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Abstract 

Weld interface defects at a one-micrometer level can 

be identified with the support of the optical microscope 

(OM) images. However, identification of such defects 

below one-micrometer becomes challenging due to the 

limited resolution of OM imaging. Besides, the diagnosis 

gets even more challenging when the OM equipment is in 

worn-out condition. This research develops a hybrid 

sparsity model for efficiently improving the resolution of 

the degraded weld microstructure images. Rather than 

using a colossal patch databank for training, we deploy 

two condensed well-learned dictionaries. The sparse 

information is recovered by deploying a low-resolution 

(LR) and high-resolution (HR) dictionary; with the 

support of these dictionaries the resultant high-resolution 

weld microstructure image is computed. We optimize the 

hybrid sparsity algorithm utilizing the Sparsity-Enabled 

Single Value Decomposition (SE-SVD) algorithm. The 

calculated weld microstructure image dynamically 

chooses the suitable patches from the dictionary for 

achieving the most elegant representation among all 

patches for the available LR weld microstructure image. 

The proposed approach is resilient to noise, as it 

accomplishes the tasks of noise-removal and resolution 

enhancement at the same time. The experimental results 

indicate that the proposed model surpasses certain peers 

concerning the algorithm speed, effectiveness, and 

overall performance, aiding in better diagnosis of weld 

interface defects. 

Keywords: Weld microstructure images, Resolution 

enhancement, Hybrid sparsity model 

1 Introduction 

Welding is a well-known technology for combining 

metal parts, and digitization of such technologies are 

becoming more popular due to the emergence of 

industry 4.0. Besides, welding technology is a widely 

prevalent approach for combining metals and metal 

parts in manufacturing and production-based firms. 

Tube-to-tube plate friction welding is an accessible 

technology that is widely deployed in many automotive 

firms around the world [1-2]. Figure 1 illustrates the 

schematic diagram of the tube-to-tube plate friction 

welding technology. The primary reason for 

automotive and other firms utilizing tube-to-tube plate 

friction welding is that, during the welding process, it 

generates less heat and a reduced amount of harmful 

gases than other peer welding technologies [3]. Besides, 

the quality of welding is a critical feature for 

confirming the position, distribution, and spread of the 

welds. 

Furthermore, many industrial firms have a 

preference for the implementation of the tube-to-tube 

plate friction welding technology as the weld material 

never gets melted, nor it suffers from being recasted. 

However, weld interface defects are a common 

occurrence in the tube-to-tube plate friction welding 

process, if the welding parameters and materials 

involved are not correctly chosen. Also, the selection 

of appropriate welding parameters consumes a lot of 

time and resources; since it consists of several trials in 

finalizing the suitable welding parameters for quality 

welds. Figure 2 depicts the tube-to-tube plate friction 

welding machine. 

A monitoring system for the friction stir welding 

(FSW) process utilizing the surface image is developed 

in [4]. Further, the digital cameras were utilized to 

acquire the weld surfaces at diverse welding conditions, 

and the appropriate feature is extracted from these 

images via the maximally stable extremal region 

algorithm. Then, they deploy the support vector 

machine algorithm for categorizing the weld images as 

good and bad welds [4]. The brief outline about the 

defects occurring in the different welding processes 

such as laser-beam, FSW, and arc welding for 

aluminum and its alloys is illustrated in [5]. In [6], the 

researchers devise an image processing model for 

identifying and categorizing the various types of FSW 

surface defects. Moreover, they deploy the image  
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Figure 1. The schematic diagram of the tube-to-tube plate friction welding technology 

 

Figure 2. Tube-to-Tube plate friction welding machine 

pyramid and reconstruction approaches for detecting 

the weld surface defects. 

The researchers in [7] try to establish broad 

investigations about the weld surface defects using a 

3D reconstructed depth map image acquired with the 

help of a three-dimensional optical microscope. Further, 

they also utilized the depth information for determining 

the textural features of the weld surface, such as root 

mean square and mean roughness. They also compared 

their experimental outcomes with the results from a 

traditional surface roughness tester equipment for 

validation. Wavelet transform and empirical mode 

decomposition are utilized for detecting and localizing 

the tunnel defects that occur in the FSW of the 

aluminum alloy [8]. In [9], the authors study the 

defects in FSW for two steel grades, namely DH36 and 

EH46. A new friction-stir welding approach for 

combining the aerospace-grade aluminum that can 

differentiate between various kinds of weld schedules 

for minimizing the defects in the welds [10]. The 

researchers in [11] deployed the friction stir welding 

technology for joining the AA1060 aluminum plates. 

