
Things Object Notation as a Communicational Light-weighted Language for IoT Devices 2157

Things Object Notation as a Communicational Light-weighted

Language for IoT Devices

Khazam A. Alhamdan, Mohammad A. Alkandari

Computer Engineering Department, Kuwait University, Kuwait

Khazam.Alhamdan@grad.ku.edu.kw, m.kandari@ku.edu.kw*

*Corresponding Author: Mohammad A. Alkandari; E-mail: m.kandari@ku.edu.kw

DOI: 10.3966/160792642019122007013

Abstract

IoT interoperability is a major challenge in the

emerging IoT field. This paper introduces a novel and

light weighted language for the IoT devices to use. TON

(Things Object Notation) is a language which was built

on top of JSON (JavaScript Object Notation) to

accommodate the needs of IoTs’ interoperability. This

research improves two aspects of JSON (1) compactness

and (2) commanding. Currently, a lot of communicational

pollution such as wireless data and noise emerge from the

explosion of the IoTs. Thus, a minimum information/data

is needed to be sent. In addition, since most practitioners

are hobbyists, a one language/protocol that passes

information and commands will be more convenient.

Further, this study provides three use cases and shows

comparison between using JSON and TON as a mean to

send data and information.

Keywords: IoT, Interoperability, JSON, Object notation

1 Introduction

The objective of this research is to provide an easy

and standardized language for the IoT practitioners to

use. A standard language for the communication

between IoTs is necessary as the diversity of devices

and applications is widely spread, which in turn raises

the challenge of the IoTs’ interoperability [1]. Many

researchers tackled the problem from different

perspectives and majorly, they proposed solutions hang

around the web technologies. This is a good way to

start attacking the problem as the web solved similar

problems of having multiple servers speak different

protocols and languages, and hence the w3 standard

emerged [2]. For interoperability and sending

commands to IoT system using the web technologies,

researchers tend to use REST [6] (REpresentational

State Transfer) to implement their API and approach

[3-4, 10].

Using multiple protocols and languages expected to

be not very helpful for practitioners. One of the major

problem with IoT interoperability and then scalability

is that practitioners and hobbyists especially, those

who are developing independently and do not use

structured languages that is called CL (Casual

Language). For an instance, a developer tests an IoT

device which measures the temperature of a room, may

send the row measurement data from the sensor to the

monitor or the logging server without any structure or

labeling [11].

Others use middleware to accomplish universality

and guarantee interoperability which might be a good

choice for companies and industries. However, those

middleware are usually cloud based which is

sometimes not a very good choice for normal users [3].

So, this study introduces TON, which is based on

the well tested, trusted and structured JSON notation.

TON introduces some techniques to compact the

overhead data of JSON and also introduces some new

features to assists the use of a single language by the

developers. TON introduces the class idea to JSON to

compact the information and removes the overhead

data that usually common between multiple objects and

still maintaining ease of use.

Our research approach was to review the available

solutions and analyze them, and then extract the

requirements need to be in TON, and design our

solution based on the extracted requirements. Finally,

validate our approach by presenting some use cases

and analyze them.

In the followings, Section 2 shows some related

works. In Section 3, requirements and some design

choices are introduced. In Section 4, background

information about JSON is shown. In Section 5, the

proposed design and solution are demonstrated. In

Section 6, some use cases are synthesized and analyzed.

Section 7 discusses and differentiates our work from

others. Finally, section 8 concludes the research paper.

2 Related Works

This section provides a review of some IoT papers

and applications as well as investigates some solutions

and hint of requirements to be integrated into the TON

language.

2158 Journal of Internet Technology Volume 20 (2019) No.7

2.1 Individual

IoTs can comes in many flavors, IoTs can be an

individual device or a system of devices and a coalition

of devices. In reference [11] Vidrascu et al. have

developed an IoT device that monitors the temperature

of a room and its humidity. It is easy to pass the

sensors data casually using a CL language to run the

system, for example having a key-value pairs sent to

the monitoring system for each sensor will be enough

to interpret the data and control the system. It is good

to notice here the IoT device do not have much of

control over the components since they are inputs

components and might be controlled at the beginning

of the system boot, but usually not controlled after the

system is started.

