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Abstract 

In radio frequency identification (RFID) systems, the 

rapid identification of all tags located within the range of 

a reader is a major research topic. For rapid identification, 

the development of an effective anticollision protocol 

between the reader and tags is essential. Numerous 

anticollision protocols have been proposed, but these 

anticollision algorithms tend to be used in a static 

environment where the tags available within the range of 

a reader do not change during an identification process. 

By contrast, in the dynamic environment of RFID 

systems, such as in inventory management, some 

identified tags are removed and new tags are included. 

The reader in such an environment must regularly 

reidentify the tags. The previously proposed dynamic 

identification method cannot fully utilize the results from 

a previous identification process, and that results in 

collisions and idles occurring again in the new 

identification process. Therefore, such an identification 

process is inefficient. In this study, an efficient protocol 

termed the leaf node bit collision detection–based query 

tree (LBQT) algorithm is proposed. The proposed LBQT 

algorithm can reduce unnecessary queries for unchanged 

tags and rapidly identify the new tags. Experimental 

results indicate that the proposed algorithm outperforms 

previous protocols without depending on various 

densities of tag distributions. 

Keywords: RFID systems, Tag anticollision algorithms, 

Dynamic identification 

1 Introduction 

Radio frequency identification (RFID) is a modern 

technology that is widely used in industrial 

applications, such as object and people tracking, supply 

chain management, vehicle positioning [1-3], and 

inventory management [4]. Traditional identification 

systems, such as barcodes, are inefficient at automatic 

identification and data collection because of their read 

rate, visibility, and contact limitations. By contrast, 

RFID systems can provide rapid and reliable 

communication without establishing physical visibility 

or contact between readers and tags. Because of these 

advantageous features, the current RFID technology 

transcends the object identification function and is 

being used for localization [5-6] and sensing 

applications [7].  

One of the areas of research in this field is the 

reduction of identification processing time for a 

particular number of tags within the recognition range 

of an RFID reader. To achieve rapid tag identification, 

anticollision protocols are required. A collision may 

occur when multiple tags simultaneously respond to 

the inquiry of the reader. Therefore, anticollision 

protocols generally aim to reduce collisions during the 

tag identification process. In general, collisions can be 

categorized into two types: reader collisions and tag 

collisions. When two or more neighboring readers 

simultaneously inquire about a tag, reader collisions 

occur. Thus, the tag cannot accurately provide its 

unique identification code (ID) to the inquiring readers. 

The reader collision can be easily eliminated by 

detecting the collisions and communicating with other 

readers. Tag collisions occur when more than one tag 

concurrently respond to a reader, which causes the 

reader to identify no tag. In RFID systems with low-

cost passive tags, a tag can only respond to the inquiry 

of readers. Therefore, tag anticollision protocols are 

essential for the efficient identification of tag IDs in 

RFID systems. 

The relevant literature provides numerous 

anticollision research results. These anticollision 

protocols can be classified into two primary categories, 

namely an Aloha-based anticollision scheme [8-10] 

and a tree-based scheme [11-19]. Although the Aloha-

based protocols can reduce the probability of tag 

collisions, they exhibit a tag starvation problem 

whereby a particular tag may not be identified for a 

long time. By contrast, tree-based protocols, such as 

the binary tree splitting protocol [18] and query tree 

(QT) algorithm [11], do not cause the starvation 

problem, but they have a relatively long identification 

delay. Therefore, we consider tree-based protocols and 

seek to reduce the identification delay. 

In this study to develop a practical RFID system, an 

efficient tag identification protocol was created for the 
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dynamic environment of a warehouse inventory 

management system. In the target dynamic 

environment, all items should be tracked by a mobile 

reader (Figure 1). The reader can identify tags within 

its communication range by moving in a straight 

direction. The reader identification process comprises 

the following two phases: (1) an initial static phase and 

(2) a dynamic phase. The initial static phase is the first 

phase of the process when the reader is restarted and 

no tags have been identified. The dynamic phase 

indicates the reader identification process of 

identifying the changed tags in the range of the reader. 

