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Abstract 

We consider the channel estimation problem for uplink 

multiuser massive MIMO systems with one-bit analog-to-

digital converters (ADCs). The problem of optimal one-

bit quantization thresholds is studied in this paper. Our 

analysis reveals that, if the quantization thresholds are 

optimally devised, using one-bit ADCs can achieve an 

estimation error close to (only increase by a factor of π/2) 

that of an ideal clairvoyant estimator using unquantized 

data. The optimal quantization thresholds, however, are 

dependent on the unknown channel parameters. To cope 

with this difficulty, we propose an Iterative Quantization 

(IQ) approach in which the thresholds are adaptively 

adjusted in a way such that the thresholds converge to the 

optimal thresholds. Simulation results show that our 

proposed iterative quantization scheme presents a similar 

performance compared with traditional channel 

estimation with full resolution ADCs. 

Keywords: Massive MIMO systems, Channel estimation, 

One-bit quantization design, Cramér-Rao 

bound (CRB) 

1 Introduction 

Massive multiple-input multiple-output (MIMO), 

also known as large-scale or very-large MIMO, is a 

promising technology to meet the ever growing 

demands for higher throughput and better quality-of-

service of next-generation wireless communication 

systems [1-4]. Despite its benefits, due to the large 

number of antennas at the base station, the hardware 

cost and power consumption could become 

prohibitively high if we still employ expensive and 

power hungry high resolution analog to digital 

convertors (ADCs). To address this obstacle, recent 

studies considered the use of low-resolution ADCs (e.g. 

1-3 bits) for massive MIMO systems. For massive 

MIMO systems with low-resolution ADCs, the spectral 

efficiency and the uplink achievable rate were 

investigated in [5-7], under different assumptions. The 

theoretical analyses suggest that the use of the low cost 

and low-resolution ADCs can still provide satisfactory 

achievable rates and spectral efficiency. 

This paper focuses on the problem of channel 

estimation for uplink multiuser massive MIMO 

systems, where one-bit ADCs are used at the base 

station in order to reduce the cost and power 

consumption. It was shown in [8] that for one-bit 

massive MIMO systems, a least squares channel 

estimation scheme and a maximum-ratio combining 

scheme are sufficient to support both multiuser 

operation and the use of high-order constellations. A 

Bayes-optimal joint channel and data estimation 

scheme was proposed in [9], in which the estimated 

payload data are utilized to aid channel estimation. In 

[10], a maximum likelihood channel estimator, along 

with a near maximum likelihood detector, were 

proposed for uplink massive MIMO systems with one-

bit ADCs. 

In this paper, we study one-bit quantizer design and 

examine the impact of the choice of quantization 

thresholds on the estimation performance. One-bit 

quantization threshold design is an interesting and 

important issue but neglected by existing channel 

estimation studies. In fact, most channel estimation 

schemes, e.g. [8-10], assume a fixed, typically zero, 

quantization threshold. Note that the optimal choice of 

the quantization threshold has been considered in the 

context of general estimation problems and distributed 

sensor networks [11-13] where only the estimation of a 

scalar parameter is investigated. In our problem, the 

parameter of interest is a vector and the optimal design 

of quantization thresholds as well as the training 

sequences should be considered jointly. Our theoretical 

results reveal that, if the quantization thresholds are 

optimally devised, using one-bit ADCs can still 

achieve an estimation error close to (only increase by a 

factor of π/2) the minimum achievable estimation error 

attained by using infinite-precision ADCs. The optimal 

quantization thresholds, however, are dependent on the 

unknown channel parameters. To cope with this 

difficulty, we propose an iterative quantization (IQ) 

scheme by which the thresholds are dynamically 

adjusted in a way such that the thresholds converge to 

the optimal thresholds. The realization of this iterative 

quantization scheme depends on the channel coherence 



52 Journal of Internet Technology Volume 21 (2020) No.1 

 

time. Simulation results show that our proposed 

iterative quantization scheme presents a significant 

performance improvement over the scheme that use a 

fixed (say, zero) quantization threshold. 

The rest of the paper is organized as follows. The 

system model and the problem of channel estimation in 

one-bit massive MIMO systems are discussed in 

Section 2. In Section 3, we develop a maximum 

likelihood estimator and carry out a Cramer-Rao bound 

analysis of the one-bit channel estimation problem. 