2.2 Coalition

Coalition is another flavor of IoT where devices

collaborate to accomplish some objectives. In reference

[12] Tsiropoulou et al. suggested a framework for

coalitions and how the status of the group is

maintained and communicated, where a coalition needs

to communicate its state to maintain a good coalition

formation. This system is not very complicated in term

of events, data, and functionalities and thus can make

use of a TON as a communication language.

2.3 Middleware

Middleware is a common solution for

interoperability and communication. In the survey [3],

the authors discussed a lot of other type of IoT

middleware which can be used to connect an IoT

system. Some of large IoT systems can be of type real-

time IoT application, and WSN (Wireless Sensor

Network).

In paper [13] Mayer et al. proposed a semantic

system that interacts and acts as a middleware between

the user and the IoT device. Their system implemented

a reasoning engine that tries to reason about data and

like suggesting and discovering the correct

presentation of different functionalities and services

provided by an IoT device. This approach has two

main problems, first they heavily depending on third

parties (which manufactures the IoTs) to be very

cooperative. Second, the reasoning engine cannot be

efficient thanks to the wide range of functionalities and

their varieties as different IoTs can provide, which

what we think is the sematic of functionalities should

be taken as is and not try to reasoning them.

In paper [14], Datta et al. developed a system that is

set in the middle of IoTs and users provide sematic

information to the user and some discovery services.

They have used SenML (Sensor Markup Language)

which is a descriptive language (like HTML for web

pages and XML for data) to provide and polish

information collected from sensors by adding some

information to the sensed data to make it more

semantically understandable by other devices. So, they

provide a good structuring for data, and also, they have

developed a way to manage a non-smart device that are

not IoTs in concept, they might be passive sensors like

light sensors.

SenML is developed to carry information for the

devices with limited resources. In reference [15] Su et

al. introduced how one can transform a SenML data

into RDF (Resource Description Framework) model.

This means the data carrier can be elevated from a

simple inferior representation into a superior

representation easily. RDF is known to be constructed

of three main components that make a statement which

is subject, object, and predicate. Subject is the data,

object is the information and the semantic of it, and

predicate is the relation that connects the subject with

the object [7] (e.g. subject = “earth”, object = “solar

system”, predicate = “in”, thus, <earth, in, solar

system>). RDF usually carried on top of other data

representation structure such as JSON [7]. Our

research is to describe TON which is based on JSON,

so as a biproduct TON can carry the RDF semantic too.

2.4 Semantics

Semantics is the way IoTs deliver meanings of their

functionalities, state, and information. In paper [4]

Kiljander et al. have discussed multiple models for

interoperability and they have divided the

interoperability into two levels simplifying and

compacting the model by connectivity and semantic

levels. While other researchers like Tolk et al. in [16]

suggested six different levels which include syntactic

and semantic levels, and Pantsar-Syväniemi et al.

included semantic too [5]. Those emphasis the

importance of the semantic problem and its

interpretation. Lastly, Lappeteläinen et al. differentiate

semantic and information levels to be different and

distinct challenges [17].

In [18], Maarala et al. described a methodology to

aggregate the data collected from IoT devices and

storing them semantically using RDF model concept to

establish the semantic relation in the data collected.

2.5 ARM (Architecture Reference Model) of

IoT

To establish a good understanding of the possible

communication between IoTs, one may look at the

ARM of IoT and what is the state of the art of the IoT

field. There are a lot of ARMs of IoT, a good and

general ARM is provided by Bassi et al. [8]. This

model describes the different relations and

communications between a user and an IoT device.

Their model will allow us to capture the information

passed back and forth between IoTs. Therfore, This

paper can define concretely the requirements needed to

be in mind when we develop TON.

Things Object Notation as a Communicational Light-weighted Language for IoT Devices 2159

3 Requirements

This section presents the requirements, which were

derived from previous research studies, to be used to

develop TON. TON should capture the following

requirements:

(1) Formality: information passed should be

interpreted the same for any interpreter (e.g. an IoT).

That is if information describes a service of tuning a

light intensity with a value from 0 to 10, should not be

interpreted as something else, like turning on/off the

light.

(2) Completeness: any information need to be sent

can be fully sent in a single TON object. That is, a user

does not need to describe a service in multiple TON,

but TON can encapsulate the information.

