
An Improved Key-Agreement Protocol for Channels with Small Error Rate 2277

An Improved Key-Agreement Protocol for

Channels with Small Error Rate

Albert Guan1, Chin-Laung Lei2

1 Department of Applied Mathematics, National Sun Yat-sen University, Taiwan
2 Department of Electrical Engineering, National Taiwan University, Taiwan

albertguan@math.nsysu.edu.tw, lei@cc.ee.ntu.edu.tw*

*Corresponding Author: Albert Guan; E-mail: albertguan@math.nsysu.edu.tw

DOI: 10.3966/160792642019122007024

Abstract

Symmetric cryptosystems are very important for

secure communication. They are much more efficient

then asymmetric cryptosystems. Secret keys are required

for symmetric cryptosystems, such as AES. In 2017,

Guan and Tzeng designed a secret key establishment

protocol whose security depends on the unpredictability

of noise in communication channel. They showed that

these protocols are secure even if the eavesdropper has

infinite computing power. Their protocol works most

efficiently for channels with bit-flip rate around 0.01. For

the case when bit-flip rate is much smaller than 0.01,

their protocol needs a long random bit string to

accumulate enough uncertainty to establish a secret key.

In this article, an improved protocol for establishing

secret key is proposed. The new method requires much

less random bits for channels with small bit-flip rates,

such as in the range [0.001, 0.010]. With the

improvement of wireless communication technology, the

bit-flip rate is reducing. Therefore, the new method is

suitable for the current wireless networks technology.

Keywords: Key agreement, Lightweight protocol,

Wireless network, Random noise, Binary

symmetric channel

1 Introduction

A wireless sensor network typically consists of a set

of sensors that monitor the environment, collect local

data, and send it to the server. Sensor networks have

many applications, such as military surveillance,

industrial process monitoring, health care monitoring.

For almost all applications, these sensors must

constantly send and receive data in a secure way.

Sensor nodes are usually resource limited devices, thus

computationally light-weight cryptography protocols

are required for these devices.

Secret keys are indispensable in secure

communication. Diffie-Hellman key exchange protocol

is a well-known protocol for establishing secret keys

[1]. However, using Diffie-Hellman key exchange

protocol to establish secret keys needs to consider two

issues, especially for devices with limited computing

resources. First, Diffie-Hellman key exchange protocol

requires modulo exponentiation, which is a heavy

computation. Second, Diffie-Hellman key exchange

protocol is computationally secure, which implies that

an attacker with enough computing power can break

the protocol. It is known that quantum computer can

solve discrete logarithm problem in polynomial time

[2]. Therefore, Diffie-Hellman key exchange protocol

is not secure if quantum computers are available.

Noise in the communication channel is usually not

useful in message transmission. However,

unpredictable noise can be useful in the design of

cryptographic protocols which is secure against

quantum computers. Guan and Tzeng used

unpredictable noise in communication for establishing

secret keys [3]. Their protocol can be described briefly

as follows. Let A and B be the two nodes in the

network that are trying to establish a common secret

key for secure communication. Note that these nodes

can be IoT devices which need to communicate

securely. The first step of their protocol is to let the

two nodes receive random bit strings from the same

source at the same time. Due to noise in the

communication channel, the messages received by A

and B, as well as the message received by the

eavesdropper, may not be the same. Guan and Tzeng

have designed a simple and efficient method for nodes

A and B to adjust their messages so that the adjusted

message will be equal with very high probability. They

have shown that, even if the eavesdropper can also use

the message he/she eavesdropped in the network to

adjust the message received by him/her, there must be

some uncertainty for the eavesdropper. After enough

uncertainty has been accumulated, a universal hash

function can then be used by A and B to establish a

secret key which is totally unknown to the

eavesdropper. Since the security of their protocol

depends only on the unpredictability of random noise,

the protocol is secure even if the eavesdropper has

infinite computing power.

2278 Journal of Internet Technology Volume 20 (2019) No.7

In Guan and Tzeng’s protocol, the received string is

first divided into blocks of 2 bits, and then the

exclusive-or of each two bits are used to verify the

equality of the messages received by A and B [3]. In

this checking step, the eavesdropper can also learn the

exclusive-or of each pair of the bits used in the

protocol. They have shown that, even if the

eavesdropper learned these information, he/she still has

some uncertainty about the original bits. For example,

if the exclusive-or of a pair of bits is 0, the value of the

original bits can be 00 or 11. The eavesdropper cannot

decide which case is correct. The eavesdropper will

have 1 bit of uncertainty if he/she learns that the parity

bit of his/her corresponding bits are different. Thus,

designing a function to preserve the maximum

uncertainty relative to the eavesdropper is a very

crucial step.