In the dynamic environment, the reader identification 

process can be considered the execution of the initial 

static identification process followed by several 

dynamic identification processes until no tag is 

changed. 

 

Figure 1. Mobile reader for tag identification 

For tree-based anticollision schemes, most studies 

have focused on improving tag identification 

performance in a static environment in which both the 

reader and tags are static. An adaptive memoryless QT 

(MQT) [12] first considers mobile tag identification. In 

[17], an enhanced bit collision detection–based query 

tree (EBQT) was proposed for reducing identification 

delay and communication overhead in mobile 

identification scenarios. In this study, a leaf node–

based bit collision detection query tree (LBQT) 

algorithm was proposed for improving the performance 

of tag identification. To evaluate the performance of 

the proposed technique, the proposed LBQT scheme 

was implemented with the previously proposed method 

(i.e., the EBQT protocol). The experimental results 

indicate that the proposed technique achieves 

significantly improved performance in most 

circumstances. 

The remainder of this paper is organized as follows: 

Section 2 discusses relevant literature. In Section 3, the 

proposed algorithm (i.e., the LBQT protocol) is 

presented. Performance comparisons and an analysis of 

the proposed technique are provided in Section 4. 

Finally, Section 5 presents the conclusions. 

2 Related Work 

The binary QT protocol [11] is considered a 

milestone in the development of binary tree–based 

algorithms for passive tags. Although the QT protocol 

ensures reliable performance, it requires a long time to 

complete the identification process. To reduce the 

processing time, several enhanced QT protocols have 

been proposed, namely the adaptive memoryless QT 

(MQT) [12], bit collision detection-based QT (BQT) 

[13], anticipative inquiry scheme (AIS) [14], prefix-

randomized QT (PRQT) [15], hybrid QT (HQT) [16], 

and enhanced BQT (EBQT) [17]. Of these protocols, 

only MQT and EBQT perform identification in 

dynamic environments in which some tags are 

eliminated from the recognition region of the reader 

and some new tags are moved into the region of the 

reader. In the following, only the MQT and EBQT 

algorithms are presented and used as benchmarks for 

comparison with our work. 

2.1 Adaptive Memoryless QT Protocol 

Fundamentally, the MQT protocol for accelerated 

identification uses information from previous processes. 

In the initial identification phase, the MQT protocol 

uses the QT protocol to identify all tags, which means 

that the reader transmits a query and tags respond with 

their IDs. The query includes a bit string of length k. 

The tag responds if the first k-bit string of its ID 

matches the query string of the reader. After the first 

identification process, the MQT protocol places all leaf 

nodes in the query tree into a special queue termed the 

candidate queue (CQ). The leaf nodes in the query tree 

are the successfully identified nodes or idle nodes. 

In the subsequent dynamic identification phase, the 

reader updates the query queue using CQ and dequeues 

until the query queue is empty. In the dynamic 

recognition process, the reader places the leaf nodes 

into CQ for the next process. 

Table 1 illustrates the operation of the MQT for five 

tags with an ID length of 4 bits in the initial static 

identification phase. The tag IDs are “0000,” “0001,” 

“0100,” “0101,” and “0110,” respectively. Initially, the 

reader sends an empty query string to tags and all tags 

respond simultaneously, which results a collision. The 

reader adds two query strings, namely “0” and “1”, into 

query queue. Then, the reader fetches the query string 

“0” from the query queue, broadcasts it to all tags, and 

waits for the tag responses. At this stage, more than 

one tag responds simultaneously, resulting in collisions. 