(3) Classifiably: a TON object can be classified as

Request, Notification, or Actuation (those cases based

on [8]). That is, a user can request information (e.g.

sensor data), receive notification data (e.g. real time

temperature data), or perform an action via an actuator

(e.g. turn off the light). This can be achieved by adding

a label to the TON object.

(4) None-Prior Knowledge: no prior knowledge is

required for the two communicators to know each

other in order to make sense of TON.

(5) Compactness: to have the size small as possible.

There are other requirements that users do not want

to emphasize much since they can be added by the

TON user and not enforced by the language and they

are:

(6) Identifiability (optional): an IoT may add

identification information to the TON to identify itself.

(7) Description (optional): an IoT may add a

description to the TON as a metadata to describe itself.

This can be handy if the IoT is used by a human or

smart entity so they can make meaning of the IoT from

its description. An example is an IoT light that give

itself a description of being light, and then if a

controller device (e.g. smartphone) displayed the

description the end user (human), he can interact

soundly with the IoT without a prior knowledge of the

smartphone application nor the IoT implementation.

An analogy is a group of applicants (IoTs) send their

CVs (TONs) to an employer (smartphone), and without

a prior knowledge, the employer can interact with the

applicants properly and efficiently.

(8) Greeting: a greeting object to retrieve public

service information that can be provided by an IoT.

This one can be implemented by the developer on the

first interaction between the IoT and the controller

device.

4 Background

The base language that is used to build our TON

upon is JSON. So, this section presents the basic

building blocks of JSON and how a JSON object is

constructed.

JSON object is constructed as a hierarchy of key-

value pairs. (See Figure 1). Every JSON object starts

with a left curly bracket and end with right curly

bracket to enclose the data carried inside the JSON

object.

Figure 1. This figure is captured from the JSON

documentation [9] - JSON object representation

A key used in JSON is a string of characters

enclosed in double quotes character. Some special

characters represented as the scape character then that

special character or another character represent it.

Examples for special characters are: new line, tab, null,

double quotes, and a Unicode character and they can

be represented as (\n, \t, \0, \”, and \u#### with 4

hexadecimal digit number) (see Figure 2).

Figure 2. This figure is captured from the JSON

documentation [9] - JSON value representation

A value in JSON is either a string, keyword (true,

false, null), array of values, number, or object (see

Figure 3). An array of values is a set of values enclosed

by square brackets and separated by commas.

Figure 3. This figure is captured from the JSON

documentation [9] - JSON String representation

2160 Journal of Internet Technology Volume 20 (2019) No.7

5 Design & Proposed Solution

This section introduces the TON language and how

it is developed from the requirements in the previous

section. Moreover, this section argues about the

satisfaction of those requirements.

5.1 Syntax

Generally, languages like JSON and XML are

formal in their syntax, so considering one of them

would not be a bad choice for formality requirement.

JSON uses curly brackets to indicate an object

where objects can be nested. JSON is based on the idea

of key-value data structure so an object will contain a

key “K” and that key will be associated with a value,

which can be a string, JSON object, array, number,

Boolean (true, false) or noting (represented as null).

Further, array is indicated by square brackets and it

contains values (the same as the values mentioned

previously). These specifications allow JSON to

represent any data without losing the formality (see [9]

for more details).

An example for a JSON object is shown in Figure 4.

A JSON object carries information of a car with four

wheels, colored scarlet and other specifications.

Figure 4. JSON example for a car object specification

On the other hand, XML can represent the same data

using tags. XML as a markup language uses tags to

specify the parents’ objects and the child ones. So, for

XML to represent our car object, it will create a tag

<car> then add the other keys (i.e. <wheels>,

<doors>, … etc.) enclosed by the car tag, and it

finishes after the termination tag </car> (see Figure 5).

You can immediately observe that the XML

language most of the time will have a size greater than

the JSON object, for the same object specifications. So,

we will go with something similar to JSON as we need

to reduce those data overhead. Hence, the TON

language is proposed and built based on JSON syntax.

5.2 Formality & Completeness

Using JSON model as it is, gives us Formality and

Completeness, where all recipients will interpret the

data the same with the same semantic, and all data can

be sent as one object (object can contain nested

objects). So let’s define our structure, TON object is

always surrounded by curly brackets (i.e. “{“for the

Figure 5. XML example for a car object specification

beginning of TON, and”}” for the end of TON), and

also, TON embedded JSON inside it. This ensures

Formality and Completeness.