Further, the weld defects were detected utilizing the 

damping capacity and dynamic modulus approaches. In 

[12], the researchers have made an effort to determine 

the FSW defects by utilizing the fractal theory for 

analyzing the signal information obtained in the course 

of the welding process.  

Even though some researchers have tried to identify 

the defects in welding using computer vision and 

image processing, this research is still in the nascent 

stage and requires a lot of new automated algorithms 

for defects detection [14-15]. However, until now, not 

many researchers have attempted to improve the 

resolution of a degraded weld microstructure image. 

Therefore, in this research, we develop a new hybrid 

sparse model for improving the resolution of the 

degraded or low-resolution tube-to-tube plate friction 

welding microstructure images. A physically damaged 

or worn-out OM equipment produces a low-resolution 

or a degraded microstructure weld images. 

Determining the weld interface defects from low-

resolution or degraded weld microstructure images is a 

challenging task for welding experts; also it might be 
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challenging to automate the weld defect detection 

process, if the weld images are degraded or of low-

resolution.  

In this research, we deploy the hybrid sparsity model 

for improving the resolution of low-resolution or 

degraded microstructure weld images. During the 

course of the recovery process, the proposed model 

exhibits the following key characteristics, such as 

dynamicity, adeptness, consistency, and efficacy. The 

proposed hybrid sparse model outperforms the other 

compared algorithms concerning the peak-signal-to-

noise ratio (PSNR), thereby aiding in better detection 

of weld interface defects. 

2 Materials and Methods 

2.1 Dataset Used 

In this work, the dataset used was obtained using the 

optical microscope on the welded pieces with the Nital 

solution applied over it, for capturing the 

microstructure weld images. Before this process, the 

welded pieces were produced using the tube-to-tube 

plate friction welding machine shown in figure 2. A 

total of 500 weld microstructure images were used in 

this work; out of these, 450 images were without 

defects, and 50 images had weld interface defects. 

Figure 3. Represents the microstructure weld image 

without defects, and Figure 4 represents the 

microstructure images with weld interface defects. 

 

Figure 3. Fine grain weld microstructure images – good quality weld images 

 

(a)  

 

(b)  

 

(c) 

 

(d) 

Figure 4. Microstructure images with weld interface defects: (a) middle (b) plate (c) top (d) tube 
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2.2 Hybrid Sparsity Model 

In this hybrid sparsity model, the signals are 

represented as a combination of the atom signals, in 

which the standard linear coefficients tend to be zero. 
M

y R∈ , so the sparsity problem is illustrated as 

follows: 

 0 2arg || || || ||b bb min b such that y Q= − ≤∈  (1) 

Where b denotes the sparsity depiction of y, 0|| ||b  

portrays the l0 norm that specifies the total number of 

non-zero items, Q represents the sparsity dictionary, 

and ∈ designates the error tolerance. 

The sparsity dictionary Q can be illustrated as 

follows: 

 { }1 2 3
, , ,....., , ( )M P

pQ q q q q R P M
×

= ∈ ≥  (2) 

Where qj indicates the sparsity atom. The proposed 

hybrid sparsity model establishes a sparse association 

amongst the high-frequency information and the low-

resolution feature patches, thereby aiding in the 

resolution enhancement of the low-resolution or the 

degraded weld microstructure images. The λ  

represents the sparse regularization factor. The effects 

of the sparse regularization factor λ  effects on the 

recovered weld microstructure image for a given input 

low-resolution weld microstructure image is elaborated 

in the later parts of this paper. 

