
Effective Tag Identification Algorithm for Dynamic Radio Frequency Identification Systems 2225

Effective Tag Identification Algorithm for

Dynamic Radio Frequency Identification Systems

Cheng-Huang Chang, Chen-Chuan Wu, Chiu-Kuo Liang

Department of Computer Science and Information Engineering, Chung Hua University, Taiwan

{e10602008, e10102006, ckliang}@chu.edu.tw*

*Corresponding Author: Chiu-Kuo Liang; E-mail: ckliang@chu.edu.tw

DOI: 10.3966/160792642019122007019

Abstract

In radio frequency identification (RFID) systems, the

rapid identification of all tags located within the range of

a reader is a major research topic. For rapid identification,

the development of an effective anticollision protocol

between the reader and tags is essential. Numerous

anticollision protocols have been proposed, but these

anticollision algorithms tend to be used in a static

environment where the tags available within the range of

a reader do not change during an identification process.

By contrast, in the dynamic environment of RFID

systems, such as in inventory management, some

identified tags are removed and new tags are included.

The reader in such an environment must regularly

reidentify the tags. The previously proposed dynamic

identification method cannot fully utilize the results from

a previous identification process, and that results in

collisions and idles occurring again in the new

identification process. Therefore, such an identification

process is inefficient. In this study, an efficient protocol

termed the leaf node bit collision detection–based query

tree (LBQT) algorithm is proposed. The proposed LBQT

algorithm can reduce unnecessary queries for unchanged

tags and rapidly identify the new tags. Experimental

results indicate that the proposed algorithm outperforms

previous protocols without depending on various

densities of tag distributions.

Keywords: RFID systems, Tag anticollision algorithms,

Dynamic identification

1 Introduction

Radio frequency identification (RFID) is a modern

technology that is widely used in industrial

applications, such as object and people tracking, supply

chain management, vehicle positioning [1-3], and

inventory management [4]. Traditional identification

systems, such as barcodes, are inefficient at automatic

identification and data collection because of their read

rate, visibility, and contact limitations. By contrast,

RFID systems can provide rapid and reliable

communication without establishing physical visibility

or contact between readers and tags. Because of these

advantageous features, the current RFID technology

transcends the object identification function and is

being used for localization [5-6] and sensing

applications [7].

One of the areas of research in this field is the

reduction of identification processing time for a

particular number of tags within the recognition range

of an RFID reader. To achieve rapid tag identification,

anticollision protocols are required. A collision may

occur when multiple tags simultaneously respond to

the inquiry of the reader. Therefore, anticollision

protocols generally aim to reduce collisions during the

tag identification process. In general, collisions can be

categorized into two types: reader collisions and tag

collisions. When two or more neighboring readers

simultaneously inquire about a tag, reader collisions

occur. Thus, the tag cannot accurately provide its

unique identification code (ID) to the inquiring readers.

The reader collision can be easily eliminated by

detecting the collisions and communicating with other

readers. Tag collisions occur when more than one tag

concurrently respond to a reader, which causes the

reader to identify no tag. In RFID systems with low-

cost passive tags, a tag can only respond to the inquiry

of readers. Therefore, tag anticollision protocols are

essential for the efficient identification of tag IDs in

RFID systems.

The relevant literature provides numerous

anticollision research results. These anticollision

protocols can be classified into two primary categories,

namely an Aloha-based anticollision scheme [8-10]

and a tree-based scheme [11-19]. Although the Aloha-

based protocols can reduce the probability of tag

collisions, they exhibit a tag starvation problem

whereby a particular tag may not be identified for a

long time. By contrast, tree-based protocols, such as

the binary tree splitting protocol [18] and query tree

(QT) algorithm [11], do not cause the starvation

problem, but they have a relatively long identification

delay. Therefore, we consider tree-based protocols and

seek to reduce the identification delay.

In this study to develop a practical RFID system, an

efficient tag identification protocol was created for the

2226 Journal of Internet Technology Volume 20 (2019) No.7

dynamic environment of a warehouse inventory

management system. In the target dynamic

environment, all items should be tracked by a mobile

reader (Figure 1). The reader can identify tags within

its communication range by moving in a straight

direction. The reader identification process comprises

the following two phases: (1) an initial static phase and

(2) a dynamic phase. The initial static phase is the first

phase of the process when the reader is restarted and

no tags have been identified. The dynamic phase

indicates the reader identification process of

identifying the changed tags in the range of the reader.

In the dynamic environment, the reader identification

process can be considered the execution of the initial

static identification process followed by several

dynamic identification processes until no tag is

changed.