There may be other ways to design a better function

to maximize the uncertainty of the eavesdropper. In

this paper, we focus on simple functions, such as, the

exclusive of a sequence of l bits, l > 1. We show that

the exclusive-or of a sequence of 3 bits can maximize

the uncertainty of the eavesdropper. We show that the

average entropy for each message bit will actually

decreased if the exclusive-or of 4 or more bits are used.

Therefore, the length of required random strings is

minimized if the exclusive-or of adjacent 3 bits are

used. We use this property to design a new protocol for

establishing secret keys. In the case that the bit-flip

rates are smaller than 0.01, the efficiency of the new

protocol is much better than the protocol proposed in

[3]. For example, for p = 0.01, in average, the original

protocol needs 12227 bits to establish 128 bit keys,

while the new protocol only needs 7539 bits. The

saving is almost 40% for establishing a 128-bit secret

key. For longer key length, the saving of random bits

become more significant.

2 Related Works

A well-known key agreement protocol is the Diffie-

Hellman key exchange protocol [1]. Due to solving

discrete logarithm problem is computationally hard,

the eavesdropper cannot feasibly determine the key

computed by the two parties, even if the eavesdropper

has learned the messages sent through a public network.

Therefore, the security of Diffie-Hellman key

exchange protocol is based on solving discrete

logarithm problem in a large finite group is hard.

However, it can be broken if the attacker has enough

computing power, such as by using quantum

computers. In 2012, Ding et al. presented a Diffie-

Hellman-like protocol, but the security is based on

learning with error problem [4]. The learning with

error problem has been shown to be computationally

hard, and currently no quantum algorithms can solve

this problem efficiently. There are other key agreement

protocols such as [5-7]. In this paper, we will focus on

the key agreement protocols whose security is not

based on computationally hard problems.

Recently, key agreement protocols which do not

depends on computationally hard problems were

proposed by many authors. Aumann et al. proposed a

message encryption method based on bounded storage

model [8]. Tsai et al. proposed a key establishment

protocol for wireless sensor network in the bounded

storage model [9]. In this model, it is assume that none

of the nodes can store all random bits from a common

random source. To establish a secret key with high

probability, both nodes need to store at least 1/ 22()kα

bits to ensure that they have at least k bits in common,

where k is the security parameter and α is the length

of the public random string. Due to limited storage, the

eavesdropper cannot store all bits needed to compute

the secret key. Unfortunately, the value of α needs to

be very large. Thus, the secret key bit rate of their

scheme is very small.

Another way to establish a secret key is to store a set

of keys in advance. For the pre-deployment of keys,

Eschenauer et al. proposed a method to assign a

random subset of the keys to each sensor node. They

proved that two neighboring sensor nodes can establish

a shared key from their own key pools with very high

probability if large enough number of keys have been

stored in each node in advance [10]. Liu and Ning

improved the basic random key pre-distribution

scheme of Eschenauer and Gilgor by using multiple

random key pools for each sensor node [11]. Ren et al.

discussed how to pre-distribute keys in large scale [12].

Miller and Vaidya proposed a key pre-distribution

scheme which assumes that the communication

channels between sensor nodes use the orthogonal

frequency-division multiplexing technology [13]. All

of the above protocols are information theoretically

secure, but they all need large amount of storage.

Noisy channel has many applications in

cryptography. Wyner showed that two parties A and B

can exchange a secret key, and eavesdropper E can

only obtain a small fraction of the information as long

as the binary symmetric channel connected for E is

worse than the channel connected for A and B [14].

Crépeau proposed oblivious transfer and bit

commitment protocol based on binary symmetric

channel [15]. Maurer et al. focus on secret key rate at

which Alice and Bob can generate over an insecure,

but authenticated channel. The two scenarios they used

are binary symmetric channel and erasure channel [16].

Later, Maurer and Wolf provide stronger definitions of

secrecy capacity and secret key rate [17].

In this paper, we present a protocol for key

agreement by using unpredictable random noise in

communication channel. The protocol requires much

less random bits as compared to the bounded storage

model. Our protocol works even if the quality of the

channel used by the eavesdropper is the same as the

one used by A and B.

An Improved Key-Agreement Protocol for Channels with Small Error Rate 2279

3 Preliminary

The security of our key establishment protocol

depends on the unpredictable random noise in

communication network. In the application level of a

computer communication network, it is generally

assumed that a receiver can receive all messages in the

communication without errors. This may not be true at

the lower level of the network in a practical

environment. Noise and other factors can make

message communication less reliable. Applying error

correction codes or even re-sending some parts of a

message is required to make sure that the message

received is intact.

