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Abstract 

Symmetric cryptosystems are very important for 

secure communication. They are much more efficient 

then asymmetric cryptosystems. Secret keys are required 

for symmetric cryptosystems, such as AES. In 2017, 

Guan and Tzeng designed a secret key establishment 

protocol whose security depends on the unpredictability 

of noise in communication channel. They showed that 

these protocols are secure even if the eavesdropper has 

infinite computing power. Their protocol works most 

efficiently for channels with bit-flip rate around 0.01. For 

the case when bit-flip rate is much smaller than 0.01, 

their protocol needs a long random bit string to 

accumulate enough uncertainty to establish a secret key. 

In this article, an improved protocol for establishing 

secret key is proposed. The new method requires much 

less random bits for channels with small bit-flip rates, 

such as in the range [0.001, 0.010]. With the 

improvement of wireless communication technology, the 

bit-flip rate is reducing. Therefore, the new method is 

suitable for the current wireless networks technology. 

Keywords: Key agreement, Lightweight protocol, 

Wireless network, Random noise, Binary 

symmetric channel 

1 Introduction 

A wireless sensor network typically consists of a set 

of sensors that monitor the environment, collect local 

data, and send it to the server. Sensor networks have 

many applications, such as military surveillance, 

industrial process monitoring, health care monitoring. 

For almost all applications, these sensors must 

constantly send and receive data in a secure way. 

Sensor nodes are usually resource limited devices, thus 

computationally light-weight cryptography protocols 

are required for these devices. 

Secret keys are indispensable in secure 

communication. Diffie-Hellman key exchange protocol 

is a well-known protocol for establishing secret keys 

[1]. However, using Diffie-Hellman key exchange 

protocol to establish secret keys needs to consider two 

issues, especially for devices with limited computing 

resources. First, Diffie-Hellman key exchange protocol 

requires modulo exponentiation, which is a heavy 

computation. Second, Diffie-Hellman key exchange 

protocol is computationally secure, which implies that 

an attacker with enough computing power can break 

the protocol. It is known that quantum computer can 

solve discrete logarithm problem in polynomial time 

[2]. Therefore, Diffie-Hellman key exchange protocol 

is not secure if quantum computers are available. 

Noise in the communication channel is usually not 

useful in message transmission. However, 

unpredictable noise can be useful in the design of 

cryptographic protocols which is secure against 

quantum computers. Guan and Tzeng used 

unpredictable noise in communication for establishing 

secret keys [3]. Their protocol can be described briefly 

as follows. Let A and B be the two nodes in the 

network that are trying to establish a common secret 

key for secure communication. Note that these nodes 

can be IoT devices which need to communicate 

securely. The first step of their protocol is to let the 

two nodes receive random bit strings from the same 

source at the same time. Due to noise in the 

communication channel, the messages received by A 

and B, as well as the message received by the 

eavesdropper, may not be the same. Guan and Tzeng 

have designed a simple and efficient method for nodes 

A and B to adjust their messages so that the adjusted 

message will be equal with very high probability. They 

have shown that, even if the eavesdropper can also use 

the message he/she eavesdropped in the network to 

adjust the message received by him/her, there must be 

some uncertainty for the eavesdropper. After enough 

uncertainty has been accumulated, a universal hash 

function can then be used by A and B to establish a 

secret key which is totally unknown to the 

eavesdropper. Since the security of their protocol 

depends only on the unpredictability of random noise, 

the protocol is secure even if the eavesdropper has 

infinite computing power. 
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In Guan and Tzeng’s protocol, the received string is 

first divided into blocks of 2 bits, and then the 

exclusive-or of each two bits are used to verify the 

equality of the messages received by A and B [3]. In 

this checking step, the eavesdropper can also learn the 

exclusive-or of each pair of the bits used in the 

protocol. They have shown that, even if the 

eavesdropper learned these information, he/she still has 

some uncertainty about the original bits. For example, 

if the exclusive-or of a pair of bits is 0, the value of the 

original bits can be 00 or 11. The eavesdropper cannot 

decide which case is correct. The eavesdropper will 

have 1 bit of uncertainty if he/she learns that the parity 

bit of his/her corresponding bits are different. Thus, 

designing a function to preserve the maximum 

uncertainty relative to the eavesdropper is a very 

crucial step. 