The reader extends query string attached “0” or “1” 

and adds into the query queue. Next, the reader sends 

query string “1” to all tags and no tags respond. The 

reader adds the query string “1” into CQ for next 

dynamic identification process. The reader continues 

the process until the query queue is empty.  
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Table 1. Detailed steps of the MQT protocol in the 

initial static phase 

Steps Prefix Results Query Queue 
Add to 

CQ 

1 Empty Collision 0, 1  

2 0 Collision 1, 00, 01  

3 1 Idle 00, 01 1 

4 00 Collision 01, 000, 001  

5 01 Collision 000, 001, 010,011  

6 000 Collision 001, 010, 011, 0000, 0001  

7 001 Idle 010, 011, 0000, 0001 001

8 010 Collision 011, 0000, 0001, 0100, 0101  

9 011 Identified 0000, 0001, 0100,0101 011

10 0000 Identified 0001, 0100,0101 0000

11 0001 Identified 0100, 0101 0001

12 0100 Identified 0101 0100

13 0101 Identified  0101

 

Next suppose that after the initial identification 

process, two tags, “0000” and “0001,” leave and two 

tags, “0010” and “1110,” arrive. Table 2 presents the 

detailed steps of the identification process in the 

dynamic phase. In this phase, the reader updates the 

query queue by CQ which contains “1”, “001”, “011”, 

“0000”, “0001”, “0100”, and “0101” query strings and 

dequeues until the query queue is empty. The 

identification process is the same as in the initial phase 

and it takes only seven steps to identify five tags. 

Table 2. Detailed steps of the MQT protocol in the 

dynamic phase 

Steps Prefix Results Query Queue 
Add 

to CQ

INIT   
1,001,011,0000,0001, 

0100,0101 
 

1 1 Identified 
001,011,0000,0001, 

0100,0101 
1 

2 001 Identified 
011,0000,0001,0100, 

0101 
001

3 011 Identified 0000,0001,0100,0101 011

4 0000 Idle 0001,0100,0101 0000

5 0001 Idle 0100, 0101 0001

6 0100 Identified 0101 0100

7 0101 Identified  0101

 

2.2 Enhanced Bit Collision Detection-based 

Query Tree Protocol 

Although the MQT protocol utilizes information in 

the previous process, its performance significantly 

depends on the difference between two consecutive 

processes. A large difference may not reduce the time 

delay for the identification process. The EBQT 

protocol uses the number of identified tags in the 

previous process to shorten the future process under a 

condition where the number of tags does not fluctuate 

for each process. A level jumping strategy is used. If 

an approximate number of tags is known to a reader, 

prefixes in a query queue can be expanded to an 

appropriate level for reducing collisions. For example, 

if five tags are identified in the previous process, the 

prefix in the query queue may start from the second 

level instead of the root level (Figure 2). 

 

Figure 2. Level jumping in EBQT protocol 

The detailed process of the EBQT protocol is as 

follows: In the initial identification phase, the EBQT 

protocol uses BQT protocol [13] to identify all tags. In 

the BQT protocol, the reader initializes a query string 

by using “**...*” with the length of tag IDs and adds 

the string into an empty queue Q. Each “*” is one-bit 

wild masking for the values “0” or “1.” At the initial 

stage, the reader fetches a query string from Q, 

broadcasts it to all tags, and each tag sends back its ID 

to the reader. All tags respond simultaneously, 

resulting in collisions. When collisions occur, the 

reader detects individual bit collisions through a hybrid 

Manchester coding scheme [13] and updates the query 

string. At a particular bit position, if all responses have 

values of “0” or “1, no collision occurs at this bit and 

the bit of the query string can be updated using the 

corresponding values “0” or “1.” If a collision occurs 

at a particular bit position, the bit at this position string 

remains “*”. After the query string is updated, the 

reader considers the following three possible situations: 

