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Abstract 

Register is steadily gaining in importance due to the 

drive from various computer vision applications, such as 

augmented reality (AR), mobile computing, and human-

machine interface. Efficient keypoint-based approachs 

are widely used in scene register. These approaches often 

model a scene as a collection of keypoints and associated 

descriptors, and then construct a set of correspondences 

between scene and image keypoints via descriptor 

matching. Finally, these correspondences are used as 

input to a robust geometric estimation algorithm such as 

RANSAC to find the transformation of the scene in the 

image. This paper focuses on designing a robust and 

flexible registration method for wide-area augmented 

reality applications. Firstly, we propose to partition the 

whole scene into several sub-maps according to the user’s 

preference or the requirements of the AR applications 

instead of building a global map of the wide-area scene. 

Secondly a linear structured SVM classifier is used to 

perform scene learning online, which allows us to quickly 

adapt our model to a given environment. Finally, a hybrid 

tracking strategy is implemented by combining both wide 

and narrow baseline techniques. Some experiments have 

been conducted to demonstrate the validity of our 

methods. 

Keywords: Augmented reality, Wide-area registration, 

Scene recognition 

1 Introduction 

Augmented reality (AR) is to add virtual objects to 

real environments, allowing computer-generated 3-D 

graphics or 2-D information to be overlaid on the real 

world in such a manner as to enhance people’s 

understanding of the real word [1-2]. Registration 

between real and synthetic worlds is one of the major 

technological issues in order to create AR systems. As 

the user moves his/her head or viewpoint, the virtual 

objects must be properly aligned with the objects in the 

real world, or the coexistence of the virtual world and 

the real world will be compromised.  

Keypoint-based method for scene register has 

become a cornerstone of modern computer vision, 

enabling great advances in areas such as AR and 

simultaneous localization and mapping (SLAM) [3]. 

These register approaches model an object as a set of 

keypoints which are matched independently in an input 

image. Robust estimation procedures based on 

RANSAC [4-6] are then used to determine 

geometrically consistent sets of matches which can be 

used to infer the presence and transformation of the 

scene. 

The applications of keypoint-based include location 

recognition [7-10], autonomous robot navigation [11-

13] and augmented reality [14-16]. Broadly speaking, 

there are two prevalent approaches that have been used 

to achieve registration for AR. The first addresses 

SLAM method, where the camera is localized within 

an unknown scene. The second method use the 

knowledge of a prior map or 3D scene model. Several 

recent methods fall in the second method [7-8, 14, 17]. 

And this renewed interest has been sparked by progress 

in structure from motion (SFM) [18-19], which makes 

it possible to easily reconstruct large scenes in great 

detail.  

Despite the scalability of recent approaches [7-8, 17], 

real-time keypoint-based register in large environments 

remains a challenging problem. As the scene gets 

larger, recognizing unique identifiable landmarks 

becomes more challenging. In [7-8, 17], this difficulty 

is overcome by using sophisticated image features such 

as SIFT [20]. But these are too expensive to compute 

in real-time. On the other hand, some visual SLAM [15, 

21-22] systems are real time, but their performance 

degrades in larger scenes, where map maintenance 

becomes progressively expensive. These techniques 

are also fragile if the camera moves too quickly, which 

makes them less attractive for persistently computing a 

precise camera pose over longer durations.  

In this paper, we propose a new approach for 

continuously register within wide area. Our algorithm 

is real-time and runs over long periods with low 

fluctuations in the frame-rate by avoiding the need for 

scale-invariant keypoints on running. This is a key 

distinction from prior approaches [7-10], which rely on 

the scale-invariance of SIFT [20]. Keypoints (Binary 

robust invariant scalable keypoints) [23] from one 

frame are tracked in the consecutive frame by optical 

flow tracker, and are recovered by matching to 
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candidate keypoints within a local search neighborhood 

[24] in the next frame when they are lost.However, 

matching features across different scales are important 

for reliable 2D-to-3D matching, and we address this 

requirement by computing redundant descriptors 

during offline processing.  

In this paper, we propose to employ a unified 

framework for scene register such that overall 

detection performance can be optimized given a set of 

training images. Furthermore, because the linear 

structured SVM is used to perform learning which 

allows us to quickly adapt our model to a given 

environment. As a result, our algorithm maintained a 

good robustness and stability. 

2 Related Work 

SLAM and online SFM are two kinds of prevalent 

techniques that have been used to achieve wide-area 

registration for AR [25]. Visual SLAM systems have 

recently been used for realtime AR [26], by utilizing 

parallel threads for tracking and mapping (PTAM) [15], 

using multiple local maps [21] and performing fast 

relocalization through random ferns [22]. However, 

these approaches are susceptible to the problem of drift 

and error accumulation in the pose estimate, and 

existing solutions for fast relocalization do not scale to 

larger scenes. SFM is used to estimate 3D coordinates 

for the landmarks in recent work [7-8, 17]. The 

approaches scale well and some variants by 

introducing the GPU [7]. However, these methods 

address only the single-image registration problem, and 

are not fast enough for real-time registration from 

video. 