There may be other ways to design a better function 

to maximize the uncertainty of the eavesdropper. In 

this paper, we focus on simple functions, such as, the 

exclusive of a sequence of l bits, l > 1. We show that 

the exclusive-or of a sequence of 3 bits can maximize 

the uncertainty of the eavesdropper. We show that the 

average entropy for each message bit will actually 

decreased if the exclusive-or of 4 or more bits are used. 

Therefore, the length of required random strings is 

minimized if the exclusive-or of adjacent 3 bits are 

used. We use this property to design a new protocol for 

establishing secret keys. In the case that the bit-flip 

rates are smaller than 0.01, the efficiency of the new 

protocol is much better than the protocol proposed in 

[3]. For example, for p = 0.01, in average, the original 

protocol needs 12227 bits to establish 128 bit keys, 

while the new protocol only needs 7539 bits. The 

saving is almost 40% for establishing a 128-bit secret 

key. For longer key length, the saving of random bits 

become more significant. 

2 Related Works 

A well-known key agreement protocol is the Diffie-

Hellman key exchange protocol [1]. Due to solving 

discrete logarithm problem is computationally hard, 

the eavesdropper cannot feasibly determine the key 

computed by the two parties, even if the eavesdropper 

has learned the messages sent through a public network. 

Therefore, the security of Diffie-Hellman key 

exchange protocol is based on solving discrete 

logarithm problem in a large finite group is hard. 

However, it can be broken if the attacker has enough 

computing power, such as by using quantum 

computers. In 2012, Ding et al. presented a Diffie-

Hellman-like protocol, but the security is based on 

learning with error problem [4]. The learning with 

error problem has been shown to be computationally 

hard, and currently no quantum algorithms can solve 

this problem efficiently. There are other key agreement 

protocols such as [5-7]. In this paper, we will focus on 

the key agreement protocols whose security is not 

based on computationally hard problems. 

Recently, key agreement protocols which do not 

depends on computationally hard problems were 

proposed by many authors. Aumann et al. proposed a 

message encryption method based on bounded storage 

model [8]. Tsai et al. proposed a key establishment 

protocol for wireless sensor network in the bounded 

storage model [9]. In this model, it is assume that none 

of the nodes can store all random bits from a common 

random source. To establish a secret key with high 

probability, both nodes need to store at least 1/ 22( )kα  

bits to ensure that they have at least k bits in common, 

where k is the security parameter and α  is the length 

of the public random string. Due to limited storage, the 

eavesdropper cannot store all bits needed to compute 

the secret key. Unfortunately, the value of α  needs to 

be very large. Thus, the secret key bit rate of their 

scheme is very small. 

Another way to establish a secret key is to store a set 

of keys in advance. For the pre-deployment of keys, 

Eschenauer et al. proposed a method to assign a 

random subset of the keys to each sensor node. They 

proved that two neighboring sensor nodes can establish 

a shared key from their own key pools with very high 

probability if large enough number of keys have been 

stored in each node in advance [10]. Liu and Ning 

improved the basic random key pre-distribution 

scheme of Eschenauer and Gilgor by using multiple 

random key pools for each sensor node [11]. Ren et al. 

discussed how to pre-distribute keys in large scale [12]. 

Miller and Vaidya proposed a key pre-distribution 

scheme which assumes that the communication 

channels between sensor nodes use the orthogonal 

frequency-division multiplexing technology [13]. All 

of the above protocols are information theoretically 

secure, but they all need large amount of storage. 

Noisy channel has many applications in 

cryptography. Wyner showed that two parties A and B 

can exchange a secret key, and eavesdropper E can 

only obtain a small fraction of the information as long 

as the binary symmetric channel connected for E is 

worse than the channel connected for A and B [14]. 

Crépeau proposed oblivious transfer and bit 

commitment protocol based on binary symmetric 

channel [15]. Maurer et al. focus on secret key rate at 

which Alice and Bob can generate over an insecure, 

but authenticated channel. The two scenarios they used 

are binary symmetric channel and erasure channel [16]. 

