
Deep Learning-Based Firework Video Pattern Classification 2033

Deep Learning-Based Firework Video Pattern Classification

S. P. Kasthuri Arachchi1, Timothy K. Shih1, Chih-Yang Lin2, Gamini Wijayarathna3

1Department of Computer Science and Information Engineering, National Central University, Taiwan
2Department of Electrical Engineering, Yuan-Ze University, Taiwan

3Department of Software Engineering, Faculty of Computing and Technology, University of Kelaniya, Sri Lanka

{sandelik, timothykshih}@gmail.com, andrewlin2011@gmail.com, gamini@kln.ac.lk*

*Corresponding Author: S. P. Kasthuri Arachchi; E-mail: sandelik@gmail.com

DOI: 10.3966/160792642019122007002

Abstract

The video analytics technology has been a rapidly

improving discipline in the past decade. With the recent

developments in computer vision, we now have the

ability to mine massive video data to obtain a clear

understanding of what is happening in the world. Because

of the remarkable successes of deep learning, currently,

we are able to improve video analysis performance

significantly than traditional statistical approaches. This

study focuses on classifying the patterns of firework

videos with various deep learning techniques using

spatial and temporal features, beyond common types of

pattern classifications. Among successful artificial neural

networks, Convolutional Neural Networks (CNN) have

demonstrated superiority on modeling high-level visual

concepts, while Long Short-term Memory (LSTM) and

Gated Recurrent Unit (GRU) units have shown great

talent in modeling temporal dynamics in video-based

pattern classification. Our basic models consist of CNN,

LSTM, and GRU and, we did experiments by fine-tuning

the parameters of layers and using different dropout

values with sequence LSTM and GRU models. Our

experimental results demonstrated that the model with a

sequence of LSTM units and double dropout layers—one

for input and another for hidden layers—outperforms the

other experimental models with the training accuracy of

83.05%.

Keywords: Deep learning, Fireworks, Convolution

Neural Network, Recurrent Neural Network

1 Introduction

Nowadays Firework shows are doing a major role in

entertainment purposes. On the other hand, fireworks

competitions are also frequently held at a number of

famous places. People who are planning to arrange

such kind of firework shows or competitions have to

face a big challenge with firework types selection,

because of the peoples’ interest of their entertainment

is mainly depend on the types of fireworks that they

are decided to display. To address this challenge, our

work proposed a few methods to classify types of

fireworks using existing videos. Further improvement

of our work will help such organizers to get the idea of

widely used firework types among the most popular

fireworks shows. Based on these resulting types they

may able to decide which combination of fireworks

that they can display in order to get the peoples’

attraction to their event.

Because of the video data consists of temporal

features in addition to the spatial features of 2D images;

video classification has become an inimitable

challenge. Among these classification methods, the

majority is dealing with the same pattern or physical

action with different contexts or backgrounds. More

preciously, video frames of a particular video consist

same object or design, human action, face, gesture, or

scene. Beyond these common types of classifications,

our work discusses a few models, which attempt to

classify the patterns of firework using a different kind

of Deep Learning (DL) techniques. According to our

knowledge, this is the first study of identifying

firework patterns using different DL models.

More recently, DL has been receiving increasing

attention on video pattern classification and prediction

applications. However, the challenge is to design a

proper DL model to get the highest classification

accuracy with the minimum loss using various deep

learning techniques. Among successful DL techniques

CNN and both LSTM [1] and GRU [2]—variants of

Recurrent Neural Networks (RNN), are widely used to

build complex video-based classification models.

Before designing models for the experiments, the

principal problem that we had to face is a sufficient

firework dataset for the training phase. Even there are

many datasets for image, text, human action

recognition, and sports classification, we did not find

any dataset containing fireworks videos. Therefore, we

focused to create a new dataset for our classification

task. As we emphasized before our purpose is to find a

best-fit model for firework pattern classification.

Among different kinds of DL techniques, the next

challenge was to select suitable techniques for

designing the model to classify firework types. Even

2034 Journal of Internet Technology Volume 20 (2019) No.7

some previous works based on video classifications

designed good models [3-5], we were doubtful whether

those satisfy our requirements because of the firework

videos consist with different patterns in most time

steps comparison to such video classifications.

To address the above issues our first contribution

was to create a dataset with different types of fireworks.

