
A Privacy-preserving BGN-type Parallel Homomorphic Encryption Algorithm Based on LWE 2189

A Privacy-preserving BGN-type Parallel

Homomorphic Encryption Algorithm Based on LWE

Zhaoe Min1, Geng Yang1, 2, Jin Wang3,4, Gwang-jun Kim5

1 School of Computer Science, Nanjing University of Posts and Telecommunications, China
2 Jiangsu Key Laboratory of Big Data Security & Intelligent Processing, China

3 School of Computer and Communication Engineering, Changsha University of Science & Technology, China
4 School of Information Science and Engineering, Fujian University of Technology, China

5 Dept. of Computer Engineering, Chonnam National University, Korea

minzhaoe@njupt.edu.cn, yangg@njupt.edu.cn, jinwang@csust.edu.cn, kgj@chonnam.ac.kr*

*Corresponding Author: Gwang-jun Kim; E-mail: kgj@chonnam.ac.kr

DOI: 10.3966/160792642019122007016

Abstract

Although the rapid development of cloud computing

brings many conveniences to people’s lives, it also leads

to the problems of user data privacy protection and the

massive bandwidth resource consumption caused by

frequent access to cloud servers. A feasible solution is to

combine the Homomorphic Encryption (HE) technique to

realize the efficient operation of ciphertext without

decryption. The low encryption efficiency is a common

issue faced by both Partially Homomorphic Encryption

(PHE) algorithm and Fully Homomorphic Encryption

(FHE) algorithm. To this end, based on the cryptosystem

of Boneh, Goh and Nissim (BGN), we propose an

efficient BGN-type parallel homomorphic encryption

algorithm to address this issue, which security is based on

the hardness of the Learning with Errors problem (LWE).

Specifically, the proposed algorithm utilizes the

characteristics of multi-nodes in cloud environment to

conduct parallel encryption through block matrix

multiplication, and simultaneously conduct the group-

wise ciphertext computations. The experimental results

show that, in a 16-core 4-node cluster with MapReduce

environment, the proposed encryption algorithm achieves

the maximum speedup up to 5.3, which meets the

practical requirements for the implementing efficient

homomorphic encryption in cloud computing

environment.

Keywords: Privacy protection, Homomorphic encryption,

Learning with errors, Matrix multiplication,

Parallel encryption

1 Introduction

Open network environment can provide strong

computing and storage ability to the cloud computing

users, which has broad applications in the industry.

However, with the fast development of cloud

computing technology, the faced security problems are

also becoming more prominent [1-3]. On the one hand,

the attacker may circumvent the authentication

mechanism of cloud platform, and obtain the user’s

data by directly accessing file on lower layer or the

original data, which may cause disclosure of privacy.

On the other hand, the cloud service provider is an

unreliable third party, and this characteristic also

causes more sever privacy problem during data

computation faced by cloud computing [4-5].

In order to effectively solve the data privacy

protection problem, encrypted storage of cloud data is

a very outstanding solution [6-7]. After encryption, the

data is stored in the server provided by cloud service

provider in the form of ciphertext, and in the meantime,

the server is also required to return the data to user

when the user requires. When the user needs to use the

data frequently, it requires a lot of network bandwidth

and user’s time to conduct communication with the

server and realize data encryption and decryption,

which will significantly reduce the usability of cloud

computing. In the meantime, after the encrypted data

stored in cloud server has developed to a certain scale,

effective retrieval of encrypted data has become a new

problem that needs to be solved, while the traditional

information retrieval technology can no long satisfy the

requirement of mass data retrieval in the cloud storage

environment.

The homomorphic encryption technology is an

encryption method which can directly process the

encrypted data [8], and it can effectively protect the

security of user’s data content, which has very broad

development potential under the background of cloud

storage application. By utilizing the homomorphic

encryption algorithm, it can not only ensure that the

encrypted data won’t be statistically analyzed to

decrypt corresponding plaintext, but also conduct

homomorphic operation (such as addition and

multiplication) to the ciphertext, while maintaining

corresponding plaintext order of this ciphertext during

2190 Journal of Internet Technology Volume 20 (2019) No.7

operation. During the retrieval process, the used index

file and keyword are both in the form of ciphertext, and

the cloud server cannot obtain any information of user

data from the retrieval results. The index file is small,

which will not increase the storage pressure of cloud

server. In the meantime, the retrieval speed is fast, and

it supports retrieval of multiple keywords, which will

be convenient for the users and provides high security

and strong practicability.

The homomorphic encryption algorithm can be

divided into partially homomorphic encryption

algorithm and fully homomorphic encryption algorithm.

However, the low encryption efficiency is a common

issue faced by both partially homomorphic encryption

algorithm and fully homomorphic encryption algorithm.

As for the problem that the mass data in cloud

environment all require encryption, the traditional

serial encryption cannot satisfy the requirement in

terms of efficiency. The cloud computing cluster has

many computational nodes which can be used to

process mass data, and the cloud computing

environment is easy to build. Many companies and

scientific research institutions have deployed private

cloud computing platforms, so we can use the parallel

characteristic of private cloud cluster and the

computing power of various nodes to encrypt the data

that need to be stored in public cloud. In this paper, by

utilizing the parallel characteristic of cloud computing

cluster, we design and realize a parallel homomorphic

encryption algorithm based on MapReduce, which can

solve the low efficiency problem of homomorphic

encryption algorithm.

2 Related Works

The homomorphic encryption method was initially

proposed by Rivest et al. in the concept of “privacy

homomorphism” in 1978 [9], which is an encryption

scheme which can be directly used in the operation of

ciphertext. In the same year, they also put forward that

the RSA public key encryption algorithm has

multiplication homomorphism [10], and the security of

this scheme is based on integer factorization. Later,

various homomorphic encryption schemes have been

proposed, such as the ElGamal encryption scheme [11]

with multiplication homomorphic characteristic and the

Paillier encryption scheme [12] with addition

homomorphic characteristic. Because they can only

satisfy addition homomorphism or multiplication

homomorphism, they are called partially homomorphic

encryption algorithm.