Figure 1. Mobile reader for tag identification

For tree-based anticollision schemes, most studies

have focused on improving tag identification

performance in a static environment in which both the

reader and tags are static. An adaptive memoryless QT

(MQT) [12] first considers mobile tag identification. In

[17], an enhanced bit collision detection–based query

tree (EBQT) was proposed for reducing identification

delay and communication overhead in mobile

identification scenarios. In this study, a leaf node–

based bit collision detection query tree (LBQT)

algorithm was proposed for improving the performance

of tag identification. To evaluate the performance of

the proposed technique, the proposed LBQT scheme

was implemented with the previously proposed method

(i.e., the EBQT protocol). The experimental results

indicate that the proposed technique achieves

significantly improved performance in most

circumstances.

The remainder of this paper is organized as follows:

Section 2 discusses relevant literature. In Section 3, the

proposed algorithm (i.e., the LBQT protocol) is

presented. Performance comparisons and an analysis of

the proposed technique are provided in Section 4.

Finally, Section 5 presents the conclusions.

2 Related Work

The binary QT protocol [11] is considered a

milestone in the development of binary tree–based

algorithms for passive tags. Although the QT protocol

ensures reliable performance, it requires a long time to

complete the identification process. To reduce the

processing time, several enhanced QT protocols have

been proposed, namely the adaptive memoryless QT

(MQT) [12], bit collision detection-based QT (BQT)

[13], anticipative inquiry scheme (AIS) [14], prefix-

randomized QT (PRQT) [15], hybrid QT (HQT) [16],

and enhanced BQT (EBQT) [17]. Of these protocols,

only MQT and EBQT perform identification in

dynamic environments in which some tags are

eliminated from the recognition region of the reader

and some new tags are moved into the region of the

reader. In the following, only the MQT and EBQT

algorithms are presented and used as benchmarks for

comparison with our work.

2.1 Adaptive Memoryless QT Protocol

Fundamentally, the MQT protocol for accelerated

identification uses information from previous processes.

In the initial identification phase, the MQT protocol

uses the QT protocol to identify all tags, which means

that the reader transmits a query and tags respond with

their IDs. The query includes a bit string of length k.

The tag responds if the first k-bit string of its ID

matches the query string of the reader. After the first

identification process, the MQT protocol places all leaf

nodes in the query tree into a special queue termed the

candidate queue (CQ). The leaf nodes in the query tree

are the successfully identified nodes or idle nodes.

In the subsequent dynamic identification phase, the

reader updates the query queue using CQ and dequeues

until the query queue is empty. In the dynamic

recognition process, the reader places the leaf nodes

into CQ for the next process.

Table 1 illustrates the operation of the MQT for five

tags with an ID length of 4 bits in the initial static

identification phase. The tag IDs are “0000,” “0001,”

“0100,” “0101,” and “0110,” respectively. Initially, the

reader sends an empty query string to tags and all tags

respond simultaneously, which results a collision. The

reader adds two query strings, namely “0” and “1”, into

query queue. Then, the reader fetches the query string

“0” from the query queue, broadcasts it to all tags, and

waits for the tag responses. At this stage, more than

one tag responds simultaneously, resulting in collisions.

The reader extends query string attached “0” or “1”

and adds into the query queue. Next, the reader sends

query string “1” to all tags and no tags respond. The

reader adds the query string “1” into CQ for next

dynamic identification process. The reader continues

the process until the query queue is empty.

Effective Tag Identification Algorithm for Dynamic Radio Frequency Identification Systems 2227

Table 1. Detailed steps of the MQT protocol in the

initial static phase

Steps Prefix Results Query Queue
Add to

CQ

1 Empty Collision 0, 1

2 0 Collision 1, 00, 01

3 1 Idle 00, 01 1

4 00 Collision 01, 000, 001

5 01 Collision 000, 001, 010,011

6 000 Collision 001, 010, 011, 0000, 0001

7 001 Idle 010, 011, 0000, 0001 001

8 010 Collision 011, 0000, 0001, 0100, 0101

9 011 Identified 0000, 0001, 0100,0101 011

10 0000 Identified 0001, 0100,0101 0000

11 0001 Identified 0100, 0101 0001

12 0100 Identified 0101 0100

13 0101 Identified 0101

Next suppose that after the initial identification

process, two tags, “0000” and “0001,” leave and two

tags, “0010” and “1110,” arrive. Table 2 presents the

detailed steps of the identification process in the

dynamic phase. In this phase, the reader updates the

query queue by CQ which contains “1”, “001”, “011”,

“0000”, “0001”, “0100”, and “0101” query strings and

dequeues until the query queue is empty. The

identification process is the same as in the initial phase

and it takes only seven steps to identify five tags.

