
The Constructive Algorithm of Vertex-disjoint Paths in the Generalized Hypercube under Restricted Connectivity 1995

The Constructive Algorithm of Vertex-disjoint Paths in the

Generalized Hypercube under Restricted Connectivity

Guijuan Wang1, Jianxi Fan1, Yali Lv2, Baolei Cheng1, Shuangxiang Kan1

1 School of Computer Science and Technology, Soochow University, China
2 Institute of Information Technology, Henan University of Chinese Medicine, China

{guijuan_wang, lvyali136}@126.com, {jxfan, chengbaolei}@suda.edu.cn, sxkan@foxmail.com*

*Corresponding Author: Jianxi Fan; E-mail: jxfan@suda.edu.cn

DOI: 10.3966/160792642019102006028

Abstract

The generalized hypercube is a classical

interconnection network with excellent properties. It not

only includes the hypercube network, the 3-ary n-cube

network, and the complete networks, but also can be used

to construct data center networks such as FBFLY, BCube,

HyperX, SWCube, etc. Since the fact that all neighbors of

one vertex becoming faulty at the same time is almost

impossible, we assume that each vertex in this paper

has at least one fault-free neighbor. We use

1 1(, , ...,)
r r

G m m m
−

 to denote the r-dimensional

generalized hypercube and
1 ()κ G to denote the 1-

restricted connectivity of 1 1(, , ...,)
r r

G m m m
−

. Then we

design an algorithm to construct at least
1 ()κ G disjoint

paths based on any two distinct vertices in

1 1(, , ...,)
r r

G m m m
−

 under the 1-restricted connectivity.

The maximum length of these disjoint paths is bounded

by r+2.

Keywords: Generalized hypercube, Disjoint path,

Restricted connectivity, Fault-tolerance

1 Introduction

A topology with excellent properties will improve

the quality of an interconnection network. A good

topology can make an interconnection network has low

construction cost, low communication delay, high

fault-tolerant ability, and so on. So far, researchers

have proposed many excellent interconnection

networks’ topologies such as the hypercube, the

crossed cube, the twisted cube, the Mobius�� cube, etc.

However, the representation of vertices in these

networks is limited to binary only, which makes the

topology not flexible. For letting the representation of

vertices in networks no longer limited to binary and

making the structure more general, Laxmi and Dharma

proposed the generalized hypercube (GH) [1]. The

generalized hypercube has excellent properties: it is

easily to expand with recursive structure; it is edge

symmetric and vertex symmetric; it has low

communication delay, etc. It includes many

interconnection networks such as: the hypercube, the

completed network, the 3-ary n-cube and so on.

Furthermore, it can be used to construct some data

center networks [2-5]. Since the generality of the

generalized hypercube, the study results about it can be

applied into other networks. Therefore, there are many

studies based on it [2-4, 6-8].

In this paper, we study the algorithm to construct

vertex-disjoint paths in the generalized hypercube with

1-restricted connectivity. A topology of interconnection

network can be modeled by a graph where vertex

denotes the processor and edge denotes the

communication link. That is, let (,)G V E= denote an

interconnection network, where V and E represent

vertex set and edge set, respectively. We use ()κ G to

denote the connectivity of a graph G, which is the

minimum number of vertices in set S V⊂ and the

graph G is disconnected when deleting S. We can

estimate the communication capability of vertices by

connectivity and we can also use it to measure the

fault-tolerant ability of one network. However, many

works assume that the neighbors of one vertex can

become faulty at the same time when estimating the

fault-tolerant ability based on the connectivity, which

has quite low probability. Therefore, in order to more

accurately measure the communication and fault-

tolerant ability of one network based on connectivity, a

lot of conditions are added into the connectivity.

Esfahanian and Hakimi introduced the concept of

restricted connectivity [9-10]. Let ()g
κ G be the g-

restricted connectivity of G, which is the minimum

number of vertices in set F V⊂ , whose deletion

disconnects G and each vertex has at least g fault-free

neighbors in each disconnected component. So far,

there are many studies based on the restricted

connectivity. Chen et al. studied the restricted vertex

connectivity and the restricted edge connectivity of

three families of interconnection networks [11]. Hsieh

et al. studied the {2, 3}-restricted connectivity of

1996 Journal of Internet Technology Volume 20 (2019) No.6

locally twisted cubes [12]. Wang et al. proved that the

h-restricted connectivity of the data center network

DCell is almost as (h+1) times as traditional

connectivity [13-14]. Balbuena and Marcote studied

the p-restricted edge-connectivity of Kneser graphs

[15]. Then it has received many attentions from

outstanding researchers [16-22]. In this paper, we

assume that each vertex has at least one fault-free

neighbor which can better reflect the actual

communication of a network.

Vertex-disjoint paths are those that do not share any

common vertex except for end vertices. Disjoint paths

are fundamental and essential for parallel, distributed

computing, fault-tolerance, and load balancing of a

network [23]. For transmitting data in the network

stably and safely, more and more works are based on

vertex-disjoint paths. Lai studied the optimal

construction of all shortest vertex-disjoint paths in the

hypercube with applications [24]. Furthermore, the

maximal length of paths is also minimized in the worst

case. Cheng et al. proposed an ()O NlogN recursive

algorithm to construct n independent spanning trees in

Mobius�� cubes, and further they constructed n vertex-

disjoint paths based on the n independent spanning

trees [25]. Cheng et al. proved that there exist two

vertex-disjoint paths in the balanced hypercube, and

then they studied the hamiltonian laceability of the

balanced hypercube based on vertex-disjoint paths [26].

Inoue proved that network reliability and the criticality

of links are greatly dependent on path disjointness [27].

However, these works do not consider the restricted

connectivity when construct vertex-disjoint paths.

In this paper, we propose algorithms to construct

vertex-disjoint paths based on any two distinct vertices

under 1-restricted connectivity. We use

1 1(, , ...,)
r r

G m m m
−

 to denote the r-dimensional

generalized hypercube and 1 ()κ G to be the 1-restricted

connectivity. In this paper, we proposed an algorithm

to construct at least 1 ()κ G disjoint paths based on any

two distinct vertices in the generalized hypercube

under 1-restricted connectivity in ()O mr time, where

the maximum length of these disjoint paths is bounded

by r+2.

The rest of this paper is organized as follows. In

Section 2, we give some basic definitions and notations

used in this paper and some properties of the

generalized hypercube. Then, we design the

construction algorithms to construct vertex-disjoint

paths in Section 3. In Section 4, we do simulations to

analyze performances of the proposed algorithm.

Finally, we provide conclusions of the paper in Section

5.

