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Abstract 

Although the rapid development of cloud computing 

brings many conveniences to people’s lives, it also leads 

to the problems of user data privacy protection and the 

massive bandwidth resource consumption caused by 

frequent access to cloud servers. A feasible solution is to 

combine the Homomorphic Encryption (HE) technique to 

realize the efficient operation of ciphertext without 

decryption. The low encryption efficiency is a common 

issue faced by both Partially Homomorphic Encryption 

(PHE) algorithm and Fully Homomorphic Encryption 

(FHE) algorithm. To this end, based on the cryptosystem 

of Boneh, Goh and Nissim (BGN), we propose an 

efficient BGN-type parallel homomorphic encryption 

algorithm to address this issue, which security is based on 

the hardness of the Learning with Errors problem (LWE). 

Specifically, the proposed algorithm utilizes the 

characteristics of multi-nodes in cloud environment to 

conduct parallel encryption through block matrix 

multiplication, and simultaneously conduct the group-

wise ciphertext computations. The experimental results 

show that, in a 16-core 4-node cluster with MapReduce 

environment, the proposed encryption algorithm achieves 

the maximum speedup up to 5.3, which meets the 

practical requirements for the implementing efficient 

homomorphic encryption in cloud computing 

environment. 

Keywords: Privacy protection, Homomorphic encryption, 

Learning with errors, Matrix multiplication, 

Parallel encryption 

1 Introduction 

Open network environment can provide strong 

computing and storage ability to the cloud computing 

users, which has broad applications in the industry. 

However, with the fast development of cloud 

computing technology, the faced security problems are 

also becoming more prominent [1-3]. On the one hand, 

the attacker may circumvent the authentication 

mechanism of cloud platform, and obtain the user’s 

data by directly accessing file on lower layer or the 

original data, which may cause disclosure of privacy. 

On the other hand, the cloud service provider is an 

unreliable third party, and this characteristic also 

causes more sever privacy problem during data 

computation faced by cloud computing [4-5]. 

In order to effectively solve the data privacy 

protection problem, encrypted storage of cloud data is 

a very outstanding solution [6-7]. After encryption, the 

data is stored in the server provided by cloud service 

provider in the form of ciphertext, and in the meantime, 

the server is also required to return the data to user 

when the user requires. When the user needs to use the 

data frequently, it requires a lot of network bandwidth 

and user’s time to conduct communication with the 

server and realize data encryption and decryption, 

which will significantly reduce the usability of cloud 

computing. In the meantime, after the encrypted data 

stored in cloud server has developed to a certain scale, 

effective retrieval of encrypted data has become a new 

problem that needs to be solved, while the traditional 

information retrieval technology can no long satisfy the 

requirement of mass data retrieval in the cloud storage 

environment. 

The homomorphic encryption technology is an 

encryption method which can directly process the 

encrypted data [8], and it can effectively protect the 

security of user’s data content, which has very broad 

development potential under the background of cloud 

storage application. By utilizing the homomorphic 

encryption algorithm, it can not only ensure that the 

encrypted data won’t be statistically analyzed to 

decrypt corresponding plaintext, but also conduct 

homomorphic operation (such as addition and 

multiplication) to the ciphertext, while maintaining 

corresponding plaintext order of this ciphertext during 
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operation. During the retrieval process, the used index 

file and keyword are both in the form of ciphertext, and 

the cloud server cannot obtain any information of user 

data from the retrieval results. The index file is small, 

which will not increase the storage pressure of cloud 

server. In the meantime, the retrieval speed is fast, and 

it supports retrieval of multiple keywords, which will 

be convenient for the users and provides high security 

and strong practicability. 

The homomorphic encryption algorithm can be 

divided into partially homomorphic encryption 

algorithm and fully homomorphic encryption algorithm. 

However, the low encryption efficiency is a common 

issue faced by both partially homomorphic encryption 

algorithm and fully homomorphic encryption algorithm. 

As for the problem that the mass data in cloud 

environment all require encryption, the traditional 

serial encryption cannot satisfy the requirement in 

terms of efficiency. The cloud computing cluster has 

many computational nodes which can be used to 

process mass data, and the cloud computing 

environment is easy to build. Many companies and 

scientific research institutions have deployed private 

cloud computing platforms, so we can use the parallel 

characteristic of private cloud cluster and the 

computing power of various nodes to encrypt the data 

that need to be stored in public cloud. In this paper, by 

utilizing the parallel characteristic of cloud computing 

cluster, we design and realize a parallel homomorphic 

encryption algorithm based on MapReduce, which can 

solve the low efficiency problem of homomorphic 

encryption algorithm. 

