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Abstract 

IoT interoperability is a major challenge in the 

emerging IoT field. This paper introduces a novel and 

light weighted language for the IoT devices to use. TON 

(Things Object Notation) is a language which was built 

on top of JSON (JavaScript Object Notation) to 

accommodate the needs of IoTs’ interoperability. This 

research improves two aspects of JSON (1) compactness 

and (2) commanding. Currently, a lot of communicational 

pollution such as wireless data and noise emerge from the 

explosion of the IoTs. Thus, a minimum information/data 

is needed to be sent. In addition, since most practitioners 

are hobbyists, a one language/protocol that passes 

information and commands will be more convenient. 

Further, this study provides three use cases and shows 

comparison between using JSON and TON as a mean to 

send data and information. 

Keywords: IoT, Interoperability, JSON, Object notation  

1 Introduction 

The objective of this research is to provide an easy 

and standardized language for the IoT practitioners to 

use. A standard language for the communication 

between IoTs is necessary as the diversity of devices 

and applications is widely spread, which in turn raises 

the challenge of the IoTs’ interoperability [1]. Many 

researchers tackled the problem from different 

perspectives and majorly, they proposed solutions hang 

around the web technologies. This is a good way to 

start attacking the problem as the web solved similar 

problems of having multiple servers speak different 

protocols and languages, and hence the w3 standard 

emerged [2]. For interoperability and sending 

commands to IoT system using the web technologies, 

researchers tend to use REST [6] (REpresentational 

State Transfer) to implement their API and approach 

[3-4, 10]. 

Using multiple protocols and languages expected to 

be not very helpful for practitioners. One of the major 

problem with IoT interoperability and then scalability 

is that practitioners and hobbyists especially, those 

who are developing independently and do not use 

structured languages that is called CL (Casual 

Language). For an instance, a developer tests an IoT 

device which measures the temperature of a room, may 

send the row measurement data from the sensor to the 

monitor or the logging server without any structure or 

labeling [11]. 

Others use middleware to accomplish universality 

and guarantee interoperability which might be a good 

choice for companies and industries. However, those 

middleware are usually cloud based which is 

sometimes not a very good choice for normal users [3]. 

So, this study introduces TON, which is based on 

the well tested, trusted and structured JSON notation. 

TON introduces some techniques to compact the 

overhead data of JSON and also introduces some new 

features to assists the use of a single language by the 

developers. TON introduces the class idea to JSON to 

compact the information and removes the overhead 

data that usually common between multiple objects and 

still maintaining ease of use. 

Our research approach was to review the available 

solutions and analyze them, and then extract the 

requirements need to be in TON, and design our 

solution based on the extracted requirements. Finally, 

validate our approach by presenting some use cases 

and analyze them. 

In the followings, Section 2 shows some related 

works. In Section 3, requirements and some design 

choices are introduced. In Section 4, background 

information about JSON is shown. In Section 5, the 

proposed design and solution are demonstrated. In 

Section 6, some use cases are synthesized and analyzed. 

Section 7 discusses and differentiates our work from 

others. Finally, section 8 concludes the research paper. 

2 Related Works 

This section provides a review of some IoT papers 

and applications as well as investigates some solutions 

and hint of requirements to be integrated into the TON 

language. 
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2.1 Individual 

IoTs can comes in many flavors, IoTs can be an 

individual device or a system of devices and a coalition 

of devices. In reference [11] Vidrascu et al. have 

developed an IoT device that monitors the temperature 

of a room and its humidity. It is easy to pass the 

sensors data casually using a CL language to run the 

system, for example having a key-value pairs sent to 

the monitoring system for each sensor will be enough 

to interpret the data and control the system. It is good 

to notice here the IoT device do not have much of 

control over the components since they are inputs 

components and might be controlled at the beginning 

of the system boot, but usually not controlled after the 

system is started. 

2.2 Coalition 

Coalition is another flavor of IoT where devices 

collaborate to accomplish some objectives. In reference 

[12] Tsiropoulou et al. suggested a framework for 

coalitions and how the status of the group is 

maintained and communicated, where a coalition needs 

to communicate its state to maintain a good coalition 

formation. This system is not very complicated in term 

of events, data, and functionalities and thus can make 

use of a TON as a communication language. 