2 Preliminaries

In this section, we first introduce some definitions

and notations used in this paper and introduce the

definition and properties of the generalized hypercube.

2.1 Definitions and Notations

Given an undirected simple graph ((), ())G V G E G= ,

where ()V G and ()E G represent vertex set and edge

set, respectively. Let (,)u v be an edge with end

vertices u and v. If (,) ()u v E G∈ , we call u and v are

neighbors for each other. Let 1(,)nP u u =
1 2(...)nu u u→ → → be a path from 1

u to n

u in

which any two consecutive vertices are adjacent. Let
1(,) (...)i j i i j

P u u u u u
+

= → → → . Then we call path

(,)i j
P u u to be the sub-path of 1(,)nP u u . Furthermore,

we write 1 1 1 1(,) (...n i i
P u u u u u

− +

= → → →

(,)i j
P u u

1...)j n
u u

+

→ → . We use F to represent the

faulty vertices set of G. If a vertexu F∈ , we call u a

faulty vertex; otherwise we call it fault-free. If each

vertex has one fault-free neighbor in graph G-F, we

call the connectivity of G under this condition as the 1-

restricted connectivity, denoted by 1 ()κ G .

The generalized hypercube is a general class of

hypercube structures which is designed to be used in

the parallel and distributed environments [1]. Then we

give the definition of an r-dimensional generalized

hypercube as follows:

Definition 1. For any integer 1r ≥ , an r-dimensional

generalized hypercube, denoted by 1 1(, , ...,)
r r

G m m m
−

,

has 1

r

i im=
∏ vertices, where im is the number of

vertices in each dimension. Each vertex u in

1 1(, , ...,)
r r

G m m m
−

 can be denoted by an r-digit

identifier 1 1...

r r
u u u

−

, where 0 1i iu m≤ ≤ − with1 i r≤ ≤ .

Two vertices in 1 1(, , ...,)
r r

G m m m
−

 are adjacent if and

only if their identifiers differ at exactly one position.

Figure 1 demonstrates the structure of (3, 4)G and

(3,3, 4)G . We know that (3,3, 4)G is constructed by 3

(3, 4)G s. Therefore, one 1 1(, , ...,)
r r

G m m m
−

 is made up

of
r

m 1 2 1(, , ...,)
r r

G m m m
− −

.

(a) (b)

Figure 1. The structure of G(3,4) and the structure of

G(3,3,4)

According to [1], we have the following theorems.

The Constructive Algorithm of Vertex-disjoint Paths in the Generalized Hypercube under Restricted Connectivity 1997

Theorem 1. The connectivity of 1 1(, , ...,)
r r

G m m m
−

 is

1
()

r

i
i

κ G m
=

=∑ .

Theorem 2. The diameter of 1 1(, , ...,)
r r

G m m m
−

 is r.

2.2 Properties of 1 1(, ,...,)
r r

G m m m
−

 Under 1-

restricted Connectivity

In this paper, we assume that each vertex in

1 1(, , ...,)
r r

G m m m
−

 has at least one fault-free neighbor.

For simplicity, let G represent 1 1(, , ...,)
r r

G m m m
−

 in the

following section and these two symbols can be used

alternately. Given two arbitrary vertices

1 1 1 1... ...r r k k ku u u u u u u
− + −

= and 1 1 1 1... ...

r r n n n
v v v v v v v

− + −
=

in 1 1(, , ...,)
r r

G m m m
−

. Let 1 1 1 1... ...r r k kx u u u gu u
− + −

= be a

u's fault-free neighbor, ku g≠ ; and

1 1 1 1... ...

r r n n
y v v v qv v

− + −
= be a v's fault-free neighbor,

n
v q≠ . We use an array 1 1[, , ...,]

uv α α
L l l l

−

= to indicate

positions at which u and v have different value.

For example, when u=000000 and v=003102, then

[4,3,1]
uv
L = and 3α = , since at positions 4, 3, and 1, u

and v have different bits. If u and v are adjacent, then

they have exactly one different bit. Furthermore, we

use hamming distance to represent the distance

between u and v, denoted by (,)h u v , which is defined

as the cardinality of { | }i ii u v≠ [28], i.e.,

(,) | |
uv

h u v L α= = . In this paper, we consider paths

between u and v whose distance is at least 2, i.e., 2α ≥

since we already proved that we can design an

algorithm to construct at least 1 ()κ G disjoint paths

when 1α = and this result has been accepted by

hpcc2019 conference.

According to [29], we have the following theorem:

Theorem 3. The 1-restricted connectivity of

1 1(, , ...,)
r r

G m m m
−

 is 1 () 2 ()κ G κ G n= − , where

max{ |1 }in m i r= ≤ ≤ .

3 Disjoint Paths

In this section, we design algorithms to construct

vertex-disjoint paths in G under 1-restricted

connectivity. Given any two vertices u and v, and their

neighbors x and y, we can use four kinds of methods to

construct disjoint paths which end vertices are u and v.

Since we assume that each vertex in G has at least

fault-free neighbor, therefore paths constructed in this

paper may contain the neighbors of end vertices. In

there, we redefine the definition of vertex-disjoint

paths: paths are vertex-disjoint if they have no

common vertices other than vertex in set {u, x, y, v}.

The first way is to construct paths which do not pass

through vertex x as shown in Figure 2(a). The second

way is to construct paths which must pass through x as

shown in Figure 2(b). The third way is to construct

paths which do not pass through x but must pass

through y as shown in Figure 2(c). The fourth way is to

construct paths which pass through vertices x and y at

the same time, as shown in Figure 2(d).

 (a) (b)

 (c) (d)

Figure 2. Four kinds of disjoint paths.

3.1 The Base Paths

Firstly, we introduce how to construct path between

two vertices by Algorithm 1. The process of path

construction is just a process of bit-changing. For

example, let u=0000, v = 0433, then one of paths

between u and v is 0000→0003→0033→0433. Let P

be a path from u to v and the number of different bits

between two vertices satisfies 2 α r≤ ≤ . So in P there

will be at least α bit-changes, meaning the length of P

is at leastα . Our target is to construct vertex-disjoint

paths between u and v, and our final algorithm

constructs each path by splicing a few (up to 3) sub-

paths.

As just mentioned, going from a vertex u to the next

vertex is equivalent to changing one bit of u. So by

selecting the bits to change in certain order, we are

actually selecting a particular path. In Algorithm 1,

when specifying a sub-path, we give the bit-location to

start the change (denoted by s) and the bit-location to

terminate the change (denoted by t). For example, let u

= 000000, and v=032433. Then the different bit

position array
uv
L is [5, 4,3, 2,1]

uv
L = . Let s = 1, t = 3,

which means that the path starts by first changing the

bit at location 1l , then 2l , and ends at 3l . Thus, the

corresponding sub-path is u = 000000 →

00003→000033→000433. (Note: it has not reached v

yet since it is a sub-path.)