2 Related Works 

The homomorphic encryption method was initially 

proposed by Rivest et al. in the concept of “privacy 

homomorphism” in 1978 [9], which is an encryption 

scheme which can be directly used in the operation of 

ciphertext. In the same year, they also put forward that 

the RSA public key encryption algorithm has 

multiplication homomorphism [10], and the security of 

this scheme is based on integer factorization. Later, 

various homomorphic encryption schemes have been 

proposed, such as the ElGamal encryption scheme [11] 

with multiplication homomorphic characteristic and the 

Paillier encryption scheme [12] with addition 

homomorphic characteristic. Because they can only 

satisfy addition homomorphism or multiplication 

homomorphism, they are called partially homomorphic 

encryption algorithm. 

In 2005, Boneh, Goh, and Nissim built a 

homomorphic encryption scheme [13] for BGN 

cryptosystem based on the bilinear pair mapping. By 

introducing the bilinear pair, it enables the scheme to 

support arbitrary times of homomorphic addition 

operations and one homomorphic multiplication 

operation of the ciphertext. The BGN scheme does not 

have ciphertext length extension during the encryption 

process, which also provides semantic security. It is the 

scheme closest to the concept of full homomorphism, 

but it is still not fully homomorphic encryption 

algorithm. 

In 2009, Gentry proposed the fully homomorphic 

encryption scheme [14] based on ideal lattice for the 

first time. This scheme can conduct arbitrary times of 

homomorphic addition and multiplication operations of 

the ciphertext, which is an important milestone in the 

field of homomorphic encryption, and it has provided a 

new research direction for fully homomorphic 

encryption scheme. Later, the fully homomorphic 

encryption technology entered the fast development 

period.  

According to the development period of fully 

homomorphic encryption scheme and the hardness 

assumption it is to construct fully homomorphic 

encryption scheme, the fully homomorphic encryption 

schemes can mainly be divided into four types: the first 

type is the fully homomorphic encryption scheme 

based on ideal lattice proposed by Gentry, and this 

scheme is the ideal scheme for various rings; the 

second type is the homomorphic encryption scheme 

based on Learning With Errors (LWE) and Learning 

With Errors over Ring (R-LWE) [15-16], which is 

constructed using nonlinearization technique; the third 

type is the fully homomorphic encryption scheme 

based on the Number Theory Research Unit (NTRU) 

[17]; the last type is the fully homomorphic encryption 

scheme based on Approximate Greatest Common 

Divisor (AGCD) [18]. 

The low encryption efficiency is a critical problem 

faced by homomorphic encryption algorithm. In order 

to improve the efficiency of homomorphic encryption 

algorithm, various schemes have been proposed: for 

example, Literatures [19-23] introduce the schemes 

which utilize different parallel methods (GPU, CPU or 

OPEN MP) to improve the efficiency of RSA 

algorithm; Literature [24] discusses the scheme which 

utilizes the MapReduce parallel technique to improve 

the efficiency of Hill encryption algorithm. According 

to the problem of low encryption efficiency of Paillier 

encryption algorithm, [25] proposes a homomorphic 

encryption algorithm capable of parallel encryption in 

the cloud environment. 

For the fully homomorphic encryption scheme, [26] 

proposes an ideal lattice-based fully homomorphic 

encryption scheme which can be combined with the 

Single Instruction Multiple Data(SIMD) technique; by 

improving the fully homomorphic encryption scheme 

of DGHV(Dijk- Gentry-Halevi-Vaikuntanathan), [27] 

proposes an optimized scheme which can conduct 

batch processing of multiple plaintext bits. According 

to the problem that the ciphertext homomorphic 

addition and multiplication computations in 

GSW(Gentry-Sahai-Waters) scheme are only addition 

and multiplication based on matrix, Literature [28] 
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proposes a method of compressed ciphertext and 

optimized bootstrap, and this scheme is the first fully 

homomorphic encryption scheme which can 

simultaneously encrypt the matrix and support 

homomorphic operation of matrix. 

At the Eurocrypt meeting held in 2015, the FHEW 

scheme proposed in [29] has the problem of involving 

many matrix and vector operations. In order to address 

this problem, in 2017, Yang et al. designed and 

realized the CPU multi-core parallel algorithm of 

FHEW scheme in [30] by utilizing the characteristic 

that the CPU multi-core can adapt to many 

independent data operations. In the same experimental 

environment, the key generation efficiency is increased 

by 4.3 times, and the efficiency of one homomorphic 

NAND gate circuit operation is increased by 2.68 times. 

In 2018, Shi et al. conducted analysis and research 

of large-number multiplication operation which takes 

the longest time in fully homomorphic encryption 

algorithm [31], and realized the FPGA design of FFT 

algorithm in the finite field of 16×24. By constructing 

tree-based large-number summation unit and parallel 

processing scheme, they realized the design and 

optimization of key module of finite field in the large-

number algorithm and improved the efficiency of 

algorithm. In the same year, in order to solve the 

dilemma that FHE schemes can’t be put into the 

practical applications, Tan et al. optimize FHE 

schemes by the parallel computing [32]. The main 

principle is to improve the performance of 

homomorphic operations by sacrificing hardware 

resources. 