To maintain the fairness of our dataset and control the

scope of our study we selected firework videos under

some conditions and restrictions as discussed under

methodology. In addition, we applied some

augmentation techniques to enhance the size of the

dataset and our current dataset consists of 8 firework

types with 1500 video clips. Our second and but the

main contribution of this study is to recognize proper

DL techniques for classifying firework types using

existing video data. By considering the advantages of

previous studies [1-2] our work focused on three main

DL models: Long-term Recurrent Convolutional

Networks (LRCNs) [6], which is a combination of

CNN and LSTM which is dealing with long-range

temporal recursion; sequence of LSTMs, which is one

of the most effective structures to model sequential

data and, sequence of GRUs—a simplified version of

LSTM. The fundamental difference between LSTM

and GRU is that an LSTM has three gates as input,

output and forget gate while GRU has reset and update

gates. Hence GRU is simpler, easy to modify and train

faster than LSTMs.

The rest of the paper is organized as follows.

Sections 2 and Section 3 discuss the related work and

the proposed method. Next, experimental results and

analysis are presented in Section 4. Finally, the

conclusion and future works are concluded in Section 5.

2 Related Work

Video classification is a vital challenge in computer

vision. In order to provide state-of-art results,

traditional video classification research has been

successful at obtaining overall video descriptors, which

combine both appearance and motion information.

However, because of the remarkable success of DL

techniques, video classification performance has been

improved significantly. Theatrical progress has been

achieved by supervised convolutional models on image

recognition tasks [7-9] and medical decision support

images classification [10] as well. By taking such

advantages, a number of extensions to process video

have been recently proposed. Apart from that a proper

video classification models should allow processing of

variable length input sequences and provide variable

length outputs, beyond conventional one versus all

prediction tasks.

In order to analyze sequences, LRCN, which

associate CNN top of RNN in one architecture has

been proposed [6]. This work has become beneficial in

several tasks: activity recognition; images description;

and video description. Like conventional RNN, LRCN

is able to handle “sequence input to single output,”

“single output to sequence output,” and “sequence

input to sequence output”. In addition, the success of

deep networks is also a result of the development of

widely applicable simple learning techniques such as

dropout [11], Rectified Linear Unit (ReLUs) [8]—a

most common activation function and gradient clipping

[12].

2.1 CNN and RNN

CNN is a special case of the neural network, widely

used in pattern and image classification problems

because of its advantages compared to other techniques.

While CNN deals with models, which process on

single input, RNN fits for sequential input. However,

in most practical cases, RNN cannot memorize

previous information that is far from current state.

When input sequence is too long, training RNN with

back-propagation through time (BPTT) may face to the

problem of vanishing gradient (gradient becomes small

when it flows back too many steps) [11]. Consequently,

RNN forget long-term dependencies. To address this

issue, a new neural net technique called LSTM, which

has capability of remembering information for a long

range of time steps has been proposed [1]. Replacing

simple neural unit by LSTM unit in RNN showed

significant improvement. Moreover, GRU has less

computational steps than LSTM [2]. The idea of GRU

makes LSTM simpler by summing up forget gate and

input gate into single update gate.

2.2 Learning Rate

Neural networks are often trained by gradient

descent on the weights. The learning rate determines

how fast these weights are changing. Therefore, it is

essential to adapt learning rate with suitable parameters.

Adagrad described a way of adapting to learning rate

with parameters, by adjusting learning rate process at

the training stage [13]. Although Adagrad helps to

adjust the learning rate, it can make trouble when

training for long time. Because of many time steps,

learning rate decreases and when learning rate

approximates to zero, it is impossible to get any more

parameters. Hence, the solution to overcome

Adagrad’s learning rate decreasing problem—a new

thing that tries to adapt resilient prop (rprop) [14],

widely used to train RNNs for batch training, to

stochastic gradient descent. Therefore, in this work, we

used RMSprop to optimize the learning rate.

3 Methodology

To classify the types of firework videos, we

designed three main models using DL techniques

namely, LRCN, LSTM, and GRU. LRCN, which is a

combination of CNN and RNN (specifically LSTM)

Deep Learning-Based Firework Video Pattern Classification 2035

proposed for sequence analyzing with Caffe [15]. CNN

layers of LRCN the model naturally extract spatial

features while following LSTM layers extract temporal

features. In this study, our purpose is to investigate the

ability to identify spatial-temporal features of fire-work

video. Hence, we performed our first set of

experiments based on LRCN architecture. As

mentioned earlier, LSTM has the capability of

remembering information for a long range of time

steps of variable length inputs. Therefore, our second

model designed using the sequence of recurrent units,

SeqLSTM. GRU is related to LSTM as both are

utilizing different ways of gating information to

prevent vanishing gradient problem. The GRU unit

controls the flow of information like the LSTM unit

thus computationally more efficient [16]. Moreover,

apart from SeqLSTM, we designed another model using

a sequence of GRU units for performance comparison.