So, the proposed language is structured as in Figure

6. The figure demonstrates three possible forward flow

of constructing a TON object, a path with [sub-JSON],

a path starts with [label], and a path starts with a hash

(#) which is the defining path. The sub-JSON path is

exactly a JSON structure without the curly brackets in

the beginning and in the end (i.e. if a JSON is

({“x” :{“num” :76}}), then sub-JSON is only

(“x” :{“num” :76})), that is because TON already got

a beginning and ending curly brackets.

Figure 6. TON structure

The second path, the path of label is a novel addition

to JSON so it can have some short-cut and fast

executing for some IoTs functionalities such as

Requesting data from an IoT and order an IoT to

Things Object Notation as a Communicational Light-weighted Language for IoT Devices 2161

Actuate an actuator to do something. Other labels can

be introduced as the model is flexible. An example of

label usage is shown in Figure 7.a, for requesting the

temperature from an IoT device, and in Figure 7.b is an

actuation order to some device with ID=107. More

labels will be discussed in the sections follows.

(a) shows an example for TON using a label Request to

request the Temperature data

(b) shows TON using a label Actuate to send the input

data required to set the device with ID 107 to 30 degree

Celsius and Dry mode being off

Figure 7.

The third path which starts with (#) is the path of

defining classes, which allow some sort of objects like

those of Object-oriented programming languages.

However, the hash (#) is used to define a class for the

set of data that are common between different IoTs,

and thus can be gathered to minimize the size of the

object need to be sent through the network. This novel

way is added upon JSON. To define something, a user

can start with a hash # and then a string that is

representative of the thing he/she is defining, and then

the user can come into a fork of two, either using a

value directly (a value is defined in the next section) or

having a set of inputs to initialize the object/array this

definition is building. An example of defining lamp

object is illustrated in Figure 8. The TON shown in

Figure 8 shows how a lamp is defined and used by

other key-value pairs.

Figure 8. TON defining of a class and using it. L1 and

L2 are now two Lamps with description LED, color

White, and Temperature of 50C

Another example for lamps definition is shown in

Figure 9, where here the Lamp class takes inputs to

initialize some values inside the object. The order of

the input at the definition does not need to match the

order they are inside the object; the matching is based

on the keys inside the class. However, the order should

match when using the class as a value for some key.

This represents the second fork of the defining path in

TON.

Figure 9. TON defining of a class and using it. L3 is

now a Lamp with description LED, color White, and

Temperature of 50C, L1 is a Red LED, L2 is a Yellow

Neon, and L4 is an object which encapsulate a lamp

By using the labels we satisfy the classifying

requirement and compactness requirement by

introducing the define functionality to the language.

5.3 Values

First, sarray is an array of strings, and its structure is

shown in Figure 10. This was introduced just to

simplify the TON diagram.

Figure 10. Sarray, an array of string

Second, Label component, which is a set of reserved

words used to classify and categorize TONs by

operation. There are currently three labels Request,

Actuate, and Notification (other labels might be added

as necessary in the future) [8]. Those labels are not

contained in a double-quote like strings but used as is

(see Figure 7).

Third, object component, which can be any TON

object. This allows TON objects to be nested to carry

more sophisticated information about the IoT and the

IoT system.

Fourth, value component, which is the same value

component of JSON but with some extra types of

values. For instance, the classes are not defined in

2162 Journal of Internet Technology Volume 20 (2019) No.7

JSON, so in order for TON to use them, a value that

refer to a class should be integrated with JSON value

(see Figure 11).

Figure 11. TON value, JSON-value is the value

structure of JSON, the second path is using the default

construction of a class, the third path is using a class

with input values

6 Validation

In our validation, we will show some expected

theoretical analysis, and we are going to compare our

construction of TON against JSON using some use

cases and see how much improvement we can be

achieved.

6.1 Use cases Comparisons

In this part of the validation section, TON, and

JSON were constructed for synthesized use cases. The

first use case will be a comparison between JSON and

TON for a simple IoT device. For the second use case,

the two contexts are compared, (1) direct

communication with the IoTs, where the user talks and

command the IoT without any middleware, (2) the user

talks to a middleware who talks and manage the IoT

system. The third use case is a coalition of IoTs

communicating with each other.

