithm is used to predict the position for

features between consecutive frames in this augmented

reality system which improves the speed for feature

tracking and reduce the time for repeatedly detecting

and matching feature.

When the initialization has been done, the optical

flow tracker is used to track features between

consecutive frames, and then correspondence between

feature points
1t

x
+

 with the 3D points
1t

X
+

 is

established, finally the PNP algorithm is applied to

calculate the camera pose.

Optical flow algorithm [43] uses temporal changes

of pixel intensities in the sequence images and the

correlation in the image sequences to determine the

movement for pixel point, which based on the

following assumptions: constant brightness between

adjacent frames, small movement for object between

adjacent frames. We use optical flow algorithm to

calculate the movement for feature pixel point, given

as follows:

 (, ,) (, ,)I x y t I x dx y dy t dy= + + + (19)

(, ,)I x y t represents time t with the gray value of the

pixel (,).x y The Taylor series expansion as in

followings:

(, ,) (, ,)
I I I

I x dx y dy t dy I x y t dx dy dt
x y t

∂ ∂ ∂
+ + + = + + +

∂ ∂ ∂

(20)

Experimental results show that only a few dozen

milliseconds are spend to calculate the feature point

coordinates between adjacent frames by using optical

flow algorithm. However, optical flow tracker suffered

from losing features. This is especially true in the case

of features going out of the field of view or occluded

by users and some scene objects. Thus, the valid

matches will become less and less during tracking

process, which will finally result in the failure of

registration.

In this paper, we firstly set the threshold T1 to ensure

the registration validity (herein T1 is set to 30). When

the tracking points are less than T1 for the current

frame, we need to restart extracting and matching

features. If it is the failure for matching between the

three consecutive frames and sample images, the user

maybe has left the current scene into a new scene, so

we will need to re-shoot key frames of a new scene for

reconstruction. Secondly, we set the threshold T2 to

ensure the registration accuracy (herein T2 is set to 40).

If the number of tracking points of optical flow are less

than T2 (herein T2 is set to 40), the following operations

are performed to recover the lost features.

5.7 Lost Features Recovering

Optical flow algorithm is prone to produce drift

problem when the camera moving for a long time that

the tracking points become less and less. In order to

ensure the accuracy of the registration, we perform the

operation for lost features recovering when the tracking

points are less than T2. Duan [44] propose an approach

to recover lost features by using the homography

between the current and reference keyframes. The

approach is firstly perform the image recognition to

select three key frames belonging to of the same scene

with the highest matching score, and secondly

calculate the homography between three keyframes

and the current frame, and then predict the position of

lost features in the current frame by the homography,

finally use the SSD (Sum of squared difference)

method to find the matching features within ± 20

pixels surrounding the predicted position to recover the

lost features.

The experiments [44] show that the approach can

recover the feature points accurately, but also it

introduces the amount of computation to perform re-

image recognition, which influence the real-time

performance for registration. Guan [26] proposes a

method by using single keyframe and the projection

matrix to recover lost features. To recover the lost

features, the method firstly computes the candidate

positions of the lost features on the current image using

the calculated projection matrix. Then the patches of

the lost features on the reference keyframes are

transformed using the homography between the current

and reference keyframes. Finally the correlation

operations are performed with the features detected

within 10± pixels surrounding the reprojection to

recover the lost features. The recovered feature is the

point that has the maximal NCC (normalized cross-

correlation) score with the transformed patch on the

reference image. The experiments [26] show that the

method can recover the lost feature rapidly, but the

NCC method itself is sensitive to illumination changes,

partial occlusion or deformation and has poor

robustness.

Therefore, in order to quickly recover the lost

feature of the current frame, we use BRISK features to

describe lost features producing lower computation

cost. BRISK features can also improve the robustness

of the recovery features to the environment which is

invariance to light and rotation. At the same time, we

do not perform image recognition in addition to the

tracking failure on whole process.

The tracked points are firstly applied to compute the

homography c

k
H between the current and reference

key frames as in (21). Where (, ,1)
k k
x y is a feature of

the keyframe and (, ,1)
c c
x y is a feature for the current

frame, the positions of the lost features are estimated in

Register Based on Large Scene for Augmented Reality System 107

the current frame by the homography c

k
H . For example

given the feature f in the keyframes, (, ,1)
x y
f f is its 2D

position which is lost in the current frame so that

position are predicted to ' '(, ,1)
x y
f f in the current

frame by the homography c

k
H . Secondly the BRISK

features are extracted within 10± pixels surrounding

the ' '(, ,1)
x y
f f in the current frame. Then the detected

feature points from the current image are matched with

predicted feature. Finally, if selected feature point
min
f

is the nearest distance to f than the other features

within 10± pixels surrounding the f, the points will be

recovered otherwise lost.