Real-time registration approaches for AR on smart 

vehicles have also been recently proposed [16, 21, 27]. 

However, these approaches derive their speedup from 

tracking relatively fewer features which make them 

less suitable for continuous 6-DOF localization in 

larger scenes or over longer durations. An efficient 

approach for tracking and registration in video was 

proposed in [15, 28] employ online SFM to get denser 

and larger maps to improve tracking quality. The 

tracking techniques attempt to construct a global 3-D 

map that covers the whole observed scene to realize 

camera tracking in wide-area environments. However, 

a global map is often not getable due to the complexity 

of natural scene or the immaturity of mapping 

techniques.  

Some research has been carried on scene learning 

and recognition problems for AR applications [29-31]. 

Lee and Hollerer [31] proposed to solve the online 

scene recognition problem by matching SIFT features 

between input frame and previously stored features 

directly. The scene has the maximum number of 

matched features among all scenes which is returned as 

the recognition result if the number of matched 

features exceeds a certain threshold. Klein and Murray 

[15, 28] proposed to facilitate the scene recognition 

processes by using keyframes. Each keyframe is 

represented by a descriptor which will be compared to 

the input frame’s descriptor by using NCC to find the 

closest match to assistant the scene recognition 

processes. Experimental results indicate that the 

methods can deal with hundreds of keyframes in real-

time. However, this is not enough to meet the 

requirement of our research since our system may 

contain thousands or even tens of thousands of 

keyframes. In our research, we proposed to deal with 

scene learning problem by using SVM classifiers. Each 

scene is represented by a predefined numbers of 3D 

points and local binary features detected from the ten 

keyframes. These local features will be used to train 

the multi-index table built in advance for online scene 

recognition. In this paper, we demonstrate that the 

tasks can be separated as individual threads to further 

improve tracking performance on scene learning and 

camera tracking.  

3 Natural Features Detecting and Matching 

This section introduces the natural features detecting 

and matching methods used in our system. In 2011, the 

BRISK [23] are found to be eminently suitable for low-

power device because of its feature detection speed and 

memory efficiency. They are been chose for real-time 

AR systems in general. 

Nearest neighbor (NN) search on binary codes has 

been widely applied in image recognition [24, 32], 

local features matching [33-34] and parameter 

estimation [35] recently. There has been growing 

interest in mapping image data onto compact binary 

codes for fast near neighbor search in scene 

recognition [32, 34, 36]. Because binary codes 

comparisons require just a small number of machine 

instructions; millions of binary codes can be compared 

to a query in less than a second. But the most 

compelling reason for binary codes which are used as 

direct indices (addresses) into a hash table, yielding a 

dramatic increase in search speed compared to an 

exhaustive linear scan as shown in [37]. In practice, 

using binary codes as hash indices is not necessarily 

efficient. To find near neighbors one needs to examine 

all hash table entries (or buckets) within some 

Hamming ball around the query. And the number of 

such buckets grows near-exponentially with the search 

radius. Later, in order to improve the search speed 

compared to linear scan, many researchers like Greene 

et. Al [37] and Mohammad et al. [38], who present an 

algorithm to search exact K-nearest neighbor on binary 

codes and implement a form of multi-index hashing, in 

which binary codes from the database are indexed m 

times into m different hash tables. Given a query code, 

entries that fall close to the query in at least one such 

substring are considered to be the neighbor candidates, 

which are then checked for validity using the entire 
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binary code to remove any non-r-neighbors presented 

in [38]. While promising, there are some disadvantages: 

The first one is large computational cost. Because the 

searching algorithm will be expensive to examine all 

buckets within r bits of a query even if the vast 

majority of the buckets in a full hash table will be 

empty with n binary codes of b bits by using their 

algorithm to build hash table, since 2b
n� . The 

second disadvantage is the complexity of algorithm. 

Because it is not all items in the merged buckets that 

are r-neighbors of the query. As in actual query, it 

becomes complex when searching algorithm need to 

cull any candidate that is not a true r-neighbor. The 

final disadvantage is memory efficiency. The same 

binary codes are indexed m times into m different hash 

tables based on m disjoint binary substrings and have 

been stored repeatedly in hash table.  

By considering the above-mentioned discussions, 

this paper focuses on the searching efficiency and 

scalability of binary code indexed when it runs on the 

smartphone. Firstly the binary ordinal is used as the 

index node to create multi-level index and sub-vector 

numbers (1, 2, ···, c) which are used as the keywords 

for inverted list as shown in Figure 1. Different from 

[39], this matching algorithm means that the retraining 

of the entire sampling descriptors are not needed when 

the number of the sampling images increase and only 

the training of the sub-vectors of the descriptors 

dynamically inserted to the corresponding list without 

changing the index. Finally, the index is used for the 

cluster center and radius R is used as the hamming 

threshold of the sub-vectors so as to all the sub-vectors 

of image descriptors are assigned to the corresponding 

linked list. Detailed steps are: 

(1) Calculate hamming distances between the sub-

vectors and the cluster center. 

(2) When the hamming distance is less than or equal 

to the threshold R, descriptor ID and image ID of sub-

vector are inserted into the inverted list according to 

the serial number of sub-vectors. 