To find the best fit model to achieve the highest

average accuracy we fine-tuned each model’s

necessary parameters such as dropout, learning rate,

and gradient clipping—a popular technique to

overcome the exploding gradients problem during

backpropagation. Setting a good learning rate is tricky

in DL models. For all our experiments, we used

RMSprop with a staring learning rate of 10-3 and after

10 epochs decreased by 10 times (10-4). According to

the study [12], in practice, proper dropout values for

real-valued inputs like video can be set to 0.8 and for

hidden layers, it varies from 0.5 to 0.8.

3.1 Firework Dataset

Dataset size is one of the important factors that deep

neural network architecture depends on. Due to the

unavailability of a standard firework video dataset, first

we had to create our own dataset. We downloaded

different types of firework videos with low resolution,

in order to decrease the computational cost and split

them into less than 8-second length clips. Our first

experimental dataset consists of 750 video clips and

gradually increased the dataset up to 1500 for

experimental purposes. Also, we applied a few

augmentation techniques such as flip-up, flip-down,

and rotate to increase the size of the dataset. However,

firework videos have been selected under three

conditions to maintain the fairness of our dataset and

control the scope of our study as listed below.

‧Each video should have one firework type.

‧ Videos should not contain any other moving

objects except firework.

‧The background should be static with invisible

objects.

Sample firework video types, which are not included

in our dataset are shown in Figure 1. We manually

categorized the dataset into eight classes:

Chrysanhemum, Crosette, Desi, Dot, Drop, Fish, Palm,

and WaterFlower by looking at each video clip (Figure

2). We further randomly divided the dataset into 3

sections as training (70%), validation (15%), and

testing (15%) to evaluate the model performances.

Figure 1. Sample firework video not satisfied with our

data selection conditions. Such videos contain multiple

types of fireworks, moving objects like ship and

airplane while exploring the firework and, visible and

statics objects thru the background

3.2 Experimental Architectures

Our experiments were based on three main models

as we described earlier. The first model followed

LRCN architecture and the other two were based on

LSTMs and GRUs. LSTM and GRU units of these

models consist of a single dropout layer inside hidden

layers. In addition to that, we tested our dataset by

adding another dropout layer in between visible layer

or top of the first hidden layer (to input volume).

3.2.1 LRCN - with Single Dropout Layer

(Lrcn1Drop) and Double Dropout Layers

(Lrcn2Drop)

As appears in Table 1, the architecture of the

Lrcn1Drop model designed using five layers including

a single dropout layer. We limited our input size to

240×320 resolution because of the high computational

cost of high- resolution input and since we are using

RGB video with 3 channels. This model contains four

CNN layers and followed by a sequence of LSTM

units. Reducing input size at lower layers helps to

decrease the computational cost. Hence, low layers

such as layer 1 and layer 2, we wanted to reduce the

size of input by 2 times for each layer. To do this we

see the stride size to 2 when input passing through the

CNN layer. To avoid high information loss, our input

feature planes set to 32 in the first layer. Moreover, the

Batch Normalization layer addresses the vanishing and

exploding gradients problem and helps faster training

as well as removes the internal covariate shift problem.

2036 Journal of Internet Technology Volume 20 (2019) No.7

Table 1. Details of five layers of LRCN with 4 CNN

layers and 1 LSTM layer

Input 320×240 size, 3 color channels RGB

CNN Layer 1 32 planes, 5x5 kernel, stride 2, pad 3

 Batch Normalization

 ReLU

 Max Pooling 3x3 kernel, stride 1, pad 1

CNN

Layer 2
64 planes, 3x3 kernel, stride 1, pad 2

 Batch Normalization

 ReLU

 Max Pooling 3x3 kernel, stride 2, pad 1

CNN

Layer 3
128 planes, 3x3 kernel, stride 1, pad 1

 ReLU

CNN

Layer 4
256 planes, 3x3 kernel, stride 1, pad 1

 ReLU

 Max Pooling 3x3 kernel, stride 1, pad 1

Layer 5
LSTM 256 hidden size with 0.5

Dropout

Fully

Connected
8 classes output

 Log Softmax

LSTM layers we tested by adding different size of

hidden layers. Since Dropout is necessary to prevent

over-fitting, it is important to place a dropout layer

between the last CNN layer and LSTM layers—a large

number of parameters passing through CNN to LSTM

is fully connected. For the Lrcn2Drop model, a

modification of LRCN, we inserted an additional

dropout layer to input volume of LSTMs to avoid over-

fitting caused by real-valued inputs [12]. Because of

inner CNN layers not consists of many parameters as

fully connected and most probably dropout is not

preventing co-adaption for CNN, we did not add

dropout layers within CNN layers.