2.3 Middleware 

Middleware is a common solution for 

interoperability and communication. In the survey [3], 

the authors discussed a lot of other type of IoT 

middleware which can be used to connect an IoT 

system. Some of large IoT systems can be of type real-

time IoT application, and WSN (Wireless Sensor 

Network). 

In paper [13] Mayer et al. proposed a semantic 

system that interacts and acts as a middleware between 

the user and the IoT device. Their system implemented 

a reasoning engine that tries to reason about data and 

like suggesting and discovering the correct 

presentation of different functionalities and services 

provided by an IoT device. This approach has two 

main problems, first they heavily depending on third 

parties (which manufactures the IoTs) to be very 

cooperative. Second, the reasoning engine cannot be 

efficient thanks to the wide range of functionalities and 

their varieties as different IoTs can provide, which 

what we think is the sematic of functionalities should 

be taken as is and not try to reasoning them. 

In paper [14], Datta et al. developed a system that is 

set in the middle of IoTs and users provide sematic 

information to the user and some discovery services. 

They have used SenML (Sensor Markup Language) 

which is a descriptive language (like HTML for web 

pages and XML for data) to provide and polish 

information collected from sensors by adding some 

information to the sensed data to make it more 

semantically understandable by other devices. So, they 

provide a good structuring for data, and also, they have 

developed a way to manage a non-smart device that are 

not IoTs in concept, they might be passive sensors like 

light sensors. 

SenML is developed to carry information for the 

devices with limited resources. In reference [15] Su et 

al. introduced how one can transform a SenML data 

into RDF (Resource Description Framework) model. 

This means the data carrier can be elevated from a 

simple inferior representation into a superior 

representation easily. RDF is known to be constructed 

of three main components that make a statement which 

is subject, object, and predicate. Subject is the data, 

object is the information and the semantic of it, and 

predicate is the relation that connects the subject with 

the object [7] (e.g. subject = “earth”, object = “solar 

system”, predicate = “in”, thus, <earth, in, solar 

system>). RDF usually carried on top of other data 

representation structure such as JSON [7]. Our 

research is to describe TON which is based on JSON, 

so as a biproduct TON can carry the RDF semantic too. 

2.4 Semantics 

Semantics is the way IoTs deliver meanings of their 

functionalities, state, and information. In paper [4] 

Kiljander et al. have discussed multiple models for 

interoperability and they have divided the 

interoperability into two levels simplifying and 

compacting the model by connectivity and semantic 

levels. While other researchers like Tolk et al. in [16] 

suggested six different levels which include syntactic 

and semantic levels, and Pantsar-Syväniemi et al. 

included semantic too [5]. Those emphasis the 

importance of the semantic problem and its 

interpretation. Lastly, Lappeteläinen et al. differentiate 

semantic and information levels to be different and 

distinct challenges [17]. 

In [18], Maarala et al. described a methodology to 

aggregate the data collected from IoT devices and 

storing them semantically using RDF model concept to 

establish the semantic relation in the data collected. 

2.5 ARM (Architecture Reference Model) of 

IoT 

To establish a good understanding of the possible 

communication between IoTs, one may look at the 

ARM of IoT and what is the state of the art of the IoT 

field. There are a lot of ARMs of IoT, a good and 

general ARM is provided by Bassi et al. [8]. This 

model describes the different relations and 

communications between a user and an IoT device. 

Their model will allow us to capture the information 

passed back and forth between IoTs. Therfore, This 

paper can define concretely the requirements needed to 

be in mind when we develop TON. 



Things Object Notation as a Communicational Light-weighted Language for IoT Devices 2159 

 

3 Requirements 

This section presents the requirements, which were 

derived from previous research studies, to be used to 

develop TON. TON should capture the following 

requirements: 

(1) Formality: information passed should be 

interpreted the same for any interpreter (e.g. an IoT). 

That is if information describes a service of tuning a 

light intensity with a value from 0 to 10, should not be 

interpreted as something else, like turning on/off the 

light. 