Later, Maurer and Wolf provide stronger definitions of 

secrecy capacity and secret key rate [17]. 

In this paper, we present a protocol for key 

agreement by using unpredictable random noise in 

communication channel. The protocol requires much 

less random bits as compared to the bounded storage 

model. Our protocol works even if the quality of the 

channel used by the eavesdropper is the same as the 

one used by A and B. 
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3 Preliminary 

The security of our key establishment protocol 

depends on the unpredictable random noise in 

communication network. In the application level of a 

computer communication network, it is generally 

assumed that a receiver can receive all messages in the 

communication without errors. This may not be true at 

the lower level of the network in a practical 

environment. Noise and other factors can make 

message communication less reliable. Applying error 

correction codes or even re-sending some parts of a 

message is required to make sure that the message 

received is intact. 

Although unpredictable random noise may not be 

useful in message transmission, it can be used in the 

key establishment protocol. In 2017, Guan and Tzeng 

proposed a key establishment protocol by using 

unpredictable random noise [3]. A brief description of 

their key establishment protocol can be described as 

follows. Assume that, in a communication channel, 

node A and node B try to establish a secret key. The 

key establishment protocol consists of the following 3 

steps. 

(1) Receive random bit strings from a common 

random source, 

(2) Adjust received strings to make them equal, and 

(3) Apply hash function to the adjusted string to 

obtain a common secret key. 

Random noise plays an important role in the 

establishment of a secure key in our protocol. In the 

first step of our protocol, both A and B try to receive 

random bit string from a common source, such as a 

beacon node. Note that, at the same time, the 

eavesdropper E is also eavesdropping on the 

communication channel. The main goal of the protocol 

is to make the eavesdropper has almost no information 

about the final key K. This is possible due to the 

unpredictability of noise in the communication channel. 

Let 
1 2
, , ,

m
x x x x= …  be the message received by A, 

1 2
, , ,

m
y y y y= …  be the message received by B, and 

1 2
, , ,

m
z z z z= …  be the message received by the 

eavesdropper. Although these messages were all 

obtained from the same beacon node, due to noises, the 

messages x, y, and z are unlikely to be the same. 

To analyze the protocol, we assume that the 

communication channel is a binary symmetric channel 

with bit-flip probability p. In practical communication 

channels, the value of p is usually small. In this work, 

we assume that 0.001 0.015.p≤ ≤  Thus the differences 

between any pair of these strings is relatively small. 

In the second step of the protocol, nodes A and B try 

to make the strings received by them equal, that is, to 

make x = y. After this is done, a secret key K can be 

obtained by applying a hash function h randomly 

chosen from a universal hash family. This is done in 

the third step. That is, a secret key can be computed by 

K = h(x) = h(y). 

As stated before, due to noises in the communication 

channel, the message x received by A and the message 

y received by B may not be the same. The second step 

is to make x = y. Some information must be sent 

through the communication channel so that A and B 

can make corrections on their strings. 

Assume that A sends some information based on his 

message x, say ( )f x , to B. For example, in Guan and 

Tzeng’s protocol, ( )f x  is defined as: 

 
1 2 / 2
, , , ,

m
α α α α= …  

where 
2 1 2

,
i i i

x xα
−

= ⊕  the exclusive-or of pair of bits 

of x. 

Based on ( )f xα =  and the message y he/she 

received, B sends ( , )g yα  to A. For example, in Guan 

and Tzeng’s protocol,  ( , )g yα  is defined as the subset 

of the indices i such that 
2 1 2 2 1 2

.

i i i i
x x y y

− −

⊕ ≠ ⊕  

According to the information ( , )I g yα= , for each 

,i I∈  A resets 
2 1 2

00
i i

x x
−

=  and B also resets 

2 1 2
00.

i i
y y

−

=  After this step, it can be shown that the 

string x and y will be equal with very high probability. 

The problem is that the eavesdropper can also learn 

the message ( )f x  and ( ( ), )g f x y  used by A and B to 

make x and y equal. They showed that the 

eavesdropper must have some uncertainty about x (or 

y), even if he/she knows and ( , )g yα . 