 

Figure 1. Ordinal multi-index list 

In order to avoid search in the whole sampling 

datasets, the binary descriptor vector E is divided into c 

disjoint sub-vectors and the linking of these sub-

vectors in sequence will form the original vector E. If 

the binary descriptor vector E comprising s bits is 

partitioned into n disjoints sub-vectors 
1 2
, , ,

n
E E E� , 

each sub-vector length is s

n

⎢ ⎥
⎣ ⎦  or s

n

⎡ ⎤
⎢ ⎥bits. Based on the 

proposition in [39], if two binary descriptor vectors A 

and B differ by r bits or less, at least one of their n sub-

vectors must differ by at most r

n

⎡ ⎤
⎢ ⎥  bits, i.e. when 

H
A B r− ≤ , there exists a sub-vector i, 1 ,i m≤ ≤  as 

follows:  

 i i
H

r
A B

n

⎢ ⎥
⊕ ≤ ⎢ ⎥⎣ ⎦

 (1) 

Proof of (1) follows straightforwardly from the 

Pigeonhole Principle. If Hamming distance between 

each of the m substrings is strictly greater than r

n

⎢ ⎥
⎣ ⎦ , 

then 
H

A B−  must be larger than r and vice versa. 

The significance of (1) arises from the fact that the 

sub-vector has only s
n

 bits, and the required search 

radius in each substring will reduce to r

n

⎢ ⎥
⎣ ⎦ . For 

example, if A and B differ by 5 bits or less and n = 6, 

then at least one of the 5 sub-vectors must be identical. 

If they differ by at most 9 bits, they will differ by no 

more than 1 bit in at least one sub-vector, which means 
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that when searching a Hamming radius of 9 bits only a 

radius of 1 bit on each of 6 sub-vectors is searched. 

More generally, instead of examining L (s, r) ordinal 

tables, it suffices to examine ( ),
s rL
n n

⎢ ⎥
⎣ ⎦

index nodes 

in each of n sub-vector ordinal tables. 

One ordinal table is built for each of the n sub-

vectors of the binary descriptors in a given dataset. For 

a query Q with sub-vectors{ }
1

n

i i
Q

=

, the ith sub-vector 

ordinal table for index entries that are within a 

Hamming distance r

n

⎢ ⎥
⎣ ⎦  to Qi is searched, thereby 

image and feature id is retrieved as a set of candidates 

which are denoted as Ti(Q). According to the above-

mentioned proposition, the union operation on the n 

sets T(Q) = UiTi(Q) is used to obtain the nearest 

neighboring descriptor set of Q. The last step of the 

algorithm is to compute the Hamming distance 

between Q and each candidate in T(Q), and retain the 

top 50 sample descriptors of the shortest distance 

which satisfy the hamming distance threshold. 

4 Scene Building and Training  

Many steps including scene reconstruction and 

reference image detection are completed in the offline 

stage which is foundation of the online registration 

process. This stage includes: a set of images are 

required to select by capturing from a different 

perspective views. These images are called key-frame 

which recording a variety of important known 

information for scenes. As shown in Figure 2, ten 

different perspective views are selected as a set of key 

frames.  

 

Figure 2. 3D scene reconstruction 

4.1 Scene Building 

Before scene reconstruction, internal parameters of 

the camera need to be calibrated. Zhang [33] have 

proposed a calibration method which is widely applied 

in teaching and research region because it relatively 

easy to implement and has fewer restrictions by the 

environment. And the popular OPENCV (Open source 

computer vision library) is developed by Intel which 

includes the Zhang’s method as the primarily 

calibration method. So, the Zhang’s method is also 

used in this paper and the camera’s internal parameters 

are kept unchanging for subsequent registration in the 

online tracking. 

In this paper, the SFM algorithm is used to 

reconstruct three-dimensional structure of the scene as 

in [34] and capture 10 key-frames at different view 

point for every scene, as shown in Figure 3. The 

inherent difficulty in extracting suitable features from 

an image lies in balancing two competing goals: high 

quality description and low computation. BRISK 

algorithm [23] has a significant speed advantage in the 

key-point detection, description and matching as well 

as scale invariant to a significant extent which achieves 

high quality performance comparable to the state-of-

the-art algorithms while dramatically reducing 

computational cost. So this approach can be applied to 

the object recognition and matching, 3D scene 

reconstruction and motion tracking in particular for 

tasks with hard real-time constraints or limited 

computation power. 



Register Based on Large Scene for Augmented Reality System 103 

 

 

Figure 3. 2D-3D map table 

Scene building is to get the data (key-frames and 3D 

features) that will be used in key-frames learning and 

real time registration. We use the camera phone to get 

the video of the scene in which virtual objects will be 

augmented, and then build the structure of this scene 

on a PC by using key-frames based SFM technique. 

Once the recognized scene structure is loaded, the next 

step is to initialize the camera for tracking use. 

4.2 2D-3D Mapping Table Construction 

Before feature tracking, the 2D-3D mapping table 

needs to be constructed in order that the 3D points of 

scene are fast found by the corresponding 2D features 

of key-frame on the same scene. And each 3D point 

may be corresponding to multiple 2D features on key-

frames, so the mapping table only stores key-frame ID, 

3D points and the corresponding 2D pointer in order to 

reduce memory in practical applications, such as 

Figure 3. 