1 1

c k

c

c k k

x x

y H y

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥=⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

 (21)

When the number of lost feature is larger, the

recovery time is longer. In order to ensure real-time

performance for registration algorithm, the maximal

number of lost features is set. When the number

reaches the maximal value (herein it is set to 80) we is

no longer to recover lost features and continue to

perform optical flow algorithm to track consecutive

frames.

6 Experiments and Results

The proposed algorithm is implemented on

smartphone with1.7GHz processor and 2G RAM. The

software is written in JAVA and NDK C++ on

Android 4.1 operating system with MicroSD (32G).

Experimental dataset include five scenes in

UKBENCH dataset and eight outdoor scenes shot on

campuses altogether 13 scenes, and the resolution of

video frames are set to320 240∗ . BRISK [23] algorithms

are used to detect feature points and generate

descriptors respectively, and then the descriptors are

trained and stored to construct multi-index searching

engine.

The number of features are detected and limited to

not more than 400 in sample images. The virtual 3D

model, 3DS MAX is used to render virtual objects and

export OBJ file format to three-dimensional model. In

experiment, the proposed algorithm is tested including

register result, tracking accuracy and speed. Tracking

accuracy is measured by the RMS (root mean square)

errors (the square root of difference of actual pixel

coordinates and the coordinates of the predicted point)

[45]; tracking speed is measured by frame rate (frames

can be handled per second).

RMS error by is calculated as follows:

 2|| ||
j j

j

RMS PX x= −∑ (22)

Wherein,
j

x represents a 2D feature positions on a

frame,
j

X means the corresponding 3D position of the

point
j

x , P indicates pose matrix of the camera

corresponding to current frame.

6.1 Registration Result

The first experiment is taken to demonstrate the

robustness of the proposed algorithm in different

perspectives, different distances and different lighting

conditions. As can be seen from Figure 4(a)-(f), under

different natural environment, even in the dark part of

the scene illumination or camera rotate along different

axes, the proposed algorithm can be accurately

complete the registration in real time. Left part of

Figure 4 shows registration result of the campus scene,

the right part shows registration result on scene of

UKBENCH library. Figure 4(g)-(n) gives the results

with changes of the volumes, viewing angles, and

illumination, respectively. The proposed algorithm is

able to successfully identify all the sub-scenes and

switch between them automatically to complete exact

registration.

(a) Camera rotate by z axis

(d) Camera rotate by z axis
(c) Camera rotate by y axis

(f) Camera rotate by y axis(e) Camera rotate by x axis

(h) Camera rotate by y axis(g) Camera transfer along x axis

(j) Camera transfer along x axis(i) Camera zoom along z axis

(l) Camera transfer along z axis

(n) Camera transfer along z axis

(k) Camera transfer along z axis

(m) Camera transfer along z axis and zoom

(b) Camera occluded

Figure 4. Tracking and register result

6.2 Registration Accuracy

We continuously track 300 frames and use RMS

errors to test the acsnrfkcfdgdcebnejy7curacy of

registration. We are especially interested in the RMS

errors under the circumstance of changes in rotations

and zooming ratio. The movement patterns of camera

are simulated by rotating along X, Y, Z axis or moving

108 Journal of Internet Technology Volume 21 (2020) No.1

from far to near the scene along the Z-axis to test the

registration accuracy. Figure 5(a-c) gives the RMS

errors of the proposed method when camera rotates

along Z-axis from 0 to 60. The purpose is to simulate

the case when users make large changes in view angles.

Figure 5(d) gives the RMS errors when camera zooms.

The purpose is to simulate the case when users move

close to or far from the scene.

Figure 5(a) shows RMS errors are less than one

pixel when the camera when the camera rotates 0-60

degrees along Z-axis. Figure 5(b) shows RMS errors

are close to 2.5 pixels when the camera 0-40 degrees

along Y-axis. Figure 5(c) shows RMS errors are close

to 2.8 pixels when the camera rotates 0-40 along the X-

axis. Figure 5(d) shows RMS errors are close to 2

pixels when moving users move close to or far from

the scene. All the above errors are below 3 pixels

which demonstrate the accuracy of the proposed

method.

