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Abstract 

The video analytics technology has been a rapidly 

improving discipline in the past decade. With the recent 

developments in computer vision, we now have the 

ability to mine massive video data to obtain a clear 

understanding of what is happening in the world. Because 

of the remarkable successes of deep learning, currently, 

we are able to improve video analysis performance 

significantly than traditional statistical approaches. This 

study focuses on classifying the patterns of firework 

videos with various deep learning techniques using 

spatial and temporal features, beyond common types of 

pattern classifications. Among successful artificial neural 

networks, Convolutional Neural Networks (CNN) have 

demonstrated superiority on modeling high-level visual 

concepts, while Long Short-term Memory (LSTM) and 

Gated Recurrent Unit (GRU) units have shown great 

talent in modeling temporal dynamics in video-based 

pattern classification. Our basic models consist of CNN, 

LSTM, and GRU and, we did experiments by fine-tuning 

the parameters of layers and using different dropout 

values with sequence LSTM and GRU models. Our 

experimental results demonstrated that the model with a 

sequence of LSTM units and double dropout layers—one 

for input and another for hidden layers—outperforms the 

other experimental models with the training accuracy of 

83.05%. 

Keywords: Deep learning, Fireworks, Convolution 

Neural Network, Recurrent Neural Network 

1 Introduction 

Nowadays Firework shows are doing a major role in 

entertainment purposes. On the other hand, fireworks 

competitions are also frequently held at a number of 

famous places. People who are planning to arrange 

such kind of firework shows or competitions have to 

face a big challenge with firework types selection, 

because of the peoples’ interest of their entertainment 

is mainly depend on the types of fireworks that they 

are decided to display. To address this challenge, our 

work proposed a few methods to classify types of 

fireworks using existing videos. Further improvement 

of our work will help such organizers to get the idea of 

widely used firework types among the most popular 

fireworks shows. Based on these resulting types they 

may able to decide which combination of fireworks 

that they can display in order to get the peoples’ 

attraction to their event. 

Because of the video data consists of temporal 

features in addition to the spatial features of 2D images; 

video classification has become an inimitable 

challenge. Among these classification methods, the 

majority is dealing with the same pattern or physical 

action with different contexts or backgrounds. More 

preciously, video frames of a particular video consist 

same object or design, human action, face, gesture, or 

scene. Beyond these common types of classifications, 

our work discusses a few models, which attempt to 

classify the patterns of firework using a different kind 

of Deep Learning (DL) techniques. According to our 

knowledge, this is the first study of identifying 

firework patterns using different DL models.  

More recently, DL has been receiving increasing 

attention on video pattern classification and prediction 

applications. However, the challenge is to design a 

proper DL model to get the highest classification 

accuracy with the minimum loss using various deep 

learning techniques. Among successful DL techniques 

CNN and both LSTM [1] and GRU [2]—variants of 

Recurrent Neural Networks (RNN), are widely used to 

build complex video-based classification models.  

Before designing models for the experiments, the 

principal problem that we had to face is a sufficient 

firework dataset for the training phase. Even there are 

many datasets for image, text, human action 

recognition, and sports classification, we did not find 

any dataset containing fireworks videos. Therefore, we 

focused to create a new dataset for our classification 

task. As we emphasized before our purpose is to find a 

best-fit model for firework pattern classification. 

Among different kinds of DL techniques, the next 

challenge was to select suitable techniques for 

designing the model to classify firework types. Even 
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some previous works based on video classifications 

designed good models [3-5], we were doubtful whether 

those satisfy our requirements because of the firework 

videos consist with different patterns in most time 

steps comparison to such video classifications. 

To address the above issues our first contribution 

was to create a dataset with different types of fireworks. 

To maintain the fairness of our dataset and control the 

scope of our study we selected firework videos under 

some conditions and restrictions as discussed under 

methodology. In addition, we applied some 

augmentation techniques to enhance the size of the 

dataset and our current dataset consists of 8 firework 

types with 1500 video clips. Our second and but the 

main contribution of this study is to recognize proper 

DL techniques for classifying firework types using 

existing video data. By considering the advantages of 

previous studies [1-2] our work focused on three main 

DL models: Long-term Recurrent Convolutional 

Networks (LRCNs) [6], which is a combination of 

CNN and LSTM which is dealing with long-range 

temporal recursion; sequence of LSTMs, which is one 

of the most effective structures to model sequential 

data and, sequence of GRUs—a simplified version of 

LSTM. The fundamental difference between LSTM 

and GRU is that an LSTM has three gates as input, 

output and forget gate while GRU has reset and update 

gates. Hence GRU is simpler, easy to modify and train 

faster than LSTMs. 