Table 2. Detailed steps of the MQT protocol in the

dynamic phase

Steps Prefix Results Query Queue
Add

to CQ

INIT
1,001,011,0000,0001,

0100,0101

1 1 Identified
001,011,0000,0001,

0100,0101
1

2 001 Identified
011,0000,0001,0100,

0101
001

3 011 Identified 0000,0001,0100,0101 011

4 0000 Idle 0001,0100,0101 0000

5 0001 Idle 0100, 0101 0001

6 0100 Identified 0101 0100

7 0101 Identified 0101

2.2 Enhanced Bit Collision Detection-based

Query Tree Protocol

Although the MQT protocol utilizes information in

the previous process, its performance significantly

depends on the difference between two consecutive

processes. A large difference may not reduce the time

delay for the identification process. The EBQT

protocol uses the number of identified tags in the

previous process to shorten the future process under a

condition where the number of tags does not fluctuate

for each process. A level jumping strategy is used. If

an approximate number of tags is known to a reader,

prefixes in a query queue can be expanded to an

appropriate level for reducing collisions. For example,

if five tags are identified in the previous process, the

prefix in the query queue may start from the second

level instead of the root level (Figure 2).

Figure 2. Level jumping in EBQT protocol

The detailed process of the EBQT protocol is as

follows: In the initial identification phase, the EBQT

protocol uses BQT protocol [13] to identify all tags. In

the BQT protocol, the reader initializes a query string

by using “**...*” with the length of tag IDs and adds

the string into an empty queue Q. Each “*” is one-bit

wild masking for the values “0” or “1.” At the initial

stage, the reader fetches a query string from Q,

broadcasts it to all tags, and each tag sends back its ID

to the reader. All tags respond simultaneously,

resulting in collisions. When collisions occur, the

reader detects individual bit collisions through a hybrid

Manchester coding scheme [13] and updates the query

string. At a particular bit position, if all responses have

values of “0” or “1, no collision occurs at this bit and

the bit of the query string can be updated using the

corresponding values “0” or “1.” If a collision occurs

at a particular bit position, the bit at this position string

remains “*”. After the query string is updated, the

reader considers the following three possible situations:

(1) Multiple “*” exist in the updated query string. In

this situation, the reader replaces the first “*” with “0”

and “1” to create two new query strings and adds them

into queue Q. (2) A single “*” is present in the updated

query string. The reader replaces this “*” with “0” and

“1” and marks them as two successfully identified tags

without extra queries. (3) No “*” exists in the updated

query string. Here, the reader recognizes the ID and

considers the tag a successfully identified tag. The

reader then fetches a subsequent query string from Q

and repeats the identification process until queue Q is

empty. In the BQT protocol, the reader sends a query

string with a length of tag IDs to all tags. Each bit

position of the query string may include “0”, “1”, or

“*” wild mask. These tags match the bit position of

values “0” and “1” and they must respond with their

respective values for the position corresponding to the

wild mask “*”. For example, if the reader sends a

query string “0*1**” to all tags, the tags with the first

and third bits of “0” and “1” respond with their

respective values of the second, fourth, and fifth bits to

the reader.

2228 Journal of Internet Technology Volume 20 (2019) No.7

In the EBQT protocol, an ID counter (Ic) is

established to count the number of identified tags.

After the initial identification, the reader begins to

generate prefixes for the next processes. The prefixes

can be generated according to the starting level, which

is computed by the following equation:

 L = ⎣log2 Ic⎦ (1)

The reader generates prefixes from “
�
00...0*...*

L

” to

“
�
11...1*...*

L

” and adds them into the query queue. Ic is

reset to 0 and the BQT protocol is performed for the

subsequent process.

Although the EBQT protocol uses the number of

identified tags in the previous process to reduce the

time required for the identification process by

implementing the appropriate level in the subsequent

process, some idle nodes are requeried, particularly for

imbalanced tag ID distribution. Therefore, the

requeried idle nodes are wasted. Table 3 illustrates the

detailed operation of the EBQT algorithm for

identifying five tags in the initial static phase using the

same example as in the previous section.

Table 3. Detailed steps of EBQT protocol in initial

static phase

Steps Prefix
Update

string
Results Add to Q

INIT ****

1 **** 0*** Collision 00**, 01**

2 00** 000* Identified 01**

3 01** 01** Collision 010*, 011*

4 010* 010* Identified 011*

5 011* 0110 Identified

After the initial identification, the reader begins to

generate prefixes for next dynamic phase according to

the ID counter Ic. In this example, the starting level L =

⎣log25⎦ = 2. The reader generates prefixes “00**”,

“01**”, “10**”, and “11**” and adds them into the

query queue. Table 4 illustrates the detailed steps of

the EBQT algorithm in the dynamic phase.