3.2.2 RNN-SeqLSTM with Single Dropout Layer

(Lstm1Drop) and SeqLSTM with Double

Dropout Layers (Lstm2Drop)

Our second DL model, based on LSTMs, a variant

of RNN, which perform much faster and detects long-

term dependencies of the ordered sequence of frames.

Besides the problem of long training time of RNN it

also faces the problem of memory loss during long

running. Subsequently, LSTM units use memory cells

to store and output information thus allow to discover

better long-range temporal relationships than RNN.

The input volume of model Lstm1Drop also similar to

our previous model and we randomly assigned 256

hidden layers with 0.6 dropout value within hidden

layers—selected after fine-tuning. Similar to the

previous model we added additional dropout layer to

input volume of the Lstm2Drop model in order to

compare the model accuracy.

Figure 2. Manually categorized eight firework classes. All classes represent popular names of firework types

Deep Learning-Based Firework Video Pattern Classification 2037

3.2.3 RNN - SeqGRU with Single Dropout Layer

(Gru1Drop) and SeqGRU with Double

Dropout Layers (Gru2Drop)

GRU, another variant of RNN, as well as a

simplified version of LSTM, makes each recurrent unit

adaptively capture dependencies of different time

scales. Even GRU is relatively new, we experienced

that its performance as on a par with LSTM, but

computationally more efficient because of less

complex structure. Therefore, we designed Gru1Drop

with one dropout layer and Gru2Drop with double

dropout layers as our testing models to compare results

of LSTMs and GRUs.

4 Implementation and Experimental

Results Discussion

The next important factor after creating a dataset and

designing models is to decide a proper DL framework

to implement the system. According to the study [15],

even LRCN was originally implemented in Caffe, in

practice, Caffe is not the best for RNN and Torch7 is

demonstrated as a reasonable framework because of its

ability to script new modules, especially for RNN [17].

Moreover, our main contribution is to compare the

model accuracy of LRCN, LSTM, and GRU. Hence,

all models had to implement in the same framework.

These reasons motivated us to implement the system

on Torch7 and our supportive operating system was

Ubuntu 16.04. For best practice, we implemented our

system with 3 main modules: data loader for loading

any type of video data; a model that contacts DL

architecture; and a train/validation/test module to

perform optimization tasks. Our dataset is about

2.25GB and we trained each model using a GPU (Ge-

Force GTX 1080).

4.1 Model Performances with Different Size of

Datasets

Big data is often discussed along with deep learning.

In practice, a good amount of data needs for training a

deep model, since it’s necessary to make sure the

model’s capability of generalization. Under this

experiment, we evaluated model skill over the size of

the training dataset.

Our first experimental dataset consists of 750

firework video and we divided it as a similar ratio as

mentioned in methodology. In addition, the

experimental conditions also unique with the current

dataset, which has 1250 video, as we discussed under

the same section. For better comparison, we tested our

models with different dataset sizes as 500, 750, 1000,

1250, and 1500 video clips. Table 2 to Table 6

illustrates the average model accuracies and losses of

each dataset respectively.