6.1.1 Room Monitor IoT

A simple IoT that monitor a room humidity,

temperature, time, and aware of its power supply (see

Figure 12) a bit similar to the work done in [11]. The

device collects the humidity, and temperature data of a

room with some time stamp. To retrieve the data

appropriately, the IoT device will encapsulate the data

in some data format like JSON, or XML. So here we

are going to compare JSON against TON.

The data retrieved from this device is the

temperature, humidity, power supply, and the time-

stamp of each reading. Moreover, these can be

represented in JSON as shown in Figure 13. Figure 14

shows how the data can be represented in TON. In this

example, we are assuming that three readings will be

returned.

Figure 12. a simple IoT device that monitor the

humidity and temperature of a room

Figure 13. Data encapsulated in JSON

Things Object Notation as a Communicational Light-weighted Language for IoT Devices 2163

Figure 14. data encapsulated with TON

As seen, a lot of overhead can be eliminated when

using the introduced defining operation in TON. If we

counted the number of characters for TON and JSON,

we will find them 309 and 452 respectively (excluding

the whitespaces). Further, if we focus on the dynamic

part of the object (array contents) and calculated the

eliminated percentage, we will have 52% eliminated

(52% saves).

6.1.2 Smart House

A smart-house-holder has a room with multiple

smart IoT devices such as TV, Lamp, ceil lamps, A/C,

and a Heater (see Figure 15). A user will need to

communicate with those IoTs to retrieve data and

adjust them. So, we will show how those data can be

communicated using two scenarios, one with direct

communication with the IoTs, and the other one is with

a middleware/middle-IoT.

Figure 15. A sample smart house and what devices can

be made smart

The smart house has a smart TV, A/C Heater, Lamp,

and a set of ceil lamps. Two scenarios were

demonstrated, (1) the user communicates with each

individual, (2) there would be a middleware which will

manage the IoTs.

The scenario of having a middleware has been

analyzed, in which the user will communicate with

rather than every individual IoT. The TON object

shown in Figure 16 encapsulates all the information of

the whole IoT system provided by the middleware. The

JSON object was not included because it was easy to

construct and it could take a huge portion of the page.

Figure 16. Smart house middleware TON object

6.1.3 System of Drones

A coalition/swarm of drones (treated as IoTs) and

how the data between them are passed (see Figure 17).

We will look at this use case not as a user perspective,

but as the drone leader perspective. In Figure 18, we

show how drones information encapsulated, in Figure

19 the leader order some recipient drone to move to

some location (x,y) via labeling the TON object as

Actuate object.

2164 Journal of Internet Technology Volume 20 (2019) No.7

Figure 17. A system of drones, and the drone with star

is the leader

Figure 18. Drone information in TON and JSON

Figure 19. Drone leader message encapsulated in TON

to order a drone to move to the location (10,9) using

the Actuate label of TON

6.2 Theoretical Comparison

It is easy to notice that TON is better than JSON in

compacting data, as TON encapsulate JSON, which

obviously gives TON the JSON power plus whatever

tools we are designing for it (i.e. classes and labels). So,

TON is either as good as JSON or better.

Tshe improvement gained by reducing the overhead

repeated strings (keys) via introducing the classes and

defining can be calculated as the following:

 ()JSON N N key value= ⋅ +∑ (1)

 ()TON N N value key value′= ⋅ + +∑

() ()

()
()

JSON N TON N
R N

JSON N

−

=

 1

N value key value

N key value

′⋅ + +

= −

⋅ +

∑

∑

 1

key value
N value

N key value N key value

+
′⋅

= − −

⋅ + ⋅ +

∑

∑ ∑

 (2)

1

()R N C
N

= − (3)

Where N is the number of objects sharing the same

properties, key-vlaue pairs are the key and value pairs

which define properties in a JSON object, value’ is the

values needed to initialize an object in TON, and R(N)

is the ratio saved of TON(N) from JSON(N) of N

objects. C is a constant that represents the constants

found in the last equation.

If R(N) is positive then defining a class and using it

in TON will reduce the size of the overall object. If it is

negative, this means it requires more space than a

regular JSON. We can also see that the ratio of value’

to the sum of all key-value pairs can be negligibly

small to 1. Thus, C can be safely assumed to be 1.