Table 4. Detailed steps of EBQT protocol in dynamic

phase

Steps Prefix Update string Results Add to Q

INIT
00**, 01**,

10**, 11**

1 00** 0010 Identified 01**, 10**, 11**

2 01** 01** Collision
10**, 11**,

010*, 011*

3 10** Idle 11**, 010*, 011*

4 11** 1100 Identified 010*, 011*

5 010* 010* Identified 011*

6 011* 0110 Identified

3 Proposed LBQT Protocol

In the MQT protocol, the identified or idle nodes are

put into the CQ for the subsequent process. However,

with the increasing tag change rate, the previously

identified tags may not exist. This finding indicates

that the identified tags become idle nodes and are read

into the CQ. Therefore, the MQT protocol uses several

queries for the disappeared tags. Although the EBQT

protocol utilizes the number of identified tags from the

previous identification process to estimate the

appropriate level to initiate a query process for the

subsequent dynamic identification, it does not consider

tag ID distribution. Therefore, for imbalanced

distribution, numerous idle nodes are probably present

in the query process. Figure 3 illustrates the

inefficiency of the EBQT protocol by showing the

eight identified tags that are available in the previous

identification process. Then, according to the EBQT

protocol, the nodes in level 3 are included in the query

queue for the subsequent dynamic identification

process. However, if no new arrival tags are available,

four possible idle nodes are required to pose a query

during the subsequent dynamic phase.

Figure 3. Illustration of imbalanced case of EBQT

protocol

In this study, an efficient protocol was proposed to

reduce the identification process in the dynamic phase.

The proposed protocol is termed the LBQT protocol.

The proposed LBQT protocol comprises the following

three parts:

(1) The tag identification process in the EBQT

protocol is more efficient than that in the MQT

protocol because the EBQT protocol uses the BQT

protocol and not the QT protocol used in the MQT

protocol. The tag identification procedure in the BQT

protocol skips all possible idle queries during the

identification process, which is advantageous. In this

study, the BQT and QT protocols were combined and

an improved BQT protocol was developed to more

efficiently identify tags than using the BQT protocol

alone.

(2) The BQT protocol can efficiently identify tags

because it can avoid idle nodes in the identification

process. However, it is not useful in a dynamic

environment because it may have some new arrival

tags in the previous idle nodes. Therefore, in the

proposed LBQT protocol, the possible idle nodes must

be identified, and these nodes should be put into the

Effective Tag Identification Algorithm for Dynamic Radio Frequency Identification Systems 2229

CQ for the subsequent dynamic phase. Therefore, an

idle node recovery procedure was developed to trace

the skipped idle nodes and add them into a particular

queue for the subsequent identification process.

(3) To reduce the identification time for newly

arrived tags in the dynamic phase, a level jumping

technique was developed to eliminate those possibly

unnecessary query nodes.

3.1 Improved BQT Protocol

In the BQT protocol, the reader sends a query bit

string with a length of tag IDs in which each bit

consists of “0”, “1”, or “*”. The “*” bit indicates the

unknown bit for responding to tags. Tags with specific

bits that match the corresponding bits in the query bit

string of the reader respond with their values for the

unknown bits. To reduce the query time in the

proposed improved BQT protocol, the consecutive

tailing bits of “*” values are replaced with an empty

string. For example, in the first round, the reader must

send a masking code “**...*” to tags in the BQT

protocol. By contrast, in the improved BQT protocol,

the reader sends an empty string to tags. In the BQT

protocol, the reader must send a masking code

“01*1**” to tags, whereas in the improved BQT

protocol, the reader sends “01*1” to tags. Tags

matching the query string send a response comprising

unknown bits and remaining bits.

3.2 Idle Node Recovery Procedure

In the proposed LBQT protocol, when the reader

sends a query string to tags, the reader masks the

collided bits using the masking code “*”. The bits

before the first masking code “*” in the returned bits

represent the status of tag distributions. For example, if

the returned bits are identified as “0***”, the reader

can realize that all tags have the same first bit “0” in

their IDs. In addition, the reader can recognize that no

tags have “1” as their first bit. Thus, if the reader sends

a query code “1”, no tag responds. Therefore, an idle

node is found and added into the CQ for the

subsequent process. Figure 4 presents the idle node

recovery procedure. Figure 4 indicates that a reader

sends “0***” to tags and receives a returned code

“001*”. According to the procedures, two idle nodes

“01” and “000” are recovered and added into the CQ.

Figure 4. Illustration of idle node recovery procedure

3.3 Enhanced Level Jumping Technique

In the MQT protocol, the identified or idle prefix

strings are added into the CQ for the subsequent

identification process. However, the query time of the

prefix strings in the CQ may be wasted when several

tags are eliminated in the subsequent identification

process. To improve the query time in the subsequent

process, two queues, namely CQ and idle queue (IQ)

were used instead of using only the CQ in the MQT

process. In the proposed LBQT protocol, the purpose

of the CQ is similar to that in the MQT protocol, where

it is used for storing the identified prefix strings during

the identification process. However, the idle prefix

stings are not added into the CQ. By contrast, they are

stored in the IQ. In the subsequent identification

process, the prefix strings in the CQ are first queried

and followed by queries of the idle strings in the IQ.