In 2005, Boneh, Goh, and Nissim built a

homomorphic encryption scheme [13] for BGN

cryptosystem based on the bilinear pair mapping. By

introducing the bilinear pair, it enables the scheme to

support arbitrary times of homomorphic addition

operations and one homomorphic multiplication

operation of the ciphertext. The BGN scheme does not

have ciphertext length extension during the encryption

process, which also provides semantic security. It is the

scheme closest to the concept of full homomorphism,

but it is still not fully homomorphic encryption

algorithm.

In 2009, Gentry proposed the fully homomorphic

encryption scheme [14] based on ideal lattice for the

first time. This scheme can conduct arbitrary times of

homomorphic addition and multiplication operations of

the ciphertext, which is an important milestone in the

field of homomorphic encryption, and it has provided a

new research direction for fully homomorphic

encryption scheme. Later, the fully homomorphic

encryption technology entered the fast development

period.

According to the development period of fully

homomorphic encryption scheme and the hardness

assumption it is to construct fully homomorphic

encryption scheme, the fully homomorphic encryption

schemes can mainly be divided into four types: the first

type is the fully homomorphic encryption scheme

based on ideal lattice proposed by Gentry, and this

scheme is the ideal scheme for various rings; the

second type is the homomorphic encryption scheme

based on Learning With Errors (LWE) and Learning

With Errors over Ring (R-LWE) [15-16], which is

constructed using nonlinearization technique; the third

type is the fully homomorphic encryption scheme

based on the Number Theory Research Unit (NTRU)

[17]; the last type is the fully homomorphic encryption

scheme based on Approximate Greatest Common

Divisor (AGCD) [18].

The low encryption efficiency is a critical problem

faced by homomorphic encryption algorithm. In order

to improve the efficiency of homomorphic encryption

algorithm, various schemes have been proposed: for

example, Literatures [19-23] introduce the schemes

which utilize different parallel methods (GPU, CPU or

OPEN MP) to improve the efficiency of RSA

algorithm; Literature [24] discusses the scheme which

utilizes the MapReduce parallel technique to improve

the efficiency of Hill encryption algorithm. According

to the problem of low encryption efficiency of Paillier

encryption algorithm, [25] proposes a homomorphic

encryption algorithm capable of parallel encryption in

the cloud environment.

For the fully homomorphic encryption scheme, [26]

proposes an ideal lattice-based fully homomorphic

encryption scheme which can be combined with the

Single Instruction Multiple Data(SIMD) technique; by

improving the fully homomorphic encryption scheme

of DGHV(Dijk- Gentry-Halevi-Vaikuntanathan), [27]

proposes an optimized scheme which can conduct

batch processing of multiple plaintext bits. According

to the problem that the ciphertext homomorphic

addition and multiplication computations in

GSW(Gentry-Sahai-Waters) scheme are only addition

and multiplication based on matrix, Literature [28]

A Privacy-preserving BGN-type Parallel Homomorphic Encryption Algorithm Based on LWE 2191

proposes a method of compressed ciphertext and

optimized bootstrap, and this scheme is the first fully

homomorphic encryption scheme which can

simultaneously encrypt the matrix and support

homomorphic operation of matrix.

At the Eurocrypt meeting held in 2015, the FHEW

scheme proposed in [29] has the problem of involving

many matrix and vector operations. In order to address

this problem, in 2017, Yang et al. designed and

realized the CPU multi-core parallel algorithm of

FHEW scheme in [30] by utilizing the characteristic

that the CPU multi-core can adapt to many

independent data operations. In the same experimental

environment, the key generation efficiency is increased

by 4.3 times, and the efficiency of one homomorphic

NAND gate circuit operation is increased by 2.68 times.

In 2018, Shi et al. conducted analysis and research

of large-number multiplication operation which takes

the longest time in fully homomorphic encryption

algorithm [31], and realized the FPGA design of FFT

algorithm in the finite field of 16×24. By constructing

tree-based large-number summation unit and parallel

processing scheme, they realized the design and

optimization of key module of finite field in the large-

number algorithm and improved the efficiency of

algorithm. In the same year, in order to solve the

dilemma that FHE schemes can’t be put into the

practical applications, Tan et al. optimize FHE

schemes by the parallel computing [32]. The main

principle is to improve the performance of

homomorphic operations by sacrificing hardware

resources.

According to the characteristic of computationally

expensive operations of the Fan-Vercauteren(FV)

homomorphic encryption scheme on the FPGA,in 2019,

Roy et.al design a custom co-processor and make the

Arm processor a server for executing different

homomorphic applications in the cloud [33]. In the

hardware architecture, they used parallel computation

cores to minimize cycle count, and applied circuit-level

and block-level pipeline strategy to benefit parallel

processing and reach a clock frequency of 200 MHz.

Among various homomorphic encryption algorithms

discussed above, it is proved that the Hill encryption

algorithm is not sufficiently secure; RSA only has

multiplication homomorphism, while the Paillier

algorithm only has addition homomorphism. Although

there have been many researches on fully

homomorphic encryption algorithm in recent years,

however, due to the problems of encryption efficiency

and ciphertext expansion, most are still at the

experimental stage, and they have not be completely

applied in real life. The GHV homomorphic encryption

algorithm supports many additions and one

multiplication. In the meantime, the main operation of

this algorithm is matrix multiplication, and the parallel

multiplication characteristic of matrix can be fully

utilized to design parallelizable encryption algorithm to

be used in privacy protection of cloud data.

In this paper, with the objective of privacy

preservation, the cloud computing environment is

combined to realize a BGN-type parallel homomorphic

encryption algorithm based on LWE. According to the

characteristic that the main operation of algorithm is

matrix multiplication, we propose a parallelizable

block matrix multiplication, and by utilizing the

parallelism of MapReduce, parallel encryption can be

realized through block encryption of plaintext data.

The experimental results show that in addition to

guaranteeing security, this scheme can also achieve a

speed-up ratio of 5.3, which has solved the problem of

low computational efficiency of partially homomorphic

encryption algorithm.

3 Background

In 2005, Boneh, Goh and Nissim proposed the BGN

cryptosystem with semantic security, and this scheme

has the characteristics of multiple-addition

homomorphism and one-multiplication homomorphism.

At the Eurocrypt 2010, Gentry et al. proposed the GHV

scheme for binary matrix encryption [34]. This scheme

also supports polynomial times of addition operations

and one multiplication homomorphic operation.

Because its security is based on the hardness of the

Learning With Errors problem (LWE), it is called the

BGN-type encryption scheme based on LWE. Each

sensor node has a unique identifier (ID) to differ from

others.