1

() 1R N
N

= − (4)

Now we can see clearly that the amount saved by

using classes is inversely proportional to the number of

objects created (N). In another word, the size of JSON

is linearly increased with respect to TON’s size.

6.3 Theoretical Growth

In this subsection, a general formula is derived,

which describes how TON’s size grows against JSON.

A room is a set of objects , we can define a class

for any given object, and thus the set of all classes is

� . A subset β of is the set of objects that belongs

to the same class
i
c ∈� . Now, we can calculate the

size used by TON S() as:

 S()
0

| | ()
i i

i

Size cβ
∞

=

= ⋅∑ (5)

 S()
0 1 0 1

(, , ..., , , ...,)
N N

S N n n t t
− −

=

1

0

N

i i

i

n t

−

=

= ⋅∑ (6)

Which goes through every possible class
i
c ∈� .

However, we can reduce and limit those classes to only

the needed ones (e.g. if a room does not have a TV

object, we do not need a class to represent TVs)

′ ⊆� � .

Let | | N′ =� , | |
i i

nβ = , and ()
i i

Size c t= which

represent the size needed to define an object of class
i
c .

As if we want to plot how the function behave there

will be exponentially may possible value S can have,

so the Figure 20 represents the domain of which
i i
n t⋅

can be picked from.

Things Object Notation as a Communicational Light-weighted Language for IoT Devices 2165

Figure 20. The domain of which S() takes the

summation values from

The domain of TON sum can be compared with the

domain of the equivalent JSON sum using the relation

R(N') as follows (Notice N' of R(N’) is number of

objects, while the latter N is number of classes):

If we would draw the JSON summation values

domain we will get Figure 21.

Figure 21. The domain of which JSON (N’) takes the

summation values from

We can see from equation (6) and (7) that JSON

grows quadratically in comparison with TON which

grows linearly with respect to number of objects in the

set .

6.5 Experimental Validation

In this sub-section we experimentally compare TON

to JSON and in an experiment that mimic a real

scenario. We will assume an IoT that measures the

temperature of a room and create an object to store it

along with timestamp and the temperature unit (e.g. see

Figure 13 and Figure 14).

The temperature data used in the experiment is

randomly generated to be in the range from 20.0 to

24.9 inclusive. The temperatures were measured each

minute, then we have generated 2 days’ worth of data,

then 7 days then 12 days, adding 5 till day 57 inclusive.

After that the JSON and TON objects were

compressed using gzip compression (as gzip is the

HTTP common practice for compression). The

following Table 1 shows the different datapoint we

have found:

This experiment yielded the following:

Table 1. TON and JSON data sizes in KB after

compression, and the slope of their growth

Days TON.gzip JSON.gzip TON slope JSON slope

2 10 11 0 0

7 32 38 4.4 5.4

12 53 65 4.2 5.4

17 74 92 4.2 5.4

22 96 120 4.4 5.6

27 117 147 4.2 5.4

32 138 174 4.2 5.4

37 160 201 4.4 5.4

42 181 228 4.2 5.4

47 203 255 4.4 5.4

52 224 282 4.2 5.4

57 245 310 4.2 5.6

(1) JSON and TON became so light that the slope

difference between TON growth size and JSON growth

size become less.

(2) TON performance surpassed JSON by having

smaller growth slope than JSON.

(3) Without compression JSON objects have twice

the size of their correspondent TON objects (see Figure

22).

0

50

100

150

200

250

300

350

0 10 20 30 40 50 60

Number of days vs. Data size in KB

json gz ton gz

Figure 22. The linear growth of JSON and TON both

compressed using gzip vs. number of days

6.5 Summary

We can notice in Table 2 that the data size saved

increases as the number of repeated structures appears.

For an instance, the number of lamps in the smart

house allow TON to save 32.7% of the total size of a

normal JSON object in spite of the verity of the IoT

devices (TV, AC, ... etc.). And when we removed the

static information and concentrated on the dynamic

ones (the array) in use case 1, we managed to save

52% of the array size. This achievement occurs

because of using the classes defined in TON which

removes the extra keys that are just overhead that can

be implied by introducing the data order to JSON

(since JSON does not care about data ordering, it cares

2166 Journal of Internet Technology Volume 20 (2019) No.7

about the key-value concept only).