(1) Multiple “*” exist in the updated query string. In 

this situation, the reader replaces the first “*” with “0” 

and “1” to create two new query strings and adds them 

into queue Q. (2) A single “*” is present in the updated 

query string. The reader replaces this “*” with “0” and 

“1” and marks them as two successfully identified tags 

without extra queries. (3) No “*” exists in the updated 

query string. Here, the reader recognizes the ID and 

considers the tag a successfully identified tag. The 

reader then fetches a subsequent query string from Q 

and repeats the identification process until queue Q is 

empty. In the BQT protocol, the reader sends a query 

string with a length of tag IDs to all tags. Each bit 

position of the query string may include “0”, “1”, or 

“*” wild mask. These tags match the bit position of 

values “0” and “1” and they must respond with their 

respective values for the position corresponding to the 

wild mask “*”. For example, if the reader sends a 

query string “0*1**” to all tags, the tags with the first 

and third bits of “0” and “1” respond with their 

respective values of the second, fourth, and fifth bits to 

the reader.  
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In the EBQT protocol, an ID counter (Ic) is 

established to count the number of identified tags. 

After the initial identification, the reader begins to 

generate prefixes for the next processes. The prefixes 

can be generated according to the starting level, which 

is computed by the following equation: 

 L = ⎣log2 Ic⎦   (1) 

The reader generates prefixes from “
�
00...0*...*

L

” to 

“
�
11...1*...*

L

” and adds them into the query queue. Ic is 

reset to 0 and the BQT protocol is performed for the 

subsequent process.  

Although the EBQT protocol uses the number of 

identified tags in the previous process to reduce the 

time required for the identification process by 

implementing the appropriate level in the subsequent 

process, some idle nodes are requeried, particularly for 

imbalanced tag ID distribution. Therefore, the 

requeried idle nodes are wasted. Table 3 illustrates the 

detailed operation of the EBQT algorithm for 

identifying five tags in the initial static phase using the 

same example as in the previous section. 

Table 3. Detailed steps of EBQT protocol in initial 

static phase 

Steps Prefix 
Update 

string 
Results Add to Q 

INIT    **** 

1 **** 0*** Collision 00**, 01** 

2 00** 000* Identified 01** 

3 01** 01** Collision 010*, 011* 

4 010* 010* Identified 011* 

5 011* 0110 Identified  

 

After the initial identification, the reader begins to 

generate prefixes for next dynamic phase according to 

the ID counter Ic. In this example, the starting level L = 

⎣log25⎦ = 2. The reader generates prefixes “00**”, 

“01**”, “10**”, and “11**” and adds them into the 

query queue. Table 4 illustrates the detailed steps of 

the EBQT algorithm in the dynamic phase. 

Table 4. Detailed steps of EBQT protocol in dynamic 

phase 

Steps Prefix Update string Results Add to Q 

INIT    
00**, 01**,  

10**, 11** 

1 00** 0010 Identified 01**, 10**, 11** 

2 01** 01** Collision 
10**, 11**,  

010*, 011* 

3 10**  Idle 11**, 010*, 011* 

4 11** 1100 Identified 010*, 011* 

5 010* 010* Identified 011* 

6 011* 0110 Identified  

3 Proposed LBQT Protocol 

In the MQT protocol, the identified or idle nodes are 

put into the CQ for the subsequent process. However, 

with the increasing tag change rate, the previously 

identified tags may not exist. This finding indicates 

that the identified tags become idle nodes and are read 

into the CQ. Therefore, the MQT protocol uses several 

queries for the disappeared tags. Although the EBQT 

protocol utilizes the number of identified tags from the 

previous identification process to estimate the 

appropriate level to initiate a query process for the 

subsequent dynamic identification, it does not consider 

tag ID distribution. Therefore, for imbalanced 

distribution, numerous idle nodes are probably present 

in the query process. Figure 3 illustrates the 

inefficiency of the EBQT protocol by showing the 

eight identified tags that are available in the previous 

identification process. Then, according to the EBQT 

protocol, the nodes in level 3 are included in the query 

queue for the subsequent dynamic identification 

process. However, if no new arrival tags are available, 

four possible idle nodes are required to pose a query 

during the subsequent dynamic phase. 

 

Figure 3. Illustration of imbalanced case of EBQT 

protocol 

In this study, an efficient protocol was proposed to 

reduce the identification process in the dynamic phase. 

The proposed protocol is termed the LBQT protocol. 