According to the characteristic of computationally 

expensive operations of the Fan-Vercauteren(FV) 

homomorphic encryption scheme on the FPGA,in 2019, 

Roy et.al design a custom co-processor and make the 

Arm processor a server for executing different 

homomorphic applications in the cloud [33]. In the 

hardware architecture, they used parallel computation 

cores to minimize cycle count, and applied circuit-level 

and block-level pipeline strategy to benefit parallel 

processing and reach a clock frequency of 200 MHz. 

Among various homomorphic encryption algorithms 

discussed above, it is proved that the Hill encryption 

algorithm is not sufficiently secure; RSA only has 

multiplication homomorphism, while the Paillier 

algorithm only has addition homomorphism. Although 

there have been many researches on fully 

homomorphic encryption algorithm in recent years, 

however, due to the problems of encryption efficiency 

and ciphertext expansion, most are still at the 

experimental stage, and they have not be completely 

applied in real life. The GHV homomorphic encryption 

algorithm supports many additions and one 

multiplication. In the meantime, the main operation of 

this algorithm is matrix multiplication, and the parallel 

multiplication characteristic of matrix can be fully 

utilized to design parallelizable encryption algorithm to 

be used in privacy protection of cloud data. 

In this paper, with the objective of privacy 

preservation, the cloud computing environment is 

combined to realize a BGN-type parallel homomorphic 

encryption algorithm based on LWE. According to the 

characteristic that the main operation of algorithm is 

matrix multiplication, we propose a parallelizable 

block matrix multiplication, and by utilizing the 

parallelism of MapReduce, parallel encryption can be 

realized through block encryption of plaintext data. 

The experimental results show that in addition to 

guaranteeing security, this scheme can also achieve a 

speed-up ratio of 5.3, which has solved the problem of 

low computational efficiency of partially homomorphic 

encryption algorithm. 

3 Background  

In 2005, Boneh, Goh and Nissim proposed the BGN 

cryptosystem with semantic security, and this scheme 

has the characteristics of multiple-addition 

homomorphism and one-multiplication homomorphism. 

At the Eurocrypt 2010, Gentry et al. proposed the GHV 

scheme for binary matrix encryption [34]. This scheme 

also supports polynomial times of addition operations 

and one multiplication homomorphic operation. 

Because its security is based on the hardness of the 

Learning With Errors problem (LWE), it is called the 

BGN-type encryption scheme based on LWE. Each 

sensor node has a unique identifier (ID) to differ from 

others.  

3.1 Trapdoor Sampling 

The GHV encryption algorithm is mainly based on 

the trapdoor sampling algorithm first constructd by 

Ajtai in 1999 [35] and later improved by Peikert in 

2009 [36]. The specific algorithm is as follows: 

Lemma1. (TrapSamp) Let the security parameter of 

algorithm be n, q=poly(n), q>2, and m=8*n*logq. Then, 

there is a probability polynomial time algorithm with 

1n as the input, generate a matrix m n

q
A

×

∈�  with almost 

random uniform distribution statistically speaking and 

a full-rank matrix et ( )T
S A

⊥
⊂ Λ , and for ,T S∈  

|| || ( log )T O n q
∞
≤ ⋅ . Matrixes A and T satisfy the 

following conditions: 

‧ The rows of T form a basic of the lattice 

( ) { : 0(mod )
def

m
A w w A q

⊥
Λ = ∈ ⋅ =� ｝; 

‧ Various elements of T are all “small”, i.e., 

|| || ( log )T O n q
∞
≤ ⋅ ; 

‧ T is invertible mod2 . 

3.2 BGN-type Cryptosystem from LWE 

Assume the security parameter of encryption system 

is n, q=poly(n), and q is an odd prime; 
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3 1 5logp n n
ε +

> ⋅  is a prime number distinctive from q, 

and 3
p q p< < . The algorithm mainly consists of three 

steps: generation of key, encryption and decryption. 

The specific steps are as follows:  

Generation of key. Run the trapdoor sampling 

algorithm TrapSamp of in Lemma 1 to obtain random 

matrix m n

q
A

×

∈�  and trapdoor matrix m m

q
T

×

∈� , which 

satisfy 0(mod ),T A q⋅ =  and ,m n>  i.e., ( , )A T ←  

(1 , , )n

TrapSamp q m . Then, matrix A  is the public key, 

and matrix T  is the private key. 

Encryption. For plaintext ,M  encode it to a binary 

m m×  matrix first, i.e., 
2

m m

B
×

∈� . Choose matrix S 

with random uniform distribution from ,

n m

q

×

�  i.e., 

n m

q
S

×

←� . Select an “error matrix” X from Gaussian 

distribution ( ) ,m m

qβ
×

Ψ  i.e., ( ) .m m

X qβ
×

←Ψ  Use 

Formula (1) to obtain ciphertext C through calculation, 

and the ciphertext matrix C satisfies m m

q
C

×

∈� . 

 2 (mod )C AS X B q= + +  (1) 

Where, 2X represents each component in matrix X 

multiplied with 2. 