0 50 100 150 200 250 300
1

2

3

4

Frame number

R
M

S
 E

rr
o

rs
(p

ix
el

s)

(a) Camera rotate 0-60° along z axis

0 50 100 150 200 250 300
1

2

3

4

Frame number

R
M

S
 E

rr
o

rs
(p

ix
el

s)

(b) Camera rotate 0-40° along y axis

0 50 100 150 200 250 300
1

2

3

4

Frame number

R
M

S
 E

rr
o

rs
(p

ix
el

s)

(c) Camera rotate 0-40° along x axis

0 50 100 150 200 250 300
1

2

3

4

Frame number

R
M

S
 E

rr
o

rs
(p

ix
el

s)

(d) Camera move along the z axis

Figure 5. RMS error for the proposed algorithm

We carry out two experiments to compare the RMS

errors obtained using the proposed feature tracking

method with other methods. The comparisons made are

(1) comparison with the Yuan’s KLT-based tracking

method and (2) comparison with the Tao’s random

classification matching method.

In the first experiment, we compared the registration

accuracy of the proposed approach with the method

given by Yuan et al. [8]. In this experiment, we

changed the camera view point angle from 0 (the

camera’s optical axis is orthogonal to the real scene) to

40 in the live video sequence. The recorded RMS

errors are shown in Figure 6(a). We can see that the

errors of the Yuan’s method deteriorate over time. This

is mainly due to the direct use of the NCC to recovery

the lost features in tracking processes, whereas our

method can always provide reasonable tracking results

since the lost patches are warped by homography to

take account of viewpoint changes between the patch’s

first observation and the current camera position. This

experiment convincingly proves the validity of the

proposed method based lost feature recovery method.

Register Based on Large Scene for Augmented Reality System 109

0 50 100 150
1

2

3

4

5

6

7

Frame Number

R
M

S
 E

rr
o

rs
(p

ix
el

s)

Yuan's algorithm

Our algorithm

(a) Our approach vs yuan’ algorithm

0 50 100 150
1

2

3

4

5

6

7

Frame Number

R
M

S
 E

rr
o

rs
(P

ix
el

s)

Tao's algorithm

Our algorithm

(b) Our approach vs Tao’ algorithm

Figure 6. Our approach vs other methods

In the second experiment, we compare our method

with the Tao’s method [26] in which a sub-map

baseline strategy is used to match features between the

current and reference frames directly. Figure 7(b) gives

the RMS errors recorded in this experiment. We can

see that our method is more stable and accurate than

the Tao’s method, which really demonstrates the

effectiveness of the proposed feature tracking method.

0 10 20 30 40 50 60 70 80 90 100
70

80

90

100

110

120

130

140

Frame number

T
ra

ck
in

g
 t

im
e

(m
s)

(a) Tracking time for matching approach

0 10 20 30 40 50 60 70 80 90 100
10

15

20

25

30

35

40

Frame number

T
ra

ck
in

g
 t

im
e

(m
s)

(b) Tracking time for optical flow approach

Figure 7. Time comparison of two approach

6.3 Timings

The second experiment is carried out to test and

verify the tracking performance of our approach by

evaluating the time-consumption for camera pose

computation. In our approach, the camera pose is

calculated by the tracked features of optical flow

algorithm. The time cost of BSRIKS algorithm or

optical flow algorithm will impact the overall

performance. The processing time of two tracking

methods are tested on continuous multi-frame images

as shown in Figure 7. As can be seen in Figure 7(a),

matching algorithm consumes time within 70ms to

140ms and in Figure 7(b), the time of optical flow

tracking method is below 40ms.

Table 1 and Table 2 show the computation time of

the various steps of the online registration process. As

can be seen from Table1, it mainly consists of the

following parts: Camera initialization and camera

registration. Table 1 shows that the average scene

recognition time is less than 70ms when the camera is

initialized. Table 2 the registration time is less than

40ms and the frame rate is up to 25f/s can meet the

requirements for real-time augmented reality

applications when camera pose are tracked online.