(2) Completeness: any information need to be sent 

can be fully sent in a single TON object. That is, a user 

does not need to describe a service in multiple TON, 

but TON can encapsulate the information. 

(3) Classifiably: a TON object can be classified as 

Request, Notification, or Actuation (those cases based 

on [8]). That is, a user can request information (e.g. 

sensor data), receive notification data (e.g. real time 

temperature data), or perform an action via an actuator 

(e.g. turn off the light). This can be achieved by adding 

a label to the TON object. 

(4) None-Prior Knowledge: no prior knowledge is 

required for the two communicators to know each 

other in order to make sense of TON. 

(5) Compactness: to have the size small as possible. 

There are other requirements that users do not want 

to emphasize much since they can be added by the 

TON user and not enforced by the language and they 

are: 

(6) Identifiability (optional): an IoT may add 

identification information to the TON to identify itself. 

(7) Description (optional): an IoT may add a 

description to the TON as a metadata to describe itself. 

This can be handy if the IoT is used by a human or 

smart entity so they can make meaning of the IoT from 

its description. An example is an IoT light that give 

itself a description of being light, and then if a 

controller device (e.g. smartphone) displayed the 

description the end user (human), he can interact 

soundly with the IoT without a prior knowledge of the 

smartphone application nor the IoT implementation. 

An analogy is a group of applicants (IoTs) send their 

CVs (TONs) to an employer (smartphone), and without 

a prior knowledge, the employer can interact with the 

applicants properly and efficiently. 

(8) Greeting: a greeting object to retrieve public 

service information that can be provided by an IoT. 

This one can be implemented by the developer on the 

first interaction between the IoT and the controller 

device. 

4 Background 

The base language that is used to build our TON 

upon is JSON. So, this section presents the basic 

building blocks of JSON and how a JSON object is 

constructed. 

JSON object is constructed as a hierarchy of key-

value pairs. (See Figure 1). Every JSON object starts 

with a left curly bracket and end with right curly 

bracket to enclose the data carried inside the JSON 

object. 

 

Figure 1. This figure is captured from the JSON 

documentation [9] - JSON object representation 

A key used in JSON is a string of characters 

enclosed in double quotes character. Some special 

characters represented as the scape character then that 

special character or another character represent it. 

Examples for special characters are: new line, tab, null, 

double quotes, and a Unicode character and they can 

be represented as (\n, \t, \0, \”, and \u#### with 4 

hexadecimal digit number) (see Figure 2). 

 

Figure 2. This figure is captured from the JSON 

documentation [9] - JSON value representation 

A value in JSON is either a string, keyword (true, 

false, null), array of values, number, or object (see 

Figure 3). An array of values is a set of values enclosed 

by square brackets and separated by commas. 

 

Figure 3. This figure is captured from the JSON 

documentation [9] - JSON String representation 
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5 Design & Proposed Solution 

This section introduces the TON language and how 

it is developed from the requirements in the previous 

section. Moreover, this section argues about the 

satisfaction of those requirements. 

5.1 Syntax 

Generally, languages like JSON and XML are 

formal in their syntax, so considering one of them 

would not be a bad choice for formality requirement.  

JSON uses curly brackets to indicate an object 

where objects can be nested. JSON is based on the idea 

of key-value data structure so an object will contain a 

key “K” and that key will be associated with a value, 

which can be a string, JSON object, array, number, 

Boolean (true, false) or noting (represented as null). 

Further, array is indicated by square brackets and it 

contains values (the same as the values mentioned 

previously). These specifications allow JSON to 

represent any data without losing the formality (see [9] 

for more details). 

An example for a JSON object is shown in Figure 4. 

A JSON object carries information of a car with four 

wheels, colored scarlet and other specifications.  

 

Figure 4. JSON example for a car object specification 

On the other hand, XML can represent the same data 

using tags. XML as a markup language uses tags to 

specify the parents’ objects and the child ones. So, for 

XML to represent our car object, it will create a tag 

<car> then add the other keys (i.e. <wheels>, 

<doors>, … etc.) enclosed by the car tag, and it 

finishes after the termination tag </car> (see Figure 5). 