Although unpredictable random noise may not be

useful in message transmission, it can be used in the

key establishment protocol. In 2017, Guan and Tzeng

proposed a key establishment protocol by using

unpredictable random noise [3]. A brief description of

their key establishment protocol can be described as

follows. Assume that, in a communication channel,

node A and node B try to establish a secret key. The

key establishment protocol consists of the following 3

steps.

(1) Receive random bit strings from a common

random source,

(2) Adjust received strings to make them equal, and

(3) Apply hash function to the adjusted string to

obtain a common secret key.

Random noise plays an important role in the

establishment of a secure key in our protocol. In the

first step of our protocol, both A and B try to receive

random bit string from a common source, such as a

beacon node. Note that, at the same time, the

eavesdropper E is also eavesdropping on the

communication channel. The main goal of the protocol

is to make the eavesdropper has almost no information

about the final key K. This is possible due to the

unpredictability of noise in the communication channel.

Let
1 2
, , ,

m
x x x x= … be the message received by A,

1 2
, , ,

m
y y y y= … be the message received by B, and

1 2
, , ,

m
z z z z= … be the message received by the

eavesdropper. Although these messages were all

obtained from the same beacon node, due to noises, the

messages x, y, and z are unlikely to be the same.

To analyze the protocol, we assume that the

communication channel is a binary symmetric channel

with bit-flip probability p. In practical communication

channels, the value of p is usually small. In this work,

we assume that 0.001 0.015.p≤ ≤ Thus the differences

between any pair of these strings is relatively small.

In the second step of the protocol, nodes A and B try

to make the strings received by them equal, that is, to

make x = y. After this is done, a secret key K can be

obtained by applying a hash function h randomly

chosen from a universal hash family. This is done in

the third step. That is, a secret key can be computed by

K = h(x) = h(y).

As stated before, due to noises in the communication

channel, the message x received by A and the message

y received by B may not be the same. The second step

is to make x = y. Some information must be sent

through the communication channel so that A and B

can make corrections on their strings.

Assume that A sends some information based on his

message x, say ()f x , to B. For example, in Guan and

Tzeng’s protocol, ()f x is defined as:

1 2 / 2
, , , ,

m
α α α α= …

where
2 1 2

,
i i i

x xα
−

= ⊕ the exclusive-or of pair of bits

of x.

Based on ()f xα = and the message y he/she

received, B sends (,)g yα to A. For example, in Guan

and Tzeng’s protocol, (,)g yα is defined as the subset

of the indices i such that
2 1 2 2 1 2

.

i i i i
x x y y

− −

⊕ ≠ ⊕

According to the information (,)I g yα= , for each

,i I∈ A resets
2 1 2

00
i i

x x
−

= and B also resets

2 1 2
00.

i i
y y

−

= After this step, it can be shown that the

string x and y will be equal with very high probability.

The problem is that the eavesdropper can also learn

the message ()f x and ((),)g f x y used by A and B to

make x and y equal. They showed that the

eavesdropper must have some uncertainty about x (or

y), even if he/she knows and (,)g yα .

To make the protocol works more efficiently when

the bit-flipped rate is small, a better function to

maximize the rate to accumulate uncertainty for

eavesdropper about the common string shared by A and

B (namely x or y) is required and it is described in the

next section.

4 Uncertainty Preserving Function

In this section, we present a new uncertainty

preserving functions ()f x and ((),)g f x y for the key

establishment protocol for communication channel

with small bit-flip rate, such as 0.015.p ≤ Note that

the purpose of these functions is to make the string x

received by A and the string y received by B equal.

More importantly, we would like to maximize the

uncertainty of the attacker about the strings x and y.

In the original protocol proposed by Guan and

Tzeng [3], these functions use exclusive-or of a pair of

bits to check if x and y are equal or not. Let the random

bit string received by B be
1 2
, , ,

m
y y y y= … . After

receiving ()f x α= from A, B checks if
i

α equals

2 1 2i i
y y

−

⊕ or not, and sends ((),)g f x y =

2 1 2
{ }

i i i
y yα

−

≠ ⊕ to A.

Since the bit-flip rate is small, if
2 1 2i i i
y yα

−

= ⊕

then
2 1 2 2 1 2i i i i
x x y y

− −

⊕ = ⊕ with high probability. If

2280 Journal of Internet Technology Volume 20 (2019) No.7

2 1 2 2 1 2
,

i i i i
x x y y

− −

⊕ ≠ ⊕ then A sets
2 1 2

00,
i i

x x
−

= and B

sets
2 1 2

00.
i i

y y
−

= After these adjustments of their

strings, it can be shown that x equals to y with very

high probability.