Algorithm 1 (PA) as below is the pseudocode to

describe the procedure to construct up to three sub-

paths from vertex 0z to vertex tz . Since the path

constructed by Algorithm 1 may be just a sub-path

of
uv
P , vertex 0z is not necessarily u and vertex tz is

not necessarily v. PA's inputs 1s , 2s and 3s are the

1998 Journal of Internet Technology Volume 20 (2019) No.6

three start bit-locations, while 1t , 2t and 3t are the three

terminal bit-locations. Lines 2--5 calculate the length

for each of three sub-paths. Then lines 6--8 describe

how to change bits in the 1st sub-path. Similarly, lines

9--11 describe how to change bits in the 2nd sub-path,

and lines 12--14 describe how to change bits in the 3rd

sub-path. Finally, the fifth line outputs the constructed

paths.

Algorithm 1: 0 1 1 2 2 3 3(, , , , , , , ,)
uv

PA z v L s t s t s t

Input: source vertex 0z , terminal vertex v , the array

uv
L , and indexes 1 1 2 2 3 3, , , , ,s t s t s t .

Output: a path from 0z to tz , 1 2 3t m m m= + + .

begin

for 1i = to 3 do

if 0is ≠ then | | 1i i im t s= − + ;

else 0im = ;

end for

if 1 0s ≠ then

11

11
1() ls i

s i

v

i i l
z z

+ −

+ −
−

= for 11 i m≤ ≤ ;

end if

if 2 0s ≠ then

12 1

12 1
1() ls i m

s i m

v

i i l
z z

+ − −

+ − −
−

= for 1 1 21m i m m+ ≤ ≤ + ;

end if

if 3 0s ≠ then

13 1 2

13 1 2
1() ls i m m

s i m m

v

i i l
z z

+ − − −

+ − − −
−

= ,

1 2 1 2 31m m i m m m+ + ≤ ≤ + + ;

end if

return
1 2 30 1(, , ...,)

m m m
z z z

+ +
;

end

Since bit-changing is a basic operation in Algorithm

1, we use iu to denote the i-th bit of vertex u and we

use j

iu to denote the vertex obtained by changing u's i-

th bit to j. For example, if u=010203, then 1 3u = ,
1

4
u =

010204, 3u = 2, and
3

4
u = 010403. In Algorithm 1,

when constructing the first sub-path, vertex
11

11
1() ls i

s i

v

i i l
z z

+ −

+ −
−

= for 1 ii m≤ ≤ . For example, let u =

000000, v = 113112, 1s = 2, 1t = 4, and 0z u= , then

[6,5, 4,3, 2,1]
uv
L = and 1 3m = . The 2 1 1

2 1 1
1 0() lv

l
z z

+ −

+ −

= ,

where 2 1 1 2 2l l
+ −

= = and
2 1 1 2 1lv v
+ −

= = , 1

1 0 2()z z= =

1

2(000000) = 000010. Similarly, 2 2 1

2 2 1
2 1() l

v

l
z z

+ −

+ −

=

33

3

1

1 33
() (000010) (000010) 000110l

v v

l
z= = = = and 3z =

42 3 1 4

2 3 1 4

3

2 2 44
() () (000110) (000110) 003110l l

v v v

l l
z z

+ −

+ −

= = = = .

The first sub-path is 000000 → 000010→ 000110→

003110. Then the changing of vertices in the second

sub-path and the third sub-path are similarly.

Then we use an example to illustrate the

construction path process of our algorithm. For

example, let u = 000000, v = 113112, and 0z u= , then

[6,5, 4,3, 2,1]
uv
L = . If the whole path contains just one

sub-path, then path PA(0z , v,
uv
L , 1, 6, 0, 0, 0,

0)=000000 → 000002 → 000012 → 000112 →

003112→ 013112→ 113112.

The following is a path composed of two sub-paths:

PA(0z , v,
uv

L , 4, 6, 1, 3, 0, 0) =000000 → 003000

→013000→113000 and113002→113012→113112.

And a path composed of three sub-paths:

PA(0z , v,
uv
L , 5, 6, 3, 4, 1, 2) = 000000 010000→

110000→ , 110100 113100→ , and

113102 113112→ .

From the structural process above, we can see that

the maximum length of paths constructed by Algorithm

1 is (,)h u v .

Then according to the construction process of

Algorithm 1, we can get the following lemma.

Lemma 1. Vertices in each path constructed by

Algorithm 1 are different.

Proof. In Algorithm 1, we let that { 1s , 1 1s + , …,

1t }∩ { 2s , 2 1s + , …, 2t }∩ { 3s , 3 1s + , …, 3t }=∅ ,

which denotes that the location of bit-changing is

different for all vertices in each path. Therefore,

vertices 0z , 1z , …,
α
z are different.

The lemma holds.

3.2 The First Method to Construct Paths

In this section, we design Algorithm 2 to construct

vertex-disjoint paths from u to v, where all paths

circumventing a particular vertex x which is a neighbor

of u. We use 1P to denote the path set obtained by

Algorithm 2. The input of u, v are two end vertices of

paths obtained by Algorithm 2, k is the location of the

bit at which u and x are different, r is the dimension of

the generalized hypercube, G represents

1 1(, , ...,)
r r

G m m m
−

, and
uv
L is the position array of

different bits between u and v. The meaning of these

parameters in following algorithms is the same.

In Algorithm 2, the line 2 assigns values to each

parameter. Then lines 3--15 construct paths from u to v.

The line 16--19 determines whether k belongs to
uv
L .

Finally, the line 20 outputs the path set 1P and deletes

the path that passes through vertex x.

Note that we can start a bit-changing process from

any bit. For1 i r≤ ≤ , let the starting bit be i, and let 1

i
P

represent the set of all paths with starting bit i.

Algorithm 2: 2 1(, , , , ,1,)
uv

BP u v G k L r−

Input: vertices u and v , the graph G and the array

uv
L , and indexes ,1,k r .

Output: disjoint paths from u to v , which do not pass

through x .

begin

 1P ←∅ , | |
uv

α L= , 1 2 2 3 3 0s s t s t= = = = = , 1t α= .