2.2.1 Sparsity Dictionary Training Process 

In general, consider the training instances as 

{ }1 2 3
, , , ... ...

s
Y y y y y=   

The sparsity description of Y over the sparsity 

dictionary Q is well-defined by the following 

expression: 

2

2
arg || || ,

B,W
B min Y BW= −Φ  

|| || ,jsuch that w s≤  

       
0 2

|| || , || || 1
i i
b r b≤ Φ =  (3) 

where W signifies the sparsity description of Y, the 

implicit dictionary of Q is denoted by Φ ; and the 

sparsity dictionary is indicated by B, it can be observed 

that B represents the sparsity coefficient of Q. Consider 

{ },

h l
V Y U=  to be the patch pairs of the training 

image, where { }1 2 3
, , ,... ... ,

h

m
Y y y y y=  and t

U =  

{ }1 2 3
, , , ... ... ,

m
u u u u  a column vector is utilized for 

denoting the example instances { },j jy u , also the term 

yj indicates the high-frequency information from the 

high-resolution microstructure weld image feature 

patches and the term uj illustrates the low-resolution 

microstructure weld image feature patches. Learning 

the sparsity dictionaries for V is one of the foremost 

objectives of this model and also to portray the high-

resolution and low-resolution microstructure weld 

image feature patches in a joint frame, in a way that 

they share a similar sparsity description. This scenario 

is represented by the following equation: 

2

2, ,

1
[ || ||h l

min h h h

B B w
Y B W

M
−Φ +  

2

2

1
|| || ],l l l
Y B W

M
−Φ  

0 0
|| || , || || ,h

j isuch that w s b r≤ ≤  

0 2
|| || , || || 1,l h h

i i
b x b≤ Φ =  

         

2
|| || 1l l

i
bΦ =  (4) 

Where the high-frequency information of the 

sparsity dictionary is given by Bh, and Bl indicates the 

sparsity dictionary of the low-resolution microstructure 

weld image feature patches. Besides, M and K signifies 

the dimensions of the high-resolution and low-

resolution microstructure weld image feature patches 

in the vector form. Reducing the impact of the scaling 

issues is another foremost goal of this model. 

Therefore, expression 4 is further modified and 

depicted using the following expression: 

2

2, ,
[|| || ],h l

min

B B w
Y BW−Φ  

0
|| || ,

i
such that w r≤  

         

2
|| || 1

i
bΦ =  (5) 

The information concerning the values of Y, Φ , and 

B is represented using the following expressions: 

 

1

1

h

t

Y
M

Y

U
k

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦

 (6) 

 
0

0

h

t

⎡ ⎤Φ
Φ = ⎢ ⎥

Φ⎢ ⎥⎣ ⎦
 (7) 

 

1

1

h

t

B
M

B

B
k

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦

 (8) 

We deploy the Sparsity-Enabled Single Value 

Decomposition (SE-SVD) algorithm for determining 

the values of expression 5. This SE-SVD algorithm is 

illustrated as a flow diagram in Figure 5. The essence 

of the orthogonal matching pursuit algorithm presented 

in [13] is utilized in this work. 
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Figure 5. Flow diagram of the SE-SVD algorithm 

2.2.2 Resolution Enhancement through Sparsity 

Dictionary  

The sparsity description b is computed from the 

sparsity dictionary Bl by means of the low-resolution 

microstructure weld images feature patches denoted as 

u. Besides, the high-resolution microstructure weld 

image feature patches are computed from the sparsity 

dictionary Bh and the sparsity description b. The 

sparsity problem can be denoted by means of the 

following expression: 

,
0

min||b ||  

      

2

2
|| ||l l

such that B b uΦ − ≤∈ (9) 

The expression 9 depicts a Non-deterministic 

Polynomial-time hard optimization problem. Then, 

expression 9 is aimed at all the local low-resolution 

microstructure weld image feature patches. 

Additionally, the association between the 

neighborhood feature patches are not considered. 