Table 2. Comparison of model results with 500 video

Model Train Acc. Val. Acc. Test Acc. Train Loss Val. Loss Test Loss

Lrcn

1Drop
33.52% 25.83% 23.26% 1.83% 2.12% 1.92%

Lrcn

2Drop
64.24% 35.10% 40.42% 1.09% 2.40% 2.01%

Lstm

1Drop
63.12% 44.93% 38.48% 1.17% 2.17% 1.89%

Lstm

2Drop
67.31% 47.74% 57.36% 1.14% 1.89% 1.12%

Gru

1Drop
74.58% 55.10% 60.38% 0.83% 1.01% 1.85%

Gru

2Drop
58.10% 30.46% 41.01% 1.47% 1.58% 2.21%

Table 3. Comparison of model results with 750 video

Model Train Acc. Val. Acc. Test Acc. Train Loss Val. Loss Test Loss

Lrcn

1Drop
42.33% 29.65% 28.34% 1.95% 2.43% 1.85%

Lrcn

2Drop
68.86% 42.78% 41.53% 0.97% 2.02% 1.01%

Lstm

1Drop
76.24% 45.00% 43.48% 0.75% 2.11% 1.89%

Lstm

2Drop
73.27% 47.22% 45.46% 0.85% 1.89% 0.96%

2038 Journal of Internet Technology Volume 20 (2019) No.7

Table 4. Comparison of model results with 1000 video

Model Train Acc. Val. Acc. Test Acc. Train Loss Val. Loss Test Loss

Lrcn

1Drop
24.29% 23.33% 22.36% 1.94% 2.04% 1.96%

Lrcn

2Drop
70.57% 53.33% 43.31% 0.95% 1.77% 1.28%

Lstm

1Drop
68.43% 48.67% 47.34% 0.98% 1.83% 0.93%

Lstm

2Drop
72.71% 49.36% 67.86% 0.86% 1.78% 1.01%

Table 5. Comparison of model results with 1250 video

Model Train Acc. Val. Acc. Test Acc. Train Loss Val. Loss Test Loss

Lrcn

1Drop
24.01% 22.38% 21.65% 1.92% 2.06% 2.01%

Lrcn

2Drop
76.56% 42.27% 42.13% 0.70% 1.86% 1.01%

Lstm

1Drop
64.38% 43.09% 40.31% 1.08% 1.73% 1.87%

Lstm

2Drop
82.91% 45.30% 78.54% 0.51% 1.89% 1.02%

Gru

1Drop
63.16% 40.88% 38.63% 1.13% 1.75% 1.91%

Gru

2Drop
54.47% 37.82% 35.62% 1.47% 2.23% 2.21%

Table 6. Comparison of model results with 1500 video

Model Train Acc. Val Acc. Test Acc. Train Loss Val. Loss Test Loss

Lstm2

Drop
83.05% 51.42% 81.78% 0.54% 1.99% 0.68%

However, since we noticed that the Lstm2Drop

model outperforms other models when increasing the

number of videos, as an additional experiment 1500

video dataset is only used for evaluating the

Lstm2Drop model in order to save the computational

cost. The Lstm2Drop model has shown the highest

accuracy in all datasets except the 750 video dataset.

Even though Table 3 shows Lstm1Drop has the best

accuracy, we noticed that this model addressed the

problem of overfitting which we have discussed in a

later section. Therefore, we can conclude that the

Lstm2Drop model is the best model within all datasets.

In addition, when going thru the average accuracy of

the Lstm2Drop model over the dataset size, it enhanced

that while increasing the size of dataset the average

model accuracy also going up drastically.

4.2 Model Performance with Dropout Layers

Dropout deals with ignoring randomly selected

neurons during model training. As a result, the model

becomes less sensitive to the specific weights of

neurons. This, in turn, results in a model that is capable

of better generalization and is less likely to over-fit the

training data. When comparing both LRCN and LSTM

models, the models with two dropout layers were able

to achieve the highest average accuracy and minimize

the loss considerably. This implies the importance of a

dropout between the visible layer and the first hidden

layer of LSTMs when our input is real-valued.

Even Table 3 shows the model Lstm1Drop get the

highest average accuracy of 76.24%, when we plot and

see the model loss over a number of epochs, we can

notice that this model shows the problem of overfitting.

This issue is clearly visible in Figure 3—while train

error decreases over the number of epochs, validation

error increases. To overcome this issue, we added an

additional dropout layer to the input stream of this

model, which is defined as Lstm2Drop.

Apart from that when observing the results in Table

5, even we did not notice the overfitting issue of the

Lstm1Drop model, we try to do experiments by adding

additional dropout layer to input stream as previous—

known as Lstm2Drop. After fitting the model, we

noticed that accuracy has increased with the value of

82.91% than 64.38% of Lstm1Drop and decreases the

loss as well.

In addition, by analyzing both average accuracy and

loss of training and validation process, Lstm2Drop

model achieved significant improvements than

Lrcn2Drop with the average training accuracy of

83.05%, 51.42% of validation accuracy and, 0.54%

and 1.99% of train and test loss respectively as

Deep Learning-Based Firework Video Pattern Classification 2039

illustrated in Figure 4. These results together

demonstrated that our firework dataset was able to

achieve the highest average testing accuracy of 81.78%

with the model Lstm2Drop.

Figure 3. Illustration of loss on Lstm1Drop model.

This clearly shows that this model is overfitting i.e.

validation loss is increasing while training loss is

decreasing after number of epochs

Figure 4. Illustration of loss and accuracy on

Lstm2Drop model with the 1500 dataset. Model

achieved average training accuracy of 83.05%, 81.78%

of testing accuracy and, 0.54% and 0.68% of train and

test loss

4.3 Fine-Tuning Parameters

Later on, we tested the model Lstm2Drop, by fine-

tuning fixed dropouts with different gradient clipping

values in order to identify the best fit. For this

experiment, we set input and visible layer dropout as

0.8 and 0.6 for hidden layers while changing gradient

clipping (Grad. Clip) values to 0, 5, 10, and 15 (Table

7). Even Grad. Clip is dealing with the exploding

gradients, simply it is a very effective solution. We

noticed that while increasing Grad. Clip the model

accuracy decreased slightly. Hence, we limited

experiments to Grad. Clip with the value of 15.