The rest of the paper is organized as follows. 

Sections 2 and Section 3 discuss the related work and 

the proposed method. Next, experimental results and 

analysis are presented in Section 4. Finally, the 

conclusion and future works are concluded in Section 5. 

2 Related Work 

Video classification is a vital challenge in computer 

vision. In order to provide state-of-art results, 

traditional video classification research has been 

successful at obtaining overall video descriptors, which 

combine both appearance and motion information. 

However, because of the remarkable success of DL 

techniques, video classification performance has been 

improved significantly. Theatrical progress has been 

achieved by supervised convolutional models on image 

recognition tasks [7-9] and medical decision support 

images classification [10] as well. By taking such 

advantages, a number of extensions to process video 

have been recently proposed. Apart from that a proper 

video classification models should allow processing of 

variable length input sequences and provide variable 

length outputs, beyond conventional one versus all 

prediction tasks.  

In order to analyze sequences, LRCN, which 

associate CNN top of RNN in one architecture has 

been proposed [6]. This work has become beneficial in 

several tasks: activity recognition; images description; 

and video description. Like conventional RNN, LRCN 

is able to handle “sequence input to single output,” 

“single output to sequence output,” and “sequence 

input to sequence output”. In addition, the success of 

deep networks is also a result of the development of 

widely applicable simple learning techniques such as 

dropout [11], Rectified Linear Unit (ReLUs) [8]—a 

most common activation function and gradient clipping 

[12]. 

2.1 CNN and RNN 

CNN is a special case of the neural network, widely 

used in pattern and image classification problems 

because of its advantages compared to other techniques. 

While CNN deals with models, which process on 

single input, RNN fits for sequential input. However, 

in most practical cases, RNN cannot memorize 

previous information that is far from current state. 

When input sequence is too long, training RNN with 

back-propagation through time (BPTT) may face to the 

problem of vanishing gradient (gradient becomes small 

when it flows back too many steps) [11]. Consequently, 

RNN forget long-term dependencies. To address this 

issue, a new neural net technique called LSTM, which 

has capability of remembering information for a long 

range of time steps has been proposed [1]. Replacing 

simple neural unit by LSTM unit in RNN showed 

significant improvement. Moreover, GRU has less 

computational steps than LSTM [2]. The idea of GRU 

makes LSTM simpler by summing up forget gate and 

input gate into single update gate.  

2.2 Learning Rate 

Neural networks are often trained by gradient 

descent on the weights. The learning rate determines 

how fast these weights are changing. Therefore, it is 

essential to adapt learning rate with suitable parameters. 

Adagrad described a way of adapting to learning rate 

with parameters, by adjusting learning rate process at 

the training stage [13]. Although Adagrad helps to 

adjust the learning rate, it can make trouble when 

training for long time. Because of many time steps, 

learning rate decreases and when learning rate 

approximates to zero, it is impossible to get any more 

parameters. Hence, the solution to overcome 

Adagrad’s learning rate decreasing problem—a new 

thing that tries to adapt resilient prop (rprop) [14], 

widely used to train RNNs for batch training, to 

stochastic gradient descent. Therefore, in this work, we 

used RMSprop to optimize the learning rate. 

3 Methodology 

To classify the types of firework videos, we 

designed three main models using DL techniques 

namely, LRCN, LSTM, and GRU. LRCN, which is a 

combination of CNN and RNN (specifically LSTM) 
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proposed for sequence analyzing with Caffe [15]. CNN 

layers of LRCN the model naturally extract spatial 

features while following LSTM layers extract temporal 

features. In this study, our purpose is to investigate the 

ability to identify spatial-temporal features of fire-work 

video. Hence, we performed our first set of 

experiments based on LRCN architecture. As 

mentioned earlier, LSTM has the capability of 

remembering information for a long range of time 

steps of variable length inputs. Therefore, our second 

model designed using the sequence of recurrent units, 

SeqLSTM. GRU is related to LSTM as both are 

utilizing different ways of gating information to 

prevent vanishing gradient problem. The GRU unit 

controls the flow of information like the LSTM unit 

thus computationally more efficient [16]. Moreover, 

apart from SeqLSTM, we designed another model using 

a sequence of GRU units for performance comparison. 