Decryption. set mod
t

E TCT q= , and utilize Formula 

(2) to calculate plaintext B. 

 1 1( ) mod2t
B T E T

− −

=  (2)  

Proof. Because 0(mod )T A q• =  and therefore 
t

TCT =  

(2 ) (mod )t
T X B T q+ . If q is a sufficiently big prime 

number so that (2 ) t
T X B T+  is significantly smaller 

than q, then, we also have the equality over the integers 

(mod ) (2 ) ,t t
E TCT q T X B T= = +  and hence 1 1( )tT E T

− −

=  

(mod2)B . This means that we have correct decryption 

as long as we set the parameter β small enough so that 

with high probability all the entires of (2 ) t
T X B T+  

are smaller than q/2. 

3.3 Proof of Homomorphism 

Addition homomorphism: assume C1 and C2 are the 

ciphertexts generated after encryption of plaintexts B1 

and B2 respectively. Specifically, if we have 
1

C =  

1 1 1
2AS X B+ +  and 

2 2 2 2
2C AS X B= + +  then 

1 2

1 1 1 2 2 2

1 2 1 2 1 2

* ( )mod

( 2 )mod ( 2 )mod

( ) 2( ) ( )mod

C C C q

AS X B q AS X B q

A S S X X B B q

= +

= + + + + +

= + + + + +

 (3) 

After decryption, we can obtain: 

 

1 * 1

1 2 1 2

1 2

* ( (mod ))( ) (mod2)

(2( ) ( ))(mod2)

( )

t t
B T TC T q T

X X B B

B B

− −

=

= + + +

= +

 (4)  

As long as we choose suitable parameter, we can 

ensure various elements of T(2(X1+X2)+(B1+B2))T
t are 

all smaller than q/2. Then, we can obtain plaintext 

through correct decryption. Similarly, we can prove the 

characteristic of polynomial times of addition 

homomorphism. 

Multiplication homomorphism: assume C1 and C2 

are the ciphertexts generated after encryption of 

plaintexts B1 and B2 using Formula (1) respectively. 

Specifically, if we have
1 1 1 1

2C AS X B= + +  and 

2 2 2 2
2C AS X B= + +  then 

�

2

2 2

'

1 2

1 1 1 2

1 2 1 1 2 2 2

1 2 1 1 2 2

1 1 1 2

1 2 1 2 2 1 2

1 1 2

* ( )mod

( 2 ) (mod )

(2 ) ( 2 ) (mod )

2 2 (2 )

2 (mod )

( ) 2( (2 ) )

(2 )

t

t

t t

t t t t

t t t t

t t t

S X

t

S

C C C q

AS X B C q

AS C X B AS X B q

AS C X A S X X B

B A S B X B B q

A S C X X B B X

X B S

= ⋅

= + + ⋅

= ⋅ + + ⋅ + +

= ⋅ + ⋅ + ⋅ +

+ ⋅ + ⋅ + ⋅

= ⋅ ⋅ + + +

+ + ⋅

�����������

�� �
1 2

( ) (mod )t t

B

A B B q⋅ + ⋅
� ��� �����

 (5)  

Hence the product ciphertext has the form 
'

2
t

AS X B S A+ + + . The obtained ciphertext result has 

the structural form, and we can obtain the following 

formula through decryption: 

1 * 1

1 1

1 2

* ( (mod ))( ) (mod2)

( ( 2 ' ) (mod ))( ) (mod2)

(2 )(mod2)

t t

t t t

t

B T TC T q T

T T AS X B S A T q T

X B

B B

− −

− −

=

= + + + ⋅

= +

= ⋅

(6) 

Similarly, as long as we choose suitable parameter, 

we can ensure various elements of T(2X+B)Tt are all 

smaller than q/2. Then, we can correctly obtain the 

plaintext, and further prove that the algorithm has 

multiplication homomorphism. 

3.4 Block Matrix Multiplication 

Set matrix ,

m l
A R

×

∈  matrix l n
B R

×

∈  and matrix 

C A B= × , then matrixes A,B can be divided into the 

blocks of: 

 

11 1

1

t

s st

A A

A

A A

⎛ ⎞
⎜ ⎟

= ⎜ ⎟
⎜ ⎟
⎝ ⎠

…

� �

�

11 1

1

k

t tk

B B

B

B B

⎛ ⎞
⎜ ⎟

= ⎜ ⎟
⎜ ⎟
⎝ ⎠

…

� �

�

  (7) 

where, the column number of Ai1, Ai2,…, Ait equals to 
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the row number of B1j, B2j,…, Btj respectively. Then, 

the block matrix can be represented as: 

 

11 1

1

k

s sk

C C

C A B

C C

⎛ ⎞
⎜ ⎟

= × = ⎜ ⎟
⎜ ⎟
⎝ ⎠

…

� �

�

 (8) 

where, Cij=Ai1 B1j+Ai2 B2j+…+ Ait Btj (i=1,…s ；

j=1,…,k). 