You can immediately observe that the XML 

language most of the time will have a size greater than 

the JSON object, for the same object specifications. So, 

we will go with something similar to JSON as we need 

to reduce those data overhead. Hence, the TON 

language is proposed and built based on JSON syntax. 

5.2 Formality & Completeness 

Using JSON model as it is, gives us Formality and 

Completeness, where all recipients will interpret the 

data the same with the same semantic, and all data can 

be sent as one object (object can contain nested 

objects). So let’s define our structure, TON object is 

always surrounded by curly brackets (i.e. “{“for the  

 

Figure 5. XML example for a car object specification 

beginning of TON, and”}” for the end of TON), and 

also, TON embedded JSON inside it. This ensures 

Formality and Completeness. 

So, the proposed language is structured as in Figure 

6. The figure demonstrates three possible forward flow 

of constructing a TON object, a path with [sub-JSON], 

a path starts with [label], and a path starts with a hash 

(#) which is the defining path. The sub-JSON path is 

exactly a JSON structure without the curly brackets in 

the beginning and in the end (i.e. if a JSON is 

({“x” :{“num” :76}} ), then sub-JSON is only 

(“x” :{“num” :76} )), that is because TON already got 

a beginning and ending curly brackets. 

 

Figure 6. TON structure 

The second path, the path of label is a novel addition 

to JSON so it can have some short-cut and fast 

executing for some IoTs functionalities such as 

Requesting data from an IoT and order an IoT to 
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Actuate an actuator to do something. Other labels can 

be introduced as the model is flexible. An example of 

label usage is shown in Figure 7.a, for requesting the 

temperature from an IoT device, and in Figure 7.b is an 

actuation order to some device with ID=107. More 

labels will be discussed in the sections follows. 

 

(a) shows an example for TON using a label Request to 

request the Temperature data 

 

(b) shows TON using a label Actuate to send the input 

data required to set the device with ID 107 to 30 degree 

Celsius and Dry mode being off 

Figure 7.  

The third path which starts with (#) is the path of 

defining classes, which allow some sort of objects like 

those of Object-oriented programming languages. 

However, the hash (#) is used to define a class for the 

set of data that are common between different IoTs, 

and thus can be gathered to minimize the size of the 

object need to be sent through the network. This novel 

way is added upon JSON. To define something, a user 

can start with a hash # and then a string that is 

representative of the thing he/she is defining, and then 

the user can come into a fork of two, either using a 

value directly (a value is defined in the next section) or 

having a set of inputs to initialize the object/array this 

definition is building. An example of defining lamp 

object is illustrated in Figure 8. The TON shown in 

Figure 8 shows how a lamp is defined and used by 

other key-value pairs. 

 

Figure 8. TON defining of a class and using it. L1 and 

L2 are now two Lamps with description LED, color 

White, and Temperature of 50C 

Another example for lamps definition is shown in 

Figure 9, where here the Lamp class takes inputs to 

initialize some values inside the object. The order of 

the input at the definition does not need to match the 

order they are inside the object; the matching is based 

on the keys inside the class. However, the order should 

match when using the class as a value for some key. 

This represents the second fork of the defining path in 

TON. 

 

Figure 9. TON defining of a class and using it. L3 is 

now a Lamp with description LED, color White, and 

Temperature of 50C, L1 is a Red LED, L2 is a Yellow 

Neon, and L4 is an object which encapsulate a lamp 

By using the labels we satisfy the classifying 

requirement and compactness requirement by 

introducing the define functionality to the language. 

5.3 Values 

First, sarray is an array of strings, and its structure is 

shown in Figure 10. This was introduced just to 

simplify the TON diagram. 

 

Figure 10. Sarray, an array of string 

Second, Label component, which is a set of reserved 

words used to classify and categorize TONs by 

operation. There are currently three labels Request, 

Actuate, and Notification (other labels might be added 

as necessary in the future) [8]. Those labels are not 

contained in a double-quote like strings but used as is 

(see Figure 7). 

Third, object component, which can be any TON 

object. This allows TON objects to be nested to carry 

more sophisticated information about the IoT and the 

IoT system. 