To make the protocol works more efficiently when 

the bit-flipped rate is small, a better function to 

maximize the rate to accumulate uncertainty for 

eavesdropper about the common string shared by A and 

B (namely x or y) is required and it is described in the 

next section. 

4 Uncertainty Preserving Function 

In this section, we present a new uncertainty 

preserving functions ( )f x  and ( ( ), )g f x y  for the key 

establishment protocol for communication channel 

with small bit-flip rate, such as 0.015.p ≤  Note that 

the purpose of these functions is to make the string x 

received by A and the string y received by B equal. 

More importantly, we would like to maximize the 

uncertainty of the attacker about the strings x and y. 

In the original protocol proposed by Guan and 

Tzeng [3], these functions use exclusive-or of a pair of 

bits to check if x and y are equal or not. Let the random 

bit string received by B be 
1 2
, , ,

m
y y y y= … . After 

receiving ( )f x α=  from A, B checks if 
i

α  equals 

2 1 2i i
y y

−

⊕  or not, and sends ( ( ), )g f x y =  

2 1 2
{ }

i i i
y yα

−

≠ ⊕  to A. 

Since the bit-flip rate is small, if 
2 1 2i i i
y yα

−

= ⊕  

then 
2 1 2 2 1 2i i i i
x x y y

− −

⊕ = ⊕  with high probability. If 
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2 1 2 2 1 2
,

i i i i
x x y y

− −

⊕ ≠ ⊕  then A sets 
2 1 2

00,
i i

x x
−

=  and B 

sets 
2 1 2

00.
i i

y y
−

=  After these adjustments of their 

strings, it can be shown that x equals to y with very 

high probability. 

Assume that the random bit string received by the 

eavesdropper is 
1 2
, , ,

m
z z z z= …  Suppose that  

2 1 2
,

i i i
z zα

−

≠ ⊕  the eavesdropper does not know the 

values of 
2 1 2i i
x x

−

 (or 
2 1 2i i
y y

−

). For example, if 0
i

α = , 

it is possible that 
2 1 2

00
i i

x x
−

=  or 
2 1 2

11
i i

x x
−

= . The 

eavesdropper does not know which one is correct. 

Therefore, in this case, the eavesdropper has 1 bit of 

uncertainty about the two bits 
2 1 2i i
x x

−

. 

Let the function 
1 2 / 2

( ) , , ,
m

f x α α α= …  be defined 

as 
2 1 2

,
i i i

x xα
−

= ⊕  1, 2, , / 2.i m= …  For the eavesdropper, 

this function generates 1 bit of uncertainty for each pair 

of bits when these two bits are different from the A’s 

(or B’s). In order to compute a key K of length λ , the 

protocol must accumulate at least λ  bits of uncertainty. 

Thus, it is desirable to design functions which can 

generate more uncertainty for the eavesdropper to 

improve the efficiency of the new key agreement 

protocol, for the case that the bit-flip rate is small. 

There may be other ways to design a better function 

f to be used in the protocol. We focus on the exclusive-

or of l consecutive bits of the message. For l = 2, for 

every 2 bits, the average uncertainty is 1 for the 

attacker. Assume that the value of l is small. For any l 

> 1, if ( 1) 1 ( 1) 2 ( 1) 1 ( 1) 2l i l i li l i l i
x x x y y

− + − + − + − +
⊕ ⊕ ⊕ ≠ ⊕�  

,
li
y⊕ ⊕�  it is reasonable to assume that 

( 1) 1 ( 1) 2l i l i li
z z z

− + − +
⊕ ⊕ ⊕�  and ( 1) 1 ( 1) 2l i l i

x x
− + − +

⊕ ⊕  

li
x⊕�  differ in only 1 bit. Without any other 

information, the eavesdropper does not know which 

bits should be flipped to make the two strings equal. 

Therefore, the uncertainty for the eavesdropper is log l 

bits. Thus, in average, each of the l bits contribute (log 

l)/l bits of uncertainty. 