The optimal design of quantization thresholds and the 

pilot sequences is studied in Section 4. In Section 5, 

through exploiting the channel coherence time, we 

develop an iterative quantization scheme for practical 

threshold design. Simulation results are provided in 

Section 6, followed by concluding remarks in Section 7.  

2 System Model 

Consider a single-cell uplink multiuser massive 

MIMO system, where the base station equipped with a 

uniform linear array with M  antennas. The number of 

users is K , where each user equipped with a single 

antenna. In massive MIMO scenarios, we can assume 

M K� . Here the flat block fading channel is assumed, 

which means that the channel keeps constant during 

the coherence time. Under the above setup, the 

received signal at the base station can be expressed as 

 U HX W= +  (1) 

where K L
X

×

∈�  denotes the combination of the each 

user’s training sequences and the number of pilot 

symbols is L . M K
H

×

∈�  represents the unknown 

channel response matrix that to be estimated. 
M K

W
×

∈�  denotes the additive white Gaussian noise 

term. Here we assume the noise follows a zero-mean 

circularly symmetric complex Gaussian distribution 

with variance 2
2σ .  

In nowadays high-rate communication systems, to 

reduce the heavy burden in power consumption and 

hardware cost, a new kind of massive MIMO system 

were proposed, which is called one-bit massive MIMO. 

The architecture of the multi-user one-bit massive 

MIMO communication system is illustrated in Figure 1.  
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Figure 1. The architecture of the multi-user one-bit 

massive MIMO communication system 

Different with the traditional one, in one-bit massive 

MIMO systems, only one-bit ADCs are equipped in the 

base station to quantize the received signal. For 

example, at each antenna, we deploy two one-bit 

ADCs. One is for the quantization of the real parts of 

the received signal, and the other is for the imaginary 

parts. Therefore, under this setup, the total number of 

one-bit ADCs we need is 2M . The output data from 

the quantized received signal could be expressed as 

 ( )V U= δ  (2) 

where ( )Uδ  denotes an entry-wise function that to 

quantize the analog data matrix U . Specifically, for 

the ( , )m l th entry of U , we have 

 
, , ,

( ) ( ( )) ( ( ))m l m l m lU q U q U j= ℜ + ℑ ⋅δ  (3) 

where ( )xℜ  and ( )xℑ  represents the real and 

imaginary parts of x , respectively. The quantization 

function ( )q x  could be defined as 

 
, 0

( )
, 0

x
q x

x

≥⎧
= ⎨

− <⎩

ρ

ρ
 (4) 

where 0>ρ  is a constant to represent the sign of the 

received analog signal x . Here, we can assume 1=ρ . 

From these definitions, the output data after 

quantization satisfied 

,
{ , , , }m lV j j j j∈ + − + − − −ρ ρ ρ ρ ρ ρ ρ ρ  

These above discussions are all based on the traditional 

one-bit massive MIMO concepts, that the one-bit 

quantization threshold is fixed to zero (as shown in (2)). 

However, using an identical zero threshold for 

quantization at all antennas and time slots is not 

necessarily an optimal choice. To investigate the 

impact of the one-bit quantization threshold on the 

channel estimation performance, we here introduce a 

nonzero quantization threshold matrix in (2). Now the 

output data from the quantized received signal could be 

expressed as 

 ( )V U= − Θδ  (5) 

where M L×
Θ∈�  represents the threshold matrix for 

one-bit quantization. For simplicity, we can first 

rewrite (1) into a real-valued counterpart as 

 U H W= Φ +  (6) 

where  

[ ( ), ( )]

[ ( ), ( )]

[ ( ), ( )]

( ) ( )

( ) ( )

T

T

T

T

U U U

H H H

W W W

X X

X X

= ℜ ℑ

= ℜ ℑ

= ℜ ℑ

ℜ ℑ⎡ ⎤
Φ = ⎢ ⎥−ℑ ℜ⎣ ⎦
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Reshaping the real matrix U  into a column vector, we 

can obtain a more simplified matrix-vector expression 

as 

 u h w= Φ +  (7) 

where  

 
vec( ), vec( ),

vec( ), M

u U h H

w W I

= =

= Φ = ⊗Φ
 (8) 

and vec( )X  denotes the vectorization of the matrix X  

formed by stacking its columns into a single column 

vector. Through these definition, we can easily justify 

that  

2 2

2 2 2

, ,

,

ML MK

ML ML MK

u h

w
×

∈ ∈

∈ Φ∈

� �

� �

 