4 Parallel Homomorphic Encryption Scheme 

The GHV encryption scheme proposed in this paper 

is based on the MapReduce architecture, and the GHV 

encryption algorithm mainly involves the matrix 

addition operation and matrix multiplication operation, 

of which, the matrix multiplication operation is the 

main operation of this algorithm. The execution 

process of GHV encryption algorithm mainly consists 

of three steps: generate the key sequence, use the 

public key matrix to encrypt the plaintext data file, and 

use the private key to decrypt the ciphertext file. The 

matrix multiplication parallel algorithm proposed in 

this paper is realized based on block matrix 

multiplication, which mainly describes the realization 

of block matrix multiplication in MapReduce. 

4.1 Algorithm Procedure 

A complete MapReduce programming model 

includes 3 operations: Split, Map and Reduce. The 

Split function is used to divide the input data into data 

blocks of fixed size according to the user’s requirement, 

and then, the master node allocates them to different 

child nodes according to corresponding scheduling 

mechanism. For each data block after fragmentation, 

the Map function conducts corresponding operation in 

accordance with the encryption algorithm defined by 

the user, and each Mapper completes part of the final 

result. Reduce is responsible of integrating all results 

of Mapper part. Each encryption computation of 

parallel GHV encryption scheme is independent, so it 

can be allocated to multiple Mappers for simultaneous 

encryption. It can be defined as a trinomial time 

algorithm ( , ,Re )Split Map duce∏ = , and the specific 

process is as shown in Figure 1. 

 

Figure 1. Algorithm procedure 

4.2 Data Partitioning 

Utilize the key generation algorithm in Section 3.2 

to generate the public key matrix m n

q
A

×

∈�  and private 

key matrix ,

m m

q
T

×

∈�  and select the matrix n m

q
S

×

←∈�  

with random uniform distribution. Assume the public 

key matrix A consists of s rows and t columns, and the 

random distribution matrix S consists of t rows and k 

columns. The specific partitioning strategy is: the 

public key matrix A can be divided into s×t blocks, and 

each block is denoted as ( )+
ip ,pA i s t≤ ≤ . The 

boundary of each block can be represented by the four 

variables of ( ), , , ,ir er ic ec  which refer to the start row 

number, end row number, start column number and 

end column number, respectively. The public key 

matrix A is:  
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( )

( )

( )

+
ip 1 ,1

1 1 min ,

1 1 min ,

A i s p t

m m
ir i er i m

s s

n n
ic p ec p n

t t

≤ ≤ ≤ ≤

⎛ ⎞⎡ ⎤ ⎡ ⎤
= × − + = ×⎜ ⎟⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎝ ⎠

⎛ ⎞⎡ ⎤ ⎡ ⎤
= × − + = ×⎜ ⎟⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎝ ⎠

 (9) 

The distribution matrix S is divided into t k×  blocks, 

each block is denoted as ( )+
pj 1 p ,1S t j k≤ ≤ ≤ ≤ , and 

the block is: 

 

( )

( )

( )

+
pj 1 ,1

1 1 min ,

1 1 min ,

S p t j k

n n
ir p er p n

t t

m m
ic j ec j m

k k

≤ ≤ ≤ ≤

⎛ ⎞⎡ ⎤ ⎡ ⎤
= × − + = ×⎜ ⎟⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎝ ⎠

⎛ ⎞⎡ ⎤ ⎡ ⎤
= × − + = ×⎜ ⎟⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎝ ⎠

 (10) 

Then, the product matrix M consists of s k×  blocks in 

total, each block is denoted as ( )+
ij 1 i ,1M s j k≤ ≤ ≤ ≤ , 

and the block is: 

 

( )

( )

( )

+
ij 1 ,1

1 1 min ,

1 1 min ,

M i s j k

m m
ir i er i m

s s

m m
ic j ec j m

k k

≤ ≤ ≤ ≤

⎛ ⎞⎡ ⎤ ⎡ ⎤
= × − + = ×⎜ ⎟⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎝ ⎠

⎛ ⎞⎡ ⎤ ⎡ ⎤
= × − + = ×⎜ ⎟⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎝ ⎠

 (11)  

After partitioning, the block matrix multiplication 

can be used to conduct parallel computation of GHV 

homomorphic encryption algorith. 

4.3 Parallel Encryption  

After partitioning of public key matrix A and 

random uniform distribution matrix S, encrypt the 

plaintext according to the GHV encryption formula 

2 (mod )C AS X B q= + + . 

The main operation of GHV encryption formula is 

the matrix multiplication operation. The block matrix 

algorithm can be employed for parallel encryption, and 

the block matrix multiplication strategy is: conduct 

matrix multiplication operation to corresponding 

blocks; finally, conduct summation operation of blocks 

to obtain the product block ijM
+ ; combine the product 

blocks to obtain an m m×  product matrix M A S= × . 