The Constructive Algorithm of Vertex-disjoint Paths in the Generalized Hypercube under Restricted Connectivity 1999

 for 1i = to r do

for 0j = to 1im − do

if iu j≠ then

if uvi L∉ then

1 1 { , (, , ,1, 1, 0, 0, 0, 0), }j
uviP P u PA u v L α v= −∪ ;

else

let 1s be the index such that
1s
l i= ;

2 1s = , 2 1 1t s= − ;

1 1 1 1 2 2 3 3{ , (, , , 1, , , , ,), };j
i uvP P u PA u v L s t s t s t v= +∪

end if

end if

end for

end for

if
uv

k L∈ then

let 1s be the index such that
1

;
s
l k= 2 1s = , 2 1 1t s= − ;

end if

return 1 1 1 2 2 3 3{(, (, , , 1, , , , ,),)}kx

uvk
P u PA u v L s t s t s t v− + ;

end

Algorithm 2 will call Algorithm 1 (PA). If we start a

bit-changing process from i-th bit, then the range of the

i-th bit of j

iu is [0, 1im −] \{ iu }. Therefore, the

number of paths in 1

i
P is 1im − . The number of paths

in 1P is
1
(1) ()

r

i
i

m κ G
=

− =∑ . Then deleting the path

that passes through x, and the number of paths

constructed by Algorithm 2 is () 1κ G − .

Then we will see how the algorithm works by going

over an example. We set the generalized hypercube is

G(4, 4, 4, 4, 4). Let u = 00000, v = 00111, x = 00010.

Then [3, 2,1]
uv
L = . We have 2k = , at which u and x

differ, and
uv

k L∈ . According to BP2-1, we can

construct paths with the value of i from 1 to 5. We

know that when uvi L∈ the values of i are 1, 2, 3 and

when uvi L∉ the values of i are 4, 5. Then we can get

the path sets as follows:
1

1 {(00000 0000P j= → 0001 0011j j→ → → 00111)

| 10 1,j m≤ ≤ − 1}j u≠ =
1

{(, (, ,j
u PA u v ,

uv
L 2, 3, 0, 0, 0,

0), v) 1 1| 0 1, }j m j u≤ ≤ − ≠ .
2

1 {(00000 000 0P j= → 001 0 001 1j j→ → → 00111)

| 20 1,j m≤ ≤ − 2}j u≠ =
2

{(, (, ,j
u PA u v ,

uv
L 3, 3, 1, 1, 0,

0), v) 2 2| 0 1, }j m j u≤ ≤ − ≠ .
3

1 {(00000 00 00P j= → 00 01 00 11j j→ → → 00111)

| 30 1,j m≤ ≤ − 3}j u≠ =
3

{(, (, ,j
u PA u v ,

uv
L 1, 2, 0, 0, 0,

0), v) 3 3| 0 1, }j m j u≤ ≤ − ≠ .
4

1 {(00000 0 000P j= → 0 001 0 011j j→ → → 0j111

00111)→ | 40 1,j m≤ ≤ − 4}j u≠ =
4

{(, (, ,j
u PA u v

,
uv
L 1, 3, 0, 0, 0, 0), v) 4 4| 0 1, }j m j u≤ ≤ − ≠ .

5

1 {(00000 0000P j= → 0001 0011j j→ → → j0111

00111)→ | 50 1,j m≤ ≤ − 5}j u≠ =
5

{(, (, ,j
u PA u v

,
uv
L 1, 3, 0, 0, 0, 0), v) 5 5| 0 1, }j m j u≤ ≤ − ≠ .

We know 2k = , then we need to delete the path that

passes through x, p =(00000 → 00010 → 00110

→00111). Then 2 2

1 1P P p= − . Therefore, the path set
1 2 3 4 5

1 1 1 1 1 1P P P P P P= ∪ ∪ ∪ ∪ .

We will prove paths constructed by Algorithm 2 are

disjoint. Then we have the following lemma.

Lemma 2. For1 i r≤ ≤ , Algorithm 2 constructs at least

() 1κ G − disjoint paths based on u and v which do not

pass through vertex x.

Proof. We use 1N to represent the number of paths

in 1P . Then 1
1
(1) 1 () 1

r

i
i

N m κ G
=

= − − = −∑ . We let

1Q and 2Q be two different paths, where 1 2 1,Q Q P∈ .

We will prove that paths 1Q and 2Q are disjoint. There

are two cases.

Case 1: For 1 i r≤ ≤ , 1 2 1,

i
Q Q P∈ . Since 1Q and 2Q

are two different paths, the values of i -th bit are

different in 1Q and 2Q . Therefore, for any two vertices

1 1()v V Q∈ and 2 2()v V Q∈ , we have 1 2i iv v≠ . Thus,

paths 1Q and 2Q are disjoint.

Case 2: For 1 i w r≤ ≠ ≤ , 1 1

i
Q P∈ and 2 1

w

Q P∈ . For

any two different vertices 1v and 2v such that

1 1()v V Q∈ and 2 2()v V Q∈ , we have three subcases as

follows.

Case 2.1:
uv

i L∉ and
uv

w L∉ . Vertices in paths 1Q

and 2Q are different in i-th and w-th bits. Namely,

1 2i iv v≠ and 1 2
w w

v v≠ . Therefore, paths 1Q and 2Q

are disjoint.

Case 2.2:
uv

i L∈ ,
uv

w L∉ or
uv

i L∉ ,
uv

w L∈ .

Without loss of generality, we let
uv

i L∈ ,
uv

w L∉ , then

vertices in 1Q and 2Q are different in i-th bit. Namely,

1 2i iv v≠ . Therefore, paths 1Q and 2Q are disjoint.

Case 2.3. ,
uv

i w L∈ . Since i w≠ , according to

Algorithm 2, the first position of variable bit and the

last position of variable bit in two paths are different.

Then, since the ordering of variable bit in two paths are

the same, there is no vertex that is the same in two

paths. Let 1pl i= and
2p

l w= . It is obvious that

1 1 11 1
p pl lv v

− 2 2 11 1
p pl lv v

− 1
2

pl
v≠

1 2 21 12 2 2
p p pl l lv v v
− −

.

Therefore, paths 1Q and 2Q are disjoint.

The lemma holds.

3.3 The Second Method to Construct Paths

We design Algorithm 3 to construct vertex-disjoint

paths from u to v in which all paths pass through vertex

x. In Algorithm 3, lines 1--2 assign values to each

parameter. Then lines 3--41 construct paths from x to v.

Finally, the line 42 outputs the path set 2P . In this

section, we use 2P to denote the path set obtained by

Algorithm 3.

2000 Journal of Internet Technology Volume 20 (2019) No.6

Algorithm 3: 2 2(, , , , , ,1,)
uv

BP u v x G k L r−

Input: vertices u and v , the graph G and the array,

uv
L and indexes ,1,k r .