Fourth, value component, which is the same value 

component of JSON but with some extra types of 

values. For instance, the classes are not defined in 
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JSON, so in order for TON to use them, a value that 

refer to a class should be integrated with JSON value 

(see Figure 11). 

 

Figure 11. TON value, JSON-value is the value 

structure of JSON, the second path is using the default 

construction of a class, the third path is using a class 

with input values 

6 Validation 

In our validation, we will show some expected 

theoretical analysis, and we are going to compare our 

construction of TON against JSON using some use 

cases and see how much improvement we can be 

achieved. 

6.1 Use cases Comparisons 

In this part of the validation section, TON, and 

JSON were constructed for synthesized use cases. The 

first use case will be a comparison between JSON and 

TON for a simple IoT device. For the second use case, 

the two contexts are compared, (1) direct 

communication with the IoTs, where the user talks and 

command the IoT without any middleware, (2) the user 

talks to a middleware who talks and manage the IoT 

system. The third use case is a coalition of IoTs 

communicating with each other. 

6.1.1 Room Monitor IoT 

A simple IoT that monitor a room humidity, 

temperature, time, and aware of its power supply (see 

Figure 12) a bit similar to the work done in [11]. The 

device collects the humidity, and temperature data of a 

room with some time stamp. To retrieve the data 

appropriately, the IoT device will encapsulate the data 

in some data format like JSON, or XML. So here we 

are going to compare JSON against TON. 

The data retrieved from this device is the 

temperature, humidity, power supply, and the time-

stamp of each reading. Moreover, these can be 

represented in JSON as shown in Figure 13. Figure 14 

shows how the data can be represented in TON. In this 

example, we are assuming that three readings will be 

returned. 

 

Figure 12. a simple IoT device that monitor the 

humidity and temperature of a room 

 

Figure 13. Data encapsulated in JSON 
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Figure 14. data encapsulated with TON 

As seen, a lot of overhead can be eliminated when 

using the introduced defining operation in TON. If we 

counted the number of characters for TON and JSON, 

we will find them 309 and 452 respectively (excluding 

the whitespaces). Further, if we focus on the dynamic 

part of the object (array contents) and calculated the 

eliminated percentage, we will have 52% eliminated 

(52% saves). 

6.1.2 Smart House 

A smart-house-holder has a room with multiple 

smart IoT devices such as TV, Lamp, ceil lamps, A/C, 

and a Heater (see Figure 15). A user will need to 

communicate with those IoTs to retrieve data and 

adjust them. So, we will show how those data can be 

communicated using two scenarios, one with direct 

communication with the IoTs, and the other one is with 

a middleware/middle-IoT. 

 

Figure 15. A sample smart house and what devices can 

be made smart 

The smart house has a smart TV, A/C Heater, Lamp, 

and a set of ceil lamps. Two scenarios were 

demonstrated, (1) the user communicates with each 

individual, (2) there would be a middleware which will 

manage the IoTs. 

The scenario of having a middleware has been 

analyzed, in which the user will communicate with 

rather than every individual IoT. The TON object 

shown in Figure 16 encapsulates all the information of 

the whole IoT system provided by the middleware. The 

JSON object was not included because it was easy to 

construct and it could take a huge portion of the page. 

 

Figure 16. Smart house middleware TON object 

6.1.3 System of Drones 

A coalition/swarm of drones (treated as IoTs) and 

how the data between them are passed (see Figure 17). 

We will look at this use case not as a user perspective, 

but as the drone leader perspective. In Figure 18, we 

show how drones information encapsulated, in Figure 

19 the leader order some recipient drone to move to 

some location (x,y) via labeling the TON object as 

Actuate object. 
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Figure 17. A system of drones, and the drone with star 

is the leader 

 

Figure 18. Drone information in TON and JSON 

 

Figure 19. Drone leader message encapsulated in TON 

to order a drone to move to the location (10,9) using 

the Actuate label of TON 

6.2 Theoretical Comparison 

It is easy to notice that TON is better than JSON in 

compacting data, as TON encapsulate JSON, which 

obviously gives TON the JSON power plus whatever 

tools we are designing for it (i.e. classes and labels). So, 

TON is either as good as JSON or better. 