Assume the public key matrix A consists of s rows and 

t columns, and the random distribution matrix S 

consists of t rows and k columns, then, s t k× ×  blocks 

are generated in total, which is denoted as 

( )+
i,j,p 1 ,1 p ,1T i s t j k≤ ≤ ≤ ≤ ≤ ≤ , then:  

 +
i,j,p , ,=Ai p p jT S

+ +
×  (12) 

After calculation of intermediate result, conduct 

matrix addition operation of blocks with the same p 

value in +
i,j,pT  to obtain s k×  product blocks ijM

+ , i.e. 

(as shown in Figure 2), 

 , ,

1

=

k

ij i j p

p

M T
+ +

=

∑  (13) 

Assume the plaintext matrix 2

m m

B
×

∈�  consists of s 

rows and k columns, then the plaintext matrix B can be 

divided into s k×  blocks, and each block denoted as 

( )+
ij , j .B i s k≤ ≤  The boundary of each block can be 

represented by the four variables of ( ), , , ,ir er ic ec  

 

Figure 2. Matrix block multiplication 
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which refer to the start row number, end row number, 

start column number and end column number, 

respectively. The plaintext matrix B is: 

 

( )

( )

( )

+
ij 1 ,1

1 1 min ,

1 1 min ,

B i s j k

m m
ir i er i m

s s

m m
ic j ec j m

k k

≤ ≤ ≤ ≤

⎛ ⎞⎡ ⎤ ⎡ ⎤
= × − + = ×⎜ ⎟⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎝ ⎠

⎛ ⎞⎡ ⎤ ⎡ ⎤
= × − + = ×⎜ ⎟⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎝ ⎠

 (14) 

Use the partitioning method for plaintext matrix M 

to partition the error matrix X, and each block is 

denoted as ( )+
ij , jX i s k≤ ≤ . Conduct addition operation 

of product matrix block ijM
+ , twice the error matrix 

block ijX
+  and plaintext matrix block ijB

+ . In the matrix 

sum, through modulo operation of various elements to 

q, we can obtain the ciphertext matrix block ijC
+ , i.e., 

 = 2 modij ij ij ijC M X B q
+ + + +

+ +  (15) 

4.4 Performance Analysis 

The encryption formula of GHV encryption 

algorithm is 2 (mod )C AS X B q= + + , in which, A and 

S are the m×n and n×m matrixes respectively. 

According to the encryption formula, the time 

complexity of GHV algorithm is O(m2×n). Assume the 

total encryption time for sequential execution of GHV 

algorithm is 
seq
T , then 

seq
T  consists of two parts: one 

part is the key matrix generation time keyT ; the other 

part is the time 
Enc

T  required by sequential execution 

encryption algorithm. Then, 
seq

T  can be expressed by the 

following formula: 2( )seq key Enc keyT T T T O m n= + = + × .  

Set the total encryption time parT  for parallel 

execution of GHV algorithm consisting of two parts: 

one part is the key matrix generation time keyT ; the 

other part is the parallel execution time of encryption 

algorithm, i.e., the matrix multiplication and matrix 

addition time 
_matrix parT , then, 

seq
T  can be expressed 

by the following formula: 
_par key matrix parT T T= + . 

We can see that the increase of encryption speed 

mainly depends on the acceleration process of parallel 

matrix multiplication. The computation time of 

MapReduce-based matrix multiplication equals to the 

computation time of matrix multiplication for each 

block plus the time consumed by summing up various 

blocks. In the Reduce phase, the results of all Map 

modules need to be read, i.e.: 

 
_matrix par comp waitT T T= +  (16) 

Assuming the total number of CPU cores is p , then 

the serial time complexity can be reduced as through 

partitioning: 

 
2

comp

m n
T

p

×

=  (17) 

According to the algorithm, it can be seen that 

because ( )m k m s n× × + ×  key/value pairs are generated 

during the Map process, and m*n Reduce modules are 

responsible of integrating the output result of Map. 

Assume the number of Map nodes is p s t k= × × , and 

it takes time 
w
t  to write the results generated by Map 

process into the disk. Then, it can be known that the 

time of waiting for all results generated by Map is: 

 
( )

( )2

waits w

w

T m k m s n t

km mnk t

= × × + ×

= +

  (18) 

Set 3s t k p= = = , m n= , and we can obtain the 

parallel encryption time of GHV as: 

 ( )

_

2
2

23
3

2

par key matrix par

key w

key w

T T T

m n
T km mnk t

p

m
T pm t

p

= +

×
= + + +

= + +

  (19) 

When the m is big, keyT  can be ignored, so the 

speed-up ratio η  is: 

 
2

3/ 43
23

=

2
12

seq

par w

w

T m n p

T p tm
pm t

mp

η
×

= =
⎛ ⎞

++⎜ ⎟⎜ ⎟
⎝ ⎠

  (20)  

As m approaches infinity, we can obtain 
seq par

T pT≈ . 

4.5 Security Analysis 

The security of this scheme can defend 

Indistinguishable Chosen Plaintext Attack (IND-CPA), 

which is built based on the hardness of the learning 

with errors problem. The specific proof is as follows. 