The proposed LBQT protocol comprises the following 

three parts:  

(1) The tag identification process in the EBQT 

protocol is more efficient than that in the MQT 

protocol because the EBQT protocol uses the BQT 

protocol and not the QT protocol used in the MQT 

protocol. The tag identification procedure in the BQT 

protocol skips all possible idle queries during the 

identification process, which is advantageous. In this 

study, the BQT and QT protocols were combined and 

an improved BQT protocol was developed to more 

efficiently identify tags than using the BQT protocol 

alone.  

(2) The BQT protocol can efficiently identify tags 

because it can avoid idle nodes in the identification 

process. However, it is not useful in a dynamic 

environment because it may have some new arrival 

tags in the previous idle nodes. Therefore, in the 

proposed LBQT protocol, the possible idle nodes must 

be identified, and these nodes should be put into the 
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CQ for the subsequent dynamic phase. Therefore, an 

idle node recovery procedure was developed to trace 

the skipped idle nodes and add them into a particular 

queue for the subsequent identification process.  

(3) To reduce the identification time for newly 

arrived tags in the dynamic phase, a level jumping 

technique was developed to eliminate those possibly 

unnecessary query nodes.  

3.1 Improved BQT Protocol 

In the BQT protocol, the reader sends a query bit 

string with a length of tag IDs in which each bit 

consists of “0”, “1”, or “*”. The “*” bit indicates the 

unknown bit for responding to tags. Tags with specific 

bits that match the corresponding bits in the query bit 

string of the reader respond with their values for the 

unknown bits. To reduce the query time in the 

proposed improved BQT protocol, the consecutive 

tailing bits of “*” values are replaced with an empty 

string. For example, in the first round, the reader must 

send a masking code “**...*” to tags in the BQT 

protocol. By contrast, in the improved BQT protocol, 

the reader sends an empty string to tags. In the BQT 

protocol, the reader must send a masking code 

“01*1**” to tags, whereas in the improved BQT 

protocol, the reader sends “01*1” to tags. Tags 

matching the query string send a response comprising 

unknown bits and remaining bits. 

3.2 Idle Node Recovery Procedure 

In the proposed LBQT protocol, when the reader 

sends a query string to tags, the reader masks the 

collided bits using the masking code “*”. The bits 

before the first masking code “*” in the returned bits 

represent the status of tag distributions. For example, if 

the returned bits are identified as “0***”, the reader 

can realize that all tags have the same first bit “0” in 

their IDs. In addition, the reader can recognize that no 

tags have “1” as their first bit. Thus, if the reader sends 

a query code “1”, no tag responds. Therefore, an idle 

node is found and added into the CQ for the 

subsequent process. Figure 4 presents the idle node 

recovery procedure. Figure 4 indicates that a reader 

sends “0***” to tags and receives a returned code 

“001*”. According to the procedures, two idle nodes 

“01” and “000” are recovered and added into the CQ. 

 

Figure 4. Illustration of idle node recovery procedure 

3.3 Enhanced Level Jumping Technique 

In the MQT protocol, the identified or idle prefix 

strings are added into the CQ for the subsequent 

identification process. However, the query time of the 

prefix strings in the CQ may be wasted when several 

tags are eliminated in the subsequent identification 

process. To improve the query time in the subsequent 

process, two queues, namely CQ and idle queue (IQ) 

were used instead of using only the CQ in the MQT 

process. In the proposed LBQT protocol, the purpose 

of the CQ is similar to that in the MQT protocol, where 

it is used for storing the identified prefix strings during 

the identification process. However, the idle prefix 

stings are not added into the CQ. By contrast, they are 

stored in the IQ. In the subsequent identification 

process, the prefix strings in the CQ are first queried 

and followed by queries of the idle strings in the IQ. 