3.1 Trapdoor Sampling

The GHV encryption algorithm is mainly based on

the trapdoor sampling algorithm first constructd by

Ajtai in 1999 [35] and later improved by Peikert in

2009 [36]. The specific algorithm is as follows:

Lemma1. (TrapSamp) Let the security parameter of

algorithm be n, q=poly(n), q>2, and m=8*n*logq. Then,

there is a probability polynomial time algorithm with

1n as the input, generate a matrix m n

q
A

×

∈� with almost

random uniform distribution statistically speaking and

a full-rank matrix et ()T
S A

⊥
⊂ Λ , and for ,T S∈

|| || (log)T O n q
∞
≤ ⋅ . Matrixes A and T satisfy the

following conditions:

‧ The rows of T form a basic of the lattice

() { : 0(mod)
def

m
A w w A q

⊥
Λ = ∈ ⋅ =� ｝;

‧ Various elements of T are all “small”, i.e.,

|| || (log)T O n q
∞
≤ ⋅ ;

‧ T is invertible mod2 .

3.2 BGN-type Cryptosystem from LWE

Assume the security parameter of encryption system

is n, q=poly(n), and q is an odd prime;

2192 Journal of Internet Technology Volume 20 (2019) No.7

3 1 5logp n n
ε +

> ⋅ is a prime number distinctive from q,

and 3
p q p< < . The algorithm mainly consists of three

steps: generation of key, encryption and decryption.

The specific steps are as follows:

Generation of key. Run the trapdoor sampling

algorithm TrapSamp of in Lemma 1 to obtain random

matrix m n

q
A

×

∈� and trapdoor matrix m m

q
T

×

∈� , which

satisfy 0(mod),T A q⋅ = and ,m n> i.e., (,)A T ←

(1 , ,)n

TrapSamp q m . Then, matrix A is the public key,

and matrix T is the private key.

Encryption. For plaintext ,M encode it to a binary

m m× matrix first, i.e.,
2

m m

B
×

∈� . Choose matrix S

with random uniform distribution from ,

n m

q

×

� i.e.,

n m

q
S

×

←� . Select an “error matrix” X from Gaussian

distribution () ,m m

qβ
×

Ψ i.e., () .m m

X qβ
×

←Ψ Use

Formula (1) to obtain ciphertext C through calculation,

and the ciphertext matrix C satisfies m m

q
C

×

∈� .

 2 (mod)C AS X B q= + + (1)

Where, 2X represents each component in matrix X

multiplied with 2.

Decryption. set mod
t

E TCT q= , and utilize Formula

(2) to calculate plaintext B.

 1 1() mod2t
B T E T

− −

= (2)

Proof. Because 0(mod)T A q• = and therefore
t

TCT =

(2) (mod)t
T X B T q+ . If q is a sufficiently big prime

number so that (2) t
T X B T+ is significantly smaller

than q, then, we also have the equality over the integers

(mod) (2) ,t t
E TCT q T X B T= = + and hence 1 1()tT E T

− −

=

(mod2)B . This means that we have correct decryption

as long as we set the parameter β small enough so that

with high probability all the entires of (2) t
T X B T+

are smaller than q/2.

3.3 Proof of Homomorphism

Addition homomorphism: assume C1 and C2 are the

ciphertexts generated after encryption of plaintexts B1

and B2 respectively. Specifically, if we have
1

C =

1 1 1
2AS X B+ + and

2 2 2 2
2C AS X B= + + then

1 2

1 1 1 2 2 2

1 2 1 2 1 2

* ()mod

(2)mod (2)mod

() 2() ()mod

C C C q

AS X B q AS X B q

A S S X X B B q

= +

= + + + + +

= + + + + +

 (3)

After decryption, we can obtain:

1 * 1

1 2 1 2

1 2

* ((mod))() (mod2)

(2() ())(mod2)

()

t t
B T TC T q T

X X B B

B B

− −

=

= + + +

= +

 (4)

As long as we choose suitable parameter, we can

ensure various elements of T(2(X1+X2)+(B1+B2))T
t are

all smaller than q/2. Then, we can obtain plaintext

through correct decryption. Similarly, we can prove the

characteristic of polynomial times of addition

homomorphism.

Multiplication homomorphism: assume C1 and C2

are the ciphertexts generated after encryption of

plaintexts B1 and B2 using Formula (1) respectively.

Specifically, if we have
1 1 1 1

2C AS X B= + + and

2 2 2 2
2C AS X B= + + then

�

2

2 2

'

1 2

1 1 1 2

1 2 1 1 2 2 2

1 2 1 1 2 2

1 1 1 2

1 2 1 2 2 1 2

1 1 2

* ()mod

(2) (mod)

(2) (2) (mod)

2 2 (2)

2 (mod)

() 2((2))

(2)

t

t

t t

t t t t

t t t t

t t t

S X

t

S

C C C q

AS X B C q

AS C X B AS X B q

AS C X A S X X B

B A S B X B B q

A S C X X B B X

X B S

= ⋅

= + + ⋅

= ⋅ + + ⋅ + +

= ⋅ + ⋅ + ⋅ +

+ ⋅ + ⋅ + ⋅

= ⋅ ⋅ + + +

+ + ⋅

�����������

�� �
1 2

() (mod)t t

B

A B B q⋅ + ⋅
� ��� �����

 (5)

Hence the product ciphertext has the form
'

2
t

AS X B S A+ + + . The obtained ciphertext result has

the structural form, and we can obtain the following

formula through decryption:

1 * 1

1 1

1 2

* ((mod))() (mod2)

((2 ') (mod))() (mod2)

(2)(mod2)

t t

t t t

t

B T TC T q T

T T AS X B S A T q T

X B

B B

− −

− −

=

= + + + ⋅

= +

= ⋅

(6)

Similarly, as long as we choose suitable parameter,

we can ensure various elements of T(2X+B)Tt are all

smaller than q/2. Then, we can correctly obtain the

plaintext, and further prove that the algorithm has

multiplication homomorphism.