Figure 1 shows the function 
2

( ) (log ) /h x x x=  when 

the domain of the function is the reals R. The function 

f has a maximum value at 2.71828x e= ≈ . Since the 

function is concave and (2) 0.5 (3) 0.52832,h h= < ≈  

we choose l = 3 in our new key agreement protocol. 

Thus, let 
1 2 /3

( ) , , , ,
m

f x α α α= …  where 
2 1 2

,
i i i

x xα
−

= ⊕  

1, 2, , /3.i m= …   

 

Figure 1. The function 
2

( ) (log ) /h x x x=  has 

maximum at 2.71828x e= ≈ . 

Note that, in the above analysis, we assume that only 

1 bit is flipped in every l bits. This may not be true, 

since other bits may also be flipped with very small 

probability. However, when the value of p is small, the 

case that only 1 bit is flipped in each block of l bit is a 

good estimation of the uncertainty for the eavesdropper. 

All the other cases contribute a very small amount to 

the uncertainty for the attacker about the string x (or y). 

Detailed analysis including all the cases will be given 

in Section 6. 

5 Description of the New Protocol 

Our protocol is shown in Figure 2 and Figure 3. 

Figure 2 describes the basic steps of our protocol for 

collecting random bit strings from a beacon node. 

These steps are repeatedly executed until enough 

uncertainty of the eavesdropper about the random 

strings has been accumulated. Then a secret key can be 

computed by using the random bit strings. The detailed 

steps of the main protocol are described in Figure 3. 

 

1. Let m be a multiple of 3. Two nodes A and B receive m random bits broadcast by the beacon node at the same time. 

2. Let the m bits that A received be 
1 2
, , , .

m
x x x… . and the m bits that B received be 

1 2
, , ,

m
y y y… . 

3. A computes 
1 2 / 3
, , , ,

m
α α α α= …  where 

3 2 3 1 3
,

i i i i
x x xα

− −

= ⊕ ⊕  and send α  to B. 

4. B also computes 
1 2 / 3
, , , ,

m
β β β β= …  where 

3 2 3 1 3i i i i
y y yβ

− −

= ⊕ ⊕ . 

5. B computes the set { | }
i i

I i α β= ≠ and sends I to A. 

6. B sets 
3 2 3 1 3

0
i i i

y y y
− −

= = =  for every k I∈ . 

7. After receiving I, for each k I∈ , A sets 
3 2 3 1 3

0
i i i

x x x
− −

= = = . 

Figure 2. Basic steps of the protocol 
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1. Repeatedly run the basic steps of the protocol r times to obtain a message of length mr. 

2. A computes 
1 2

( , , , ),
c mr

T h x x x= …  and it to B.  

3. B computes 
1 2

( , , , )
c mr

T h y y y′ = …  and send it to A. 

4. If ,T T ′=  then 
1 2 1 2
, , , , , ,

mr mr
x x x y y y=… …  with very high probability. Both A and B set the secret key  

1 2 1 2
( , , , ) ( , , , )

mr u mr
K x x x h y y y= =… …  

5. Otherwise, ,T T ′≠  the protocol aborts. 

Figure 3. Description of the protocol 

The main idea of our protocol is to establish a 

common string of length mr for both nodes A and B. 

This is done by repeatedly executing the basic steps of 

the protocol r times. The value of r, as well as other 

parameters, will be discussed in the Section 7. 

Note that, in the basic steps of our protocol, assume 

that 
1 2 /3 1 2 / 3
, , , , , , ,

m m
α α α β β β=… …  we conclude that 

the two sequences 
1 2
, , ,

m
x x x…  and 

1 2
, , ,

m
y y y…  are 

equal with very high probability. Although there is a 

very small probability that the two strings are different, 

for security reason, the protocol does not check if they 

are equal or not in the basic steps. 

The checking will be done after A and B have 

collected strings of length mr, in step (2) and step (3) 

of the main protocol by using a cryptographic hash 

function 
c
h . The hash function : 2 2

mr

c
h

δ
→ . is used 

to check that the adjusted messages of A and B is equal 

or not. Usually, the value of 80δ = . The larger the 

value of δ  the higher probability that x y= . However, 

the amount of information the eavesdropper learns will 

also be increased. If they are equal, then A and B can 

apply the hash function 

u
h  to extract secret key. 