Table 1. Initialization time

Camera Initialization

Step Time (ms)
a

Feature points detecting(BRISK) 22.19

Scene recognition 48.65

Scene learning 01.07

Total 780.0

110 Journal of Internet Technology Volume 21 (2020) No.1

Table 2. Registration time

Camera registration

Step Time (ms)
a

Feature tracking 02.4

Pose calculating 10.3

Lost feature recovering 25.0

Total 37.7

7 Conclusion

Register for augmented reality on smartphone is a

challenging task. In this paper, several new approaches

are proposed to improve the stability of the Register

performance: a linear structured SVM classifier is used

to perform scene learning online, which allows us to

quickly adapt our model to a given environment; and

the hybrid tracking strategy is implemented by

combining both wide and narrow baseline techniques.

The proposed approaches are very efficient and

demonstrate excellent performance for large scene.

Acknowledgments

This research is supported by the National Science

and Technology major projects under Grant No.

2018YFB1802401.

References

[1] L. Y. Duan, T. Guan, B. Yang, Registration Combining Wide

and Narrow Baseline Feature Tracking Techniques for

Markerless AR Systems, Sensors, Vol. 9, No. 12, pp. 10097-

10116, December, 2009.

[2] Y. David, U. Efron, The Image Transceiver Device: Studies

of Improved Physical Design, Sensors, Vol. 8, No. 7, pp.

4350-4364, July, 2008.

[3] S. Hare, A. Saffari, P. H. S. Torr, Efficient Online Structured

Output Learning for Keypoint-Based Object Tracking, IEEE

Conference on Computer Vision and Pattern Recognition,

Providence, RI, USA, 2012, pp. 1894-1901.

[4] O. Chum, J. Matas, Matching with PROSAC- Progressive

Sample Consensus, Computer Society Conference on

Computer Vision and Pattern Recognition, San Diego, CA,

USA, 2005, pp. 220-226.

[5] M. A. Fischler, R. C. Bolles, Random Sample Consensus: A

Paradigm for Model Fitting with Applications to Image

Analysis and Automated Cartography, Communications of

the ACM, Vol. 24, No. 6, pp. 381-395, June, 1981.

[6] P. H. S. Torr, A. Zisserman, MLESAC: A New Robust

Estimator with Application to Estimating Image Geometry,

Computer Vision and Image Understanding, Vol. 78, No. 1,

pp. 138-156, April, 2000.

[7] A. Irschara, C. Zach, J.-M. Frahm, H. Bischof, From

Structure-from-motion Point Clouds to Fast Location

Recognition, IEEE Computer Society Conference on Computer

Vision and Pattern Recognition, Miami, FL, USA, 2009, pp.

2599-2606.

[8] Y. Li, N. Snavely, D. P. Huttenlocher, Location Recognition

Using Prioritized Feature Matching, European Conference on

Computer Vision, Heraklion, Crete, Greece, 2010, pp. 791-

804.

[9] D. Robertson, R. Cipolla, An Image-based System for Urban

Navigation, 15th Annual British Machine Vision Conference

(BMVC), Kingston University, London, UK, 2004, pp. 819-

828.

[10] G. Schindler, M. Brown, R. Szeliski, City-scale Location

Recognition, Computer Society Conference on Computer

Vision and Pattern Recognition (ICRA), Minneapolis, MN,

USA, 2007, pp. 1-7.

[11] L. Meier, P. Tanskanen, F. Fraundorfer, M. Pollefeys,

PIXHAWK: A System for Autonomous Flight Using Onboard

Computer Vision, 2011 IEEE International Conference on

Robotics and Automation, Shanghai, China, 2011, pp. 2992-

2997.

[12] E. Royer, M. Lhuillier, M. Dhome, J.-M. Lavest, Monocular

Vision for Mobile Robot Localization and Autonomous

Navigation, International Journal of Computer Vision, Vol.

74, No. 3, pp. 237-260, September, 2007.

[13] M. Achtelik, M. Achtelik, S. Weiss, R. Siegwart, Onboard

IMU and Monocular Vision Based Control for MAVs in

Unknown In- and Outdoor Environments, IEEE International

Conference on Robotics and Automation, Shanghai, China,

2011, pp. 3056-3063.

[14] Z. Dong, G. F. Zhang, J. Y. Jia, H. J. Bao, Keyframe-based

Real-time Camera Tracking, International Conference on

Computer Vision, Kyoto, Japan, 2009, pp. 1538-1545.