Because of the experiment with zero Grad. Clip

starting to converge at 420th epoch, we limited all

experiments under this to epoch 420, in order to

maintain fairness. That is the reason for accuracies

ranging around 60%. However, according to Table 7,

our Lstm2Drop model outputs the highest average

accuracy with 5 Grad. Clip value by minimizing the

loss.

Table 7. Model comparison results with different

gradient clipping values

Grad.

Clip

Train

Acc.
Test Acc.

Train

Loss
Test Loss

0 56.53% 40.61% 1.28% 1.94%

5 63.61% 42.27% 1.13% 1.76%

10 61.05% 40.88% 1.14% 1.78%

15 61.04% 40.61% 1.12% 1.80%

4.4 Performance of LSTM and GRU

GRUs have fewer parameters and thus may train a

bit faster or need less training data to generalize.

However, with large data, the LSTMs with higher

expressiveness may lead to better results. To clarify

this, we considered Gru1Drop and Gru2Drop modes

with 500 and 1250 datasets. Both of these models have

shown the highest accuracies with 500 video dataset as

shown in Table 2. This implies that the GRU works

better with less training data.

Since our best model is Lstm2Drop, in order to

compare the performance, we used Lstm2Drop and

Gru2Drop with the same two datasets as above. With

both datasets, Lstm2Drop has shown the best average

accuracy than Gru2Drop as in Table 8. This

demonstrates LSTM is aware to remember longer

sequences than GRUs and outperform them in tasks

requiring modeling long-distance relations like

firework video.

Table 8. Computation times of LSTM and GRU

models with both single and double dropout layers

Data

sets
Model

Train

Acc.

Test

Acc.

Train

Loss

Test

Loss

Lstm1Drop 63.12% 38.48% 1.17% 1.89%
500

Gru1Drop 74.58% 60.38% 0.83% 1.85%

Lstm2Drop 82.91% 78.54% 0.51% 1.02%
1250

Gru2Drop 54.47% 35.62% 1.47% 1.87%

While training, we noted all DL models’

computational time. Among them, we only considered

the time of LSTM and GRU models with both single

2040 Journal of Internet Technology Volume 20 (2019) No.7

and double dropout layers to enhance the faster

training of GRUs. Results in Table 9 show that both

models with GRU required less time duration to

generalize than LSTMs.

Table 9. Computation times of LSTM and GRU

models with both single and double dropout layers

Model Time (hours)

Lstm1Drop 17.03

Gru1Drop 16.06

Lstm2Drop 18.53

Gru2Drop 13.90

4.5 Model Complexity

Model complexity has characterized using many

factors. In deep learning, the model complexity,

especially with LSTM, often refers to the number of

hidden layers, included in a given predictive model. In

order to find the best number of hidden layers we did

experiments by changing the number of hidden layers

of the Lstm2Drop model.

Because of the computational time we make sure to

stop all training at the 300th epoch. We randomly

selected the starting number of hidden layers as 256

and increased and decreased hidden layers with a

similar ratio. However, our current hardware facilities

are not sufficient for 512 hidden layers and hence our

upper bound was 448. To find the best-fit model’s

complexity we considered the loss difference of each

running as shown in Table 10 and it verifies that model

with 128 hidden layers has the minimum loss value.

Table 10. Average train and test loss of Lstm2Drop

model over number of hidden layers

Hidden Layers Train Loss Val. Loss Loss Diff.

64 1.38% 2.73% 1.35%

128 1.03% 2.12% 1.09%

192 1.05% 2.32% 1.27%

256 1.14% 2.45% 1.31%

320 0.94% 2.27% 1.33%

384 0.95% 2.59% 1.64%

448 0.81% 2.36% 1.55%

4.6 Classification Mismatches

One crucial factor of classification problem is the

uniqueness of features. For better classification results,

it is necessary to have independent features among the

classes while features inside a class have similar

features. To maintain the uniqueness of each class even

we carefully categorized while creating our database,

we had some mismatch classification results because of

the relatively similar types of fireworks that exist

among a few classes. Some of those misclassification

results of Lstm2Drop model with 1500 dataset have

illustrated in Figure 5.