At the final step of the protocol, a universal hash 

function 
u
h  is required. Let s be the length of the key 

to be established. Any universal hash function from 

2

mr

Z  to 
2

s

Z  can be used, provided that hu is chosen 

randomly from universal hash function family. Note 

that 
u
h  can be announced in public. The secrecy of the 

final key does not depend on the secrecy of 
u
h . It 

depends on the secrecy of the string x and y agreed by 

A and B.  

6 Analysis of the New Protocol 

In this section, we first analyze the successful rate of 

our key establishment protocol. We then analyze the 

uncertainty of the eavesdropper about the strings 

agreed by A and B. 

Define rounds to be the number of times the full 

protocol is executed, and runs the number of times the 

basic steps shown in Figure 2 are executed in a round. 

We first estimate the average number of rounds R 

needed to be executed for the two nodes to obtain a 

common secret key. 

We first show that the successful rate of the 

proposed protocol is high. Assume that the basic steps 

of the protocol are executed r times in each round. 

Note that the proposed protocol may fail if x y≠  after 

adjustments. Suppose that nodes A and B repeatedly 

execute the protocol until they successfully establishe a 

common string of length mr. The following theorem 

can be used to estimate the number of rounds R for the 

nodes to establish a secret key K. 

We first show that the successful rate of the 

proposed protocol is high. Assume that the basic steps 

of the protocol are executed r times in each round. 

Note that the proposed protocol may fail if x y≠  after 

adjustments. Suppose that nodes A and B repeatedly 

execute the protocol until they successfully establishe a 

common string of length mr. The following theorem 

can be used to estimate the number of rounds R for the 

nodes to establish a secret key K. 

Theorem 1. Let G be the random variable for the 

number of rounds executed until nodes A and B 

successfully establish a common string of length mr in 

the protocol. The expected value R = E(G) of the 

random variable G is 

 
2 /31 3 (1 ) 2 (1 ).mrp p where p p p′ ′ ′− − = −  

Proof. Since the bit-flip probability is p, the 

probability that the two bits xi and yi, i = 1, 2, …, m of 

A and B are different is 2 (1 )p p p′ = − . The only case 

that 
i i

α β≠  but 
3 2 3 1 3

,
i i i

x x x
− −

 and 
3 2 3 1 3i i i
y y y

− −

 are 

different is that 2 of the 3 bits are flipped. The 

probability that these two of the 3 bits are flipped is 
23 (1 ).p p′ − . Since there are m bits at each run, the 

probability that the mr bits that A received are the same 

with B is 2 31 3 (1 ) .
mr

p p′ ′− −  Let 2 31 3 (1 ) ,
mr

p p p′′ ′ ′= − −  

1Pr[ ] (1 ) .t

G t p p
−

′′ ′′= = −  Hence, 1

1

( ) (1 )t

t

E G tp p
∞

−

=

′′ ′′= −∑  

1

1

(1 ) 1/ .t

t

p t p p

∞

−

=

′′ ′′ ′′= − =∑  

Table 1, shows the expected number of times the 

proposed protocol needs to be executed. The values in 

Table 1 can be obtained from Theorem 1 for 

 2 3
1

1 3 (1 )
mr

p p p
R

′′ ′ ′= = − −   
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Table 1. The average number of rounds required for 
321m =  

 r = 10 r = 20 r = 30 

p = 0.001 1.01 1.03 1.04 

p = 0.005 1.37 1.88 2.57 

p = 0.010 3.44 11.80 40.58 

p = 0.015 15.24 232.11 3536.34 

 

where R is the expected number of rounds until the 

protocol succeeds. This number depends on the 

common string length m for each run, the number of 

runs r and the bit-flip probability p. In this example, 

we assume that m = 321. 

The values shown in Table 1 show that our protocol 

is practical when p < 0.015, except the case that the 

number of runs r = 30 and bit-flip probability p = 0.015, 

in which the expected number of rounds until the 

protocol succeeds is 3536, which is a bit large. 