To find the best fit model to achieve the highest 

average accuracy we fine-tuned each model’s 

necessary parameters such as dropout, learning rate, 

and gradient clipping—a popular technique to 

overcome the exploding gradients problem during 

backpropagation. Setting a good learning rate is tricky 

in DL models. For all our experiments, we used 

RMSprop with a staring learning rate of 10-3 and after 

10 epochs decreased by 10 times (10-4). According to 

the study [12], in practice, proper dropout values for 

real-valued inputs like video can be set to 0.8 and for 

hidden layers, it varies from 0.5 to 0.8. 

3.1 Firework Dataset 

Dataset size is one of the important factors that deep 

neural network architecture depends on. Due to the 

unavailability of a standard firework video dataset, first 

we had to create our own dataset. We downloaded 

different types of firework videos with low resolution, 

in order to decrease the computational cost and split 

them into less than 8-second length clips. Our first 

experimental dataset consists of 750 video clips and 

gradually increased the dataset up to 1500 for 

experimental purposes. Also, we applied a few 

augmentation techniques such as flip-up, flip-down, 

and rotate to increase the size of the dataset. However, 

firework videos have been selected under three 

conditions to maintain the fairness of our dataset and 

control the scope of our study as listed below.  

‧Each video should have one firework type. 

‧ Videos should not contain any other moving 

objects except firework. 

‧The background should be static with invisible 

objects.  

Sample firework video types, which are not included 

in our dataset are shown in Figure 1. We manually 

categorized the dataset into eight classes: 

Chrysanhemum, Crosette, Desi, Dot, Drop, Fish, Palm, 

and WaterFlower by looking at each video clip (Figure 

2). We further randomly divided the dataset into 3 

sections as training (70%), validation (15%), and 

testing (15%) to evaluate the model performances. 
 

 

Figure 1. Sample firework video not satisfied with our 

data selection conditions. Such videos contain multiple 

types of fireworks, moving objects like ship and 

airplane while exploring the firework and, visible and 

statics objects thru the background 

3.2 Experimental Architectures  

Our experiments were based on three main models 

as we described earlier. The first model followed 

LRCN architecture and the other two were based on 

LSTMs and GRUs. LSTM and GRU units of these 

models consist of a single dropout layer inside hidden 

layers. In addition to that, we tested our dataset by 

adding another dropout layer in between visible layer 

or top of the first hidden layer (to input volume). 

3.2.1 LRCN - with Single Dropout Layer 

(Lrcn1Drop) and Double Dropout Layers 

(Lrcn2Drop)  

As appears in Table 1, the architecture of the 

Lrcn1Drop model designed using five layers including 

a single dropout layer. We limited our input size to 

240×320 resolution because of the high computational 

cost of high- resolution input and since we are using 

RGB video with 3 channels. This model contains four 

CNN layers and followed by a sequence of LSTM 

units. Reducing input size at lower layers helps to 

decrease the computational cost. Hence, low layers 

such as layer 1 and layer 2, we wanted to reduce the 

size of input by 2 times for each layer. To do this we 

see the stride size to 2 when input passing through the 

CNN layer. To avoid high information loss, our input 

feature planes set to 32 in the first layer. Moreover, the 

Batch Normalization layer addresses the vanishing and 

exploding gradients problem and helps faster training 

as well as removes the internal covariate shift problem. 
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Table 1. Details of five layers of LRCN with 4 CNN 

layers and 1 LSTM layer 

Input 320×240 size, 3 color channels RGB 

CNN Layer 1 32 planes, 5x5 kernel, stride 2, pad 3 

 Batch Normalization 

 ReLU 

 Max Pooling 3x3 kernel, stride 1, pad 1 

CNN 

Layer 2 
64 planes, 3x3 kernel, stride 1, pad 2 

 Batch Normalization 

 ReLU 

 Max Pooling 3x3 kernel, stride 2, pad 1 

CNN 

Layer 3 
128 planes, 3x3 kernel, stride 1, pad 1 

 ReLU 

CNN 

Layer 4 
256 planes, 3x3 kernel, stride 1, pad 1 

 ReLU 

 Max Pooling 3x3 kernel, stride 1, pad 1 

Layer 5 
LSTM 256 hidden size with 0.5 

Dropout  

Fully 

Connected 
8 classes output 

 Log Softmax 

 