Even Figure 5(a) and 5(b) are two frames of a

particular video clip in the Desi class, it’s classified as

Chrysanhemum class. By the same token, Figure 5(c)

and 5(d) represent two frames of a video in the Desi

class and the model recognized it as in Dot class since

part of that firework video contains similar features as

such in Dot class. In addition, even though Figure 5(e)

and 5(f) are samples of Crosette class, both classified

as belongs to Fish and WaterFlower classes

respectively. Besides, Figure 5(g) recognized as in the

Desi class even it originally contains in Dot class.

(a) (b) (c) (d)

(e) (f) (g)

Figure 5. Misclassification results of few classes

because of relatively similar features

In general, RNN and its variants: LSTM and GRU

are means of learning from sequence using BPTT. In

this case usually, the sequence is fed into the neural net

at once. Thus if the input is a longer sequence or if it

contains too many parameters, LSTM has a chance to

forget the previously learned patterns or features,

which may cause to do the misclassifications.

Applying Attention mechanism—looking at a

subsection or prediction of the inputs, and then doing

multiple passes, hence it dynamically decided on each

pass what it looks at—to the neural net model will help

to overcome this classification mismatch [18]. In

addition, the attention-based model helps to classify

multiple objects within a single image because of its

ability to subset wise learning [19-20].

5 Conclusion

At the present time, deep learning has greatly

affected with video pattern classification in computer

vision. During our work we trained and compared

several neural net models based on CNN, LSTMs and

GRUs to find a suitable model for classifying the

patterns of fireworks in videos more efficiently,

Deep Learning-Based Firework Video Pattern Classification 2041

beyond the traditional video pattern classification

approaches. Our 1500 video dataset consists of 8

firework classes and we did experiments using

different dataset sizes and different (single and double)

dropout layers. Among all models that we

implemented, the model with sequence LSTMs and

double dropout layers—one for input and another for

hidden layers—outperforms the other models with the

testing accuracy of 81.78%.

Even our current dataset consists eight classes we

plan to add more types of firework to our dataset

including one additional class, which includes a mix

(multiple types) firework video, to ensure the

robustness of our model. In addition, our future works

include combining the current approach with attention

model, which automatically lets the neural net to focus

on a particular sub-region of the video that helps to

classify multiple patterns and prevent the model from

being misclassified. Moreover, we plan to extend this

work towards a two-stream approach by considering

both spatial and temporal features together instead of

single streams.

Acknowledgement

We thank the Pervasive Artificial Intelligence

Research (PAIR) Labs support. The Consortium is

funded by the Ministry of Science and Technology

(MOST) (MOST 108-2634-F-008-002).

References

[1] S. Hochreiter, J. Schmidhuber J, Long Short-Term Memory,

Journal Neural Computation, Vol. 9, No. 8, pp. 1735-1780,

December, 1997.

[2] J. Chung, C. Gulcehre, K. Cho, Y. Bengio, Empirical

Evaluation of Gated Recurrent Neural Networks on Sequence

Modeling, NIPS 2014 Workshop on Deep Learning, Montreal,

Canada, 2014, pp. 1-9.

[3] S. Abu-El-Haija, N. Kothari, J. Lee, P. Natsev, G. Toderici, B.

Varadarajan, S. Vijayanarasimhan, Youtube-8m: A Large-

scale Video Classification Benchmark, arXiv, 1609.08675,

September, 2016.

[4] Y. G. Jiang, Z. Wu, J. Wang, X. Xue, S. F. Chang, Exploiting

Feature And Class Relationships in Video Categorization

with Regularized Deep Neural Networks, IEEE Transactions

on Pattern Analysis and Machine Intelligence, Vol. 40, No. 2,

pp. 352-364, February, 2018.

[5] J. Y. Ng, M. Hausknecht, S. Vijayanarasimhan, O. Vinyals, R.

Monga, G. Toderici, Beyond Short Snippets: Deep Networks

for Video Classification, Proceedings of the IEEE Conference

on Computer Vision and Pattern Recognition, Boston, MA,

USA, 2015, pp. 4694-4702.

[6] J. Donahue, L. Hendricks, M. Rohrbach, S.Venugopalan, S.

Guadarrama, K. Saenkom, T. Darrell, Long-Term Recurrent

Convolutional Networks for Visual Recognition and

Description, IEEE Transactions on Pattern Analysis and

Machine Intelligence, Vol. 39, No. 4, pp. 677-691, April,

2017.

[7] K. Wu, Y. Yu, Automatic Object Extraction from Images

Using Deep Neural Networks and The Level-set Method, IET

Image Processing, Vol. 12, No. 7, pp.1131-41, February,

2018.