3.4 Block Matrix Multiplication

Set matrix ,

m l
A R

×

∈ matrix l n
B R

×

∈ and matrix

C A B= × , then matrixes A,B can be divided into the

blocks of:

11 1

1

t

s st

A A

A

A A

⎛ ⎞
⎜ ⎟

= ⎜ ⎟
⎜ ⎟
⎝ ⎠

…

� �

�

11 1

1

k

t tk

B B

B

B B

⎛ ⎞
⎜ ⎟

= ⎜ ⎟
⎜ ⎟
⎝ ⎠

…

� �

�

 (7)

where, the column number of Ai1, Ai2,…, Ait equals to

A Privacy-preserving BGN-type Parallel Homomorphic Encryption Algorithm Based on LWE 2193

the row number of B1j, B2j,…, Btj respectively. Then,

the block matrix can be represented as:

11 1

1

k

s sk

C C

C A B

C C

⎛ ⎞
⎜ ⎟

= × = ⎜ ⎟
⎜ ⎟
⎝ ⎠

…

� �

�

 (8)

where, Cij=Ai1 B1j+Ai2 B2j+…+ Ait Btj (i=1,…s ；

j=1,…,k).

4 Parallel Homomorphic Encryption Scheme

The GHV encryption scheme proposed in this paper

is based on the MapReduce architecture, and the GHV

encryption algorithm mainly involves the matrix

addition operation and matrix multiplication operation,

of which, the matrix multiplication operation is the

main operation of this algorithm. The execution

process of GHV encryption algorithm mainly consists

of three steps: generate the key sequence, use the

public key matrix to encrypt the plaintext data file, and

use the private key to decrypt the ciphertext file. The

matrix multiplication parallel algorithm proposed in

this paper is realized based on block matrix

multiplication, which mainly describes the realization

of block matrix multiplication in MapReduce.

4.1 Algorithm Procedure

A complete MapReduce programming model

includes 3 operations: Split, Map and Reduce. The

Split function is used to divide the input data into data

blocks of fixed size according to the user’s requirement,

and then, the master node allocates them to different

child nodes according to corresponding scheduling

mechanism. For each data block after fragmentation,

the Map function conducts corresponding operation in

accordance with the encryption algorithm defined by

the user, and each Mapper completes part of the final

result. Reduce is responsible of integrating all results

of Mapper part. Each encryption computation of

parallel GHV encryption scheme is independent, so it

can be allocated to multiple Mappers for simultaneous

encryption. It can be defined as a trinomial time

algorithm (, ,Re)Split Map duce∏ = , and the specific

process is as shown in Figure 1.

Figure 1. Algorithm procedure

4.2 Data Partitioning

Utilize the key generation algorithm in Section 3.2

to generate the public key matrix m n

q
A

×

∈� and private

key matrix ,

m m

q
T

×

∈� and select the matrix n m

q
S

×

←∈�

with random uniform distribution. Assume the public

key matrix A consists of s rows and t columns, and the

random distribution matrix S consists of t rows and k

columns. The specific partitioning strategy is: the

public key matrix A can be divided into s×t blocks, and

each block is denoted as ()+
ip ,pA i s t≤ ≤ . The

boundary of each block can be represented by the four

variables of (), , , ,ir er ic ec which refer to the start row

number, end row number, start column number and

end column number, respectively. The public key

matrix A is:

2194 Journal of Internet Technology Volume 20 (2019) No.7

()

()

()

+
ip 1 ,1

1 1 min ,

1 1 min ,

A i s p t

m m
ir i er i m

s s

n n
ic p ec p n

t t

≤ ≤ ≤ ≤

⎛ ⎞⎡ ⎤ ⎡ ⎤
= × − + = ×⎜ ⎟⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎝ ⎠

⎛ ⎞⎡ ⎤ ⎡ ⎤
= × − + = ×⎜ ⎟⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎝ ⎠

 (9)

The distribution matrix S is divided into t k× blocks,

each block is denoted as ()+
pj 1 p ,1S t j k≤ ≤ ≤ ≤ , and

the block is:

()

()

()

+
pj 1 ,1

1 1 min ,

1 1 min ,

S p t j k

n n
ir p er p n

t t

m m
ic j ec j m

k k

≤ ≤ ≤ ≤

⎛ ⎞⎡ ⎤ ⎡ ⎤
= × − + = ×⎜ ⎟⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎝ ⎠

⎛ ⎞⎡ ⎤ ⎡ ⎤
= × − + = ×⎜ ⎟⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎝ ⎠

 (10)

Then, the product matrix M consists of s k× blocks in

total, each block is denoted as ()+
ij 1 i ,1M s j k≤ ≤ ≤ ≤ ,

and the block is:

()

()

()

+
ij 1 ,1

1 1 min ,

1 1 min ,

M i s j k

m m
ir i er i m

s s

m m
ic j ec j m

k k

≤ ≤ ≤ ≤

⎛ ⎞⎡ ⎤ ⎡ ⎤
= × − + = ×⎜ ⎟⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎝ ⎠

⎛ ⎞⎡ ⎤ ⎡ ⎤
= × − + = ×⎜ ⎟⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎝ ⎠

 (11)

After partitioning, the block matrix multiplication

can be used to conduct parallel computation of GHV

homomorphic encryption algorith.

4.3 Parallel Encryption

After partitioning of public key matrix A and

random uniform distribution matrix S, encrypt the

plaintext according to the GHV encryption formula

2 (mod)C AS X B q= + + .

The main operation of GHV encryption formula is

the matrix multiplication operation. The block matrix

algorithm can be employed for parallel encryption, and

the block matrix multiplication strategy is: conduct

matrix multiplication operation to corresponding

blocks; finally, conduct summation operation of blocks

to obtain the product block ijM
+ ; combine the product

blocks to obtain an m m× product matrix M A S= × .

Assume the public key matrix A consists of s rows and

t columns, and the random distribution matrix S

consists of t rows and k columns, then, s t k× × blocks

are generated in total, which is denoted as

()+
i,j,p 1 ,1 p ,1T i s t j k≤ ≤ ≤ ≤ ≤ ≤ , then:

 +
i,j,p , ,=Ai p p jT S

+ +
× (12)

After calculation of intermediate result, conduct

matrix addition operation of blocks with the same p

value in +
i,j,pT to obtain s k× product blocks ijM

+ , i.e.