The next theorem states that when the eavesdropper 

has his/her own parity bits 
k

γ  and node A’s parity bits 

k
α , 1 / 3,k n≤ ≤  the amount of uncertainty about the 

corresponding 3 bits 
3 2 3 1 3

.

i i i
x x x

− −

 Finally, we divide 

this value by 3 to get the secret key rate. 

Theorem 2. Let S = {0, 1}3, X S∈ , and X is a random 

variable for 3 bits corresponding to the parity bit 
k

α . 

Then the eavesdropper has uncertainty 

 
1 1 2 2

1 1

(3 ( ) log ( )) ( ) log( ( )))

(3 ( ) log ( ))

f p f p f p f p

f q f q

− +

−

  

for X, where 2 2 2

1
( ) (1 ) / 3(1 ) ,f p p p p= − + −  1 ,q p= −  

2
( ) 1 3 ( ),f p f p= −

2 2( 3(1 ) ),p p pα= + −
2 2(1 )(1 3 ).p p pβ= − − +  

Proof. Let Y be the random variable such that Y = 0 if 

eavesdropper’s parity bit k is not equal to A’s parity bit 

k
α , Y = 1 if eavesdropper’s parity bit is equal to 

k
α , 

Y =⊥ , if A and B have different parity bit.  

H(X|Y ) = Pr[Y = 1]H(X|Y = 1) + Pr[Y = 0]H(X|Y = 0) + 

Pr[Y =⊥ ]H(X|Y =⊥ ). 

Since eavesdropper knows the 3 bits when two nodes 

have different parity bit, that is, 000. This implies that 

H(X|Y =⊥ ) = 0, and  

H(X|Y ) = Pr[Y =1]H(X|Y = 1) + Pr[Y = 0]H(X|Y = 0).  

Pr[Y = 1] = (1 − p)((1 − p)2 + 3p2), and 

Pr[Y = 0] = p(p2 + 3(1 − p)2). 

Without loss of generality, we assume that the 3 bits 

the eavesdropper received is 000.X ′ =  Then 

Pr[X = 000 | Y = 1] = (1−p)3/((1−p)3+3p2(1−p)) = 

(1−p)2/((1−p)2+3p2), and 

Pr[X = 110 | Y = 1] = p2(1−p)/(1−p)3 +3p2(1−p)) = 

p2/((1−p)2 +3p2). 

Similarly, we can derive  

Pr[X = 101 | Y = 1] = p2/((1 − p)2 + 3p2), and 

Pr[X = 011 | Y = 1] = p2/((1 − p)2 + 3p2). 

For the case Y = 0, 

Pr[X = 111 | Y = 0] = p3/(p3 + 3p(1 − p)2)  

= p2/(p2 + 3(1 − p)2), and  

Pr[X = 100 | Y = 0] = p(1−p)2/(p3 +3p(1−p)2)  

= (1−p)2/(p2 +3(1−p)2). 

Similarly, we can derive 

Pr[X = 010 | Y = 0] = (1 − p)2/(p2 + 3(1 − p)2), and  

Pr[X = 001 | Y = 0] = (1 − p)2/(p2 + 3(1 − p)2). 

H(X | Y = 1) = 3f1(q) log(f1(q)) + f2(q) log(f2(q)), and 

H(X | Y = 0) = 3f1(p) log(f1(p)) + f2(p) log(f2(p)). 

This implies that 

H(X | Y) = 

1 1 2 2

1 1 2 2

(3 ( ) log ( )) ( ) log( ( )))

(3 ( ) log ( )) ( ) log( ( ))).

f p f p f p f p

f q f q f q f p

α

β

− +

− +

 

7 Selecting Parameters of the Protocol 

In this section we show how to select suitable 

parameters in our protocol. 

First of all, for piratical applications, such as 

establishing keys to be used in AES, the length of the 

key s should be 128, 192, or 256. Thus, the amount of 

uncertainty for the eavesdropper about the common 

string x and y shared by A and B should be no less than 

s δ+ , where δ  is the amount of information revealed 

for checking if x = y or not in the main protocol. 