Table 2. Data size of different use case scenarios

Use case TON JSON 100
JSON TON

JSON

−

×

Case 1/full

size
309 452 31.6%

Case 1/array

size
214 446 52%

Case 2/full

size
633 941 32.7%

Case 3/full

size
The same The same 0%

7 Discussion

To differentiate our work from others, in this section,

we will discuss different approaches to carry

information around in the IoT field.

In reference [13] Mayer et al. had developed a

middleware that allow IoTs to communicate with each

other. Their middleware is built to use REST principles

to carry the commands from a device to another. The

semantic carrier they’ve used is RDF which allows

them to pass information semantically between IoTs.

The thing is that we tackle where their model cannot, is

passing information with and without semantic. As

they are using RDF model, they need to have a

semantic database to eventually give semantics to the

data. So, if there semantic is not defined in the

database, the system cannot carry the information as

required by the model.

In reference [14] Datta et al. they developed a

middleware device that connect IoTs, smart devices,

none-smart devices, and smartphones with each other.

Their idea is that devices provide their functionalities

and semantics upon registration in the middleware, so

afterward whenever a smartphone need to

communicate with IoTs it requests the semantic data

from a local database inside the middleware so then

they can communicate with the IoT system. The

drawback of the system is that, they use a limited

language to represent data. They have used SenML to

represent sensors data to pass them to the middleware

and also they have used the same language to

communicate with the actuators. SenML is designed to

be a light-weighted language and specially to deliver

sensors data not to deliver command data. Not only our

TON language can encapsulate SenML, but also uses

labels to deliver data and commands easily and

designed to do such job.

8 Conclusion

In this paper, we introduced new concepts to be

adapted and developed upon JSON. First one is

compactness, where overhead data was reduced by

defining a class and use it as a template for other

objects. Second contribution is to give TON the ability

to carry commands from a device to another by

labeling the TON object with Actuate, Request, and

Notification. Other labels can be implemented.

Our experiments shown a remarkable improvement

on the compressed size of the data need to be sent

where the growth’s slope was reduced from 5.4 to 4.3,

by around 20% of the corresponding compressed JSON

size.

For future work, we are thinking to study more IoT

applications and see what kind of labels we can add to

the language. Introducing more structures to TON

similar to programming languages such as loops,

which might be good for reducing the size of data even

more. An example for a good use of loops is sending a

musical note for an IoT that works as a musical

instrument. Other future work we think worth of

investigation is the wireless data pollution caused by

the increase amount of data transferred by devices.

References

[1] F. Zambonelli, Key Abstractions for Iot-Oriented Software

Engineering, IEEE Software, Vol. 34, No. 1, pp. 38-45,

January-February, 2017.

[2] D. Zeng, S. Guo, Z. Cheng, The Web of Things: A Survey,

Journal of Communications, Vol. 6, No. 6, pp. 424-438,

September, 2011.

[3] M. A. Razzaque, M. Milojevic-Jevric, A. Palade, S. Clarke,

Middleware for Internet of Things: A Survey, IEEE Internet

of Things Journal, Vol. 3, No. 1, pp. 70-95, February, 2016.

[4] J. Kiljander, A. D’elia, F. Morandi, P. Hyttinen, J. Takalo-

Mattila, A. Ylisaukko-Oja, J. P. Soininen, T. S. Cinotti,

Semantic Interoperability Architecture for Pervasive

Computing and Internet of Things, IEEE Access, 2014, Vol. 2,

pp. 856-873, August, 2014.

[5] S. Pantsar-Syväniemi, A. Purhonen, E. Ovaska, J. Kuusijärvi,

A. Evesti, Situation-based and Self-adaptive Applications for

the Smart Environment, Journal of Ambient Intelligence and

Smart Environments, Vol. 4, No. 6, pp. 491-516, January,

2012.

[6] M. Masse, REST API Design Rulebook: Designing Consistent

RESTful Web Service Interfaces, O’Reilly Media, Inc, 2011.

[7] G. Klyne, J. J. Carroll, B. McBride, RDF 1.1 Concepts and

Abstract Syntax, W3C Recommendation, 2014.

[8] A. Bassi, M. Bauer, M. Fiedler, T. Kramp, R. Kranenburg, S.

Lange, S. Meissner, Enabling Things to Talk, Springer-

Verlag Berlin Heidelberg, 2013.