As illustrated in Figure 4, when the image ID and 

the two-dimensional (2D) feature sequence of image 

are known, the storage location of three-dimensional 

points can be obtained. So the three-dimensional point 

information including space coordinate, weights which 

can be accessed by the three-dimensional point 

location. The weights of 3D point will be obtained by 

SVM training in the next section. The 2D feature 

includes a two-dimensional coordinates in the image 

and a bit-string descriptor of length 512. After the 

mapping table has been established, all three-

dimensional points and their corresponding feature 

descriptors are saved in files for online registration. 

4.3 Training 3D Point Weights  

In order to calculate the correct transformation 

between scene model and the current image, the 

correspondence of 2D feature and matching 3D points 

need to be ensured precision. The larger correct 

matching pairs, the more accurate the transformation 

between scene model and the current image. The 

common methods are used to choose the optimal 

transformation matrix P by calculating the highest 

score or counting max number of matching points to 

match up the transformation matrix as in (2). If these 

methods are directly used to implement, they are may 

be unfeasible for smartphones because all related 

transformation matrix is calculated with expensive 

computational cost. In this paper, firstly the 3D points 

are set an initial weights to calculate the highest score 

of transformation matrix. Secondly, the cycle times are 

set like PROSAC approach when the scoring values do 

not increase as the termination condition. This method 

avoid computing scores for all transformation matrix 

[40]. The detail implementation as equation (3), (4), (5), 

(6), { }1 2
, ...,

k
I x x x=  is provided for the 2D point 

coordinate of the image, { }1 2
, ...,

k
D d d d=  is the 

corresponding descriptors, { }1 2
, ...,

k
M x x x=  is the 

3D points, ( ){ }, , | , ,j k jk j k jkC X x s X M x I s R= ∈ ∈ ∈  

is the matching set for 2D points and 3D points, Sjk is 

their matching score, R is the set of scores.  

 '

( , , ')argmax
P T

P S M I P
∈

=

 
(2)

 

Where M represents a scene model, I represents the 

scene image, 'P  is a transformation matrix between 

scene model and the image, T represents a collection of 

all the transformation matrices, S represents the score 

function, P represents the transformation matrix of the 

maximum value.  

 

2

( , )

( , ) (|| ( ) || )
j k

k j

X x C

S C P E x P X τ

∈

= − <∑
 

(3)
 

2

( , )

( , ) (|| ( ) || ) , ( , )
j k

w k j

X x C

S C P E x P X w L C Pτ

∈

= − < =< >∑  (4) 

2
( , ) :|| ( ) ||

( , )
0 otherwise

k j k k j

j

d X x C x P X
L C P

τ∃ ∈ − <⎧ ⎫
= ⎨ ⎬
⎩ ⎭

 (5) 
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1 2
( , ) [ ( , ), ( , ) , ( , )] L (1 )T

J j
L C P L C P L C P L C P j J= ≤ ≤…

 
                                                                                    (6) 

Where 
1 2

[ , , ]
T

J
w w w w= …  represent a collection of 

weight for the 3D point and P is chosen as best 

projection matrix when his score is maximum. The 10 

sample images are acquired to learn, the more 

prominent points, the higher the performance of the set 

weights. L(C, P) consists of a set of feature descriptors 

corresponding to 3D points. 

The weights w of 3D point are obtained by training 

the samples { }
1

( , )
N

i i i
I P

=

 as in [42]. They are used to 

distinguish the real transformation matrix Pi and the 

other alternative matrices by maximizing the score of 

these matrices as in (7).  

 2

1
,

|| ||min
2

N

i i

w

w

ξ

λ
ξ

=

+∑  (7) 

 i, P P : ( ) ( , )i

i w i i
S P P Pδ ξ∀ ∀ ≠ ≥ Δ −   

( ) ( , ) ( , )i

w w i w i i
S P S C P S C Pδ = −  

(8)
 

Where λ  is balance factor, which keep the trade-off 

of the training accuracy and weight vector 

regularization. ( , )
i
P PΔ  is the loss function which is 

used punish wrong choice P in place of Pi as (14) by 

using the difference of the matching points between the 

projection matrix P and Pi to pay penalties. 

 ( , ') | ( , ) ( , ') |
I
P P S C T S C TΔ = −  (9) 

5 Online Learning and Tracking 

The online ultimate goal is to achieve registration 

for tracking scenes. On this stage, we firstly need to 

load scene structure, mapping table, key-frame 

descriptors into memory that have been completed on 

offline stage. If these have already in memory, we 

would not have loaded. The main processes are 

described as follows: 

Step (1) Get the current image, detect feature and 

describe the image; 

Step (2) Recognize scene by searching multi-index 

list; 

Step (3) Calculate the initial camera pose. When the 

current scene is identified, online learning is run to 

establish the corresponding relationship between image 

2D points and scene 3D points for computing the initial 

pose matrix of the camera; 

Step (4) Track the feature points of the subsequent 

frame by optical flow method. Online learning is still 

continued to carry out for the current image which 

establish the correspondence between the image 2D 

point and scene 3D point for the subsequent frame. So 

as to compute the current camera pose relative to initial 

position; 

Step (5) Build registration matrix by assembling two 

pose matrix;  

Step (6) Restore the lost feature or restart the scene 

recognition, when the number of tracking feature 

points is less than a threshold value. 