Assume that the random bit string received by the

eavesdropper is
1 2
, , ,

m
z z z z= … Suppose that

2 1 2
,

i i i
z zα

−

≠ ⊕ the eavesdropper does not know the

values of
2 1 2i i
x x

−

 (or
2 1 2i i
y y

−

). For example, if 0
i

α = ,

it is possible that
2 1 2

00
i i

x x
−

= or
2 1 2

11
i i

x x
−

= . The

eavesdropper does not know which one is correct.

Therefore, in this case, the eavesdropper has 1 bit of

uncertainty about the two bits
2 1 2i i
x x

−

.

Let the function
1 2 / 2

() , , ,
m

f x α α α= … be defined

as
2 1 2

,
i i i

x xα
−

= ⊕ 1, 2, , / 2.i m= … For the eavesdropper,

this function generates 1 bit of uncertainty for each pair

of bits when these two bits are different from the A’s

(or B’s). In order to compute a key K of length λ , the

protocol must accumulate at least λ bits of uncertainty.

Thus, it is desirable to design functions which can

generate more uncertainty for the eavesdropper to

improve the efficiency of the new key agreement

protocol, for the case that the bit-flip rate is small.

There may be other ways to design a better function

f to be used in the protocol. We focus on the exclusive-

or of l consecutive bits of the message. For l = 2, for

every 2 bits, the average uncertainty is 1 for the

attacker. Assume that the value of l is small. For any l

> 1, if (1) 1 (1) 2 (1) 1 (1) 2l i l i li l i l i
x x x y y

− + − + − + − +
⊕ ⊕ ⊕ ≠ ⊕�

,
li
y⊕ ⊕� it is reasonable to assume that

(1) 1 (1) 2l i l i li
z z z

− + − +
⊕ ⊕ ⊕� and (1) 1 (1) 2l i l i

x x
− + − +

⊕ ⊕

li
x⊕� differ in only 1 bit. Without any other

information, the eavesdropper does not know which

bits should be flipped to make the two strings equal.

Therefore, the uncertainty for the eavesdropper is log l

bits. Thus, in average, each of the l bits contribute (log

l)/l bits of uncertainty.

Figure 1 shows the function
2

() (log) /h x x x= when

the domain of the function is the reals R. The function

f has a maximum value at 2.71828x e= ≈ . Since the

function is concave and (2) 0.5 (3) 0.52832,h h= < ≈

we choose l = 3 in our new key agreement protocol.

Thus, let
1 2 /3

() , , , ,
m

f x α α α= … where
2 1 2

,
i i i

x xα
−

= ⊕

1, 2, , /3.i m= …

Figure 1. The function
2

() (log) /h x x x= has

maximum at 2.71828x e= ≈ .

Note that, in the above analysis, we assume that only

1 bit is flipped in every l bits. This may not be true,

since other bits may also be flipped with very small

probability. However, when the value of p is small, the

case that only 1 bit is flipped in each block of l bit is a

good estimation of the uncertainty for the eavesdropper.

All the other cases contribute a very small amount to

the uncertainty for the attacker about the string x (or y).

Detailed analysis including all the cases will be given

in Section 6.

5 Description of the New Protocol

Our protocol is shown in Figure 2 and Figure 3.

Figure 2 describes the basic steps of our protocol for

collecting random bit strings from a beacon node.

These steps are repeatedly executed until enough

uncertainty of the eavesdropper about the random

strings has been accumulated. Then a secret key can be

computed by using the random bit strings. The detailed

steps of the main protocol are described in Figure 3.

1. Let m be a multiple of 3. Two nodes A and B receive m random bits broadcast by the beacon node at the same time.

2. Let the m bits that A received be
1 2
, , , .

m
x x x… . and the m bits that B received be

1 2
, , ,

m
y y y… .

3. A computes
1 2 / 3
, , , ,

m
α α α α= … where

3 2 3 1 3
,

i i i i
x x xα

− −

= ⊕ ⊕ and send α to B.

4. B also computes
1 2 / 3
, , , ,

m
β β β β= … where

3 2 3 1 3i i i i
y y yβ

− −

= ⊕ ⊕ .

5. B computes the set { | }
i i

I i α β= ≠ and sends I to A.

6. B sets
3 2 3 1 3

0
i i i

y y y
− −

= = = for every k I∈ .

7. After receiving I, for each k I∈ , A sets
3 2 3 1 3

0
i i i

x x x
− −

= = = .

Figure 2. Basic steps of the protocol

An Improved Key-Agreement Protocol for Channels with Small Error Rate 2281

1. Repeatedly run the basic steps of the protocol r times to obtain a message of length mr.

2. A computes
1 2

(, , ,),
c mr

T h x x x= … and it to B.

3. B computes
1 2

(, , ,)
c mr

T h y y y′ = … and send it to A.