LSTM layers we tested by adding different size of 

hidden layers. Since Dropout is necessary to prevent 

over-fitting, it is important to place a dropout layer 

between the last CNN layer and LSTM layers—a large 

number of parameters passing through CNN to LSTM 

is fully connected. For the Lrcn2Drop model, a 

modification of LRCN, we inserted an additional 

dropout layer to input volume of LSTMs to avoid over-

fitting caused by real-valued inputs [12]. Because of 

inner CNN layers not consists of many parameters as 

fully connected and most probably dropout is not 

preventing co-adaption for CNN, we did not add 

dropout layers within CNN layers. 

3.2.2 RNN-SeqLSTM with Single Dropout Layer 

(Lstm1Drop) and SeqLSTM with Double 

Dropout Layers (Lstm2Drop) 

Our second DL model, based on LSTMs, a variant 

of RNN, which perform much faster and detects long-

term dependencies of the ordered sequence of frames. 

Besides the problem of long training time of RNN it 

also faces the problem of memory loss during long 

running. Subsequently, LSTM units use memory cells 

to store and output information thus allow to discover 

better long-range temporal relationships than RNN. 

The input volume of model Lstm1Drop also similar to 

our previous model and we randomly assigned 256 

hidden layers with 0.6 dropout value within hidden 

layers—selected after fine-tuning. Similar to the 

previous model we added additional dropout layer to 

input volume of the Lstm2Drop model in order to 

compare the model accuracy.  

 

Figure 2. Manually categorized eight firework classes. All classes represent popular names of firework types 
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3.2.3 RNN - SeqGRU with Single Dropout Layer 

(Gru1Drop) and SeqGRU with Double 

Dropout Layers (Gru2Drop) 

GRU, another variant of RNN, as well as a 

simplified version of LSTM, makes each recurrent unit 

adaptively capture dependencies of different time 

scales. Even GRU is relatively new, we experienced 

that its performance as on a par with LSTM, but 

computationally more efficient because of less 

complex structure. Therefore, we designed Gru1Drop 

with one dropout layer and Gru2Drop with double 

dropout layers as our testing models to compare results 

of LSTMs and GRUs. 

4 Implementation and Experimental 

Results Discussion 

The next important factor after creating a dataset and 

designing models is to decide a proper DL framework 

to implement the system. According to the study [15], 

even LRCN was originally implemented in Caffe, in 

practice, Caffe is not the best for RNN and Torch7 is 

demonstrated as a reasonable framework because of its 

ability to script new modules, especially for RNN [17]. 

Moreover, our main contribution is to compare the 

model accuracy of LRCN, LSTM, and GRU. Hence, 

all models had to implement in the same framework. 

These reasons motivated us to implement the system 

on Torch7 and our supportive operating system was 

Ubuntu 16.04. For best practice, we implemented our 

system with 3 main modules: data loader for loading 

any type of video data; a model that contacts DL 

architecture; and a train/validation/test module to 

perform optimization tasks. Our dataset is about 

2.25GB and we trained each model using a GPU (Ge-

Force GTX 1080). 

4.1 Model Performances with Different Size of 

Datasets 

Big data is often discussed along with deep learning. 

In practice, a good amount of data needs for training a 

deep model, since it’s necessary to make sure the 

model’s capability of generalization. Under this 

experiment, we evaluated model skill over the size of 

the training dataset. 

Our first experimental dataset consists of 750 

firework video and we divided it as a similar ratio as 

mentioned in methodology. In addition, the 

experimental conditions also unique with the current 

dataset, which has 1250 video, as we discussed under 

the same section. For better comparison, we tested our 

models with different dataset sizes as 500, 750, 1000, 

1250, and 1500 video clips. Table 2 to Table 6 

illustrates the average model accuracies and losses of 

each dataset respectively.  