(as shown in Figure 2),

 , ,

1

=

k

ij i j p

p

M T
+ +

=

∑ (13)

Assume the plaintext matrix 2

m m

B
×

∈� consists of s

rows and k columns, then the plaintext matrix B can be

divided into s k× blocks, and each block denoted as

()+
ij , j .B i s k≤ ≤ The boundary of each block can be

represented by the four variables of (), , , ,ir er ic ec

Figure 2. Matrix block multiplication

A Privacy-preserving BGN-type Parallel Homomorphic Encryption Algorithm Based on LWE 2195

which refer to the start row number, end row number,

start column number and end column number,

respectively. The plaintext matrix B is:

()

()

()

+
ij 1 ,1

1 1 min ,

1 1 min ,

B i s j k

m m
ir i er i m

s s

m m
ic j ec j m

k k

≤ ≤ ≤ ≤

⎛ ⎞⎡ ⎤ ⎡ ⎤
= × − + = ×⎜ ⎟⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎝ ⎠

⎛ ⎞⎡ ⎤ ⎡ ⎤
= × − + = ×⎜ ⎟⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎝ ⎠

 (14)

Use the partitioning method for plaintext matrix M

to partition the error matrix X, and each block is

denoted as ()+
ij , jX i s k≤ ≤ . Conduct addition operation

of product matrix block ijM
+ , twice the error matrix

block ijX
+ and plaintext matrix block ijB

+ . In the matrix

sum, through modulo operation of various elements to

q, we can obtain the ciphertext matrix block ijC
+ , i.e.,

 = 2 modij ij ij ijC M X B q
+ + + +

+ + (15)

4.4 Performance Analysis

The encryption formula of GHV encryption

algorithm is 2 (mod)C AS X B q= + + , in which, A and

S are the m×n and n×m matrixes respectively.

According to the encryption formula, the time

complexity of GHV algorithm is O(m2×n). Assume the

total encryption time for sequential execution of GHV

algorithm is
seq
T , then

seq
T consists of two parts: one

part is the key matrix generation time keyT ; the other

part is the time
Enc

T required by sequential execution

encryption algorithm. Then,
seq

T can be expressed by the

following formula: 2()seq key Enc keyT T T T O m n= + = + × .

Set the total encryption time parT for parallel

execution of GHV algorithm consisting of two parts:

one part is the key matrix generation time keyT ; the

other part is the parallel execution time of encryption

algorithm, i.e., the matrix multiplication and matrix

addition time
_matrix parT , then,

seq
T can be expressed

by the following formula:
_par key matrix parT T T= + .

We can see that the increase of encryption speed

mainly depends on the acceleration process of parallel

matrix multiplication. The computation time of

MapReduce-based matrix multiplication equals to the

computation time of matrix multiplication for each

block plus the time consumed by summing up various

blocks. In the Reduce phase, the results of all Map

modules need to be read, i.e.:

_matrix par comp waitT T T= + (16)

Assuming the total number of CPU cores is p , then

the serial time complexity can be reduced as through

partitioning:

2

comp

m n
T

p

×

= (17)

According to the algorithm, it can be seen that

because ()m k m s n× × + × key/value pairs are generated

during the Map process, and m*n Reduce modules are

responsible of integrating the output result of Map.

Assume the number of Map nodes is p s t k= × × , and

it takes time
w
t to write the results generated by Map

process into the disk. Then, it can be known that the

time of waiting for all results generated by Map is:

()

()2

waits w

w

T m k m s n t

km mnk t

= × × + ×

= +

 (18)

Set 3s t k p= = = , m n= , and we can obtain the

parallel encryption time of GHV as:

 ()

_

2
2

23
3

2

par key matrix par

key w

key w

T T T

m n
T km mnk t

p

m
T pm t

p

= +

×
= + + +

= + +

 (19)

When the m is big, keyT can be ignored, so the

speed-up ratio η is:

2

3/ 43
23

=

2
12

seq

par w

w

T m n p

T p tm
pm t

mp

η
×

= =
⎛ ⎞

++⎜ ⎟⎜ ⎟
⎝ ⎠

 (20)

As m approaches infinity, we can obtain
seq par

T pT≈ .

4.5 Security Analysis

The security of this scheme can defend

Indistinguishable Chosen Plaintext Attack (IND-CPA),

which is built based on the hardness of the learning

with errors problem. The specific proof is as follows.

Theorem 1: If there is a distinguishable algorithm

which can solve this scheme of parameters n, m, q, p

and β with non-negligible advantage ε, then such

distinguishable algorithm can be utilized to build a

distinguisher. Within the same time, if the DLWE

difficulty problem of parameters n, m, q, p and β can

be solved with a probability no less than ε /2m, then

this scheme will be regarded as CPA-secure.

Proof: Let A be a CPA-adversary that distinguishes

between encryptions of messages of its choice with

advantage ε. First, build a distinguisher D with

advantage of no less than ε/2 probability, which can

distinguish the following 2 distributions:

2196 Journal of Internet Technology Volume 20 (2019) No.7

{(,) : , , () }m n m n m m

q q
A AS X A Z S Z X qβ

× × ×

+ ← ← ←Ψ

and { ()}m n m m

q q
Unif Z Z× ×

× (,)m n m n

q q
A Z C Z

× ×

∈ ∈ .

The distinguisher D takes as input a pair of matrices

(,)m n m n

q q
A Z C Z

× ×

∈ ∈ , and operate adversary A with A

as the public key. After obtaining information B0 and

B1 provided by the adversary, the distinguisher D

randomly chooses {0,1}
R

i∈ , and returns the challenge

ciphertext 2 (mod)
i

C B q+ . If the adversary A is able

to guess right i, it will output 1; otherwise, it will

output 0.

On the one hand, if C is a matrix with uniform

random distribution, then the challenge ciphertext must

also have uniform distribution, which is irrelevant to

the selection of i, Hence in this case D outputs 1 with

probability at most 1/2. On the other hand, if the

ciphertext matrix is (mod)C AS X q= + , the challenge

ciphertext is 2 ' 2 modC B AS X B q+ = + + , in which,

' 2 modS S q= has uniform random distribution (since

q and 2 are relatively prime). Therefore, the probability

of correctly guessing i through opponent A is (1+ε)/2,

which indicates that the probability of distinguisher D

outputting 1 is also (1+ε)/2. To sum it up, the

probability of distinguisher D correctly distinguishing

2 distributions is at least 1/ 2 / 2 1/ 2 (1) / 2ε ε× + × + =

1/ 2 / 2ε+ , and in other words, the advantages is no

less than / 2ε . Therefore, the advantage of using such

distinguisher D to solve the LWE hardness problem of

parameters n, m, q, p and β is / 2mε .