Thus the corresponding single-bit observed data can be 

expressed as  

 ( )v q u= −θ  (9) 

where ( )q x  is defined in (4). Here  

( ) 2vec [ ( ), ( )]T ML
= ℜ Θ ℑ Θ ∈�θ  

For simplicity, we denote 2N ML= .  

Under the above one-bit massive MIMO signal 

model, our goal of this paper is to recover the unknown 

channel coefficient vector h , after collecting the one-

bit observed data v  in the base station. Furthermore, 

we also want to investigate the impact of the one-bit 

quantization threshold vector θ  on the channel 

estimation performance. We seek to find the optimal 

design of the one-bit quantization threshold vector θ , 

as well as the optimal training matrix X . In the 

following sections, we will develop a method for 

channel estimation based on maximum likelihood 

framework, and at the same time give a corresponding 

Cramer-Rao bound (CRB) analysis. Based on the CRB 

of the maximum likelihood estimation problem, we can 

easily find the optimal design of the one-bit 

quantization threshold vector θ , as well as the optimal 

training matrix X .  

3 Maximum Likelihood Method and CRB 

Analysis 

In this section, we will develop a maximum 

likelihood method for one-bit massive MIMO channel 

estimation. Then, a corresponding Cramer-Rao bound 

analysis will followed.  

3.1 Maximum Likelihood Method 

From (7) and (9), we can get 

 
( )

( )

n n n

T

n n n

v q u

q h w

= −

= + −

θ

ϕ θ
 (10) 

where we denote 
n
v , 

n
u , 

n
w  and 

n
θ  as the n th 

element of vector v , u , w  and θ , respectively. The 

vector 
n

ϕ  represents the n th row vector of matrix Φ . 

From these definition, we can easily obtain 

 
( ) ( ( ))

( )

T

n n n n

T

w n n

P v P w h

F h

= = ≥ − −

= −

ρ ϕ θ

ϕ θ
 (11) 

and 

 
( ) ( ( ))

1 ( )

T

n n n n

T

w n n

P v P w h

F h

= − = < − −

= − −

ρ ϕ θ

ϕ θ
 (12) 

where the notation ( )P ⋅  denotes the probability and 

( )
w

F ⋅  denotes the cumulative density function of 
n

w . 

Through the definition the Section 2, we know that 
n

w  

follows the real Gaussian distribution with zero mean 

and variance 2
σ . So we can calculate the probability 

mass function of 
n
v  as 

 

( ) / 2

( ) / 2

( ) 1 ( )

( )

n

n

v
T

n w n n

v
T

w n n

p v F h

F h

−

+

⎡ ⎤= − −⎣ ⎦

⎡ ⎤× −⎣ ⎦

ρ ρ

ρ ρ

ϕ θ

ϕ θ

 (13) 

Because all the 
n
v  are uncorrelated, we can calculate 

the log probability mass function (or log likelihood 

function) as 

1

1

( ) log ( , , )

log 1 ( )
2

log ( )
2

N

n T

w n n
N

nn T

w n n

L h p v v

v
F h

v
F h=

=

−⎧ ⎫
⎡ ⎤− −⎪ ⎣ ⎦⎪

⎪ ⎪
= ⎨ ⎬

+⎪ ⎪⎡ ⎤+ −⎣ ⎦⎪ ⎪⎩ ⎭

∑

…

ρ
ϕ θ

ρ

ρ
ϕ θ

ρ

 

From this derivation, we can have the maximum 

likelihood estimate of the unknown channel coefficient 

vector h  as 

 ˆ argmax ( )hh L h=  (14) 

Furthermore, we can prove that this maximum 

likelihood objective function is a concave function. 

Hence this problem is turned to be a convex 

optimization problem, which can be solved and reach 

the global minimum with some computationally 

efficient search algorithms. We have the following 

theorem to prove the concavity of the function ( )L h .  