The queries in the CQ are used for the previous tags,

whereas the queries in the IQ are for the subsequent

new tags. Therefore, if the number of newly arriving

tags is known, the query time for the idle strings in the

IQ is improved by jumping to the appropriate level for

scanning the prefixes. Let Tc and Fc denote the number

of tags identified in the previous identification process

and in the current identification process, respectively.

An idle threshold level (Lidle) is obtained using the

following equation:

 Lidle = ⎣log2(Tc - Fc)⎦ (2)

The reader then eliminates the nodes from the IQ

with a bit length less than Lidle and begins the

subsequent process by updating the query queue with

the modified IQ and dequeues until the query queue is

empty.

To facilitate the understanding of the proposed

algorithm, the same example from the previous section

is used, and the detailed operation is explained as

follows. Table 5 illustrates the detailed operation of

communication between the reader and tags of the

example in the initial static phase. As evident in Table

5, the proposed LBQT puts the identified nodes and

idle nodes into the CQ and IQ, respectively, for the

subsequent process. For example, initially, the reader

sends an empty prefix to tags, and all tags respond to

the query of the reader at the same time. After

receiving the responses, the reader understands the

distribution of tag ID as “0***”, which indicates that

the first bit in the ID of any tag is not “1”. Therefore,

“1” is an idle node in the query tree and is put into the

IQ for the subsequent process.

After the initial static phase, the CQ comprises 3

prefixes “00”, “010”, and “011”, whereas the IQ

comprises 2 prefixes, “1” and “001”. Moreover, the

reader understands that five identified tags are present

in the previous process (i.e., Tc = 5). Four tags, namely

“0000”, “0001”, “0100”, and “0101”, are removed and

four tags, namely “1000”, “1010”, “1011”, and “1110”

2230 Journal of Internet Technology Volume 20 (2019) No.7

Table 5. Detailed steps of LBQT protocol in initial

static phase

Step Prefix
Update

string
Results

Query

Queue

Add to

CQ

Add

to IQ

1 Empty 0*** Collision 00, 01 1

2 00 000* Identified 01 00 001

3 01 01** Collision
010,

011

4 010 010* Identified 011 010

5 011 0110 Identified 011

are moved in before the subsequent identification

process.

In the subsequent identification process, the reader

first puts all prefixes in the CQ into the query queue. In

the example, the query queue has 3 prefixes, “00”,

“010”, and “011”, in the beginning of the subsequent

identification process. After the query process, the

reader identifies all tags that can be identified by the

prefixes in the CQ. In the example, only one tag can be

identified for the prefixes in the CQ: Fc = 1. The idle

threshold level is represented as Lidle = ⎣log2(5 - 1)⎦ = 2.

This indicates that the prefixes may need to be adjusted

in the IQ to improve the identification process for new

arrival tags. In this example, the IQ comprises “1” and

“001” strings. By using the proposed enhanced level

jumping technique, those prefixes with a bit length less

than Lidle are extended to the prefixes with a bit length

of Lidle. Therefore, the modified IQ comprises “10”,

“11”, and “001” prefixes. The reader puts all prefixes

in the IQ into the query queue and finishes the query

until the query queue is empty.

Table 6 shows the detailed operation of the proposed

LBQT protocol in the dynamic phase, where two tags

are removed and a new tag arrives.

Table 6. Detailed steps of LBQT protocol in dynamic

phase

Step Prefix
Update

string
Results

Query

Queue

Add to

CQ

Add

to IQ

INIT 00, 010,011

1 00 Idle 010, 011 00

2 010 Idle 011 010

3 011 0110 Identified 10,11,001 011

4 10 10** Collision
11,001,100,

101

5 11 1110 Identified 001,100,101 11

6 001 Idle 100,101 001

7 100 1000 Identified 101 100

8 101 101* Identified 101

4 Performance Evaluation

To evaluate the performance of the proposed

technique, the LBQT protocol was implemented with

the EBQT protocol. A set of simulation experiments

was conducted for the proposed algorithms. All

experiments were performed on a computer equipped

with a 3.0-GHz central processing unit and 4-GB

memory in C# on the .NET platform. Each experiment

was repeated 20 times, and the recorded data were

averaged for the runs into the final results. In the

experiments, the IDs of all tags were 16 bits long and

the number of tags was set from 216 × 10% = 6554 to

216 × 50% = 32768. Two different distributions of tag

IDs and balanced and imbalanced distributions were

considered. Balanced distribution indicates that all tags

were uniformly distributed in the left subtree and right

subtree of the query tree. By contrast, imbalanced

distribution indicates that the tags were uniformly

distributed only in one of the left subtree or right

subtree and no tag was present in the other subtree.