[15] G. Klein, D. Murray, Parallel Tracking and Mapping for

Small AR Workspaces, 6th IEEE and ACM International

Symposium on Mixed and Augmented Reality, Nara, Japan,

2007, pp. 225-234.

[16] D. Wagner, G. Reitmayr, A. Mulloni, T. Drummond, D.

Schmalstieg, Real-Time Detection and Tracking for

Augmented Reality on Mobile Phones, IEEE Transactions on

Visualization and Computer Graphics, Vol. 16, No. 3, pp.

355-368, May-June 2010.

[17] T. Sattler, B. Leibe, L. Kobbelt, Fast Image-based

Localization Using Direct 2d-to-3d Matching, International

Conference on Computer Vision (ICCV), Barcelona, Spain,

2011, pp. 667-674.

[18] Y. Jeong, D. Nister, D. Steedly, R. Szeliski, I.-S. Kweon,

Pushing the Envelope of Modern Methods for Bundle

Adjustment, IEEE Transactions on Pattern Analysis and

Machine Intelligence, Vol. 34, No. 8, pp. 1605-1617, August,

2012.

[19] N. Snavely, S. M. Seitz, R. Szeliski, Modeling the World

from Internet Photo Collections, International Journal of

Computer Vision, Vol. 80, No. 2, pp. 189-210, November,

2008.

[20] D. G. Lowe, Distinctive Image Features from Scale-Invariant

Keypoints, International Journal of Computer Vision, Vol. 60,

No. 2, pp. 91-110, November, 2004.

Register Based on Large Scene for Augmented Reality System 111

[21] R. O. Castle, G. Klein, D. W. Murray, Wide-area Augmented

Reality Using Camera Tracking and Mapping in Multiple

Regions, Computer Vision and Image Understanding, Vol.

115, No. 6, pp. 854-867, June, 2011.

[22] B. Williams, G. Klein, I. Reid, Real-Time SLAM

Relocalisation, 11th International Conference on Computer

Vision, Rio de Janeiro, Brazil, 2007, pp. 1-8.

[23] S. Leutenegger, M. Chli, R. Y. Siegwart, BRISK: Binary

Robust Invariant Scalable Keypoints, 2011 International

Conference on Computer Vision, Barcelona, Spain, 2011, pp.

2548-2555.

[24] D. Ta, W. Chen, N. Gelfand, K. Pulli, SURFTrac: Efficient

Tracking and Continuous Object Recognition Using Local

Feature Descriptors, IEEE Conference on Computer Vision

and Pattern Recognition, Miami, FL, USA, 2009, pp. 2937-

2944.

[25] T. Guan, C. Wang, Registration Based on Scene Recognition

and Natural Features Tracking Techniques for Wide-Area

Augmented Reality Systems, IEEE Transactions on

Multimedia, Vol. 11, No. 8, pp. 1393-1406, December, 2009.

[26] A. J. Davison, I. D. Reid, N. D. Molton, O. Stasse,

MonoSLAM: Real-Time Single Camera SLAM, IEEE

Transactions on Pattern Analysis and Machine Intelligence,

Vol. 29, No. 6, pp. 1052-1067, June, 2007.

[27] C. Arth, D. Wagner, M. Klopschitz, A. Irschara, D.

Schmalstieg, Wide Area Localization on Mobile Phones, 8th

IEEE International Symposium on Mixed and Augmented

Reality, Orlando, FL, USA, 2009, pp. 73-82.

[28] G. Klein, D. W. Murray, Improving the Agility of Keyframe-

based SLAM, 10th European Conference on Computer

Vision, Marseille, France, 2008, pp. 802-815.

[29] T. Guan, L. Duan, Y. Chen, J. Yu, Fast Scene Recognition

and Camera Relocalisation for Wide Area Augmented Reality

Systems, Sensors, Vol. 10, No. 6, pp. 6017-6043, June, 2010.

[30] T. Guan, L. Duan, J. Yu, Y. Chen, X. Zhang, Real-Time

Camera Pose Estimation for Wide-Area Augmented Reality

Applications, IEEE Computer Graphics and Applications,

Vol. 31, No. 3, pp. 56-68, May-June, 2011.

[31] T. Lee, T. Hollerer, Multithreaded Hybrid Feature Tracking

for Markerless Augmented Reality, IEEE Transactions on

Visualization and Computer Graphics, Vol. 15, No. 3, pp.