Output: disjoint paths from u to v which all pass

through x .

begin

2P ←∅ , | |
uv

α L= , 1 2 1 2 0s s a a= = = = , 0 ,

j

in x=

11

11
1 0() ,

la

a

v

l
n n

+

+

= 1() kv

k k
n n= ;

for 1i = to r do

for 0j = to 1im − do

if
uv

k L∈ then

let 1s be the index such that
1s
l k= ;

end if

if
uv

i L∈ then

let 2s be the index such that
2s

l i= ;

end if

if i k≠ && iu j≠ then

if | | 3
uv

L == &&
uv

k L∈ && i == max

{ \{ }}
uv
L k then

{ \{ , }}m uvl L k i= ;

2 2 0 0{ , , , (() , , , ,0,0,0,0), };kv

k uvP P u x n PA n L m m v= ∪

else

if 1s ==0 then

if 2s ==0 then

1 1,a s= 2 3 0,a a= = 1 ,b α= 2 3 0;b b= =

else

1 2a s= , 2 1a = , 3 0a = , 1b α= ,

2 2 1b s= − , 3 0b = ;

end if

else

if 2s ==0 then

1 2a s= , 2 1a = , 3 0a = , 1b α= ,

2 2 1b s= − , 3 0b = ;

end if

if 1 2s s> then

1 1a s= , 2 1a = , 3 2 1a s= + , 1b α= ,

2 2 1b s= − , 3 1 1b s= − ;

else

1 1a s= , 2 2 1a s= + , 3 1a = ,

1 2 1b s= − , 2b α= , 3 1 1b s= − ;

end if

2 2 0 1 1

1 2 2 3 3

{ , , , , (, , 2,

, , , ,), };

k uvP P u x n n PA n L a

b a b a b v

= +∪

end if

end for

end for

return 2P ;

end

For 1 i r≤ ≤ and i k≠ , we let the starting bit be i,

and let 2

i
P represent the set of all paths with starting bit

i. Algorithm 3 will call Algorithm 1 (PA). If we start a

bit-changing process from bit i, the range of the value

of iu is [0, 1im −]\{ iu }. Therefore, the number of

paths in 2

i
P is 1im − . The number of paths in 2P is

1,
(1) () 1

r

i k
i i k

m κ G m
= ≠

− = − +∑ .

Then we will see how the algorithm works by going

over an example. We set the generalized hypercube is

G(4, 4, 4, 4, 4). Let u = 00000, v = 00111, x = 00010.

Then [3, 2,1]
uv
L = . We have 2k = , at which u and x

differ, and
uv

k L∈ . According to the algorithm, we can

construct paths with the value of i from 1 to 5 and 2i ≠ .

We know that when uvi L∈ the values of i are 1, 2, 3

and when uvi L∉ the values of i are 4, 5. Then we can

get the path sets as follows:
1

2 {(00000 00010P = → 0001 0011j j→ → → 00111)

| 10 1,j m≤ ≤ − 1}j u≠ = 2 2 3

1 1 2 1 2 3
{(, , , () , (()) ,j j v j v v
u x x x x

2 3 4

1 2 3 4
(((())) , , , 0, 0, 0, 0,0, 0),)j v v v

uvPA x v L v 1| 0 j m≤ ≤ −

1, 1j u≠ }.
3

2 {(00000 00010P = → 00 10 00 11j j→ → →00111)

| 30 1,j m≤ ≤ − 3}j u≠ = 1 1 4

3 3 1 3 1 4
{(, , , () , ((())j j v j v v
u x x x PA x

,v ,
uv
L 0, 0, 0, 0, 0, 0), v) 3 3| 0 1, }j m j u≤ ≤ − ≠ .

4

2 {(00000 00010P = → 0 010 0 011 0 111j j j→ → →

00111) | 40 1,j m≤ ≤ − 4}j u≠ =
4

{(, , ,ju x x
2

4 2
() ,j v
x

2 1 2 1 3

4 2 1 4 2 1 3
(()) , (((())) , , ,j v v j v v v

uvx PA x v L 0, 0, 0, 0, 0, 0), v)

|0 j≤ 4 41, }m j u≤ − ≠ .
5

2 {(00000 00010 0010 0011P j j= → → → → j0111

00111) | 50 1,j m≤ ≤ − 5}j u≠ =
5

{(, , ,ju x x
2

5 2
() ,j v
x

2 1 2 1 3

5 52 1 2 1 3
(()) , (((())) , , ,j v v j v v v

uvx PA x v L 0, 0, 0, 0, 0, 0), v)

|0 j≤ 5 51, }m j u≤ − ≠ .

Therefore, the path set 1 3 4 5

2 2 2 2 2P P P P P= ∪ ∪ ∪ .

We will prove paths constructed by Algorithm 3 are

disjoint. Then we have the following lemma.

Lemma 3. Algorithm 3 can construct () 1kκ G m− +

disjoint paths based on u and v in which each path

passes through x.

Proof. We use 2N to denote the number of paths in 2P .

Thus, 2
1

((1)) (1) ()
r

i k k
i

N m m κ G m
=

= − − − = −∑ 1+ .

Then we set 2

i
P to be the i-th path set of 2P , where

1 i r≤ ≤ and i k≠ . We let 1Q and 2Q be two different

paths, where 1 2 2,Q Q P∈ . We will prove that paths 1Q

and 2Q are disjoint. There are two cases.

Case 1: For 1 i r≤ ≤ and i k≠ , 1 2 2,

i
Q Q P∈ . The

values of j in i-th bit are different in 1Q and 2Q .

Therefore, vertices in 1Q and 2Q are different in i-th

bit. Thus, paths 1Q and 2Q are disjoint.

Case 2: For 1 i w r≤ ≠ ≤ , i k≠ , w k≠ , 1 1

i
Q P∈ and

2 1

w

Q P∈ . For any two different vertices 1v and 2v

The Constructive Algorithm of Vertex-disjoint Paths in the Generalized Hypercube under Restricted Connectivity 2001

such that 11 ()v V Q∈ and 22 ()v V Q∈ , we have three

subcases as follows

Case 2.1:
uv

i L∉ and
uv

w L∉ . Vertices in paths 1Q

and 2Q are different in i-th and w-th bits. Namely,

1 2i iv v≠ and 1 2
w w

v v≠ . Therefore, paths 1Q and 2Q

are disjoint.