5 Experimental Results and Analysis

5.1 Experimental Environment

The hardware platform used in experiment mainly

consists of the Master and Slave nodes, of which, the

Master node is mainly responsible of monitoring and

scheduling, while the Slave node is mainly responsible

of the distributed storage data file and computation

tasks.

The Master node nodes include the NameNode and

JobTracker nodes. The Slave nodes include the

TaskNode and DataNode nodes. The cluster consists of

4 Slave nodes in total. See “Table 1 Software and

hardware configuration” for the specific hardware

configuration and software environment for each node.

Table 1. Software and hardware configuration

Product name The parameter and model

Cash 3.2 GHz/8M

Memory bank 16 GB (2×8 GB)1333 MHz RDIM

Hard disk 1TB 3.5-inch 7200 RPM SATA II

Operating System CentOS Linux Server6.6

Java VM JAVA 1.7.0

Hadoop Hadoop-2.5.2

5.2 Analysis of Experimental Results

In this paper, data test is conducted from two

different perspectives: first, the plaintext data of

different sizes are selected to compare their encryption

speed and speed-up ratio in serial and parallel

environment; second, the plaintext data of fixed size

are selected to compare their encryption speed and

speed-up ratio under different numbers of processor

cores.

In the first experiment, the selected plaintext data

have the sizes of 256MB, 512MB, 768MB, 1024 MB,

1280 MB, 1536 MB, 1792 MB and 2048 MB

respectively, the default data block size is 64MB in the

parallel environment, and encryption test is conducted

in the serial and parallel environment respectively.

In the second environment, the plaintext data with

the size of 2G are selected, and their encryption speeds

are tested when there are 1, 4, 8, 12, 16, 24 and 32

processors respectively.

4 computational nodes are used in the experiment,

each node has 4 CPU cores, and there are 16 CPU

cores in total. In the parallel experiment, it is found

that with the increase of plaintext data volume, the

time occupied by Reduce function also increases. In

order to improve the efficiency, the number of parallel

Reduce is set at 15.

Table 2 summarizes the encryption speed and

overall speed-up ratio of files with different sizes in

serial and parallel environment, respectively. Figure 3

presents the curve of how the file encryption time

changes with the increase of plaintext in the parallel

environment. Figure 4 shows the curve of how the Map

speed-up ratio and overall speed-up ratio change with

the increase of plaintext in the parallel environment.

Table 3 records the overall encryption time of file,

the execution time of Map process, the overall speed-

up ratio and the speed-up ratio of Map process during

encryption of file with plaintext size of 2GB under

different numbers of processor cores.

Figure 5 shows the curve of how the file encryption

speed changes with the increase of core number during

encryption of file with plaintext size of 2GB. With the

increase of processor number, the encryption time

presents exponential decline. With the increase of core

number, during the early period, the encryption speed

quickly declines; during the later period, the encryption

time is becoming relatively stable. This mainly

depends on the time of Reduce process. Figure 6

reflects the comparison of overall speed-up ratio and

Map speed-up ratio for files of 2GB.

A Privacy-preserving BGN-type Parallel Homomorphic Encryption Algorithm Based on LWE 2197

Figure 3. The encryption time of different size file Figure 4. The speed-up rate of different size file

Table 2. The test results of diffent size file

Filesize (MB) Serial time (s) Parallel time (s) Max Map time (s) Reduce time (s) Speed-up

256 172 88 44 38 1.9

512 343 112 45 61 3.1

768 520 133 44 83 3.9

1024 696 152 44 103 4.6

1280 871 221 45 122 3.9

1536 1048 233 46 138 4.5

1792 1220 249 45 155 4.9

2048 1392 261 44 169 5.3

Table 3. The test results of 2GB files on different cores

No P General time (s) Max Map time (s) Reduce time (s) Map SP General SP

1 1418 1243 171 1.0 1.0

4 501 326 169 3.8 2.8

8 343 167 170 7.4 4.1

12 302 125 170 9.9 4.7

16 267 92 171 13.5 5.3

24 312 71 170 17.6 4.5

32 266 48 169 25.8 5.3

Figure 5. The encryption time of 2GB on different cores Figure 6. The speed-up rate of 2GB on different cores

According to Table 2, Figure 3 and Figure 4, it can

be seen that under fixed node number and fixed size of

file piece: (1) The time required by serial encryption is

basically in direct proportion to the size of plaintext,

while the time required by parallel encryption increases

slowly with the increase of plaintext; (2) With the

increase of plaintext data volume, the time

consumption of Reduce function gradually increases.

2198 Journal of Internet Technology Volume 20 (2019) No.7

While the time consumption of Map function almost

doesn’t change, the proportion of the time required by

the Reduce function gradually increases in the entire

parallel encryption process; (3) When the number of

plaintext pieces is smaller than the node number, the

increasing speed of speed-up ratio
P

S is fast, and when

the number of plaintext pieces equals to the node

number, the speed-up ratio reaches the highest value.

When the number of plaintext pieces is bigger than the

node number, the speed-up ratio presents the trend of

slow increase.

By observing Table 3, Figure 5 and Figure 6, we can

see that with the increase of the numbers of available

cores and file partitions in cluster: (1) The time

consumption of Map gradually decreases. This is

because with the increase of Map number, each Map

data block becomes smaller, and the time consumption

of Map mainly concentrates on the encryption

operation, so the time consumption of will gradually

decline. The time consumption of Reduce basically

doesn’t change, because the number of Reduce is a

fixed number of 15. (2) The Map speed-up ratio

increases with the increase of Map number, but it is

smaller than the Map number, which is consistent with

the theoretical analysis in previous section. (3) With

the continuous increase of the speed of Map process,

the ratios of the time required by the Map process and

the time required by the Reduce process keep declining,

and the weight of the influence of Map process on the

final acceleration speed is relatively small, which

results in certain gap between the final overall speed-

up ratio and the speed-up ratio of Map process. (4) For

plaintext data file of fixed size, with the increase of

Map number, the file encryption time presents decline

trend in general. When the Map number equals to the

node number, it takes the least time. With the increase

of the number of available cores, the file encryption

time presents significant decline, and the clustering

performance can be effectively carried out.