355-368, May-June, 2009.

[32] A. Alahi, R. Ortiz, P. Vandergheynst, FREAK: Fast Retina

Keypoint, IEEE Conference on Computer Vision and Pattern

Recognition, Providence, RI, USA, 2012, pp. 510-517.

[33] Z. Y. Zhang, A Flexible New Technique for Camera

Calibration, IEEE Transactions on Pattern Analysis and

Machine Intelligence, Vol. 22, No. 11, pp. 1330-1334,

November, 2000.

[34] B. Delabarre, E. Marchand, Camera Localization Using

Mutual Information-based Multiplane Tracking, IEEE

International Conference on Intelligent Robots and Systems,

Tokyo, Japan, 2013, pp. 1620-1625.

[35] H. Bay, A. Ess, T. Tuytelaars, L. V. Gool, Speeded-up Robust

Features (SURF), Computer Vision and Image Understanding,

Vol. 110, No. 3, pp. 346-359, June, 2008.

[36] E. Rosten, T. Drummond, Machine Learning for High-speed

Corner Detection, European Conference on Computer Vision,

Graz, Austria, 2006, pp. 430-443.

[37] E. Rublee, V. Rabaud, K. Konolige, G. Bradski, ORB: An

Efficient Alternative to SIFT or SURF, International

Conference on Computer Vision, Barcelona, Spain, 2011, pp.

2564-2571.

[38] M. Calonder, V. Lepetit, C. Strecha, P. Fua, Brief: Binary

Robust Independent Elementary Features, European Conference

on Computer Vision, Heraklion, Crete, Greece, 2010, pp. 778-

792.

[39] Z. Gui, Register Based on Efficient Scene Learning and

Keypoint Matching for Augmented Reality System, IEEE

International Conference on Image, Vision and Computing,

Portsmouth, UK, 2016, pp. 79-85.

[40] I. Tsochantaridis, T. Joachims, T. Hofmann, Y. Altun, Large

Margin Methods for Structured and Interdependent Output

Variables, Journal of Machine Learning Research, Vol. 6, No.

5, pp. 1453-1484, September, 2005.

[41] C. Lu, G. Hager, E. Mjolsness, Fast and Globally Convergent

Pose Estimation from Video Images, IEEE Transactions on

Pattern Analysis and Machine Intelligence, Vol. 22, No. 6, pp.

610-622, June, 2000.

[42] G. Medioni, S. B. Kang, Emerging Topics in Computer Vision,

Prentice Hall, 2004.

[43] P. Weinzaepfel, J. Revaud, Z. Harchaoui, C. Schmid,

DeepFlow: Large Displacement Optical Flow with Deep

Matching, IEEE International Conference on Computer

Vision, Sydney, NSW, Australia, 2013, pp. 1385-1392.

[44] L. Duan, T. Guan, Y. Luo, Wide Area Registration on

Camera Phones for Mobile Augmented Reality Applications,

Sensor Review, Vol. 33, No. 3, pp. 209-219, June, 2013.

[45] M. L. Yuan, S. K. Ong, A. Y. C. Nee, Registration Using

Natural Features for Augmented Reality Systems, IEEE

Transactions on Visualization and Computer Graphics, Vol.

12, No. 4, pp. 569-580, July-August, 2006.

Biography

Zhen-Wen Gui receieved the B.S. at

Hunan University of Science and

Technology of China, Xiangtan,

China, the M.S at Wuhan University

of Technology of China, Wuhan,

China and Ph.D. at Beijing Institute of

Technology, Beijing, China. He is

currently with Department of

Information System, China Electronics Technology

Group Corporation NO. 7 Research Institute, China.

His research interest spans Digital Image Processing,

Computer Vision.

112 Journal of Internet Technology Volume 21 (2020) No.1

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (Adobe RGB \0501998\051)
 /CalCMYKProfile (Japan Color 2001 Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHT <FEFF005b683964da300c9ad86a94002851fa8840002b89d27dda0029300d005d0020005b683964da300c8f3851fa0033003000300064002851fa88400029300d005d00204f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks true
 /AddPageInfo false
 /AddRegMarks false
 /BleedOffset [
 8.503940
 8.503940
 8.503940
 8.503940
]
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MarksOffset 9.354330
 /MarksWeight 0.141730
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed true
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