Case 2.2:
uv

i L∈ ,
uv

w L∉ or
uv

i L∉ . Without loss of

generality, we let
uv

i L∈ ,
uv

w L∉ , then vertices in 1Q

and 2Q are different in i-th bit. Namely, 1 2i iv v≠ .

Therefore, paths 1Q and 2Q are disjoint.

Case 2.3: ,
uv

i w L∈ . When
uv

k L∉ , the proof is

similar to that of case 2.3 in Lemma 2.

The lemma holds.

3.4 The Third Method to Construct Paths

In this section, we design Algorithm 4 to construct

vertex-disjoint paths from u to v in which all paths

circumventing vertex x and pass through v's neighbor y .

We use 3P to denote the path set obtained by

Algorithm 4.

Algorithm 4: 2 3(, , , , , ,1,)
uv

BP u v y G n L r−

Input: vertices u , v and y, the graph G and the array
uv

L , and indexes ,1,n r .
Output: disjoint paths from u to v which all pass

through x .
begin

3P ←∅ , | |uvα L= , 1 2 0s s= = ;
for 1i = to r do

for 0j = to 1im − do
if

uv
n L∈ then
let 1s be the index such that

1s
l n= ;

end if
if

uv
i L∈ then
let 2s be the index such that

2s
l i= ;

end if
if i n≠ && iu j≠ then

if 1s ==0 && 2s ==0 then

1 2 3 0a a a= = = , 1b α= , 2 3 0b b= = ;
end if
if 1s ==0 && 2s >0 then

1 2a s= , 2 1a = , 3 0a = , 1b α= , 2 2 1b s= − ,

3 0b = ;
end if
if 1s >0 && 2s ==0 then

1 1a s= , 2 1a = , 3 0a = , 1b α= , 2 1 1b s= − ,

3 0b = ;
end if
if 1s > 2s then

1 1a s= , 2 1a = , 3 2 1a s= + , 1b α= ,

2 2 1b s= − , 3 1 1b s= − ;
else

1 1a s= , 2 2 1a s= + , 3 1a = , 1 2 1b s= − ,

2b α= , 3 1 1b s= − ;
end if

3 3 1 1 2 2 3 3{ , , (() , , 1, , , , ,

) , };

nj j y
i i n uvP P u u PA u L a b a b a b

y v

= +∪

end if
end for

end for
return 3P ;
end

In Algorithm 4, the line 1 assigns values to each

parameter. Then lines 3--33 construct paths from u to v

which circumvents x and passes through y . Finally,

line 34 outputs the path set 3P . For 1 i r≤ ≤ and i n≠ ,

let this starting bit be i, and let 3

i
P represent the set of

all paths with starting bit i. Algorithm 4 will call

Algorithm 1 (PA). If we start a bit-changing process

from bit i, then the range of the value of iu is [0,

1im −] \{ iu }.

Therefore, the number of paths in 3

i
P is 1im − . The

number of paths in 3P is
1
(1) ()

r

i
i

m κ G
=

− =∑ . Then

deleting the path that passes through x, the number of

paths constructed by Algorithm 4 is () 1κ G − .

Then we will see how the algorithm works by going

over an example. We set the generalized hypercube is

G(4, 4, 4, 4, 4). Let u = 00000, v = 00111, x = 00001,

and y =00121. Then [3, 2,1]
uv
L = . We have 1k = and

2n = at which y and v differ, and ,
uv

k n L∈ .

According to the algorithm, we can construct paths

with the value of i from 1 to 5. We know that when

uvi L∈ the values of i are 1, 2, 3 and when uvi L∉ the

values of i are 4, 5. Then we can get the path sets as

follows:
1

3 {(00000 0000P j= → 0002 0012 00121j j→ → →

00111)→ | 10 1,j m≤ ≤ − 1}j u≠ =
1 1

{(, , (() ,nj j y
nu u PA u

, ,uvv L 3, 3, 1, 1, 0, 0), y, v) 1 1| 0 1, }j m j u≤ ≤ − ≠ .
2

3 {(00000 000 0P j= → 001 0 001 1 00121j j→ → →

00111)→ | 20 1,j m≤ ≤ − 2}j u≠ = 3

2 2 3
{(, , (() ,j j v
u u PA u

, ,uvv L 1, 1, 0, 0, 0, 0), y, v) 2 2| 0 1, }j m j u≤ ≤ − ≠ .
3

3 {(00000 00 00 00 20 00 21 00121P j j j= → → → →

00111)→ | 30 1,j m≤ ≤ − 3}j u≠ =
3 3

{(, , (() ,nj j y
nu u PA u

, ,uvv L 1, 1, 0, 0, 0, 0), y, v) 3 3| 0 1, }j m j u≤ ≤ − ≠ .
4

3 {(00000 0 000P j= → 0 020 0 120 0 121j j j→ → →

00121 00111)→ → | 40 1,j m≤ ≤ − 4}j u≠ =
4

{(, ,ju u

4
(() , , ,nj y

n uvPA u v L 3, 3, 1, 1, 0, 0), y, v) | 40 1,j m≤ ≤ −

4}j u≠ .
5

3 {(00000 0000 0020 0021 0121P j j j j= → → → →

00121 00111)→ → | 50 1,j m≤ ≤ − 5}j u≠ =
5

{(, ,ju u

5
(() , , ,nj y

n uvPA u v L 3, 3, 1, 1, 0, 0), y, v) |

50 1,j m≤ ≤ − 5}j u≠ .

We know 2k = , then we need delete the path that

passes through x, (00000 00010 00110p = → → →

00111) . Then 2 2

3 3P P p= − . Therefore, the path set
1 2 3 4 5

3 3 3 3 3 3P P P P P P= ∪ ∪ ∪ ∪ .

We will prove paths constructed by Algorithm 4 are

2002 Journal of Internet Technology Volume 20 (2019) No.6

disjoint. Then we have the following lemma.

Lemma 4. Algorithm 4 can construct () 1κ G − disjoint

paths based on u and v in which each path passes

through x and passes through y .

Proof. We use 3N to denote the number of paths in set

3P . Thus, 3
1

((1)) 1 () 1
r

i
i

N m κ G
=

= − − = −∑ . Then we

set 3

i
P to be the i-th path set of 3P , where 1 i r≤ ≤ . We

let 1Q and 2Q be two different paths, where

1 2 3,Q Q P∈ . We will prove that paths 1Q and 2Q are

disjoint. The proof is similar to Lemma 3.

The lemma holds.