Further, the one-pass algorithmic approach can be 

deployed in order to process the microstructure weld 

image feature patches starting from left-to-right and 

also traversing top-to-bottom. Therefore the 

optimization problem in expression 9 is reformed as 

the following expression: 

,
1

min||b ||  

2

2 1.
|| ||l l

such that B b uΦ − ≤∈  

       

2

2 2
|| ||h h
V B b zΦ − ≤∈  (10) 

Moreover, the vector V can be utilized for obtaining 

the overlapping region amidst the target high-

resolution microstructure weld image feature images 

and the previously recuperated microstructure weld 

image feature patches. Besides, the value z portrays the 

previously recuperated overlapping microstructure 

weld image feature patches. As a result, the 

optimization problem is streamlined as following the 

expression: 

 � �

2

1 2
arg || || || ||

b
min b Qb uΛ + −  (11) 

Where  

 � �

,

h h

h l

z V B
u Q

u B

δ δ⎡ ⎤Φ⎡ ⎤
= = ⎢ ⎥⎢ ⎥

Φ⎣ ⎦ ⎢ ⎥⎣ ⎦
 (12) 

In expression 12, the value δ  handles the tradeoff 

amidst the input low-resolution microstructure weld 

image feature patches and the neighborhood 

compatible high-resolution microstructure weld image 

feature patch. The optimized value of b is computed by 

means of a suitable algorithm from expression 11. As a 

result, the high-frequency information is obtained as 

* *
h hy B b= Φ . 

The value of primary high-resolution Y0 by 

convolving the value of y* and the image up-sampled 

from u, then the universal recuperation constraint is 

implemented by projecting the Y0 values into the 

solution space of U = HY�  thereby computing the 

following expression: 

0
* arg || ||,

y
Y min Y Y= −  

    such that U HY=�  (13) 

Where �  indicates the downsampling operator, and 

the value H specifies the blurring filter. Then the 

aforementioned optimization problem is resolved 

utilizing the back-projection technique. The outcome 

of the back-projection method is denoted as Y* and this 

value is considered as the eventual high-resolution 

estimate of the low-resolution microstructure weld 

image. The flow diagram in Figure 6 depicts this 

process. 

Estimating Sparsity Dictionaries Bh and Bl 

Input the values V, Φ , r, s, and g 

Initializing the values Bh(0), Bl(0), 

(0) (0)1 1
( ) [ , ]h l T

B d B B
M K

=  

For k = 1, 2, 3. ... . g, applying orthogonal 

matching pursuit algorithm  

2

2
: arg min || || ,j j djFor all j w w y BW= −Φ

0
|| ||jsuch that w s≤  

Update every bi in B and wj in W 
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Figure 6. Flow diagram of the resolution enhancement 

though sparsity dictionary 

2.2.3 Microstructure Weld Image Feature Patches 

Representation 

In the proposed model, the microstructure weld 

image feature patches are utilized for generating the 

training instances. Further, the features are made up of 

the low-resolution weld feature patches’ 1st order and 

2nd order gradients. The expressions 14, 15, 16, 17 

indicate the 4 filters utilized for getting the derivatives.  

11
[ 1, 0,1]f = −  (14) 

12 11

Tf f=   (15) 

 
21

[1, 0, 2, 0,1]f = −  (16) 

22 21

Tf f=   (17) 

 

 

The features are made up of the high-frequency 

information taken from the high-resolution 

microstructure weld patches of the image. As a result, 

each training instance gets a vector description, and 

this is made up of the low-resolution image patches’ 4 

gradient features and high-frequency information 

acquired from the high-resolution microstructure weld 

patches of the image. Figure 7 depicts the 

aforementioned scheme. 

 
Figure 7. The training instance has two components namely the high-frequency patch from the high-resolution 

microstructure weld image and 1st and 2nd order gradient features of the low-resolution microstructure weld image 

High-resolution 
microstructure weld image 

Low-resolution 
microstructure weld image 
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4 Experimental Results 

In this section, we compare the outcomes of the 

various prevailing approaches such as bi-cubic 

interpolation, k-nearest neighbors’ algorithm, Locally 

Linear Embedding, Non-local means algorithm with 

the proposed hybrid sparsity model. Besides, we also 

focus on the various factors like noise immunity and 

the size of the sparsity dictionary that has a significant 

impact on the performance of the proposed hybrid 

sparsity model. In this research, the motivation is to 

apply the proposed hybrid sparsity model on the 

illuminance channel of the microstructure weld images. 

The primary reason for the aforementioned strategy is 

due to the human visual senses having a higher 

sensitivity towards the variations in the luminance. 