4. If ,T T ′= then
1 2 1 2
, , , , , ,

mr mr
x x x y y y=… … with very high probability. Both A and B set the secret key

1 2 1 2
(, , ,) (, , ,)

mr u mr
K x x x h y y y= =… …

5. Otherwise, ,T T ′≠ the protocol aborts.

Figure 3. Description of the protocol

The main idea of our protocol is to establish a

common string of length mr for both nodes A and B.

This is done by repeatedly executing the basic steps of

the protocol r times. The value of r, as well as other

parameters, will be discussed in the Section 7.

Note that, in the basic steps of our protocol, assume

that
1 2 /3 1 2 / 3
, , , , , , ,

m m
α α α β β β=… … we conclude that

the two sequences
1 2
, , ,

m
x x x… and

1 2
, , ,

m
y y y… are

equal with very high probability. Although there is a

very small probability that the two strings are different,

for security reason, the protocol does not check if they

are equal or not in the basic steps.

The checking will be done after A and B have

collected strings of length mr, in step (2) and step (3)

of the main protocol by using a cryptographic hash

function
c
h . The hash function : 2 2

mr

c
h

δ
→ . is used

to check that the adjusted messages of A and B is equal

or not. Usually, the value of 80δ = . The larger the

value of δ the higher probability that x y= . However,

the amount of information the eavesdropper learns will

also be increased. If they are equal, then A and B can

apply the hash function

u
h to extract secret key.

At the final step of the protocol, a universal hash

function
u
h is required. Let s be the length of the key

to be established. Any universal hash function from

2

mr

Z to
2

s

Z can be used, provided that hu is chosen

randomly from universal hash function family. Note

that
u
h can be announced in public. The secrecy of the

final key does not depend on the secrecy of
u
h . It

depends on the secrecy of the string x and y agreed by

A and B.

6 Analysis of the New Protocol

In this section, we first analyze the successful rate of

our key establishment protocol. We then analyze the

uncertainty of the eavesdropper about the strings

agreed by A and B.

Define rounds to be the number of times the full

protocol is executed, and runs the number of times the

basic steps shown in Figure 2 are executed in a round.

We first estimate the average number of rounds R

needed to be executed for the two nodes to obtain a

common secret key.

We first show that the successful rate of the

proposed protocol is high. Assume that the basic steps

of the protocol are executed r times in each round.

Note that the proposed protocol may fail if x y≠ after

adjustments. Suppose that nodes A and B repeatedly

execute the protocol until they successfully establishe a

common string of length mr. The following theorem

can be used to estimate the number of rounds R for the

nodes to establish a secret key K.

We first show that the successful rate of the

proposed protocol is high. Assume that the basic steps

of the protocol are executed r times in each round.

Note that the proposed protocol may fail if x y≠ after

adjustments. Suppose that nodes A and B repeatedly

execute the protocol until they successfully establishe a

common string of length mr. The following theorem

can be used to estimate the number of rounds R for the

nodes to establish a secret key K.

Theorem 1. Let G be the random variable for the

number of rounds executed until nodes A and B

successfully establish a common string of length mr in

the protocol. The expected value R = E(G) of the

random variable G is

2 /31 3 (1) 2 (1).mrp p where p p p′ ′ ′− − = −

Proof. Since the bit-flip probability is p, the

probability that the two bits xi and yi, i = 1, 2, …, m of

A and B are different is 2 (1)p p p′ = − . The only case

that
i i

α β≠ but
3 2 3 1 3

,
i i i

x x x
− −

 and
3 2 3 1 3i i i
y y y

− −

 are

different is that 2 of the 3 bits are flipped. The

probability that these two of the 3 bits are flipped is
23 (1).p p′ − . Since there are m bits at each run, the

probability that the mr bits that A received are the same

with B is 2 31 3 (1) .
mr

p p′ ′− − Let 2 31 3 (1) ,
mr

p p p′′ ′ ′= − −

1Pr[] (1) .t

G t p p
−

′′ ′′= = − Hence, 1

1

() (1)t

t

E G tp p
∞

−

=

′′ ′′= −∑

1

1

(1) 1/ .t

t

p t p p

∞

−

=

′′ ′′ ′′= − =∑

Table 1, shows the expected number of times the

proposed protocol needs to be executed. The values in

Table 1 can be obtained from Theorem 1 for

 2 3
1

1 3 (1)
mr

p p p
R

′′ ′ ′= = − −

2282 Journal of Internet Technology Volume 20 (2019) No.7

Table 1. The average number of rounds required for
321m =

 r = 10 r = 20 r = 30

p = 0.001 1.01 1.03 1.04

p = 0.005 1.37 1.88 2.57

p = 0.010 3.44 11.80 40.58

p = 0.015 15.24 232.11 3536.34

where R is the expected number of rounds until the

protocol succeeds. This number depends on the

common string length m for each run, the number of

runs r and the bit-flip probability p. In this example,

we assume that m = 321.