Theorem 1: The maximum likelihood function ( )L h  

is a concave function for the channel coefficient vector 

h .  

Proof: It can be easily verified that ( )T

w n nf h −ϕ θ  is 

log-concave in channel response vector h  since the 

Hessian matrix of log ( )T

w n nf h −ϕ θ , which is given by 
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2

2

log ( )T T

w n n n n

T

f h

h h

∂ −
= −

∂ ∂

ϕ ϕθ

σ

ϕ
 

is negative semi-definite. Consequently the corresponding 

cumulative density function (CDF) and complementary 

CDF (CCDF), which are integrals of the log-concave 

function ( )T

w n nf h −ϕ θ  over convex sets ( , )
n

−∞ θ  and 

( , )
n
+∞θ  respectively, are also log-concave, and their 

logarithms are concave. Since summation preserves 

concavity, ( )L h  is a concave function of the channel 

response vector h .  � 

3.2 CRB Analysis 

We now carry out a CRB analysis of the one-bit 

channel estimation problem. The CRB result helps us 

to understand the impact of different system 

parameters, including one-bit quantization thresholds 

θ  as well as training matrix X , on the estimation 

performance. With the definition of Fisher information 

matrix and CRB, we can easily derive the following 

theorem.  

Theorem 2: The Fisher information matrix for the 

estimation problem (14) can be calculated as 

 
1

( ) ( )
N

T T

n n n n

n

J h g h
=

= −∑ ϕ θ ϕ ϕ  (15) 

where ( )g x  is defined as 

 
2 ( )

( )
( )(1 ( ))

w

w w

f x
g x

F x F x
=

−

 (16) 

and ( )
w
f x  represents the probability distribution 

function of 
n

w . The corresponding CRB matrix for the 

estimation problem (14) is the inverse of the Fisher 

information matrix, which is given by 

 

1

1

CRB( , ) ( )
N

T T

n n n n

n

h g h

−

=

⎛ ⎞
= −⎜ ⎟
⎝ ⎠
∑θ ϕ θ ϕ ϕ  (17) 

Proof: See Appendix A.  

We observe that the CRB matrix of h  depends on 

the quantization thresholds θ  as well as the matrix Φ  

which is constructed from the training matrix X . 

Obviously, we seek to jointly optimize the quantization 

thresholds θ  and the training matrix X , through 

minimizing the trace of the CRB matrix, i.e. the overall 

estimation error asymptotically achieved by the 

maximum likelihood estimator. The optimization 

therefore can be formulated as follows:  

 

1

,
1

min Tr ( )

( ) ( )

( ) ( )

Tr( )

s.t.

N

T T

n n n n
X

n

M

T

H

g h

I

X X

X X

XX P

−

=

⎧ ⎫⎛ ⎞⎪ ⎪
−⎨ ⎬⎜ ⎟

⎝ ⎠⎪ ⎪⎩ ⎭

Φ = ⊗Φ

ℜ ℑ⎡ ⎤
Φ = ⎢ ⎥−ℑ ℜ⎣ ⎦

≤

∑
θ

ϕ θ ϕ ϕ

 (18) 

where Tr( )H
XX P≤  represents a transmit power 

constraint imposed on the pilot matrix. Such an 

optimization is examined in the following section, 

where it is shown that the optimization of pilot matrix 

X  can be decoupled from the optimization of the one-

bit quantization threshold vector θ .  

4 Optimal Design of Quantization 

Thresholds and Pilot Matrix 

Before proceeding, we first introduce the following 

result.  

Theorem 3: If the random variable 
n

w  follows the 

real-valued Gaussian distribution with zero mean, 

( )g x  defined in (16) is a positive and symmetric 

function. It can attatin its maximum if 0x = .  

Proof: See Appendix B.  

From this Theorem 3, we can give the following 

theorem to discuss the optimal choice of the 

quantization threshold θ .  