The purpose of repeated execution of the basic step 

of the protocol is to accumulate sufficient uncertainty 

bits against eavesdropper. The value of r is set so that 

the mr common bit strings of A and B will have at least 

s uncertain bits to eavesdropper. The possible values of 

r is given in Table 2 for some practical values of p = 

0.005, 0.01, 0.015. 

Table 2. The number of uncertainty bits for 

eavesdropper, m = 321 

 r = 10 r = 20 r = 30 

p = 0.005 51 77 103 

p = 0.010 109 164 218 

p = 0.015 154 231 308 

 

The values in Table 2 can be derived from Theorem 

2. First we compute the uncertainty for eavesdropper 

for a single run, then multiply it by the number of runs 

r to get the final result. 

For example, for r = 30 and bit-flip probability p = 

0.01, after executing the protocol, the common string 

will have 164 bits of uncertainty for eavesdropper. In 

general, for our protocol to run successfully for s = 160, 

it is always possible to select the parameters for m = 
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321, and 0.001 0.015.p≤ ≤  This shows that our 

protocol is practical in current technology, For the case 

that the error rate is very small, i. e., p < 0.001, the two 

nodes can randomly flip more bits to make the same 

effect as p > 0.001. 

Let s be the security parameter. In the next theorem, 

with proper choosing of parameters, we show that the 

key established by our protocol is s-bit secure. 

Theorem 3. Assume that 
c
h  is the cryptographic hash 

function and 
u
h  is the universal hash function chosen 

randomly from universal hash function family. Then, at 

the end of the protocol, the eavesdropper has at least s 

bits of uncertainty about the value of the key K. 

Proof. Let W be a random variable uniformly 

distributed from {0,1} .n  Note that W can be viewed as 

the string broadcast by the beacon node. Let BSp(W) be 

another random variable that represents the string 

received by the receiver when W is sent through a 

binary symmetric channel with bit flip probability p. It 

is clear that BSp(W) can be viewed as the string 

received by A or B. 

Let G be a random variable for universal hash 

function :{0,1} {0,1} ,n s

u
h →  s < n. It can be shown 

that [18]. 

Theorem 4 (Bennett et al.) Let Hb(p) be the binary 

entropy function and H(.|.) be the conditional Shannon 

entropy. For any 0δ >  and for all sufficiently large n, 

for ( ( ) ) , ( ( ) | ( ), ) 2 /ln2.t

b
t n H p s H GW BSpW G sδ

−

= − − ≥ −  

Because H(G(W) | BSp(W), G) = s means that given 

BSp(W), G, the dishonest player has no information 

about the hash value G(W). The last term is 

exponentially close to 0. This implies that almost no 

information about the hash value G(W) is leaked. We 

cannot use the theorem directly to prove the security 

for nodes A and B, because we have sent the parity bits 

in the protocol. However, we can apply this theorem 

with some modifications. 

Recall that 1 ,q p= −  2 2( 3(1 ) ),p p pα = + −  β =  
2 2(1 )((1 ) 3 ),p p p− − +  and  

 

1
( )( (3 ( ) log( ( )) ( ) log( ( )))
3

(3 ( ) log( ( ))) ( ) log( ( ))))

h f p f p g p g p

f q f q g q g q

α

β

= − +

− +

  

Then for any > 0∈  and for all sufficiently large 

,n mr=  for ( ) ,t n h s
n

δ
ε= − − −  ( ( ) | , , ( ), )H GW BSqW Gα β  

2 / ln 2 .
t

s s
−

≥ − ≈  

Note that our hash function is from mr bits to s bits. 

8 Conclusions 

We have proposed a new key establishment protocol 

for two nodes in a communication network to establish 

a secret key which is information-theoretically secure. 

In this new protocol, we use the exclusive-or of a block 

of 3 bits to verify the consistency of the strings 

received by A and B. We also showed that using a 

blocks of size 3 is an optimal choice. Not only the 

successful rate of the protocol would be decreased, the 

uncertainty of the eavesdropper about the common bit 

string is also deceased. The proposed protocol is a 

light-weight protocol. It only needs to do exclusive-or 

and hash operations. Thus it is suitable to devices with 

limited computing resources. 
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