[9] J. ECMA, 404 the Json Data Interchange Standard, ECMA

International, 2016.

[10] D. Guinard, V. Trifa, E. Wilde, A Resource Oriented

Architecture for the Web of Things, 2010 Internet of Things

(IOT), Tokyo, Japan, 2010, pp. 1-8.

[11] M. G. Vidrascu, P. M. Svasta, Embedded Software for IOT

Things Object Notation as a Communicational Light-weighted Language for IoT Devices 2167

Bee Hive Monitoring Node, 2017 IEEE 23rd International

Symposium for Design and Technology in Electronic

Packaging (SIITME), Constanta, Romania, 2017, pp. 183-188.

[12] E. E. Tsiropoulou, S. T. Paruchuri, J. S. Baras, Interest,

Energy and Physical-aware Coalition Formation and

Resource Allocation in Smart IoT Applications, 2017 51st

Annual Conference on Information Sciences and Systems

(CISS), Baltimore, MD, USA, 2017, pp. 1-6.

[13] S. Mayer, N. Inhelder, R. Verborgh, R. Van de Walle, F.

Mattern, Configuration of Smart Environments Made Simple:

Combining Visual Modeling with Semantic Metadata and

Reasoning, 2014 International Conference on the Internet of

Things (IOT), Cambridge, MA, USA, 2014, pp. 61-66.

[14] S. K. Datta, C. Bonnet, N. Nikaein, An IoT Gateway Centric

Architecture to Provide Novel M2M Services, 2014 IEEE

World Forum on Internet of Things (WF-IoT), Seoul, South

Korea, 2014, pp. 514-519.

[15] X. Su, H. Zhang, J. Riekki, A. Keränen, J. K. Nurminen, L.

Du, Connecting IoT Sensors to Knowledge-based Systems by

Transforming SenML to RDF, 5th International Conference

on Ambient Systems, Networks and Technologies (ANT-2014),

Hasselt, Belgium, 2014. pp. 215-222.

[16] A. Tolk, Composable Mission Spaces and M&S Repositories-

applicability of Open Standards, Spring Simulation

Interoperability Workshop, Crystal, VA, USA, 2004, pp. 55-

68.

[17] A. Lappeteläinen, J. M. Tuupola, A. Palin, T. Eriksson,

Networked Systems, Services and Information the Ultimate

Digital Convergence, 1st International NoTA Conference,

Helsinki, Finland, 2008, pp. 1-7.

[18] A. I. Maarala, X. Su, J. Riekki, Semantic Data Provisioning

and Reasoning for the Internet of Things, 2014 International

Conference on the Internet of Things (IOT), Cambridge, MA,

USA, 2014, pp. 67-72.

Biographies

Khazam A. Alhamdan is a Master

student in Kuwait University, College

of Engineering & Petroleum, in

Kuwait, where he received his

bachelor degree in Computer

Engineering in 2016.

Mohammad A. Alkandari is an

Assistant Professor of Computer

Engineering at Kuwait University,

Kuwait, where he has been on the

faculty since 2012. He received his

Ph.D. degree in Computer Science at

College of Engineering from Virginia

Tech. He is a researcher in Software Engineering, and

Human-Computer Interaction.

2168 Journal of Internet Technology Volume 20 (2019) No.7

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (Japan Color 2001 Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJDFFile false
 /CreateJobTicket true
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHT <FEFF005B683964DA300C005000440046002800310032003000300064007000690029300D005D0020>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
 <<
 /AddBleedMarks true
 /AddColorBars false
 /AddCropMarks true
 /AddPageInfo true
 /AddRegMarks false
 /BleedOffset [
 8.503940
 8.503940
 8.503940
 8.503940
]
 /ConvertColors /NoConversion
 /DestinationProfileName (sRGB IEC61966-2.1)
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /ClipComplexRegions true
 /ConvertStrokesToOutlines false
 /ConvertTextToOutlines false
 /GradientResolution 400
 /LineArtTextResolution 1200
 /PresetName <FEFF005B9AD889E367905EA6005D>
 /PresetSelector /HighResolution
 /RasterVectorBalance 1
 >>
 /FormElements true
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MarksOffset 0
 /MarksWeight 0.283460
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PageMarksFile /JapaneseWithCircle
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [1200 1200]
 /PageSize [612.000 792.000]
>> setpagedevice