5.1 Acquiring Current Images  

The current images are obtained by an external 

camera and preprocessed to 320 240∗  grayscale 

images and 320 240∗  RGB images simultaneously. 

The grayscale images are used for scene recognition 

and registration. The RGB images are used to overlay 

virtual objects. The BRISK algorithm is run to extract 

features of the current image using the OpenCV2.4.7 

library. 

5.2 Scene Recognition 

We now turn to the online recognition problems 

with the above modified matching method. The 

features are firstly extracted from the current frame. 

Then all features are rotated according to the 

orientations of BRISK descriptors to resist camera 

rotations and smoothed by Gaussian filter which 

reduce the influence of image noise. The transformed 

features are compared with each feature from the 

sample images to find candidate matching features 

based on Hamming distance of their feature vectors. A 

scene is identified by considering the sum of the 

matching points (subject to a threshold) between the 

current frame features { }1 2
, , ,

N
f f f�  and the sample 

image features { }1 2
, , ,

M
e e e� . The image with the 

maximum matching points in the sample library is 

selected to decide the scene category corresponding to 

current frame. The matching points of sample images L 

are counted as (10): 

{ }1 2

1 1

( , , , ) arg max ,
M N

N l i j

i j

class f f f pairs e f
= =

= < >∑∑�

 
1, ,l L= �  

(10)
 

5.3 Scene Learning 

In the tracking process, the algorithm of online 

scene learning is performed to update w weights to 

adapt to the changing environment. The main steps of 

the online learning process can be summed up as 

follows: 

Firstly, the method of Section 4 is used to match the 

detected BRISK features between an active frame and 

previously stored features. The similar key frame is 

identified according to the matching points.  

Secondly, we look up 2D- 3D mapping table to 

obtain the correspondence between the 3D point of the 

scene and the features of the current image according 

to relative information of the scene and the key frame;  

Thirdly, the RANSAC algorithm is performed to 

remove the mismatching points for the current image 
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and the key frame. With the obtained RANSAC 

intermediate results, we calculate the score as Section 4 

and select the matching point pairs with the maximum 

matching score to compute the three-dimensional 

registration matrix;  

Finally, the weight w is subsequently updated to 

adapt to environmental changes. The weight updating 

algorithm [42] is applied to renew the w for each 3D 

point of the scene by computing a transform matrix 

between the current image and the 3D scene, With the 

transform matrix computed, we choose two 

transformation matrices with the highest score and the 

second highest, and use these scores to update the 

weights w, given as follows. 

{ }1 (1 ) ( ( , ) ( ) 0)max
t

t t i t

j t j t w t j
P P

w w E P P S Pη λ δ η α+

≠

← − + Δ − >

{ }*

'

'

( ) ( 1 , 0)max
t

j t j k k t j
k k

E u C E w d d vη β
≠

+ ∈ − < − >  (11)  

 �( , ) ( , )t

j j t t j t
L C P L C Pα = −  (12)  

 
�

t

j k k
d dβ = −  (13) 

 � { }( , ) ( )arg max
i

i

i w

P P

P P P S Pδ
≠

= Δ −  (14) 

 � { }
'

'

1 ,arg max j k k
k k

k w d d
≠

= − < − >  (15) 

where j is 3D point number and t is the current 

frame number. t

j
w  is the weight of the feature j for the 

current frame and 1t

j
w

+  is the weight for the next frame. 

Pt represents the transformation matrix with the highest 

score for the current frame . 1/
t

tη λ=  is the step size 

and λ  is balance factor which is used to weigh training 

accuracy and weight vector regularization.  

If the weight calculated algorithm [42] is directly 

used to update the weight w, all present transform 

matrices need to be computed to select the two 

matrices with the highest score and the second highest 

value for the current frame, which produce heavy 

computation.  

In this paper, the algorithm is improved to reduce 

the computation cost for scoring by using the 

intermediate results of the RANSAC algorithm to 

calculate the maximum score and the second maximum 

score for updating w. The maximum score is 

approximately computed by the inliers and 3D points 

after the RANSAC algorithm performed as in (4). The 

second maximum score is obtained by the intermediate 

second largest value which is less than the approximate 

maximum score. 