3.5 The Fourth Method to Construct Paths

Finally, we design Algorithm 5 to construct vertex-

disjoint paths from u to v in which all paths pass

through x and y . In Algorithm 5, the lines 1--2 assign

values to each parameter and define the values of four

vertices respectively. Then lines 3--34 construct paths

from u to x then to y to v. Finally, the line 35 outputs

the paths constructed by Algorithm 5. In this section,

we use 4P to denote the path set obtained by

Algorithm 5.

For 1 i r≤ ≤ and i k≠ , we let the starting bit be i,

and let 4

i
P represent the set of all paths with starting bit

i. Algorithm 5 will call Algorithm 1 (PA). If we start a

bit-changing process from bit i, the range of the value

of iu is [0, 1im −] \{ iu }.

Algorithm 5: 2 4(, , , , , , , ,1,)
uv

BP u v x y G k n L r−

Input: vertices u , v , x, and y, the graph G and the

array
uv

L , and indexes , ,1,k n r .

Output: disjoint paths from u to v which all pass

through x and y.

begin

4P ←∅ , | |
uv

α L= , 1 2 0s s= = , 1 1a s= , 2 2a s= ,

0 ,

j

in x= 11

11
1 0() ,

la

a

v

l
n n

+

+

= 1() ny

n nn n= ;

for 1i = to r do

for 0j = to 1im − do

if i k≠ && iu j≠ then

if
uv

k L∈ then

let 1s be the index such that
1s
l k= ;

end if

if
uv

i L∈ then

let 2s be the index such that
2s

l i= ;

end if

if 1s ==0 && 2s ==0 then

1 2 3 0a a a= = = , 1b α= , 2 3 0b b= = ;

end if

if 1s ==0 && 2s >0 then

1 2a s= , 2 1a = , 3 0a = , 1b α= , 2 2 1b s= − ,

3 0b = ;

end if

if 1s >0 && 2s ==0 then

1 1a s= , 2 1a = , 3 0a = , 1b α= , 2 1 1b s= − ,

3 0b = ;

end if

if 1s > 2s then

1 1a s= , 2 1a = , 3 2 1a s= + , 1b α= ,

2 2 1b s= − , 3 1 1b s= − ;

else

1 1a s= , 2 2 1a s= + , 3 1a = , 1 2 1b s= − ,

2b α= , 3 1 1b s= − ;

end if

4 4 0 1 1 1 2 2 3 3{ , , , , (, , 2, , , , ,

) , };

n uv
P P u x n n PA n L a b a b a b

y v

= +∪

end if

end for

end for

return 4P ;

end

Therefore, the number of paths in 4

i
P is 1im − . The

number of paths in 4P is
1,

(1) ()
r

i k
i i k

m κ G m
= ≠

− = −∑

1+ .

Then we will see how the algorithm works by going

over an example. We set the generalized hypercube is

G(4, 4, 4, 4, 4). Let u = 00000, v = 00111, x = 00020,

and y = 00101. Then [3, 2,1]
uv
L = . We have 2k = ,

2n = , and ,
uv

k n L∈ . According to the algorithm, we

can construct paths with the value of i from 1 to 5 and

2i ≠ . We know that when
uv

i L∈ the values of i are 1,

2, 3 and when
uv

i L∉ the values of i are 4, 5. Then we

can get the path sets as follows:
1

4 {(00000 00020 0002 0012 0010P j j j= → → → →

00101 00111)→ → | 10 1,j m≤ ≤ − 1}j u≠ =
1

{(, , ,ju x x

3 3 2

1 3 1 3 2
() , ((()) , , , 0, 0, 0, 0, 0, 0), ,)j v j v y

uvx PA x v L y v | 0 j≤ ≤

1 11,m j u− ≠ }.
3

4 {(00000 0020P = → 00 20 00 21 00 31j j j→ → →

00131 00111)→ → | 30 1,j m≤ ≤ − 3}j u≠ =
3

{(, , ,ju x x

1 1 2

3 1 3 1 2
() , ((())j v j v v
x PA x ,v ,

uv
L 0, 0, 0, 0, 0, 0), y, v)

| 0 j≤ ≤ 3 3| 1, }m j u− ≠ .
4

4 {(00000 00020 0 020 0 021 0 031P j j j= → → → →

0 131 00131 00111)j→ → → | 40 1,j m≤ ≤ − 4}j u≠ =

4
{(, , ,ju x x

1

4 1
() ,j v
x 1 2

4 1 2
((()) , , ,j v y

uvPA x v L 3, 3, 0, 0, 0, 0),

y, v) | 0 j≤ 4 41, }m j u≤ − ≠ .
5

4 {(00000 00020 0020 0021 0031P j j j= → → → →

0131 00131 00111)j→ → → | 50 1,j m≤ ≤ − 5}j u≠ =

5
{(, , ,ju x x

1

5 1
() ,j v
x 1 2

5 1 2
((()) , , ,j v y

uvPA x v L 3, 3, 0, 0, 0, 0),

y, v) | 0 j≤ 5 51, }m j u≤ − ≠ .

Therefore, the path set 1 3 4 5

4 4 4 4 4P P P P P= ∪ ∪ ∪ .

The Constructive Algorithm of Vertex-disjoint Paths in the Generalized Hypercube under Restricted Connectivity 2003

We will prove paths constructed by Algorithm 5 are

disjoint. Then we have the follow lemma.

Lemma 5. Algorithm 5 can construct () 1kκ G m− +

disjoint paths based on u and v in which each path

passes through both x and y .

Proof. We use 4N to denote the number of paths in set

4 .P Thus, 4
1,

(1) 1 () 1.
r

i k
i i k

N m κ G m
= ≠

= − − = − +∑ Then

we set 4

i
P to be the i-th path set of 4P , where 1 i r≤ ≤

and i k≠ . We let 1Q and 2Q be two different paths,

where 1 2 4,Q Q P∈ . We will prove that paths 1Q and 2Q

are disjoint. The proof is similar to Lemma 3.

The lemma holds.

3.6 The Disjoint Paths Base on any Two

Distinct Vertices in the Generalized

Hypercube

In this section, we will use the four kinds of

algorithms above mentioned to construct disjoint path

based on any two distinct vertices in

1 1(, , ...,)
r r

G m m m
−

. According to GHDP, we know that

the complexity of these two algorithms is ()O mr ,

where m is the cardinal of each dimension and r is the

dimension of the generalized hypercube. The

maximum length of these paths constructed by four

algorithms is 2r + . Then, we have the following

theorem.

Algorithm 6: (, , , , , , , ,1,)
uv

GHDP u v x y G k n L r

Input: vertices u , v , x and y, the graph G and the

array
uv

L , and indexes , ,1,k n r .