6 Conclusion

To address the low encryption efficiency issue of

homomorphic encryption algorithm, this paper

proposes a BGN-type parallel homomorphic

encryption algorithm which utilizes parallel matrix to

improve the encryption speed. This encryption

algorithm realizes block matrix

multiplication and addition operations by

partitioning matrix into multiple blocks during

encryption process, which can improve the efficiency

of encryption algorithm. Furthermore, we also design

and implement an effective parallel algorithm executed

on the MapReduce platform. During the encryption

process, the file is divided into different number of

data blocks, and the parallelism of algorithm can be

controlled by specifying the numbers of available cores

and partitions. Meanwhile, parallel execution of

multiple Reduce functions can reduce the high real-

time cost of Reduce operation. The experimental

results show that, compared to the traditional linear

encryption algorithm, the proposed algorithm can

achieve higher speed-up ratio when processing big data

files in the MapReduce cluster.

Acknowledgements

This work was supported in part by the National

Natural Science Foundation of China under the Grant

61972209, in part by the Colleges and Universities in

Jiangsu Province plans to graduate research and

innovation under Grant KYLX_0816, in part by

Institute of Population and Health Nanjing collage for

Population Program Management general fund

(2012C06).

References

[1] S. Mahalle, R. Jaiswal, Cloud Computing Security: A Survey,

International Journal of Computer Applications, Vol. 115,

No. 6, pp. 21-25, April, 2015.

[2] M. Ali, S. U. Khan, A. V. Vasilakos, Security in Cloud

Computing: Opportunities and Challenges, Information

Sciences, Vol. 305, pp. 357-383, June, 2015.

[3] A. P. Bodkhe, C. A. Dhote, Cloud computing Security: An

Issue of Concern, International Journal of Advanced

Research in Computer Science and Software Engineering,

Vol. 5, No. 4, pp. 1337- 1342, April, 2015.

[4] Z. Y. Li, X. L. Gui, Y. J. Gu, X. S. Li, H. J. Dai, X. J. Zhang,

Survey on Homomorphic Encryption Algorithm and Its

Application in the Privacy-preserving for Cloud Computing,

Journal of Software, Vol. 29, No. 7, pp. 1830-1851, July,

2018.

[5] C. X. Zhou, Z. M. Cui, G. Y. Gao, On the Security of an

Improved Identity-based Proxy Signature Scheme without

Random Oracles, Journal of Interne Technology, Vol. 19, No.

7, pp. 2057-2068, December, 2018.

[6] Y. Xie, L. B. Wu, J. Shen, L. Li, Efficient Two-party

Certificateless Authenticated Key Agreement Protocol under

GDH Assumption, International Journal of Ad Hoc and

Ubiquitous Computing, Vol. 30, No. 1, pp. 11-25, September,

2019.

[7] Y. Huang, W. Li, J. Lei, Concatenated Physical Layer

Encryption Scheme Based on Rateless Codes, IET

Communications, Vol. 12, No. 12, pp. 1491-1497, July, 2018.

[8] D. Micciancio, A First Glimpse of Cryptography’s Holy Grail,

Communications of the ACM, Vol. 53, No. 3, pp. 96-96,

March, 2010.

[9] R. L. Rivest, L. Adleman, M. L. Dertouzos, On Data Banks

and Privacy Homomorphisms, in: R. A. DeMillo, D. P.

Dobkin, A. K. Jones, R. L. Lipton (Eds.), Foundations of

Secure Computation, Academic Press, 1978, pp. 169-179.

A Privacy-preserving BGN-type Parallel Homomorphic Encryption Algorithm Based on LWE 2199

[10] R. L. Rivest, A. Shamir, L. Adleman, A Method for obtaining

Digital Signatures and Public-key Cryptosystems,

Communications of the ACM, Vol. 21, No. 6, pp. 120-126,

February, l978.

[11] T. Elgamal, A Public Key Cryptosystem and a Signature

Scheme Based on Discrete Logarithms, IEEE Transactions

on Information Theory, Vol. 31, No. 4, pp. 469-472, July,

1985.

[12] P. Paillier, Public-key Cryptosystems Based on Composite

Degree Residuosity Classes, International Conference on the

Theory and Applications of Cryptographic Techniques, Prague,

Czech Republic, 1999, pp. 223-238.

[13] D. Boneh, E. J. Goh, K. Nissim, Evaluating 2-DNF Formulas

on Ciphertexts, Proceedings of the Second international

Conference on Theory of Cryptography, Cambridge, MA,

USA, 2005, pp. 325-341.

[14] C. Gentry, Fully homomorphic encryption using ideal lattices,

Proc. of the Annual ACM Symposium on Theory of

Computing, Bethesda, MD, USA, 2009, pp. 169-178.

[15] Z. Brakerski, V. Vaikuntanathan, Efficient Fully

Homomorphic Encryption from (standard) LWE, 2011 IEEE

52nd Annual Symposium on Foundations of Computer

Science, Palm Springs, CA, USA, 2011, pp. 97-106.

[16] Z. Brakerski, V. Vaikuntanathan, Fully Homomorphic

Encryption from Ring-LWE and Security for Key Dependent

Messages, Proceedings of the 31st Annual Conference on

Advances in Cryptology, Santa Barbara, CA, USA, 2011,

pp.505-524.

[17] A. López-Alt, E. Tromer, V. Vaikuntanathan, On-the-fly

Multiparty Computation on the Cloud via Multikey Fully

Homomorphic Encryption, Proceedings of the Annual ACM

Symposium on Theory of Computing, New York, NY, USA,

2012, pp. 1219 -1234.

[18] M. Dijk, C. Gentry, S. Halevi, V. Vaikuntanathan, Fully

Homomorphic Encryption over the Integers, Annual

International Conference on the Theory and Applications of

Cryptographic Techniques, French Riviera, France, 2010, pp.

24-43.

[19] C. H. Lin, J. C. Liu, C. C. Li, Speeding Up RSA Encryption

Using GPU Parallelization, 5th International Conference on

Intelligent Systems, Modelling and Simulation, Langkawi,

Malaysia, 2014, pp. 529-533.

[20] C. H. Lin, J. C. Liu, C. C. Li, P. W. Chu, Parallel Modulus

Operations in RSA Encryption by CPU/GPU hybrid

computation, 9th Asia Joint Conference on Information

Security, Wuhan, China, 2014, pp. 71 -75.