The queries in the CQ are used for the previous tags, 

whereas the queries in the IQ are for the subsequent 

new tags. Therefore, if the number of newly arriving 

tags is known, the query time for the idle strings in the 

IQ is improved by jumping to the appropriate level for 

scanning the prefixes. Let Tc and Fc denote the number 

of tags identified in the previous identification process 

and in the current identification process, respectively. 

An idle threshold level (Lidle) is obtained using the 

following equation: 

 Lidle = ⎣log2(Tc - Fc)⎦   (2) 

The reader then eliminates the nodes from the IQ 

with a bit length less than Lidle and begins the 

subsequent process by updating the query queue with 

the modified IQ and dequeues until the query queue is 

empty. 

To facilitate the understanding of the proposed 

algorithm, the same example from the previous section 

is used, and the detailed operation is explained as 

follows. Table 5 illustrates the detailed operation of 

communication between the reader and tags of the 

example in the initial static phase. As evident in Table 

5, the proposed LBQT puts the identified nodes and 

idle nodes into the CQ and IQ, respectively, for the 

subsequent process. For example, initially, the reader 

sends an empty prefix to tags, and all tags respond to 

the query of the reader at the same time. After 

receiving the responses, the reader understands the 

distribution of tag ID as “0***”, which indicates that 

the first bit in the ID of any tag is not “1”. Therefore, 

“1” is an idle node in the query tree and is put into the 

IQ for the subsequent process.  

After the initial static phase, the CQ comprises 3 

prefixes “00”, “010”, and “011”, whereas the IQ 

comprises 2 prefixes, “1” and “001”. Moreover, the 

reader understands that five identified tags are present 

in the previous process (i.e., Tc = 5). Four tags, namely 

“0000”, “0001”, “0100”, and “0101”, are removed and 

four tags, namely “1000”, “1010”, “1011”, and “1110”  
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Table 5. Detailed steps of LBQT protocol in initial 

static phase 

Step Prefix 
Update 

string 
Results

Query 

Queue

Add to 

CQ 

Add 

to IQ

1 Empty 0*** Collision 00, 01  1 

2 00 000* Identified 01 00 001 

3 01 01** Collision 
010, 

011 
  

4 010 010* Identified 011 010  

5 011 0110 Identified  011  

 

are moved in before the subsequent identification 

process.  

In the subsequent identification process, the reader 

first puts all prefixes in the CQ into the query queue. In 

the example, the query queue has 3 prefixes, “00”, 

“010”, and “011”, in the beginning of the subsequent 

identification process. After the query process, the 

reader identifies all tags that can be identified by the 

prefixes in the CQ. In the example, only one tag can be 

identified for the prefixes in the CQ: Fc = 1. The idle 

threshold level is represented as Lidle = ⎣log2(5 - 1)⎦ = 2. 

This indicates that the prefixes may need to be adjusted 

in the IQ to improve the identification process for new 

arrival tags. In this example, the IQ comprises “1” and 

“001” strings. By using the proposed enhanced level 

jumping technique, those prefixes with a bit length less 

than Lidle are extended to the prefixes with a bit length 

of Lidle. Therefore, the modified IQ comprises “10”, 

“11”, and “001” prefixes. The reader puts all prefixes 

in the IQ into the query queue and finishes the query 

until the query queue is empty.  

Table 6 shows the detailed operation of the proposed 

LBQT protocol in the dynamic phase, where two tags 

are removed and a new tag arrives. 

Table 6. Detailed steps of LBQT protocol in dynamic 

phase 

Step Prefix 
Update 

string 
Results 

Query 

Queue 

Add to 

CQ

Add 

to IQ 

INIT    00, 010,011   

1 00  Idle 010, 011  00 

2 010  Idle 011  010

3 011 0110 Identified 10,11,001 011  

4 10 10** Collision 
11,001,100, 

101 
  

5 11 1110 Identified 001,100,101 11  

6 001  Idle 100,101  001

7 100 1000 Identified 101 100  

8 101 101* Identified  101  

 