Theorem 1: If there is a distinguishable algorithm 

which can solve this scheme of parameters n, m, q, p 

and β with non-negligible advantage ε, then such 

distinguishable algorithm can be utilized to build a 

distinguisher. Within the same time, if the DLWE 

difficulty problem of parameters n, m, q, p and β can 

be solved with a probability no less than ε /2m, then 

this scheme will be regarded as CPA-secure. 

Proof: Let A be a CPA-adversary that distinguishes 

between encryptions of messages of its choice with 

advantage ε. First, build a distinguisher D with 

advantage of no less than ε/2 probability, which can 

distinguish the following 2 distributions: 
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{( , ) : , , ( ) }m n m n m m

q q
A AS X A Z S Z X qβ

× × ×

+ ← ← ←Ψ

and { ( )}m n m m

q q
Unif Z Z× ×

× ( , )m n m n

q q
A Z C Z

× ×

∈ ∈ . 

The distinguisher D takes as input a pair of matrices 

( , )m n m n

q q
A Z C Z

× ×

∈ ∈ , and operate adversary A with A 

as the public key. After obtaining information B0 and 

B1 provided by the adversary, the distinguisher D 

randomly chooses {0,1}
R

i∈ , and returns the challenge 

ciphertext 2 (mod )
i

C B q+ . If the adversary A is able 

to guess right i, it will output 1; otherwise, it will 

output 0. 

On the one hand, if C is a matrix with uniform 

random distribution, then the challenge ciphertext must 

also have uniform distribution, which is irrelevant to 

the selection of i, Hence in this case D outputs 1 with 

probability at most 1/2. On the other hand, if the 

ciphertext matrix is (mod )C AS X q= + , the challenge 

ciphertext is 2 ' 2 modC B AS X B q+ = + + , in which, 

' 2 modS S q=  has uniform random distribution (since 

q and 2 are relatively prime). Therefore, the probability 

of correctly guessing i through opponent A is (1+ε)/2, 

which indicates that the probability of distinguisher D 

outputting 1 is also (1+ε)/2. To sum it up, the 

probability of distinguisher D correctly distinguishing 

2 distributions is at least 1/ 2 / 2 1/ 2 (1 ) / 2ε ε× + × + =  

1/ 2 / 2ε+ , and in other words, the advantages is no 

less than / 2ε . Therefore, the advantage of using such 

distinguisher D to solve the LWE hardness problem of 

parameters n, m, q, p and β is / 2mε . 

5 Experimental Results and Analysis 

5.1 Experimental Environment 

The hardware platform used in experiment mainly 

consists of the Master and Slave nodes, of which, the 

Master node is mainly responsible of monitoring and 

scheduling, while the Slave node is mainly responsible 

of the distributed storage data file and computation 

tasks. 

The Master node nodes include the NameNode and 

JobTracker nodes. The Slave nodes include the 

TaskNode and DataNode nodes. The cluster consists of 

4 Slave nodes in total. See “Table 1 Software and 

hardware configuration” for the specific hardware 

configuration and software environment for each node. 

Table 1. Software and hardware configuration 

Product name The parameter and model 

Cash 3.2 GHz/8M 

Memory bank 16 GB (2×8 GB)1333 MHz RDIM 

Hard disk 1TB 3.5-inch 7200 RPM SATA II

Operating System CentOS Linux Server6.6 

Java VM JAVA 1.7.0 

Hadoop Hadoop-2.5.2 

5.2 Analysis of Experimental Results 

In this paper, data test is conducted from two 

different perspectives: first, the plaintext data of 

different sizes are selected to compare their encryption 

speed and speed-up ratio in serial and parallel 

environment; second, the plaintext data of fixed size 

are selected to compare their encryption speed and 

speed-up ratio under different numbers of processor 

cores.  

In the first experiment, the selected plaintext data 

have the sizes of 256MB, 512MB, 768MB, 1024 MB, 

1280 MB, 1536 MB, 1792 MB and 2048 MB 

respectively, the default data block size is 64MB in the 

parallel environment, and encryption test is conducted 

in the serial and parallel environment respectively.  

In the second environment, the plaintext data with 

the size of 2G are selected, and their encryption speeds 

are tested when there are 1, 4, 8, 12, 16, 24 and 32 

processors respectively. 

4 computational nodes are used in the experiment, 

each node has 4 CPU cores, and there are 16 CPU 

cores in total. In the parallel experiment, it is found 

that with the increase of plaintext data volume, the 

time occupied by Reduce function also increases. In 

order to improve the efficiency, the number of parallel 

Reduce is set at 15. 

Table 2 summarizes the encryption speed and 

overall speed-up ratio of files with different sizes in 

serial and parallel environment, respectively. Figure 3 

presents the curve of how the file encryption time 

changes with the increase of plaintext in the parallel 

environment. Figure 4 shows the curve of how the Map 

speed-up ratio and overall speed-up ratio change with 

the increase of plaintext in the parallel environment.  