The values shown in Table 1 show that our protocol

is practical when p < 0.015, except the case that the

number of runs r = 30 and bit-flip probability p = 0.015,

in which the expected number of rounds until the

protocol succeeds is 3536, which is a bit large.

The next theorem states that when the eavesdropper

has his/her own parity bits
k

γ and node A’s parity bits

k
α , 1 / 3,k n≤ ≤ the amount of uncertainty about the

corresponding 3 bits
3 2 3 1 3

.

i i i
x x x

− −

 Finally, we divide

this value by 3 to get the secret key rate.

Theorem 2. Let S = {0, 1}3, X S∈ , and X is a random

variable for 3 bits corresponding to the parity bit
k

α .

Then the eavesdropper has uncertainty

1 1 2 2

1 1

(3 () log ()) () log(()))

(3 () log ())

f p f p f p f p

f q f q

− +

−

for X, where 2 2 2

1
() (1) / 3(1) ,f p p p p= − + − 1 ,q p= −

2
() 1 3 (),f p f p= −

2 2(3(1)),p p pα= + −
2 2(1)(1 3).p p pβ= − − +

Proof. Let Y be the random variable such that Y = 0 if

eavesdropper’s parity bit k is not equal to A’s parity bit

k
α , Y = 1 if eavesdropper’s parity bit is equal to

k
α ,

Y =⊥ , if A and B have different parity bit.

H(X|Y) = Pr[Y = 1]H(X|Y = 1) + Pr[Y = 0]H(X|Y = 0) +

Pr[Y =⊥]H(X|Y =⊥).

Since eavesdropper knows the 3 bits when two nodes

have different parity bit, that is, 000. This implies that

H(X|Y =⊥) = 0, and

H(X|Y) = Pr[Y =1]H(X|Y = 1) + Pr[Y = 0]H(X|Y = 0).

Pr[Y = 1] = (1 − p)((1 − p)2 + 3p2), and

Pr[Y = 0] = p(p2 + 3(1 − p)2).

Without loss of generality, we assume that the 3 bits

the eavesdropper received is 000.X ′ = Then

Pr[X = 000 | Y = 1] = (1−p)3/((1−p)3+3p2(1−p)) =

(1−p)2/((1−p)2+3p2), and

Pr[X = 110 | Y = 1] = p2(1−p)/(1−p)3 +3p2(1−p)) =

p2/((1−p)2 +3p2).

Similarly, we can derive

Pr[X = 101 | Y = 1] = p2/((1 − p)2 + 3p2), and

Pr[X = 011 | Y = 1] = p2/((1 − p)2 + 3p2).

For the case Y = 0,

Pr[X = 111 | Y = 0] = p3/(p3 + 3p(1 − p)2)

= p2/(p2 + 3(1 − p)2), and

Pr[X = 100 | Y = 0] = p(1−p)2/(p3 +3p(1−p)2)

= (1−p)2/(p2 +3(1−p)2).

Similarly, we can derive

Pr[X = 010 | Y = 0] = (1 − p)2/(p2 + 3(1 − p)2), and

Pr[X = 001 | Y = 0] = (1 − p)2/(p2 + 3(1 − p)2).

H(X | Y = 1) = 3f1(q) log(f1(q)) + f2(q) log(f2(q)), and

H(X | Y = 0) = 3f1(p) log(f1(p)) + f2(p) log(f2(p)).

This implies that

H(X | Y) =

1 1 2 2

1 1 2 2

(3 () log ()) () log(()))

(3 () log ()) () log(())).

f p f p f p f p

f q f q f q f p

α

β

− +

− +

7 Selecting Parameters of the Protocol

In this section we show how to select suitable

parameters in our protocol.

First of all, for piratical applications, such as

establishing keys to be used in AES, the length of the

key s should be 128, 192, or 256. Thus, the amount of

uncertainty for the eavesdropper about the common

string x and y shared by A and B should be no less than

s δ+ , where δ is the amount of information revealed

for checking if x = y or not in the main protocol.

The purpose of repeated execution of the basic step

of the protocol is to accumulate sufficient uncertainty

bits against eavesdropper. The value of r is set so that

the mr common bit strings of A and B will have at least

s uncertain bits to eavesdropper. The possible values of

r is given in Table 2 for some practical values of p =

0.005, 0.01, 0.015.

Table 2. The number of uncertainty bits for

eavesdropper, m = 321

 r = 10 r = 20 r = 30

p = 0.005 51 77 103

p = 0.010 109 164 218

p = 0.015 154 231 308

The values in Table 2 can be derived from Theorem

2. First we compute the uncertainty for eavesdropper

for a single run, then multiply it by the number of runs

r to get the final result.