Moreover, in our experiments, the tag changing rate

was assumed to be fixed for both moving-out and

moving-in tags between two consecutive processes.

This means that the same number of identified tags

moved out as new tags moved in. For balanced

distribution, the moved-out and moved-in tags were

randomly selected. For imbalanced distribution, the

moved-out tags were randomly selected from one

subtree and moved-in tags were randomly generated in

another subtree.

4.1 Balanced Distribution

In this experiment, the performance of the proposed

LBQT protocol was evaluated when tag distribution is

balanced. All tags were randomly generated in a

uniform distribution to both left and right subtrees.

Figure 5 shows the time comparison results of the

experiment examining the effect of the number of tags

on the total bits required for communication between

the reader and tags to complete tag identification in the

EBQT and LBQT protocols. The experiment was

performed by executing an initial static phase and a

dynamic phase with tag changing rates of 10% and

50%, respectively, for each protocol.

Figure 5 indicates that with an increasing number of

tags, each protocol proportionally increased because of

the increasing number of collisions. However, the

proposed LBQT protocol required fewer bits or less

time to complete the identification process.

Furthermore, the total required bits for both protocols

at a tag changing rate of 50% was almost the same as

that at a tag changing rate of 10%. This indicates that

both protocols can effectively complete the

identification process regardless of the tag changing

rate in balanced distribution.

Figure 6 shows the time comparison results of the

experiment that examined the effect of the changing

rate of tags on the total required communication bits

for tag identification in the EBQT and LBQT protocols.

This experiment was performed by executing an initial

static phase and a dynamic phase for each protocol

with tag densities of 25% and 50%.

Effective Tag Identification Algorithm for Dynamic Radio Frequency Identification Systems 2231

(a) Tag changing rate = 10%

(b) Tag changing rate = 50%

Figure 5. Total required communication bits for

completing a static phase and a dynamic phase with

different tag changing rates at different densities

(a) Tag density = 25%

(b) Tag density = 50%

Figure 6. Total required bits for completing a static

phase and a dynamic phase at different changing rates

with tag densities of 25% and 50%, respectively

Figure 6 indicates that both protocols exhibited

acceptable performance at the increasing tag changing

rates. This indicates that both protocols can efficiently

identify the newly arrived tags without spending more

time. However, the proposed LBQT protocol

outperformed the EBQT protocol in terms of total

required communication bits to complete the

identification process.

4.2 Imbalanced Distribution

In this experiment, the performance of the proposed

LBQT protocol was evaluated for imbalanced tag

distribution. Initially, all tags were randomly generated

with uniform distribution in one subtree of the query

tree. In the dynamic phase, all the newly arrived tags

were generated in the other subtree.

Figure 7 shows the time comparison results of the

experiment that examined the effect of the number of

tags on the required communication for the tag

identification in the EBQT and LBQT protocols. The

experiment was performed by executing an initial static

phase and a dynamic phase at tag changing rates of

10% and 50%, respectively, for each protocol.

Figure 7 indicates that with an increasing number of

tags, each protocol increased proportionally. The

proposed LBQT protocol outperformed the EBQT

protocol for tag changing rates of 10% and 50%. With

an increasing tag changing rate, the LBQT protocol

was superior to the EBQT protocol. For example, the

performance of the LBQT protocol was, on average,

10.2% and 28.3% superior to that of the EBQT

protocol when the tag changing rates were 10% and

50%, respectively. This result indicates that the LBQT

protocol can effectively eliminate the unnecessary

query nodes for a large number of newly arrived tags

in imbalanced distribution.

Figure 8 shows the time comparison results of the

experiment that examined the effect that the changing

rate of tags had on the total required communication

bits for tag identification in the EBQT and LBQT

protocols under imbalanced distribution. This

experiment was performed by executing an initial static

phase and a dynamic phase for each protocol with tag

densities of 25% and 50%.

2232 Journal of Internet Technology Volume 20 (2019) No.7

(a) Tag changing rate = 10%

(b) Tag changing rate = 50%

Figure 7. Total required communication bits for

completing a static phase and a dynamic phase at

different tag changing rates with different densities of

imbalance distribution

(a) Tag density = 25%

(b) Tag density = 50%

Figure 8. Total required bits for completing a static

phase and a dynamic phase at different changing rates

with tag densities of 25% and 50%, respectively, under

imbalanced distribution

Figure 8 indicates that the proposed LBQT protocol

used more queries for the newly arrived tags when the

tag changing rate increased from 10% to 40%.