4 Performance Evaluation 

To evaluate the performance of the proposed 

technique, the LBQT protocol was implemented with 

the EBQT protocol. A set of simulation experiments 

was conducted for the proposed algorithms. All 

experiments were performed on a computer equipped 

with a 3.0-GHz central processing unit and 4-GB 

memory in C# on the .NET platform. Each experiment 

was repeated 20 times, and the recorded data were 

averaged for the runs into the final results. In the 

experiments, the IDs of all tags were 16 bits long and 

the number of tags was set from 216 × 10% = 6554 to 

216 × 50% = 32768. Two different distributions of tag 

IDs and balanced and imbalanced distributions were 

considered. Balanced distribution indicates that all tags 

were uniformly distributed in the left subtree and right 

subtree of the query tree. By contrast, imbalanced 

distribution indicates that the tags were uniformly 

distributed only in one of the left subtree or right 

subtree and no tag was present in the other subtree. 

Moreover, in our experiments, the tag changing rate 

was assumed to be fixed for both moving-out and 

moving-in tags between two consecutive processes. 

This means that the same number of identified tags 

moved out as new tags moved in. For balanced 

distribution, the moved-out and moved-in tags were 

randomly selected. For imbalanced distribution, the 

moved-out tags were randomly selected from one 

subtree and moved-in tags were randomly generated in 

another subtree.  

4.1 Balanced Distribution 

In this experiment, the performance of the proposed 

LBQT protocol was evaluated when tag distribution is 

balanced. All tags were randomly generated in a 

uniform distribution to both left and right subtrees.  

Figure 5 shows the time comparison results of the 

experiment examining the effect of the number of tags 

on the total bits required for communication between 

the reader and tags to complete tag identification in the 

EBQT and LBQT protocols. The experiment was 

performed by executing an initial static phase and a 

dynamic phase with tag changing rates of 10% and 

50%, respectively, for each protocol. 

Figure 5 indicates that with an increasing number of 

tags, each protocol proportionally increased because of 

the increasing number of collisions. However, the 

proposed LBQT protocol required fewer bits or less 

time to complete the identification process. 

Furthermore, the total required bits for both protocols 

at a tag changing rate of 50% was almost the same as 

that at a tag changing rate of 10%. This indicates that 

both protocols can effectively complete the 

identification process regardless of the tag changing 

rate in balanced distribution. 

Figure 6 shows the time comparison results of the 

experiment that examined the effect of the changing 

rate of tags on the total required communication bits 

for tag identification in the EBQT and LBQT protocols. 

This experiment was performed by executing an initial 

static phase and a dynamic phase for each protocol 

with tag densities of 25% and 50%. 
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(a) Tag changing rate = 10% 

 

(b) Tag changing rate = 50% 

Figure 5. Total required communication bits for 

completing a static phase and a dynamic phase with 

different tag changing rates at different densities 

 

(a) Tag density = 25% 

 

(b) Tag density = 50% 

Figure 6. Total required bits for completing a static 

phase and a dynamic phase at different changing rates 

with tag densities of 25% and 50%, respectively  

Figure 6 indicates that both protocols exhibited 

acceptable performance at the increasing tag changing 

rates. This indicates that both protocols can efficiently 

identify the newly arrived tags without spending more 

time. However, the proposed LBQT protocol 

outperformed the EBQT protocol in terms of total 

required communication bits to complete the 

identification process.  

4.2 Imbalanced Distribution 

In this experiment, the performance of the proposed 

LBQT protocol was evaluated for imbalanced tag 

distribution. Initially, all tags were randomly generated 

with uniform distribution in one subtree of the query 

tree. In the dynamic phase, all the newly arrived tags 

were generated in the other subtree. 

Figure 7 shows the time comparison results of the 

experiment that examined the effect of the number of 

tags on the required communication for the tag 

identification in the EBQT and LBQT protocols. The 

experiment was performed by executing an initial static 

phase and a dynamic phase at tag changing rates of 

10% and 50%, respectively, for each protocol. 