For example, for r = 30 and bit-flip probability p =

0.01, after executing the protocol, the common string

will have 164 bits of uncertainty for eavesdropper. In

general, for our protocol to run successfully for s = 160,

it is always possible to select the parameters for m =

An Improved Key-Agreement Protocol for Channels with Small Error Rate 2283

321, and 0.001 0.015.p≤ ≤ This shows that our

protocol is practical in current technology, For the case

that the error rate is very small, i. e., p < 0.001, the two

nodes can randomly flip more bits to make the same

effect as p > 0.001.

Let s be the security parameter. In the next theorem,

with proper choosing of parameters, we show that the

key established by our protocol is s-bit secure.

Theorem 3. Assume that
c
h is the cryptographic hash

function and
u
h is the universal hash function chosen

randomly from universal hash function family. Then, at

the end of the protocol, the eavesdropper has at least s

bits of uncertainty about the value of the key K.

Proof. Let W be a random variable uniformly

distributed from {0,1} .n Note that W can be viewed as

the string broadcast by the beacon node. Let BSp(W) be

another random variable that represents the string

received by the receiver when W is sent through a

binary symmetric channel with bit flip probability p. It

is clear that BSp(W) can be viewed as the string

received by A or B.

Let G be a random variable for universal hash

function :{0,1} {0,1} ,n s

u
h → s < n. It can be shown

that [18].

Theorem 4 (Bennett et al.) Let Hb(p) be the binary

entropy function and H(.|.) be the conditional Shannon

entropy. For any 0δ > and for all sufficiently large n,

for (()) , (() | (),) 2 /ln2.t

b
t n H p s H GW BSpW G sδ

−

= − − ≥ −

Because H(G(W) | BSp(W), G) = s means that given

BSp(W), G, the dishonest player has no information

about the hash value G(W). The last term is

exponentially close to 0. This implies that almost no

information about the hash value G(W) is leaked. We

cannot use the theorem directly to prove the security

for nodes A and B, because we have sent the parity bits

in the protocol. However, we can apply this theorem

with some modifications.

Recall that 1 ,q p= − 2 2(3(1)),p p pα = + − β =
2 2(1)((1) 3),p p p− − + and

1
()((3 () log(()) () log(()))
3

(3 () log(())) () log(())))

h f p f p g p g p

f q f q g q g q

α

β

= − +

− +

Then for any > 0∈ and for all sufficiently large

,n mr= for () ,t n h s
n

δ
ε= − − − (() | , , (),)H GW BSqW Gα β

2 / ln 2 .
t

s s
−

≥ − ≈

Note that our hash function is from mr bits to s bits.

8 Conclusions

We have proposed a new key establishment protocol

for two nodes in a communication network to establish

a secret key which is information-theoretically secure.

In this new protocol, we use the exclusive-or of a block

of 3 bits to verify the consistency of the strings

received by A and B. We also showed that using a

blocks of size 3 is an optimal choice. Not only the

successful rate of the protocol would be decreased, the

uncertainty of the eavesdropper about the common bit

string is also deceased. The proposed protocol is a

light-weight protocol. It only needs to do exclusive-or

and hash operations. Thus it is suitable to devices with

limited computing resources.

Acknowledgments

The research of the first author is supported in part

by the MOST project 107-2218-E-110-017-MY3. The

research of the second author is supported in part by

the MOST project 106-2811-E-002-085.

References

[1] W. Diffie, M. Hellman, New Directions in Cryptography,

IEEE Transactions on Information Theory, Vol. 22, No. 6, pp.

644-654, November, 1976.

[2] P. W. Shor, Polynomial-time Algorithms for Prime

Factorization and Discrete Logarithms on a Quantum

Computer, SIAM Journal on Computing, Vol. 26, No. 5, pp.

1484-1509, October, 1997.

[3] A. Guan, W.-G. Tzeng, A Secret Key Establishment Protocol

for Wireless Networks Using Noisy Channels, Journal of

Computer Security, Vol. 25, No. 2, pp. 139-151, May, 2017.

[4] J. Ding, X. Xie, X. Lin, A Simple Provably Secure Key

Exchange Scheme Based on the Learning with Errors

Problem, Cryptology ePrint Archive, Report 2012/688,

December, 2012.

[5] C.-Y. Chen, H.-C. Chao, A Survey of Key Distribution in

Wireless Sensor Networks, Security and Communication

Networks, Vol. 7, No. 12, pp. 2495-2508, December, 2014.

[6] H. F. Rashvand, H. C. Chao, Dynamic Ad-Hoc Networks, The

Institution of Engineering and Technology, 2013.