Theorem 4: Given a fixed pilot matrix X , the 

solution of the optimization problem 

1

1

min Tr ( )
N

T T

n n n n

n

g h

−

=

⎧ ⎫⎛ ⎞⎪ ⎪
−⎨ ⎬⎜ ⎟

⎝ ⎠⎪ ⎪⎩ ⎭
∑

θ

ϕ θ ϕ ϕ  

where ( )g x  is defined in (16), is 

 , 1, ,
T

n n h n N= =
�

�θ ϕ  (19) 

Proof: Since ( )g x  defined in (16) is a unimodel, 

positive and symmetric function attaining its maximum 

when 0x = . We have 

1 1

( ) ( ) 0
N N

T T T T

n n n n n n n n

n n

g h g h
= =

− − −∑ ∑� �ϕ θ ϕ ϕ ϕ θ ϕ ϕ  

From convex theory, 1Tr{( ) }−

⋅  is a convex function 

over the set of positive definite matrix, which means 

that for any 0U � , 0V � , and 0U V− � , the 

inequality 

1 1Tr{( ) } Tr{( ) }U V
− −

≤  

holds. Combining the above two equations, the result 

(19) comes directly.                                               � 

We see that the optimal choice of the quantization 

threshold 
n

�θ  is rely on the unknown channel coeffient 

vector h . To facilitate our analysis, we, for the time 

being, suppose the unknown channel coeffient vector 

h  is known. Substituting (19) into (18), the 

optimization problem reduces to  
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( ){ }
2

1

min Tr
2

( ) ( )

( ) ( )

Tr( )

s.t.

T

X

M

T

H

I

X X

X X

XX P

−

Φ Φ

Φ = ⊗Φ

ℜ ℑ⎡ ⎤
Φ = ⎢ ⎥−ℑ ℜ⎣ ⎦

≤

πσ

 (20) 

which is only related to training pilot matrix X . We 

have the following theorem regarding the solution to 

the optimization (20). We omit the proof of this result 

since it can be obtained in the same way as that of [14].  

Theorem 5: The minimum achievable objective 

function value of (20) can be attained if the pilot 

matrix X  satisfies  

 ( / )H

KXX P K I=  (21) 

Theorem 5 reveals that, for one-bit massive MIMO 

systems, users should employ orthogonal pilot 

sequences in order to minimize channel estimation 

errors. Although it is a convention to use orthogonal 

pilots to facilitate channel estimation for conventional 

massive MIMO systems, to our best knowledge, its 

optimality in one-bit massive MIMO systems has not 

been established before. 

5 Performance Analysis and Practical 

Threshold Design Strategy 

5.1 Performance Analysis 

Substituting the optimal thresholds into the CRB 

matrix, we can see that using one-bit ADCs for channel 

estimation incurs only a mild performance loss relative 

to using infinite-precision ADCs, with the CRB 

increasing by only a factor of / 2π  , i.e.,  

 NQCRB( , ) CRB ( )
2

h h=
�

π
θ  (22) 

where the subscript NQ denotes the estimation scheme 

employing unquantized observations with full 

resolution ADCs. For the CRB of NQ, it can be readily 

verified that 

 ( ) 1
2

NQCRB ( ) T
h

−

= Φ Φσ  (23) 

The above results point out that a careful design of 

quantization thresholds can help improve the 

estimation performance substantially, and help achieve 

an estimation accuracy close to an ideal clairvoyant 

estimator which has access to the raw observations u . 

However, the problem lies in that the optimal 

thresholds �θ  are a function of h , as described in (19). 

Since h  is unknown and to be estimated, the optimal 

thresholds �θ  are also unknown.  

5.2 Practical Threshold Design Strategy 

Our strategy to overcome the above difficulty is to 

use an iterative algorithm in which the thresholds are 

iteratively refined based on the previous estimate of h . 

Specifically, at iteration i , we use the current 

quantization thresholds ( )i
θ  to generate the one-bit 

observation data ( )i
v . Then a new estimate ( )

ˆ
i

h  is 

obtained from the ML estimator (14). This estimate is 

then plugged in (19) to obtain updated quantization 

thresholds, i.e.  

 ( 1) ( )
ˆ

i i
h

+

= Φθ  (24) 

for subsequent iteration. When computing the ML 

estimate ( )
ˆ

i
h , not only the quantized data from the 

current iteration but also from all previous iterations 

can be used. The maximum likelihood estimator (14) 

can be easily adapted to accommodate these quantized 

data since the data are independent across different 

iterations. Due to the consistency of the ML estimator 

for large data records, this iterative process will 

asymptotically lead to optimal quantization thresholds, 

i.e.  