Figure 7 indicates that with an increasing number of 

tags, each protocol increased proportionally. The 

proposed LBQT protocol outperformed the EBQT 

protocol for tag changing rates of 10% and 50%. With 

an increasing tag changing rate, the LBQT protocol 

was superior to the EBQT protocol. For example, the 

performance of the LBQT protocol was, on average, 

10.2% and 28.3% superior to that of the EBQT 

protocol when the tag changing rates were 10% and 

50%, respectively. This result indicates that the LBQT 

protocol can effectively eliminate the unnecessary 

query nodes for a large number of newly arrived tags 

in imbalanced distribution. 

Figure 8 shows the time comparison results of the 

experiment that examined the effect that the changing 

rate of tags had on the total required communication 

bits for tag identification in the EBQT and LBQT 

protocols under imbalanced distribution. This 

experiment was performed by executing an initial static 

phase and a dynamic phase for each protocol with tag 

densities of 25% and 50%. 
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(a) Tag changing rate = 10% 

 

(b) Tag changing rate = 50% 

Figure 7. Total required communication bits for 

completing a static phase and a dynamic phase at 

different tag changing rates with different densities of 

imbalance distribution 

 

(a) Tag density = 25% 

 

(b) Tag density = 50% 

Figure 8. Total required bits for completing a static 

phase and a dynamic phase at different changing rates 

with tag densities of 25% and 50%, respectively, under 

imbalanced distribution 

Figure 8 indicates that the proposed LBQT protocol 

used more queries for the newly arrived tags when the 

tag changing rate increased from 10% to 40%. 

However, it reduced more unnecessary query nodes 

when the tag changing rate increased from 40% to 

100%. This result indicates that when the tag changing 

rate is small, the level jumping technique cannot 

acceptably eliminate the unnecessary query nodes 

because only a slight difference is evident between the 

two consecutive identification phases. However, with 

an increasing tag changing rate, the difference 

continually increased. Therefore, a large amount of 

both unnecessary query nodes and the number of 

transmission bits between reader and tags can be 

reduced when level jumping technique is applied. In 

Figure 8(b), when tag density is 50%, there are 216 × 

50% = 32768 tags distributed among the whole left 

subtree or right subtree of the binary tree in the initial 

phase. When the tag changing rate increased to 100%, 

after the initial identification process, all tags in one 

subtree are removed and there are 32768 newly arrived 

tags distributed in other subtree. In this case, Tc = 

32768, Fc = 0 and the idle threshold level Lidle = 

⎣log2(32768 - 0)⎦ = 15. This means that the level 

jumping technique is applied and the tag identification 

process will jump from level 14 to level 15 when the 

tag changing rate increased from 90% to 100%. 

Therefore, all of the query nodes in level 14 can be 

omitted and the number of transmission bits between 

reader and tags can be greatly reduced. By contrast, 

with the increasing density, the performance of the 

EBQT protocol was nearly independent of the tag 

changing rate because it jumped to the same level for 

scanning regardless of the tag changing rate.  

5 Conclusions 

The development of a highly efficient tag 
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identification process in a dynamic RFID system is 

crucial and challenging. Many collisions may occur 

during the dynamic tag identification process because 

of many unknown new tag arrivals. An identification 

protocol such as EBQT can reduce the identification 

time, but there are still many idle cycles. In this study, 

an efficient protocol called the LBQT protocol was 

proposed, which can reduce the time delay in the 

dynamic identification phase more efficiently. The 

proposed LBQT protocol improves the BQT protocol 

in terms of the identification process and saves 

communication overhead, adapts the approach of 

adding leaf nodes into the CQ for the subsequent 

process, develops an idle node recovery procedure to 

restore the idle nodes into the IQ, and improves the 

level jumping technique on the nodes in the IQ by 

using the idle threshold level to reduce the 

identification process time for newly arrived tags. 

Therefore, the protocol outperforms the previous 

EBQT protocol. Experimental results indicated that the 

LBQT protocol is more efficient for the dynamic 

environment of an RFID system. 
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