However, it reduced more unnecessary query nodes

when the tag changing rate increased from 40% to

100%. This result indicates that when the tag changing

rate is small, the level jumping technique cannot

acceptably eliminate the unnecessary query nodes

because only a slight difference is evident between the

two consecutive identification phases. However, with

an increasing tag changing rate, the difference

continually increased. Therefore, a large amount of

both unnecessary query nodes and the number of

transmission bits between reader and tags can be

reduced when level jumping technique is applied. In

Figure 8(b), when tag density is 50%, there are 216 ×

50% = 32768 tags distributed among the whole left

subtree or right subtree of the binary tree in the initial

phase. When the tag changing rate increased to 100%,

after the initial identification process, all tags in one

subtree are removed and there are 32768 newly arrived

tags distributed in other subtree. In this case, Tc =

32768, Fc = 0 and the idle threshold level Lidle =

⎣log2(32768 - 0)⎦ = 15. This means that the level

jumping technique is applied and the tag identification

process will jump from level 14 to level 15 when the

tag changing rate increased from 90% to 100%.

Therefore, all of the query nodes in level 14 can be

omitted and the number of transmission bits between

reader and tags can be greatly reduced. By contrast,

with the increasing density, the performance of the

EBQT protocol was nearly independent of the tag

changing rate because it jumped to the same level for

scanning regardless of the tag changing rate.

5 Conclusions

The development of a highly efficient tag

Effective Tag Identification Algorithm for Dynamic Radio Frequency Identification Systems 2233

identification process in a dynamic RFID system is

crucial and challenging. Many collisions may occur

during the dynamic tag identification process because

of many unknown new tag arrivals. An identification

protocol such as EBQT can reduce the identification

time, but there are still many idle cycles. In this study,

an efficient protocol called the LBQT protocol was

proposed, which can reduce the time delay in the

dynamic identification phase more efficiently. The

proposed LBQT protocol improves the BQT protocol

in terms of the identification process and saves

communication overhead, adapts the approach of

adding leaf nodes into the CQ for the subsequent

process, develops an idle node recovery procedure to

restore the idle nodes into the IQ, and improves the

level jumping technique on the nodes in the IQ by

using the idle threshold level to reduce the

identification process time for newly arrived tags.

Therefore, the protocol outperforms the previous

EBQT protocol. Experimental results indicated that the

LBQT protocol is more efficient for the dynamic

environment of an RFID system.

References

[1] C. C. Hsu, J. H. Chen, A Novel Sensor-Assisted RFID-based

Indoor Tracking System for the Elderly Living Alone,

Sensors, Vol. 11, No. 11, pp. 10094-10113, October, 2011.

[2] A. Shirehjini, A. Yassine, S. Shirmohammadi, Equipment

Location in Hospitals Using RFID-based Positioning System,

IEEE Transactions on Information Technology in Biomedicine,

Vol. 16, No. 6, pp. 1058-1069, November, 2012.

[3] J. Wang, D. Ni, K. Li, RFID-based Vehicle Positioning and

Its Applications in Connected Vehicles, Sensors, Vol. 14, No.

3, pp. 4225-4238, March, 2014.

[4] X. Zhu, S. K. Mukhopadhyay, H. Kuraya, A Review of RFID

Technology and Its Managerial Applications in Different

Industries, Journal of Engineering and Technology

Management, Vol. 29, No. 1, pp. 152-167, January-March,

2012.

[5] A. Yassin, Y. Nasser, M. Awad, A. Al-Dubai, R. Liu, C.

Yuen, R. Raulefs, E. Aboutanios, Recent Advances in Indoor

Localization: A Survey on Theoretical Approaches and

Applications, IEEE Communications Surveys & Tutorials,

Vol. 19, No. 2, pp. 1327-1346, November, 2016.

[6] P. K. Yoon, S. Zihajehzadeh, B. S. Kang, E. J. Park, Robust

Biomechanical Model-based 3D Indoor Localization and

Tracking Method Using UWB and IMU, IEEE Sensors

Journal, Vol. 17, No. 4, pp. 1084-1096, February, 2017.

[7] C. Occhiuzzi, S. Caizzone, G. Marrocco, Passive UHF RFID

Antennas for Sensing Applications: Principles, Methods, and

Classifications, IEEE Antennas and Propagation Magazine, Vol.

55, No. 6, pp. 14-34, December, 2013.

[8] J. Park, M. Chung, T. J. Lee, Identification of RFID Tags in

Framed-Slotted ALOHA with Robust Estimation and Binary

Selection, IEEE Communications Letters, Vol. 11, No. 5, pp.

452-454, May, 2007.