Tshe improvement gained by reducing the overhead 

repeated strings (keys) via introducing the classes and 

defining can be calculated as the following: 

 ( )JSON N N key value= ⋅ +∑  (1) 

 ( )TON N N value key value′= ⋅ + +∑  

 
( ) ( )

( )
( )

JSON N TON N
R N

JSON N

−

=  

 1

N value key value

N key value

′⋅ + +

= −

⋅ +

∑

∑

 

 1

key value
N value

N key value N key value

+
′⋅

= − −

⋅ + ⋅ +

∑

∑ ∑

 (2) 

 
1

( )R N C
N

= −  (3) 

Where N is the number of objects sharing the same 

properties, key-vlaue pairs are the key and value pairs 

which define properties in a JSON object, value’ is the 

values needed to initialize an object in TON, and R(N) 

is the ratio saved of TON(N) from JSON(N) of N 

objects. C is a constant that represents the constants 

found in the last equation. 

If R(N) is positive then defining a class and using it 

in TON will reduce the size of the overall object. If it is 

negative, this means it requires more space than a 

regular JSON. We can also see that the ratio of value’ 

to the sum of all key-value pairs can be negligibly 

small to 1. Thus, C can be safely assumed to be 1. 

 
1

( ) 1R N
N

= −  (4) 

Now we can see clearly that the amount saved by 

using classes is inversely proportional to the number of 

objects created (N). In another word, the size of JSON 

is linearly increased with respect to TON’s size. 

6.3 Theoretical Growth 

In this subsection, a general formula is derived, 

which describes how TON’s size grows against JSON. 

A room is a set of objects , we can define a class 

for any given object, and thus the set of all classes is 

� . A subset β  of  is the set of objects that belongs 

to the same class 
i
c ∈� . Now, we can calculate the 

size used by TON S( ) as: 

 S( )
0

| | ( )
i i

i

Size cβ
∞

=

= ⋅∑  (5) 

 S( )
0 1 0 1

( , , ..., , , ..., )
N N

S N n n t t
− −

=  

1

0

N

i i

i

n t

−

=

= ⋅∑   (6) 

Which goes through every possible class 
i
c ∈� . 

However, we can reduce and limit those classes to only 

the needed ones (e.g. if a room does not have a TV 

object, we do not need a class to represent TVs) 

′ ⊆� � . 

Let | | N′ =� , | |
i i

nβ = , and ( )
i i

Size c t=  which 

represent the size needed to define an object of class 
i
c . 

As if we want to plot how the function behave there 

will be exponentially may possible value S can have, 

so the Figure 20 represents the domain of which 
i i
n t⋅  

can be picked from. 
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Figure 20. The domain of which S( ) takes the 

summation values from 

The domain of TON sum can be compared with the 

domain of the equivalent JSON sum using the relation 

R(N') as follows (Notice N' of R(N’) is number of 

objects, while the latter N is number of classes): 

If we would draw the JSON summation values 

domain we will get Figure 21. 

 

Figure 21. The domain of which JSON (N’) takes the 

summation values from 

We can see from equation (6) and (7) that JSON 

grows quadratically in comparison with TON which 

grows linearly with respect to number of objects in the 

set . 

6.5 Experimental Validation 

In this sub-section we experimentally compare TON 

to JSON and in an experiment that mimic a real 

scenario. We will assume an IoT that measures the 

temperature of a room and create an object to store it 

along with timestamp and the temperature unit (e.g. see 

Figure 13 and Figure 14). 

The temperature data used in the experiment is 

randomly generated to be in the range from 20.0 to 

24.9 inclusive. The temperatures were measured each 

minute, then we have generated 2 days’ worth of data, 

then 7 days then 12 days, adding 5 till day 57 inclusive. 