 ( )
,

i
i h→+∞ →Φθ  (25) 

In fact, our simulation results show that the iterative 

quantization scheme yields quantization thresholds 

close to the optimal values within only a few iterations. 

For clarity, we summarize the iterative quantization 

(IQ) strategy as follows.  

 

Iterative Quantization Scheme 

1. Given an initialization (0)
θ  and the maximum number 

of iterations 
max
i .  

2.  In each iteration i +

∈� : Based on u  and ( )i
θ , 

quantize the analog signal u  and compute the one-bit 

data as 
( ) ( )( )i i
v q u= −θ  

3. Calculate the new estimate of channel coefficient ( )
ˆ

i
h , 

through solving the maximum likelihood problem (14).  

4. Update the new threshould vector as  
( 1) ( )

ˆ
i i

h
+

= Φθ  

5. Return to Step 2, if  

max
i i<  

6. Output max( )i
θ  and max( )

ˆ
i

h  

 

Now we discuss the practical strategy for iterative 

quantization scheme based on channel coherence time. 

Note that during the iterative process, in a coherence 

time, the channel response vector h  is assumed 

constant over time. Thus the iterative quantization 

scheme can be used to estimate channels that are 

unchanged or slowly time-varying across a number of 

consecutive frames. For example, for the scenario 

where the relative speeds between the mobile terminals 

and the base station are slow, say, 2 meters per second, 
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the channel coherence time could be up to tens of 

milliseconds, more precisely, about 60 milliseconds if 

the carrier frequency is set to 1GHz, according to the 

Clarke’s model. Suppose the time duration of each 

frame is 10 milliseconds which is a typical value for 

practical LTE systems. In this case, the channel 

remains unchanged across 6 consecutive frames. We 

can use the iterative quantization scheme to update the 

quantization thresholds at each frame based on the 

channel estimate obtained from the previous frame. In 

this way, we can expect that the quantization 

thresholds will come closer and closer to the optimal 

values from one frame to the next, and as a result, a 

more and more accurate channel estimate can be 

obtained. In Figure 2, the practical strategy for iterative 

quantization scheme based on channel coherence time 

is illustrated.  

Training Period

Coherence Time

Data transmittion ...Training Period Data transmittion

i-th frame (i+1)-th frame

Threshold Computation: i-th

Channel Estimation: i-th

...

Threshold Computation: (i+1)-th

Channel Estimation: (i+1)-th  

Figure 2. The practical strategy for iterative 

quantization scheme based on channel coherence time 

6 Simulation Results 

We now carry out experiments to corroborate our 

theoretical analysis and to illustrate the performance of 

our proposed one-bit quantization schemes, i.e. the 

iterative quantization schemes. We compare our 

schemes with the conventional zero quantization (ZQ) 

scheme which employs a fixed zero threshold for one-

bit quantization, and a non-quantization scheme 

(referred to as NQ) which uses the original 

unquantized data for channel estimation. For the non-

quantization scheme, it can be easily verified that its 

maximum likelihood estimate is given by 

1ˆ ( )T T
h u

−

= Φ Φ Φ  

In our simulations, we assume independent and 

identically distributed (i.i.d.) rayleigh fading channels, 

i.e. all elements of the channel matrix H  follow a 

circularly symmetric complex Gaussian distribution 

with zero mean and unit variance. Training matrix X  

which satisfied (21) is randomly generated. The signal 

to noise ratio (SNR) is defined as the ratio of the signal 

component to the noise component, i.e.,  

2

T
NR

r( )
S

H
XX

KL
=

σ

 

The mean squared error (MSE) is calculated as 

2

MSE
F

H H

KM

−

=  

To better illustrate the effectiveness of the iterative 

quantization scheme, we include the CRB results in 

Figure 3, where the CRB-IQ, given by (22), represents 

the theoretical lower bound on the estimation errors of 

any unbiased estimator using optimal thresholds for 

one-bit quantization, and the CRB-NQ, given by (23), 

represents the lower bound on the estimation errors of 

any unbiased estimator which has access to the non-

quantization observations. From Figure 3, we see that 

our proposed iterative quantization scheme approaches 

the theoretical lower bound CRB-IQ within only 

several iterations, and achieves performance close to 

the CRB associated with the non-quantization scheme. 