[21] S. Saxena, B. Kapoor, An Efficient Parallel Algorithm for

Secured Data Communications Using RSA Public Key

Cryptography Method, 4th IEEE International Advance

Computing Conference, Gurgaon, India, 2014, pp. 850-854.

[22] K. Guo, Z. Liang, R. Shi, C. Hu, Z. Li, Transparent Learning:

An Incremental Machine Learning Framework Based on

Transparent Computing, IEEE Network, Vol. 32, No. 1, pp.

146-151, January-February, 2018.

[23] K. H. Guo, T. Li, R. H. Huang, J. Kang, T. Chi, DDA: A

Deep Neural Network-based Cognitive System for IoT-aided

Dermatosis Discrimination, Ad Hoc Networks, Vol. 80, pp.

95-103, November, 2018.

[24] X. Y. Wang, Z. Min, Parallel Algorithm for Hill Cipher on

MapReduce, 2014 International Conference on Progress in

Informatics and Computing (PIC), Shanghai, China, 2014, pp.

493- 497.

[25] Z. Min, G. Yang, J. Q. Shi, A Privacy-preserving Parallel and

Homomorphic Encryption Scheme, Open Physics, Vol. 15,

No. 1, pp. 135-142, June, 2017.

[26] C. S. Gu, Fully Homomorphic Encryption from Approximate

Ideal Lattices, Journal of Software, Vol. 26, No. 10, pp. 2696-

2719, October, 2015.

[27] J. H. Cheon, J. S. Coron, J. Kim, M. S. Lee, T. Lepoint, M.

Tibouchi and A. Yun, Batch Fully Homomorphic Encryption

over the Integers, 32nd Annual International Conference on

the Theory and Applications of Cryptographic Techniques,

Athens, Greece, 2013, pp. 315-335.

[28] R. Hiromasa, M. Abe, T. Okamoto, Packing Messages and

Optimizing Bootstrapping in GSW-FHE, International

Conference on Practice and Theory in Public-Key

Cryptography, Gaithersburg, MD, USA, 2015, pp. 699-715.

[29] L. Ducas, D. Micciancio, FHEW: Bootstrapping Homomorphic

Encryption in less than a Second, Annual International

Conference on the Theory and Applications of Cryptographic

Techniques, Sofia, Bulgaria, 2015, pp. 617-640.

[30] X. Y. Yang, Y. T. Ding, T. P. Zhao, Parallel FHEW Based on

Multi-core CPU, Journal of Cryptologic Research, Vol. 4, No.

6, pp. 620-626, December, 2017.

[31] Q. Shi, S. Han, X. M. Huang, L. Sun, X. Xie, T. Z. Tang,

Design of Finite Field FFT for Fully Homomorphic

Encryption Based on FPGA, Journal of Electronics &

Information Technology, Vol. 40, No. 1, pp. 57-62, January,

2018.

[32] D. Tan, H. Wang, Fully Homomorphic Encryption Based On

the Parallel Computing, Ksii Transactions on Internet &

Information Systems, Vol. 12, No. 1, pp. 497-522, January,

2018.

[33] S. S. Roy, F. Turan, K. Jarvinen, F. Vercauteren, I.

Verbauwhede, FPGA-based High-performance Parallel

Architecture for Homomorphic Computing on Encrypted

Data, 2019 IEEE International Symposium on High

Performance Computer Architecture (HPCA), Washington,

DC, USA, 2019, pp. 387-398.

[34] C. Gentry, S. Halevi, V. Vaikuntanathan, A Simple BGN-

Type Cryptosystem from LWE, 9th Annual International

Conference on the Theory and Applications of Cryptographic

Techniques, French Riviera, France, 2010, pp. 506 -522.

[35] M. Ajtai, Generating Hard Instances of the Short Basis

Problem, Proceedings of the 26th International Colloquium

on Automata, Languages, and Programming, Prague, Czech

Republic, 1999, pp.1-9.

[36] J. Alwen, C. Peikert, Generating Shorter Bases for Hard

Random Lattices, 26th International Symposium on

Theoretical Aspects of Computer Science, STACS 2009,

Freiburg, Germany, 2009, pp. 75-86.

2200 Journal of Internet Technology Volume 20 (2019) No.7

Biographies

Zhaoe Min received the master’s

degree in software engineering from

Suzhou University, Suzhou, China, in

2007. She is currently a Ph.D. student

of Nanjing University of Posts and

Telecommunications, Nanjing, China.

Her main research interest is

information security and parallel computing.

Geng Yang born in 1961. Professor

and Ph.D. supervisor with the School

of Computer Science, Nanjing

University of Posts and

Telecommunications. His current

research interests include computer

communication and networks, parallel

and distributed computing, and information security.

Jin Wang received the M.S. degree

from Nanjing University of Posts and

Telecommunications, China in 2005.

He received Ph.D. degree from Kyung

Hee University Korea in 2010. Now,

he is a professor at Changsha

University of Science and technology.

He has published more than 300 international journal

and conference papers. His research interests mainly

include wireless ad hoc and sensor network, network

performance analysis and optimization etc. He is a

senior member of the IEEE and a member of ACM.

Gwang-jun Kim received the B.E,

M.E and Ph.D. degrees in computer

engineering from Chosun University

in 1993, 1995 and 2000, respectively.

He joined the department of computer

engineering, Chonnam National

University, in 2003 and became an

Associate Professor in 2009. Since 2015, he has been

an Professor in computer engineering at Chonnam

National University. During 2000-2001, he was a

researcher in the department of electrical and computer

engineering at university of California, Irvine. His

current research interest lie in the area sensor network,

IoT, real-time communication and various kinds of

communication systems.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (Adobe RGB \0501998\051)
 /CalCMYKProfile (Japan Color 2001 Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHT <FEFF005b683964da300c9ad86a94002851fa8840002b89d27dda0029300d005d0020005b683964da300c8f3851fa0033003000300064002851fa88400029300d005d00204f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks true
 /AddPageInfo false
 /AddRegMarks false
 /BleedOffset [
 8.503940
 8.503940
 8.503940
 8.503940
]
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MarksOffset 9.354330
 /MarksWeight 0.141730
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed true
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