5.4 Pose Estimating 

With the obtained mapping relationship for the 

current image features mt and the 3D points Mt of 

corresponding scene , the internal parameters K of the 

camera K is known, we compute a more robust and 

stable camera pose [ | ]T R t=  by using PNP [41] 

algorithm, as follows:  

 [ | ]
t t

m K R t Mλ=  (16) 

Where R represents the rotation matrix, t is the 

translation matrix. Tukey M-estimation [42] algorithm 

is used to calculate the camera pose so as to improve 

the accuracy of parameter estimation and strengthen 

tolerance for error matching. The general M-estimator 

minimizes the residual 
1

min ( )
n

i
T

i

rρ

=

∑  for error function 

to obtain the optimal estimator of parameters. Where 

σ  is the Tukey biweight objective function which can 

be computed as: 

 

2

2 3

2

| | , ( ) [1 (1 ( ) ) ]
6 6

| | , ( )
6

c x
if x c x

c
if x c x

σ

σ

⎧ ⎫
≤ = − −⎪ ⎪⎪ ⎪

⎨ ⎬
⎪ ⎪> =
⎪ ⎪⎩ ⎭

　　　　　　　

 (17) 

Where c is the standard deviation derived from all 

the residuals. The pose matrix T can be calculated by 

the iterative optimization method. 

5.5 Augmented Display 

Registration between real and synthetic worlds is 

one of the major technological issues in order to create 

AR systems. As the user moves his/her head or 

viewpoint, the virtual objects must be properly aligned 

with the objects in the real world, or the coexistence of 

the virtual world and the real world will be 

compromised. In order to achieve the accurate overlay 

for virtual objects, we need to obtain the 

transformation matrix Tcp between the current camera 

coordinate and the world coordinate. The 

transformation matrix Tcp can be obtained as 

 cp ck kpT T T= •  (18) 

Where Tck as the initial registration matrix between 

original camera coordinate and the world coordinate, 

Tkp is the transformation matrix between current 

camera position and the initial camera position.  

With the obtained registration matrix, you can use 

OpenGL (Open Graphics Library) to achieve mapping 

for virtual objects to the surrounding environments 

which are superimposed onto the correct position.   

5.6 Feature Tracking 

In augmented reality registration process, if each 

pose computation needs to detect, describe and match 

points which spend a large of memory and time 

making the performance of algorithm deterioration. 

However, in practical applications, the user move 

relatively gentle and do not abruptly or violently shake 
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of the camera or move significantly the camera in a 

scene, so the pose change is very little between 

adjacent frames. The positions of the points are 

continuity between adjacent frames which can be 

efficiently estimated in the next frame and be used to 

quickly calculate the pose of the camera. The optical 

flow algorithm is used to predict the position for 

features between consecutive frames in this augmented 

reality system which improves the speed for feature 

tracking and reduce the time for repeatedly detecting 

and matching feature. 

When the initialization has been done, the optical 

flow tracker is used to track features between 

consecutive frames, and then correspondence between 

feature points 
1t

x
+

 with the 3D points 
1t

X
+

 is 

established, finally the PNP algorithm is applied to 

calculate the camera pose. 

Optical flow algorithm [43] uses temporal changes 

of pixel intensities in the sequence images and the 

correlation in the image sequences to determine the 

movement for pixel point, which based on the 

following assumptions: constant brightness between 

adjacent frames, small movement for object between 

adjacent frames. We use optical flow algorithm to 

calculate the movement for feature pixel point, given 

as follows:  

 ( , , ) ( , , )I x y t I x dx y dy t dy= + + +  (19) 

( , , )I x y t  represents time t with the gray value of the 

pixel ( , ).x y The Taylor series expansion as in 

followings:  

( , , ) ( , , )
I I I

I x dx y dy t dy I x y t dx dy dt
x y t

∂ ∂ ∂
+ + + = + + +

∂ ∂ ∂
  

(20) 

Experimental results show that only a few dozen 

milliseconds are spend to calculate the feature point 

coordinates between adjacent frames by using optical 

flow algorithm. However, optical flow tracker suffered 

from losing features. This is especially true in the case 

of features going out of the field of view or occluded 

by users and some scene objects. Thus, the valid 

matches will become less and less during tracking 

process, which will finally result in the failure of 

registration. 

In this paper, we firstly set the threshold T1 to ensure 

the registration validity (herein T1 is set to 30). When 

the tracking points are less than T1 for the current 

frame, we need to restart extracting and matching 

features. If it is the failure for matching between the 

three consecutive frames and sample images, the user 

maybe has left the current scene into a new scene, so 

we will need to re-shoot key frames of a new scene for 

reconstruction. Secondly, we set the threshold T2 to 

ensure the registration accuracy (herein T2 is set to 40). 

If the number of tracking points of optical flow are less 

than T2 (herein T2 is set to 40), the following operations 

are performed to recover the lost features. 

5.7 Lost Features Recovering 

Optical flow algorithm is prone to produce drift 

problem when the camera moving for a long time that 

the tracking points become less and less. In order to 

ensure the accuracy of the registration, we perform the 

operation for lost features recovering when the tracking 

points are less than T2. Duan [44] propose an approach 

to recover lost features by using the homography 

between the current and reference keyframes. The 

approach is firstly perform the image recognition to 

select three key frames belonging to of the same scene 

with the highest matching score, and secondly 

calculate the homography between three keyframes 

and the current frame, and then predict the position of 

lost features in the current frame by the homography, 

finally use the SSD (Sum of squared difference) 

method to find the matching features within ± 20 

pixels surrounding the predicted position to recover the 

lost features. 