This result demonstrates the effectiveness of the 

iterative quantization scheme in searching for the 

optimal thresholds. In the rest of our simulations, we 

set the maximum number of iterations, which is 

denoted as 
max
i , equal to 5 for the iterative quantization 

scheme.  

1 2 3 4 5

Number of iterations

10
-3

10
-2

10
-1

10
0

10
1

MSE-IQ

CRB-IQ

CRB-NQ

 

Figure 3. Performance of the iterative quantization 

scheme as a function of the number of iterations 

We now compare the estimation performance of 

different schemes. Figure 4 plots the MSEs of 

respective schemes as a function of the number of pilot 

symbols, where we set K=4 and SNR=5 dB. The 

corresponding CRBs of these schemes are also 

included. Results are averaged over 100 independent 

runs, with the channel and the pilot sequences 

randomly generated for each run. From Figure 4, we 

can see that proposed iterative quantization scheme 

outperforms the zero quantization scheme by a big 

margin. This result corroborates our analysis that an 

optimal choice of the quantization thresholds helps 

achieve a substantial performance improvement. In 

Figure 5, we plot the MSEs of respective schemes 

under different SNRs, where we set K=4 and L=16. We 

can made similar conclusions about the performance 

advantage from Figure 5.  



A Joint Iterative Quantization and Channel Estimation Scheme for One-Bit Massive MIMO Systems 57 

 

 

Figure 4. Channel estimation MSEs vs. Length of pilot 

symbols with K = 4 and SNR = 5 dB 
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Figure 5. Channel estimation MSEs vs. SNR (in dB) 

with K = 4 and L = 16 

7 Conclusion 

Assuming one-bit ADCs at the base station, we 

studied the problem of one-bit quantization design and 

channel estimation for uplink multiuser massive 

MIMO systems. Specifically, based on the derived 

CRB matrix, we examined the impact of quantization 

thresholds on the channel estimation performance. Our 

theoretical analysis revealed that using one-bit ADCs 

can achieve an estimation error close to that attained by 

using infinite-precision ADCs, given that the 

quantization thresholds are optimally set. We 

developed an iterative quantization scheme which 

adaptively adjusts the thresholds such that the 

thresholds converge to the optimal thresholds. 

Simulation results showed that the proposed iterative 

quantization scheme achieved a significant 

performance improvement over the conventional zero 

quantization scheme.  
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Appendix A: Proof of Theorem 2 

Let us define a new variable T

n n h=ξ ϕ  and define  
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calculated as  
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Here the ( )
w
f ⋅  represents the probability distribution 

function of 
n

w , and ( )
w
f ′ ⋅  denotes the derivative of the 

probability distribution function.  

Therefore, the Fisher information matrix (FIM) of 

the estimation problem is given as 
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where [ ]
nv

E ⋅  denotes the expectation with respect to 

the distribution of 
n
v , and the last equation follows 

from the fact that 
n
v  is a binary random variable with 

( | , ) ( )
n n n w n n

P v F= = −ρ θ ξ ξ θ  

and 

( | , ) 1 ( )
n n n w n n

P v F= − = − −ρ θ ξ ξ θ  

This completes the proof.  

Appendix B: Proof of Theorem 3 

Before proceeding, we first introduce the following 

lemma.  

Lemma: For 0x ≥ , define 

0

( ) ( )d
x

F x f u u∫�  

where ( )f ⋅  denotes the probability distribution 

function of a real-valued Gaussian random variable 

with zero-mean and unit variance. We have ( )F x  

upper bounded by 

2
/21
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≤ −
π  

Proof: The proof can be found in [15].  

Define the function 
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−

 

where ( )f ⋅  and ( )F ⋅  denotes the probability density 

function and cumulative density function of a real-

valued Gaussian random variable with zero-mean and 

unit variance respectively. Invoking the above Lemma, 

we have 
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and ( ) 2 /g x = π  if and only if 0x = . Noting that  
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Therefore ( )T

n ng h −ϕ θ  attains its maximum when 

T

n n h=θ ϕ  

The proof is completed here. 
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