Besides, in the upcoming portions, we also present the 

visual and qualitative outcomes of the aforementioned 

methods. Further, for the qualitative assessment, we 

utilize the peak-signal-to-noise (PSNR) measure that is 

defined as follows: 

 
10

20 log
fMAX

PSNR
Mean Square Error

⎛ ⎞
= ⎜ ⎟⎜ ⎟

⎝ ⎠
 (18) 

Where, MAXf indicates the maximum value of the 

signal from the original right microstructure weld 

image. 

The proposed hybrid sparsity model is utilized for 

enhancing the resolution of the low-resolution or 

degraded micro-structure weld images. The training 

scheme of both the high-resolution and low-resolution 

sparsity dictionaries’ is performed using 75,000 patch 

pairs. Besides, these patch pairs were gathered from 

the input microstructure weld image dataset. 

Furthermore, they are also deployed as training 

instances for the proposed hybrid sparsity model. A 

quick pre-processing is done over these microstructure 

weld images. The pre-processing phase includes the 

removal of unnecessary texture areas and also ignoring 

the smooth surfaces. In our experiments, we have 

chosen the size of the sparsity dictionaries’ to be 1024. 

The reason for choosing this value for maintaining an 

equilibrium amidst the computational time and the 

microstructure weld image quality. The noise level in 

the input microstructure weld image plays a significant 

role in choosing the value of the regularization 

parameter Λ  The Λ  value is chosen as 0.01 for the 

microstructure weld images with less noise. Besides, 

this value of the regularization parameter yields 

rational outcomes.  

In this research, the gathered microstructure weld 

images are primarily downsampled by a factor with the 

value 1/3 for the next stage of processing. Furthermore, 

the downsampled microstructure weld images are then 

upsampled by a factor with value 3 by utilizing the 

proposed hybrid sparsity model, and other methods 

like bi-cubic interpolation, k-nearest neighbors’ 

algorithm, Locally Linear Embedding, Non-local 

means algorithm are also deployed for enhancing the 

resolution of such images. While designing this 

proposed hybrid sparsity model, we have assumed a 

3 3× low-resolution microstructure weld image patches. 

Besides, these patches are considered to possess the 

overlapping of one-pixel with its constituent adjacent 

patches. Subsequently, we also presume that the 9 9×  

high-resolution microstructure weld image patches 

possess an overlapping three-pixels with its adjacent 

regions. Besides, the low-resolution microstructure 

weld images are upsampled with a value 2. Another 

significant point is that the 1st order and the 2nd order 

gradient features are obtained from the upsampled 

version of the low-resolution microstructure weld 

images. It can be observed that the size of the 

upsampled low-resolution microstructure weld image 

is 6 6× . 

Table 1 depicts the comparison of the PSNR of the 

proposed hybrid sparsity model with other methods. 

We can clearly observe that the graphical 

representation in Figure 8 gives a clear distinction of 

the superior performance of the proposed hybrid 

sparsity model than the other approaches. Figures 9, 10, 

11 illustrates the visual outcomes of the experiments 

conducted over the microstructure weld images for the 

proposed hybrid sparsity model in comparison with 

algorithms like bi-cubic interpolation, k-nearest 

neighbors’ algorithm, Locally Linear Embedding, Non-

local means. Besides, from these figures, it is evident 

that the proposed hybrid sparsity model produces 

outcomes with superior visual appearance. Also, the 

proposed model outperforms the other compared 

models concerning the computational swiftness. 

Table 1. Comparison of the PSNR (dB) of the proposed hybrid sparsity model with other methods 

Weld Microstructure 

Images\Methods 

Bi cubic 

interpolation 

K-nearest 

neighbors 

Locally Linear 

Embedding 

Non-local means Hybrid sparsity 

model 

Image 1 23.89 25.66 27.32 28.52 29.86 

Image 2 21.16 22.98 24.69 26.32 29.79 

Image 3 25.28 25.87 26.75 26.98 29.02 
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Figure 8. Graphical Representation of PSNR (dB) – Resolution Enhancement Methods 

 

(a) 

 

(b) 

 

(c) 

 

(d) 

 

(e) 

 

(f) 

Figure 9. Image 1: (a) Low-resolution microstructure weld image; Resolution Enhancement Methods: (a) Bicubic 

interpolation, (b) K-nearest neighbors, (c) Locally Linear Embedding, (d) Non-local means, (e) Hybrid sparsity 

model 
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(a) 