The experiments [44] show that the approach can 

recover the feature points accurately, but also it 

introduces the amount of computation to perform re-

image recognition, which influence the real-time 

performance for registration. Guan [26] proposes a 

method by using single keyframe and the projection 

matrix to recover lost features. To recover the lost 

features, the method firstly computes the candidate 

positions of the lost features on the current image using 

the calculated projection matrix. Then the patches of 

the lost features on the reference keyframes are 

transformed using the homography between the current 

and reference keyframes. Finally the correlation 

operations are performed with the features detected 

within 10±  pixels surrounding the reprojection to 

recover the lost features. The recovered feature is the 

point that has the maximal NCC (normalized cross-

correlation) score with the transformed patch on the 

reference image. The experiments [26] show that the 

method can recover the lost feature rapidly, but the 

NCC method itself is sensitive to illumination changes, 

partial occlusion or deformation and has poor 

robustness. 

Therefore, in order to quickly recover the lost 

feature of the current frame, we use BRISK features to 

describe lost features producing lower computation 

cost. BRISK features can also improve the robustness 

of the recovery features to the environment which is 

invariance to light and rotation. At the same time, we 

do not perform image recognition in addition to the 

tracking failure on whole process. 

The tracked points are firstly applied to compute the 

homography c

k
H  between the current and reference 

key frames as in (21). Where ( , ,1)
k k
x y  is a feature of 

the keyframe and ( , ,1)
c c
x y  is a feature for the current 

frame, the positions of the lost features are estimated in 
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the current frame by the homography c

k
H . For example 

given the feature f in the keyframes, ( , ,1)
x y
f f is its 2D 

position which is lost in the current frame so that 

position are predicted to ' '( , ,1)
x y
f f  in the current 

frame by the homography c

k
H . Secondly the BRISK 

features are extracted within 10±  pixels surrounding 

the ' '( , ,1)
x y
f f  in the current frame. Then the detected 

feature points from the current image are matched with 

predicted feature. Finally, if selected feature point 
min
f  

is the nearest distance to f than the other features 

within 10±  pixels surrounding the f, the points will be 

recovered otherwise lost.  

 

1 1

c k

c

c k k

x x

y H y

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥=⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

 (21) 

When the number of lost feature is larger, the 

recovery time is longer. In order to ensure real-time 

performance for registration algorithm, the maximal 

number of lost features is set. When the number 

reaches the maximal value (herein it is set to 80) we is 

no longer to recover lost features and continue to 

perform optical flow algorithm to track consecutive 

frames. 

6 Experiments and Results 

The proposed algorithm is implemented on 

smartphone with1.7GHz processor and 2G RAM. The 

software is written in JAVA and NDK C++ on 

Android 4.1 operating system with MicroSD (32G).  

Experimental dataset include five scenes in 

UKBENCH dataset and eight outdoor scenes shot on 

campuses altogether 13 scenes, and the resolution of 

video frames are set to320 240∗ . BRISK [23] algorithms 

are used to detect feature points and generate 

descriptors respectively, and then the descriptors are 

trained and stored to construct multi-index searching 

engine. 

The number of features are detected and limited to 

not more than 400 in sample images. The virtual 3D 

model, 3DS MAX is used to render virtual objects and 

export OBJ file format to three-dimensional model. In 

experiment, the proposed algorithm is tested including 

register result, tracking accuracy and speed. Tracking 

accuracy is measured by the RMS (root mean square) 

errors (the square root of difference of actual pixel 

coordinates and the coordinates of the predicted point) 

[45]; tracking speed is measured by frame rate (frames 

can be handled per second). 

RMS error by is calculated as follows: 

 2|| ||
j j

j

RMS PX x= −∑  (22) 

Wherein, 
j

x represents a 2D feature positions on a 

frame, 
j

X  means the corresponding 3D position of the 

point 
j

x , P indicates pose matrix of the camera 

corresponding to current frame. 

6.1 Registration Result 

The first experiment is taken to demonstrate the 

robustness of the proposed algorithm in different 

perspectives, different distances and different lighting 

conditions. As can be seen from Figure 4(a)-(f), under 

different natural environment, even in the dark part of 

the scene illumination or camera rotate along different 

axes, the proposed algorithm can be accurately 

complete the registration in real time. Left part of 

Figure 4 shows registration result of the campus scene, 

the right part shows registration result on scene of 

UKBENCH library. Figure 4(g)-(n) gives the results 

with changes of the volumes, viewing angles, and 

illumination, respectively. The proposed algorithm is 

able to successfully identify all the sub-scenes and 

switch between them automatically to complete exact 

registration. 

(a) Camera rotate by z axis

(d) Camera rotate by z axis
(c) Camera rotate by y axis

(f) Camera rotate by y axis(e) Camera rotate by x axis

(h) Camera rotate by y axis(g) Camera transfer along x axis

(j) Camera transfer along x axis(i) Camera zoom along z axis

(l) Camera transfer along z axis

(n) Camera transfer along z axis

(k) Camera transfer along z axis

(m) Camera transfer along z axis and zoom  

(b) Camera occluded

 

Figure 4. Tracking and register result 

6.2 Registration Accuracy 

We continuously track 300 frames and use RMS 

errors to test the acsnrfkcfdgdcebnejy7curacy of 

registration. We are especially interested in the RMS 

errors under the circumstance of changes in rotations 

and zooming ratio. The movement patterns of camera 

are simulated by rotating along X, Y, Z axis or moving 
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from far to near the scene along the Z-axis to test the 

registration accuracy. Figure 5(a-c) gives the RMS 

errors of the proposed method when camera rotates 

along Z-axis from 0 to 60. The purpose is to simulate 

the case when users make large changes in view angles. 