Table 2. Comparison of model results with 500 video 

Model Train Acc. Val. Acc. Test Acc. Train Loss Val. Loss Test Loss 

Lrcn 

1Drop 
33.52% 25.83% 23.26% 1.83% 2.12% 1.92% 

Lrcn 

2Drop 
64.24% 35.10% 40.42% 1.09% 2.40% 2.01% 

Lstm 

1Drop 
63.12% 44.93% 38.48% 1.17% 2.17% 1.89% 

Lstm 

2Drop 
67.31% 47.74% 57.36% 1.14% 1.89% 1.12% 

Gru 

1Drop 
74.58% 55.10% 60.38% 0.83% 1.01% 1.85% 

Gru 

2Drop 
58.10% 30.46% 41.01% 1.47% 1.58% 2.21% 

Table 3. Comparison of model results with 750 video 

Model Train Acc. Val. Acc. Test Acc. Train Loss Val. Loss Test Loss 

Lrcn 

1Drop 
42.33% 29.65% 28.34% 1.95% 2.43% 1.85% 

Lrcn 

2Drop 
68.86% 42.78% 41.53% 0.97% 2.02% 1.01% 

Lstm 

1Drop 
76.24% 45.00% 43.48% 0.75% 2.11% 1.89% 

Lstm 

2Drop 
73.27% 47.22% 45.46% 0.85% 1.89% 0.96% 
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Table 4. Comparison of model results with 1000 video 

Model Train Acc. Val. Acc. Test Acc. Train Loss Val. Loss Test Loss 

Lrcn 

1Drop 
24.29% 23.33% 22.36% 1.94% 2.04% 1.96% 

Lrcn 

2Drop 
70.57% 53.33% 43.31% 0.95% 1.77% 1.28% 

Lstm 

1Drop 
68.43% 48.67% 47.34% 0.98% 1.83% 0.93% 

Lstm 

2Drop 
72.71% 49.36% 67.86% 0.86% 1.78% 1.01% 

Table 5. Comparison of model results with 1250 video 

Model Train Acc. Val. Acc. Test Acc. Train Loss Val. Loss Test Loss 

Lrcn 

1Drop 
24.01% 22.38% 21.65% 1.92% 2.06% 2.01% 

Lrcn 

2Drop 
76.56% 42.27% 42.13% 0.70% 1.86% 1.01% 

Lstm 

1Drop 
64.38% 43.09% 40.31% 1.08% 1.73% 1.87% 

Lstm 

2Drop 
82.91% 45.30% 78.54% 0.51% 1.89% 1.02% 

Gru 

1Drop 
63.16% 40.88% 38.63% 1.13% 1.75% 1.91% 

Gru 

2Drop 
54.47% 37.82% 35.62% 1.47% 2.23% 2.21% 

Table 6. Comparison of model results with 1500 video 

Model Train Acc. Val Acc. Test Acc. Train Loss Val. Loss Test Loss 

Lstm2 

Drop 
83.05% 51.42% 81.78% 0.54% 1.99% 0.68% 

 

However, since we noticed that the Lstm2Drop 

model outperforms other models when increasing the 

number of videos, as an additional experiment 1500 

video dataset is only used for evaluating the 

Lstm2Drop model in order to save the computational 

cost. The Lstm2Drop model has shown the highest 

accuracy in all datasets except the 750 video dataset. 

Even though Table 3 shows Lstm1Drop has the best 

accuracy, we noticed that this model addressed the 

problem of overfitting which we have discussed in a 

later section. Therefore, we can conclude that the 

Lstm2Drop model is the best model within all datasets. 

In addition, when going thru the average accuracy of 

the Lstm2Drop model over the dataset size, it enhanced 

that while increasing the size of dataset the average 

model accuracy also going up drastically. 

4.2 Model Performance with Dropout Layers 

Dropout deals with ignoring randomly selected 

neurons during model training. As a result, the model 

becomes less sensitive to the specific weights of 

neurons. This, in turn, results in a model that is capable 

of better generalization and is less likely to over-fit the 

training data. When comparing both LRCN and LSTM 

models, the models with two dropout layers were able 

to achieve the highest average accuracy and minimize 

the loss considerably. This implies the importance of a 

dropout between the visible layer and the first hidden 

layer of LSTMs when our input is real-valued.  

Even Table 3 shows the model Lstm1Drop get the 

highest average accuracy of 76.24%, when we plot and 

see the model loss over a number of epochs, we can 

notice that this model shows the problem of overfitting. 

This issue is clearly visible in Figure 3—while train 

error decreases over the number of epochs, validation 

error increases. To overcome this issue, we added an 

additional dropout layer to the input stream of this 

model, which is defined as Lstm2Drop. 