After that the JSON and TON objects were 

compressed using gzip compression (as gzip is the 

HTTP common practice for compression). The 

following Table 1 shows the different datapoint we 

have found: 

This experiment yielded the following: 

Table 1. TON and JSON data sizes in KB after 

compression, and the slope of their growth 

Days TON.gzip JSON.gzip TON slope JSON slope 

2 10 11 0 0 

7 32 38 4.4 5.4 

12 53 65 4.2 5.4 

17 74 92 4.2 5.4 

22 96 120 4.4 5.6 

27 117 147 4.2 5.4 

32 138 174 4.2 5.4 

37 160 201 4.4 5.4 

42 181 228 4.2 5.4 

47 203 255 4.4 5.4 

52 224 282 4.2 5.4 

57 245 310 4.2 5.6 

 

(1) JSON and TON became so light that the slope 

difference between TON growth size and JSON growth 

size become less. 

(2) TON performance surpassed JSON by having 

smaller growth slope than JSON. 

(3) Without compression JSON objects have twice 

the size of their correspondent TON objects (see Figure 

22). 
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Figure 22. The linear growth of JSON and TON both 

compressed using gzip vs. number of days 

6.5 Summary 

We can notice in Table 2 that the data size saved 

increases as the number of repeated structures appears. 

For an instance, the number of lamps in the smart 

house allow TON to save 32.7% of the total size of a 

normal JSON object in spite of the verity of the IoT 

devices (TV, AC, ... etc.). And when we removed the 

static information and concentrated on the dynamic 

ones (the array) in use case 1, we managed to save 

52% of the array size. This achievement occurs 

because of using the classes defined in TON which 

removes the extra keys that are just overhead that can 

be implied by introducing the data order to JSON 

(since JSON does not care about data ordering, it cares 
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about the key-value concept only). 

Table 2. Data size of different use case scenarios  

Use case TON JSON 100
JSON TON

JSON

−

×  

Case 1/full 

size 
309 452 31.6% 

Case 1/array 

size 
214 446 52% 

Case 2/full 

size 
633 941 32.7% 

Case 3/full 

size 
The same The same 0% 

 

7 Discussion 

To differentiate our work from others, in this section, 

we will discuss different approaches to carry 

information around in the IoT field. 

In reference [13] Mayer et al. had developed a 

middleware that allow IoTs to communicate with each 

other. Their middleware is built to use REST principles 

to carry the commands from a device to another. The 

semantic carrier they’ve used is RDF which allows 

them to pass information semantically between IoTs. 

The thing is that we tackle where their model cannot, is 

passing information with and without semantic. As 

they are using RDF model, they need to have a 

semantic database to eventually give semantics to the 

data. So, if there semantic is not defined in the 

database, the system cannot carry the information as 

required by the model. 

In reference [14] Datta et al. they developed a 

middleware device that connect IoTs, smart devices, 

none-smart devices, and smartphones with each other. 

Their idea is that devices provide their functionalities 

and semantics upon registration in the middleware, so 

afterward whenever a smartphone need to 

communicate with IoTs it requests the semantic data 

from a local database inside the middleware so then 

they can communicate with the IoT system. The 

drawback of the system is that, they use a limited 

language to represent data. They have used SenML to 

represent sensors data to pass them to the middleware 

and also they have used the same language to 

communicate with the actuators. SenML is designed to 

be a light-weighted language and specially to deliver 

sensors data not to deliver command data. Not only our 

TON language can encapsulate SenML, but also uses 

labels to deliver data and commands easily and 

designed to do such job. 

8 Conclusion 

In this paper, we introduced new concepts to be 

adapted and developed upon JSON. First one is 

compactness, where overhead data was reduced by 

defining a class and use it as a template for other 

objects. Second contribution is to give TON the ability 

to carry commands from a device to another by 

labeling the TON object with Actuate, Request, and 

Notification. Other labels can be implemented. 

Our experiments shown a remarkable improvement 

on the compressed size of the data need to be sent 

where the growth’s slope was reduced from 5.4 to 4.3, 

by around 20% of the corresponding compressed JSON 

size. 

For future work, we are thinking to study more IoT 

applications and see what kind of labels we can add to 

the language. Introducing more structures to TON 

similar to programming languages such as loops, 

which might be good for reducing the size of data even 

more. An example for a good use of loops is sending a 

musical note for an IoT that works as a musical 

instrument. Other future work we think worth of 

investigation is the wireless data pollution caused by 

the increase amount of data transferred by devices. 
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