 

(b) 

 

(c) 

 

(d) 

 

(e) 

 

(f) 

Figure 10. Image 2: (a) Low-resolution microstructure weld image; Resolution Enhancement Methods: (a) Bi cubic 

interpolation, (b) K-nearest neighbors, (c) Locally Linear Embedding, (d) Non-local means, (e) Hybrid sparsity 

model

4.1 Size of Sparsity Dictionary and its Effect 

We now focus on the size of the sparsity dictionary 

for the recuperating the low-resolution microstructure 

weld images. It is well depicted in Figure 12 that the 

computational time-period (in seconds) on the low-

resolution microstructure weld image for various 

sparsity dictionary sizes of 256, 512, 1024, 2048 have 

been implemented. In most of our experiments, we 

have chosen the size of the sparsity dictionary as 1024. 

Usually, we can observe that larger the size of the 

sparsity dictionary, superior will be its performance, as 

well as it gives accurate estimated outcomes. Further, 

with the increasing size of the sparsity dictionary, the 

computational expenditure gets higher. Also, a closer 

observation gives the view that the distinct sizes of the 

sparsity dictionaries ranging from 256 till 2048, 

produces the experimental outcomes that are not so 

visually divergent. Besides, the microstructure weld 

image sample patches for distinct sparsity dictionary 

sizes appear to be identical in terms of visual 

perception. Also, the critical point is the artifacts 

appearing after the reconstruction process starts fading 

down when the sparsity dictionary sizes become larger 

and larger. Although the total number of computations 

is directionally proportional to the size of the sparsity 

dictionary, they produce better results. Besides, the 

larger the size of the sparsity dictionary, the higher will 

be the number of computations. Further, through our 

experiments, we found that the sparsity dictionary size 

having a value 1024 generates superior outcomes, and 

also it is equally fast in terms of overall computations. 

 



70 Journal of Internet Technology Volume 21 (2020) No.1 

 

 

(a) 

 

(b) 

 

(c) 

 

(d) 

 

(e) 

 

(f) 

Figure 11. Image 3: (a) Low-resolution microstructure weld image; Resolution Enhancement Methods: (a) Bi cubic 

interpolation, (b) K-nearest neighbors, (c) Locally Linear Embedding, (d) Non-local means, (e) Hybrid sparsity 

model 

 

Figure 12. Computational time-period (seconds) for the low-resolution microstructure weld images having the 

sparsity dictionary size with values 256, 512, 1024, and 2048 
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4.2 Noise Immunity and Regularization 

Parameter Λ  Effects 

From the previous Figures 9, 10, and 11, we can 

understand that the proposed hybrid sparsity model is 

highly robust to noise and also performs well when the 

input low-resolution microstructure weld image is 

corrupted by noise. During the experiments, the value 

of the regularization parameter Λ  is chosen based on 

the presence and availability of noise or unwanted 

information in the input low-resolution microstructure 

weld images. Also, it is understood that for noisy 

images, higher values of the regularization parameter 

Λ  produces excellent results concerning the visual 

perception. Besides, increasing values of the 

regularization parameter Λ  might also generate 

smooth texture regions in the resultant microstructure 

weld images. 

5 Conclusion 

In this research, we propose an approach, namely the 

hybrid sparsity model for enhancing the resolution of 

the low-resolution microstructure weld images. Further, 

in this method, the sparsity association amidst the high-

resolution and the low-resolution microstructure weld 

image feature patches is articulated. Besides, this 

model also does the matching and optimization in a 

parallel way. The proposed hybrid sparsity model 

performs stably, and it is also effective. Besides, it also 

necessitates lesser instances for generating a high-

resolution microstructure weld image. The proposed 

hybrid sparsity model performs exceedingly well 

concerning computational speed, quality outcomes, and 

noise immunity. Finally, it exhibits a more exceptional 

performance than the other compared approaches. The 

proposed hybrid sparsity model thereby helps in 

improved weld interface defects diagnosis. The future 

works shall cogitate, adapting probability integrated 

machine learning approaches [16-18]. Assuming 

uncertainties for applications in complex welding 

processes and comparing the analysis to that conducted 

in the present study. 
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