Table 3 records the overall encryption time of file, 

the execution time of Map process, the overall speed-

up ratio and the speed-up ratio of Map process during 

encryption of file with plaintext size of 2GB under 

different numbers of processor cores. 

Figure 5 shows the curve of how the file encryption 

speed changes with the increase of core number during 

encryption of file with plaintext size of 2GB. With the 

increase of processor number, the encryption time 

presents exponential decline. With the increase of core 

number, during the early period, the encryption speed 

quickly declines; during the later period, the encryption 

time is becoming relatively stable. This mainly 

depends on the time of Reduce process. Figure 6 

reflects the comparison of overall speed-up ratio and 

Map speed-up ratio for files of 2GB. 
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Figure 3. The encryption time of different size file Figure 4. The speed-up rate of different size file 

Table 2. The test results of diffent size file 

Filesize (MB) Serial time (s) Parallel time (s) Max Map time (s) Reduce time (s) Speed-up 

256 172 88 44 38 1.9 

512 343 112 45 61 3.1 

768 520 133 44 83 3.9 

1024 696 152 44 103 4.6 

1280 871 221 45 122 3.9 

1536 1048 233 46 138 4.5 

1792 1220 249 45 155 4.9 

2048 1392 261 44 169 5.3 

Table 3. The test results of 2GB files on different cores 

No P General time (s) Max Map time (s) Reduce time (s) Map SP General SP 

1 1418 1243 171 1.0 1.0 

4 501 326 169 3.8 2.8 

8 343 167 170 7.4 4.1 

12 302 125 170 9.9 4.7 

16 267 92 171 13.5 5.3 

24 312 71 170 17.6 4.5 

32 266 48 169 25.8 5.3 

 

  

Figure 5. The encryption time of 2GB on different cores Figure 6. The speed-up rate of 2GB on different cores 

 

According to Table 2, Figure 3 and Figure 4, it can 

be seen that under fixed node number and fixed size of 

file piece: (1) The time required by serial encryption is 

basically in direct proportion to the size of plaintext, 

while the time required by parallel encryption increases 

slowly with the increase of plaintext; (2) With the 

increase of plaintext data volume, the time 

consumption of Reduce function gradually increases. 
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While the time consumption of Map function almost 

doesn’t change, the proportion of the time required by 

the Reduce function gradually increases in the entire 

parallel encryption process; (3) When the number of 

plaintext pieces is smaller than the node number, the 

increasing speed of speed-up ratio 
P

S  is fast, and when 

the number of plaintext pieces equals to the node 

number, the speed-up ratio reaches the highest value. 

When the number of plaintext pieces is bigger than the 

node number, the speed-up ratio presents the trend of 

slow increase. 

By observing Table 3, Figure 5 and Figure 6, we can 

see that with the increase of the numbers of available 

cores and file partitions in cluster: (1) The time 

consumption of Map gradually decreases. This is 

because with the increase of Map number, each Map 

data block becomes smaller, and the time consumption 

of Map mainly concentrates on the encryption 

operation, so the time consumption of will gradually 

decline. The time consumption of Reduce basically 

doesn’t change, because the number of Reduce is a 

fixed number of 15. (2) The Map speed-up ratio 

increases with the increase of Map number, but it is 

smaller than the Map number, which is consistent with 

the theoretical analysis in previous section. (3) With 

the continuous increase of the speed of Map process, 

the ratios of the time required by the Map process and 

the time required by the Reduce process keep declining, 

and the weight of the influence of Map process on the 

final acceleration speed is relatively small, which 

results in certain gap between the final overall speed-

up ratio and the speed-up ratio of Map process. (4) For 

plaintext data file of fixed size, with the increase of 

Map number, the file encryption time presents decline 

trend in general. When the Map number equals to the 

node number, it takes the least time. With the increase 

of the number of available cores, the file encryption 

time presents significant decline, and the clustering 

performance can be effectively carried out. 

6 Conclusion 

To address the low encryption efficiency issue of 

homomorphic encryption algorithm, this paper 

proposes a BGN-type parallel homomorphic 

encryption algorithm which utilizes parallel matrix to 

improve the encryption speed. This encryption 

algorithm realizes block matrix  

multiplication and addition operations by 

partitioning matrix into multiple blocks during 

encryption process, which can improve the efficiency 

of encryption algorithm. Furthermore, we also design 

and implement an effective parallel algorithm executed 

on the MapReduce platform. During the encryption 

process, the file is divided into different number of 

data blocks, and the parallelism of algorithm can be 

controlled by specifying the numbers of available cores 

and partitions. Meanwhile, parallel execution of 

multiple Reduce functions can reduce the high real-

time cost of Reduce operation. The experimental 

results show that, compared to the traditional linear 

encryption algorithm, the proposed algorithm can 

achieve higher speed-up ratio when processing big data 

files in the MapReduce cluster. 
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