Figure 5(d) gives the RMS errors when camera zooms. 

The purpose is to simulate the case when users move 

close to or far from the scene.  

Figure 5(a) shows RMS errors are less than one 

pixel when the camera when the camera rotates 0-60 

degrees along Z-axis. Figure 5(b) shows RMS errors 

are close to 2.5 pixels when the camera 0-40 degrees 

along Y-axis. Figure 5(c) shows RMS errors are close 

to 2.8 pixels when the camera rotates 0-40 along the X-

axis. Figure 5(d) shows RMS errors are close to 2 

pixels when moving users move close to or far from 

the scene. All the above errors are below 3 pixels 

which demonstrate the accuracy of the proposed 

method.  
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(a) Camera rotate 0-60° along z axis 
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(b) Camera rotate 0-40° along y axis 
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(c) Camera rotate 0-40° along x axis 
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(d) Camera move along the z axis 

Figure 5. RMS error for the proposed algorithm 

We carry out two experiments to compare the RMS 

errors obtained using the proposed feature tracking 

method with other methods. The comparisons made are 

(1) comparison with the Yuan’s KLT-based tracking 

method and (2) comparison with the Tao’s random 

classification matching method. 

In the first experiment, we compared the registration 

accuracy of the proposed approach with the method 

given by Yuan et al. [8]. In this experiment, we 

changed the camera view point angle from 0 (the 

camera’s optical axis is orthogonal to the real scene) to 

40 in the live video sequence. The recorded RMS 

errors are shown in Figure 6(a). We can see that the 

errors of the Yuan’s method deteriorate over time. This 

is mainly due to the direct use of the NCC to recovery 

the lost features in tracking processes, whereas our 

method can always provide reasonable tracking results 

since the lost patches are warped by homography to 

take account of viewpoint changes between the patch’s 

first observation and the current camera position. This 

experiment convincingly proves the validity of the 

proposed method based lost feature recovery method. 
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(a) Our approach vs yuan’ algorithm 

0 50 100 150
1

2

3

4

5

6

7

Frame Number

R
M

S
 E

rr
o

rs
(P

ix
el

s)

Tao's algorithm

Our algorithm

 

(b) Our approach vs Tao’ algorithm 

Figure 6. Our approach vs other methods 

In the second experiment, we compare our method 

with the Tao’s method [26] in which a sub-map 

baseline strategy is used to match features between the 

current and reference frames directly. Figure 7(b) gives 

the RMS errors recorded in this experiment. We can 

see that our method is more stable and accurate than 

the Tao’s method, which really demonstrates the 

effectiveness of the proposed feature tracking method. 
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(a) Tracking time for matching approach 
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(b) Tracking time for optical flow approach 

Figure 7. Time comparison of two approach 

6.3 Timings 

The second experiment is carried out to test and 

verify the tracking performance of our approach by 

evaluating the time-consumption for camera pose 

computation. In our approach, the camera pose is 

calculated by the tracked features of optical flow 

algorithm. The time cost of BSRIKS algorithm or 

optical flow algorithm will impact the overall 

performance. The processing time of two tracking 

methods are tested on continuous multi-frame images 

as shown in Figure 7. As can be seen in Figure 7(a), 

matching algorithm consumes time within 70ms to 

140ms and in Figure 7(b), the time of optical flow 

tracking method is below 40ms. 

Table 1 and Table 2 show the computation time of 

the various steps of the online registration process. As 

can be seen from Table1, it mainly consists of the 

following parts: Camera initialization and camera 

registration. Table 1 shows that the average scene 

recognition time is less than 70ms when the camera is 

initialized. Table 2 the registration time is less than 

40ms and the frame rate is up to 25f/s can meet the 

requirements for real-time augmented reality 

applications when camera pose are tracked online. 

Table 1. Initialization time 

Camera Initialization 

Step Time (ms)
a

 

Feature points detecting(BRISK) 22.19 

Scene recognition 48.65 

Scene learning 01.07 

Total 780.0 
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Table 2. Registration time 

Camera registration 

Step Time (ms)
a

 

Feature tracking 02.4 

Pose calculating 10.3 

Lost feature recovering 25.0 

Total 37.7 

7 Conclusion 

Register for augmented reality on smartphone is a 

challenging task. In this paper, several new approaches 

are proposed to improve the stability of the Register 

performance: a linear structured SVM classifier is used 

to perform scene learning online, which allows us to 

quickly adapt our model to a given environment; and 

the hybrid tracking strategy is implemented by 

combining both wide and narrow baseline techniques. 

The proposed approaches are very efficient and 

demonstrate excellent performance for large scene.  
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