[7] F.-H. Tseng, T.-T. Liang, L.-D. Chou, H.-C. Chao, On-line

Evaluation System for Examining Website Content

Consistency between IPv4 and IPv6, TENCON 2014 - 2014

IEEE Region 10 Conference, Bangkok, Thailand, 2014, pp.1-

5.

[8] Y. Aumann, Y. Z. Ding, M. O. Rabin, Everlasting Security in

the Bounded Storage Model, IEEE Transactions on

Information Theory, Vol. 48, No. 6, pp. 1668-1680, June,

2002.

[9] S.-C. Tsai, W.-G. Tzeng, K.-Y. Zhou, Key establishment

Schemes Against Storage-bounded Adversaries in Wireless

Sensor Networks, IEEE Transactions on Wireless

Communications, Vol. 8, No. 3, pp. 1218-1222, March, 2009.

[10] L. Eschenauer, V. D. Gligor, A Key-management Scheme for

Distributed Sensor Networks, Proceedings of the 9th ACM

Conference on Computer and Communications Security,

CCS ’02, Washington, DC, USA, 2002, pp. 41-47.

2284 Journal of Internet Technology Volume 20 (2019) No.7

[11] D. Liu, P. Ning, Establishing Pairwise Keys in Distributed

Sensor Networks, Proceedings of the 10th ACM Conference

on Computer and Communications Security, CCS’03,

Washington, DC, USA, 2003, pp. 52-61.

[12] K. Ren, K. Zeng, W. Lou, A New Approach for Random Key

Pre-distribution in Large-scale Wireless Sensor Networks:

Research Articles, Wireless Communications Mobile

Computing, Vol. 6, No. 3, pp. 307-318, May, 2006.

[13] M. J. Miller, N. H. Vaidya, Leveraging Channel Diversity for

Key Establishment in Wireless Sensor Networks,

Proceedings INFOCOM 2006. 25th IEEE International

Conference on Computer Communications, Barcelona, Spain,

2006, pp. 1-12.

[14] A. D. Wyner, The wire-tap channel, Bell System Technical

Journal, Vol. 54, No. 8, pp. 1355-1387, October, 1975.

[15] C. Crépeau, Efficient Cryptographic Protocols Based on

Noisy Channels, Proceedings of the 16th Annual

International Conference on the Theory and Application of

Cryptographic Techniques, EUROCRYPT’97, Konstanz,

Germany, 1997, pp. 306-317.

[16] U. M. Maurer, S. Wolf, Unconditionally Secure Key

Agreement and the Intrinsic Conditional Information, IEEE

Transactions on Information Theory, Vol. 45, No. 2, pp. 499-

514, March, 1999.

[17] U. Maurer, S. Wolf, Information-theoretic Key Agreement:

From Weak to Strong Secrecy for Free, Advances in

Cryptology- EUROCRYPT 2000, Bruges, Belgium, 2000, pp.

351-368.

[18] C. H. Bennett, G. Brassard, C. Crepeau, U. M. Maurer,

Generalized Privacy Amplification, IEEE Transactions on

Information Theory, Vol. 41, No. 6, pp. 1915-1923,

November, 1995.

Biographies

Albert Guan received a bachelor’s

degree in Applied Mathematics from

National Sun Yat-Sen University, in

2008, and a Ph.D. degree in Computer

Science from National Chiao Tung

University in 2017. From 2017 to

2018, he was a postdoctoral research fellow in the

Department of Electronic Engineering at National

Taiwan University. In 2018, he joined the Department

of Applied Mathematics at National Sun Yat-Sen

University as an assistant professor. His research

interests include discrete mathematics, cryptography

and its applications.

Chin-Laung Lei received the B.S.

degree in electrical engineering from

National Taiwan University, Taipei, in

1980 and the Ph.D. degree in

computer science from the University

of Texas at Austin in 1986. From

1986 to 1988, he was an assistant

professor in the Computer and Information Science

Department, Ohio State University, Columbus. In 1988,

he joined the faculty of the Department of Electrical

Engineering, National Taiwan University, where he

became a professor in 1996. He is a cowinner of the

first IEEE LICS test-of-time award, and has published

more than 250 technical articles in scientific journals

and conference proceedings. His current research

interests include network security, cloud computing,

and big data analytics.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (Adobe RGB \0501998\051)
 /CalCMYKProfile (Japan Color 2001 Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHT <FEFF005b683964da300c9ad86a94002851fa8840002b89d27dda0029300d005d0020005b683964da300c8f3851fa0033003000300064002851fa88400029300d005d00204f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks true
 /AddPageInfo false
 /AddRegMarks false
 /BleedOffset [
 8.503940
 8.503940
 8.503940
 8.503940
]
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MarksOffset 9.354330
 /MarksWeight 0.141730
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed true
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