[9] H. Wu, Y. Zeng, J. Feng, Y. Gu, Binary Tree Slotted ALOHA

for Passive RFID Tag Anticollision, IEEE Transactions on

Parallel and Distributed Systems, Vol. 24, No. 1, pp. 19-31,

January, 2013.

[10] B. Zhen, M. Kobayashi, M. Shimizui, Framed Aloha for

Multiple RFID Objects Identification, IEICE Transactions on

Communications, Vol. E88-B, No. 3, pp. 991-999, March,

2005.

[11] C. Law, K. Lee, K. Y. Siu, Efficient Memoryless Protocol for

Tag Identification, The 4th International Workshop on

Discrete Algorithms and Methods for Mobile Computing and

Communications, Boston, MA, USA, 2000, pp. 75-84.

[12] J. Myung, W. J. Lee, T. K. Shih, An Adaptive Memoryless

Protocol for RFID Tag Collision Arbitration, IEEE

Transactions on Multimedia, Vol. 8, No. 5, pp. 1096-1101,

October, 2006.

[13] H. S. Gou, H. C. Jeong, Y. H. Yoo, A Bit Collision Detection

based Query Tree Protocol for Anti-Collision in RFID

System, 2010 IEEE 6th International Conference on Wireless

and Mobile Computing, Networking and Communications,

Niagara Falls, ON, Canada, 2010, pp. 421-428.

[14] C. H. Hsu, B. Y. Chen, C. T. Yang, Anticipative Inquiry

Scheme for Efficient RFID Tag Identification, The IEEE 3rd

Conference on Multimedia and Ubiquitous Engineering,

Qingdao, China, 2009, pp. 232-237.

[15] K. W. Chiang, C. Q. Hua, T. S. Peter, Prefix-Randomized

Query Tree Protocol for RFID System, 2006 IEEE

International Conference on Communications (ICC-06),

Istanbul, Turkey, 2006, pp. 1653-1657.

[16] J. Ryu, H. Lee, Y. Seok, T. Kwon, Y. Cho, A Hybrid Query

Tree Protocol for Tag Collision Arbitration in RFID systems,

2007 IEEE International Conference on Communications (ICC-

07), Glasgow, UK, 2007, pp. 5981-5986.

[17] H. S. Gou, Y. H. Yoo, Bit Collision Detection Based Query

Tree Protocol for Anti-Collision in RFID System,

International Journal of Innovative Computing, Information

and Control, Vol. 8, No. 5(A), pp. 3081-3102, May, 2012.

[18] J. Myung, W. Lee, J. Srivastava, Adaptive Binary Splitting

for Efficient RFID Tag Anti-Collision, IEEE

Communications Letters, Vol. 10, No. 3, pp. 144-146, March,

2006.

[19] C. K. Liang, Y. C. Chien, A Pre-Detection Based Anti-

Collision Algorithm with Adjustable Slot Size Scheme for

Tag Identification, Sensors & Transducers, Vol. 189, No. 6,

pp. 61-70, June, 2015.

2234 Journal of Internet Technology Volume 20 (2019) No.7

Biographies

Cheng-Huang Chang received the

MS degree in computer science and

information engineering from Chung

Hua University in 2019. His research

interests include wireless networks

and RFID systems.

Chen-Chuan Wu received the MS

degree in computer science and

information engineering from Chung

Hua University in 2014. His research

interests include RFID systems,

wireless networks, and sensor

networks.

Chiu-Kuo Liang received his PhD in

Computer Science from the National

Tsing Hua University in Taiwan,

R.O.C. He is currently an associate

professor of the Department of

Computer Science and Information

Engineering at Chung Hua University.

His research interests include wireless mobile

computing, sensor networks, and parallel processing.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (Japan Color 2001 Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJDFFile false
 /CreateJobTicket true
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHT <FEFF005B683964DA300C005000440046002800310032003000300064007000690029300D005D0020>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
 <<
 /AddBleedMarks true
 /AddColorBars false
 /AddCropMarks true
 /AddPageInfo true
 /AddRegMarks false
 /BleedOffset [
 8.503940
 8.503940
 8.503940
 8.503940
]
 /ConvertColors /NoConversion
 /DestinationProfileName (sRGB IEC61966-2.1)
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /ClipComplexRegions true
 /ConvertStrokesToOutlines false
 /ConvertTextToOutlines false
 /GradientResolution 400
 /LineArtTextResolution 1200
 /PresetName <FEFF005B9AD889E367905EA6005D>
 /PresetSelector /HighResolution
 /RasterVectorBalance 1
 >>
 /FormElements true
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MarksOffset 0
 /MarksWeight 0.283460
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PageMarksFile /JapaneseWithCircle
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [1200 1200]
 /PageSize [612.000 792.000]
>> setpagedevice