Apart from that when observing the results in Table 

5, even we did not notice the overfitting issue of the 

Lstm1Drop model, we try to do experiments by adding 

additional dropout layer to input stream as previous—

known as Lstm2Drop. After fitting the model, we 

noticed that accuracy has increased with the value of 

82.91% than 64.38% of Lstm1Drop and decreases the 

loss as well. 

In addition, by analyzing both average accuracy and 

loss of training and validation process, Lstm2Drop 

model achieved significant improvements than 

Lrcn2Drop with the average training accuracy of 

83.05%, 51.42% of validation accuracy and, 0.54% 

and 1.99% of train and test loss respectively as 
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illustrated in Figure 4. These results together 

demonstrated that our firework dataset was able to 

achieve the highest average testing accuracy of 81.78% 

with the model Lstm2Drop. 

 

Figure 3. Illustration of loss on Lstm1Drop model. 

This clearly shows that this model is overfitting i.e. 

validation loss is increasing while training loss is 

decreasing after number of epochs 

 

Figure 4. Illustration of loss and accuracy on 

Lstm2Drop model with the 1500 dataset. Model 

achieved average training accuracy of 83.05%, 81.78% 

of testing accuracy and, 0.54% and 0.68% of train and 

test loss 

 

4.3 Fine-Tuning Parameters 

Later on, we tested the model Lstm2Drop, by fine-

tuning fixed dropouts with different gradient clipping 

values in order to identify the best fit. For this 

experiment, we set input and visible layer dropout as 

0.8 and 0.6 for hidden layers while changing gradient 

clipping (Grad. Clip) values to 0, 5, 10, and 15 (Table 

7). Even Grad. Clip is dealing with the exploding 

gradients, simply it is a very effective solution. We 

noticed that while increasing Grad. Clip the model 

accuracy decreased slightly. Hence, we limited 

experiments to Grad. Clip with the value of 15. 

Because of the experiment with zero Grad. Clip 

starting to converge at 420th epoch, we limited all 

experiments under this to epoch 420, in order to 

maintain fairness. That is the reason for accuracies 

ranging around 60%. However, according to Table 7, 

our Lstm2Drop model outputs the highest average 

accuracy with 5 Grad. Clip value by minimizing the 

loss. 

Table 7. Model comparison results with different 

gradient clipping values 

Grad. 

Clip 

Train 

Acc. 
Test Acc. 

Train 

Loss 
Test Loss

0 56.53% 40.61% 1.28% 1.94% 

5 63.61% 42.27% 1.13% 1.76% 

10 61.05% 40.88% 1.14% 1.78% 

15 61.04% 40.61% 1.12% 1.80% 

 

4.4 Performance of LSTM and GRU 

GRUs have fewer parameters and thus may train a 

bit faster or need less training data to generalize. 

However, with large data, the LSTMs with higher 

expressiveness may lead to better results. To clarify 

this, we considered Gru1Drop and Gru2Drop modes 

with 500 and 1250 datasets. Both of these models have 

shown the highest accuracies with 500 video dataset as 

shown in Table 2. This implies that the GRU works 

better with less training data. 

Since our best model is Lstm2Drop, in order to 

compare the performance, we used Lstm2Drop and 

Gru2Drop with the same two datasets as above. With 

both datasets, Lstm2Drop has shown the best average 

accuracy than Gru2Drop as in Table 8. This 

demonstrates LSTM is aware to remember longer 

sequences than GRUs and outperform them in tasks 

requiring modeling long-distance relations like 

firework video. 

Table 8. Computation times of LSTM and GRU 

models with both single and double dropout layers 

Data 

sets
Model 

Train 

Acc. 

Test 

Acc. 

Train 

Loss 

Test  

Loss 

Lstm1Drop 63.12% 38.48% 1.17% 1.89% 
500 

Gru1Drop 74.58% 60.38% 0.83% 1.85% 

Lstm2Drop 82.91% 78.54% 0.51% 1.02% 
1250 

Gru2Drop 54.47% 35.62% 1.47% 1.87% 

 

While training, we noted all DL models’ 

computational time. Among them, we only considered 

the time of LSTM and GRU models with both single 
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and double dropout layers to enhance the faster 

training of GRUs. Results in Table 9 show that both 

models with GRU required less time duration to 

generalize than LSTMs. 