[8] A. Krizhevsky, I. Sutskever, G. E. Hinton, Imagenet

Classification with Deep Convolutional Neural Networks,

Advances in Neural Information Processing Systems, Vol. 60,

No. 6, pp. 84-90, June, 2017.

[9] Y. LeCun, Y. Bengio, G. Hinton, Deep Leearning, Nature,

Vol. 521, No. 7553, pp. 436-444, May, 2015.

[10] Y. M. Hirimutugoda, G. Wijayarathna, Image Analysis

System for Detection of Red Cell Disorders Using Artificial

Neural Networks, Sri Lanka Journal of Bio-Medical

Informatics, Vol. 1, No. 1, January, 2010.

[11] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, R.

Salakhutdinov, Dropout: A Simple Way to Prevent Neural

Networks from Overfitting, Journal of Machine Learning

Research, Vol. 15, No. 1, pp. 1929-1958, June, 2014.

[12] Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov,

D. Erhan, V. Vanhoucke, A. Rabinovich, Going Deeper with

Convolutions, Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition, Columbus, OH,

USA, 2014, pp. 1-9.

[13] J. Duchi, E. Hazan, Y. Singer, Adaptive Subgradient Methods

for Online Learning and Stochastic Optimization, Journal of

Machine Learning Research, Vol. 12, No. 7, pp. 2121-2159,

January, 2011.

[14] G. Hinton, N. Srivastava, K. Swersk, Neural Networks for

Machine Learning Lecture 6a Overview of Mini-Batch

Gradient Descent, https://www.cs.toronto.

edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf.

[15] Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R.

Girshick, S. Guadarrama, T. Darrell, Caffe: Convolutional

Architecture for Fast Feature Embedding, Proceedings of the

22nd ACM International Conference on Multimedia, Orlando,

FL, USA, 2014, pp. 675-678.

[16] J. Chung, C. Gulcehre, K. Cho, Y. Bengio, Empirical

Evaluation of Gated Recurrent Neural Networks on Sequence

Modeling, arXiv, 1412.3555, December, 2014.

[17] N. Léonard, S. Waghmare, Y. Wang, J. H. Kim, RNN:

Recurrent Library for Torch, arXiv, 1511.07889, November,

2015.

[18] V. Mnih, N. Heess, A. Graves, Recurrent Models of Visual

Attention, Advances in Neural Information Processing

Systems, pp. 2204-2212, 2014.

[19] J. Ba, V. Mnih, K. Kavukcuoglu, Multiple Object

Recognition with Visual Attention, arXiv, 1412.7755,

December, 2014.

[20] S. Sharma, R. Kiros, R. Salakhutdinov, Action recognition

using visual attention, arXiv, 1511.04119, November, 2015.

2042 Journal of Internet Technology Volume 20 (2019) No.7

Biographies

S. P. Kasthuri Arachchi is a Ph.D.

candidate in National Central

University, Taiwan. Her research

interest includes deep learning,

computer vision, and image

processing. She received her Master

degree in Computer Science from

University of Peradeniya, Sri Lanka and was a former

assistant lecturer in University of Kelaniya, Sri Lanka.

Timothy K. Shih is a Distinguished

Professor at the National Central

University, Taiwan. He is a Fellow of

the Institution of Engineering and

Technology (IET). He has received

many research awards, including IIAS

research award from Germany, HSSS

award from Greece, Brandon Hall award from USA,

the 2015 Google MOOC Focused Research Award.

Chih-Yang Lin received the Ph.D.

degree in computer science and

information engineering from National

Chung-Cheng University. He joined

Asia University from 2010 to 2017,

where he was a professor and

department chair of Bioinformatics and Medical

Engineering. Currently, he is an associate professor

with the Department of Electrical Engineering, Yuan-

Ze University, Taiwan.

Gamini Wijayarathna is the Dean

and a Senior Lecturer at Faculty of

Computing and Technology,

University of Kelaniya, Sri Lanka. He

is a Resource person for National

Education Institute (NIE) and

Ministry of Education. Also Dr. Wijayarathna is a

Software development consultant for private and

public institutes in Sri Lanka.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (Adobe RGB \0501998\051)
 /CalCMYKProfile (Japan Color 2001 Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHT <FEFF005b683964da300c9ad86a94002851fa8840002b89d27dda0029300d005d0020005b683964da300c8f3851fa0033003000300064002851fa88400029300d005d00204f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks true
 /AddPageInfo false
 /AddRegMarks false
 /BleedOffset [
 8.503940
 8.503940
 8.503940
 8.503940
]
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MarksOffset 9.354330
 /MarksWeight 0.141730
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed true
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