Table 9. Computation times of LSTM and GRU 

models with both single and double dropout layers 

Model Time (hours) 

Lstm1Drop 17.03 

Gru1Drop 16.06  

Lstm2Drop 18.53 

Gru2Drop 13.90 

 

4.5 Model Complexity 

Model complexity has characterized using many 

factors. In deep learning, the model complexity, 

especially with LSTM, often refers to the number of 

hidden layers, included in a given predictive model. In 

order to find the best number of hidden layers we did 

experiments by changing the number of hidden layers 

of the Lstm2Drop model.  

Because of the computational time we make sure to 

stop all training at the 300th epoch. We randomly 

selected the starting number of hidden layers as 256 

and increased and decreased hidden layers with a 

similar ratio. However, our current hardware facilities 

are not sufficient for 512 hidden layers and hence our 

upper bound was 448. To find the best-fit model’s 

complexity we considered the loss difference of each 

running as shown in Table 10 and it verifies that model 

with 128 hidden layers has the minimum loss value. 

Table 10. Average train and test loss of Lstm2Drop 

model over number of hidden layers 

Hidden Layers Train Loss Val. Loss Loss Diff. 

64 1.38% 2.73% 1.35% 

128 1.03% 2.12% 1.09% 

192 1.05% 2.32% 1.27% 

256 1.14% 2.45% 1.31% 

320 0.94% 2.27% 1.33% 

384 0.95% 2.59% 1.64% 

448 0.81% 2.36% 1.55% 

 

4.6 Classification Mismatches 

One crucial factor of classification problem is the 

uniqueness of features. For better classification results, 

it is necessary to have independent features among the 

classes while features inside a class have similar 

features. To maintain the uniqueness of each class even 

we carefully categorized while creating our database, 

we had some mismatch classification results because of 

the relatively similar types of fireworks that exist 

among a few classes. Some of those misclassification 

results of Lstm2Drop model with 1500 dataset have 

illustrated in Figure 5. 

Even Figure 5(a) and 5(b) are two frames of a 

particular video clip in the Desi class, it’s classified as 

Chrysanhemum class. By the same token, Figure 5(c) 

and 5(d) represent two frames of a video in the Desi 

class and the model recognized it as in Dot class since 

part of that firework video contains similar features as 

such in Dot class. In addition, even though Figure 5(e) 

and 5(f) are samples of Crosette class, both classified 

as belongs to Fish and WaterFlower classes 

respectively. Besides, Figure 5(g) recognized as in the 

Desi class even it originally contains in Dot class. 

 

(a)                (b)                 (c)               (d) 

 

(e)                            (f)                       (g) 

Figure 5. Misclassification results of few classes 

because of relatively similar features 

 

In general, RNN and its variants: LSTM and GRU 

are means of learning from sequence using BPTT. In 

this case usually, the sequence is fed into the neural net 

at once. Thus if the input is a longer sequence or if it 

contains too many parameters, LSTM has a chance to 

forget the previously learned patterns or features, 

which may cause to do the misclassifications. 

Applying Attention mechanism—looking at a 

subsection or prediction of the inputs, and then doing 

multiple passes, hence it dynamically decided on each 

pass what it looks at—to the neural net model will help 

to overcome this classification mismatch [18]. In 

addition, the attention-based model helps to classify 

multiple objects within a single image because of its 

ability to subset wise learning [19-20]. 

5 Conclusion 

At the present time, deep learning has greatly 

affected with video pattern classification in computer 

vision. During our work we trained and compared 

several neural net models based on CNN, LSTMs and 

GRUs to find a suitable model for classifying the 

patterns of fireworks in videos more efficiently, 
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beyond the traditional video pattern classification 

approaches. Our 1500 video dataset consists of 8 

firework classes and we did experiments using 

different dataset sizes and different (single and double) 

dropout layers. Among all models that we 

implemented, the model with sequence LSTMs and 

double dropout layers—one for input and another for 

hidden layers—outperforms the other models with the 

testing accuracy of 81.78%.  

Even our current dataset consists eight classes we 

plan to add more types of firework to our dataset 

including one additional class, which includes a mix 

(multiple types) firework video, to ensure the 

robustness of our model. In addition, our future works 

include combining the current approach with attention 

model, which automatically lets the neural net to focus 

on a particular sub-region of the video that helps to 

classify multiple patterns and prevent the model from 

being misclassified. Moreover, we plan to extend this 

work towards a two-stream approach by considering 

both spatial and temporal features together instead of 

single streams. 
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