Output: disjoint paths from u to v .

begin

P ←∅ ;

if n k== && k nx y== then

2 1 2 4P BP BP= − −∪ ;

else

2 2 2 3P BP BP= − −∪ ;

end if

return P ;

end

Theorem 4. Algorithm 6 can construct at least
1 ()κ G disjoint paths based on any two distinct vertices

in 1 1(, , ...,)
r r

G m m m
−

under 1-restricted connectivity.

Proof. Algorithm 6 constructs disjoint paths based on

any two distinct vertices u and v in 1 1(, , ...,)
r r

G m m m
−

under 1-restricted connectivity. Obviously, we use

BP2-1 and BP2-4 as a combination, BP2-2 and BP2-3

as a combination to construct the disjoint paths,

respectively. According to Lemma 2 and Lemma 4, the

numbers of disjoint paths constructed by BP2-1 and

BP2-3 are both () 1κ G − . According to Lemma 3 and

Lemma 5, the numbers of disjoint paths constructed by

BP2-2 and BP2-4 are both () 1kκ G m− + . In

Algorithm 6, GHDP calls the two algorithms in

different cases. Then according to Theorem 3, the

number of disjoint paths constructed by Algorithm 6 is

at least 1 ()κ G .

4 Simulation

In this section, we do simulations to analyze the

performances of GHDP and compare it to other one

existing algorithm. The simulation experiments are

based on the eclipse tool. Then to avoid the

occasionally of experimental results, every data we

gotten in the experiment is the average of running 60

times. There are two parameters to evaluate the

performances of algorithms: PN (The Number of

Disjoint Paths) and FPN (The Number of Fault-

tolerance Disjoint Paths). In [30], Tong et al.

introduced an algorithm to construct disjoint paths in

the generalized hypercube. However, the algorithm in

[30] did not consider the restricted connectivity and it

only considered the connectivity of the generalized

hypercube. We called the algorithm proposed by Tong

et al. to be ADP. Then we compare PN and FPN of

GHDP and ADP, respectively.

4.1 The Number of Disjoint Paths (PN)

There we use the PN indicator to estimate two

algorithms in different 1 1(, ,...,).
r r

G m m m
−

 For simplicity,

we let 1 1...

r r
m m m

−

= = = .

Then we run these two algorithms in two groups of

graphs. The first group of graphs is G (5, 5, 5, 5, 5),

G (6, 6, 6, 6, 6), G (7, 7, 7, 7, 7), G (8, 8, 8, 8, 8), and

G (9, 9, 9, 9, 9). The second group of graphs is G (7, 7,

7), G (7, 7, 7, 7), G (7, 7, 7, 7, 7), G (7, 7, 7, 7, 7, 7),

and G (7, 7, 7, 7, 7, 7, 7). The results are shown in

Figure 3.

(a) (b)

Figure 3. The comparation of GHDP and ADP about

PN

In Figure 3(a), the abscissa denotes the number of

vertices in each dimension of 1 1(, , ...,)
r r

G m m m
−

 and

5r = . In Figure 3(b), the abscissa represents the value

of r of 1 1(, , ...,)
r r

G m m m
−

 and the number of vertices in

each dimension is 7. Based on 3(a) and 3(b), we know

2004 Journal of Internet Technology Volume 20 (2019) No.6

that the number of disjoint paths constructed by GHDP

is much larger than that constructed by ADP. For

example, GHDP can construct 35 disjoint paths and

ADP can only construct 20 disjoint paths in G (5, 5, 5,

5, 5); GHDP can construct 65 disjoint paths and ADP

can only construct 36 disjoint paths in G (7, 7, 7, 7, 7,

7); GHDP can construct 80 disjoint paths and ADP can

only construct 45 disjoint paths in G (10, 10, 10, 10,

10). The larger the graph dimension, the greater the

performance difference between the two algorithms.

4.2 The Number of Fault-tolerance Disjoint

Paths(FPN)

In this section, we assume that there are many faulty

vertices in 1 1(, , ...,)
r r

G m m m
−

. Then, we use GHDP

and ADP to construct fault-free disjoint paths in the

generalized hypercube. We use N to represent the

number of faulty vertices. Let the value of N be 20, 60,

120, 180, 240, 300, and 360, respectively. In

simulation, we assume that the distribution of faulty

vertices in random. Then we run these two algorithms

in four graphs: G (6, 6, 6, 6, 6), G (7, 7, 7, 7, 7), G (8,

8, 8, 8, 8), and G (10, 10, 10, 10, 10), respectively.

Finally, we compared the number of fault-free disjoint

paths constructed by GHDP and ADP (as shown in

Figure 4. The value of FPN in Figure 4 is the average

number of fault-free disjoint paths based on any two

distinct vertices in the generalized hypercube.

(a) (b)

(c) (d)

Figure 4. The comparation of GHDP and ADP about

FPN

Base on Figure 4(a), 4(b), 4(c), and 4(d), we know

that the larger the scale of the network, the smaller the

impact of the faulty vertices on the construction of

disjoint paths. Clearly, the more faulty vertices in one

network, the fewer fault-free disjoint paths are

constructed based on any two distinct vertices. For

example, when the number of faulty vertices is 120 in

G (6, 6, 6, 6, 6), the number of fault-free disjoint paths

constructed by GHDP based on any two distinct

vertices is at least 42; However, when the number of

faulty vertices is 300 in G (6, 6, 6, 6, 6), the number of

fault-free disjoint paths constructed by GHDP based on

any two distinct vertices is 23.

From four figures, we know that GHDP has stronger

fault-tolerance than ADP. For example, when the

number of faulty vertices is 240 in G (7, 7, 7, 7, 7), the

number of fault-free disjoint paths constructed by

GHDP based on any two distinct vertices is 51, and the

number of fault-free disjoint paths constructed by ADP

based on any two distinct vertices is only 29; when the

number of faulty vertices based on any two distinct

vertices is 360 in G (10, 10, 10, 10, 10), the number of

fault-free disjoint paths constructed by GHDP based on

any two distinct vertices is 78, and the number of fault-

free disjoint paths constructed by ADP based on any

two distinct vertices is only 44.

As a consequence, we can construct more disjoint

paths by using GHDP than ADP. When there are many

faulty vertices in one network, GHDP can construct

more fault-free disjoint paths than ADP. Thus, GHDP

has stronger fault-tolerant ability than ADP. The

performance of GHDP is better than ADP.

5 Conclusion and Further Work

In this paper, we are the first to propose an

algorithm GHDP to construct disjoint paths based on

any two distinct vertices in GH under 1-restricted

connectivity. We can construct at least 1 ()κ G disjoint

paths in ()O mr time by GHDP. The maximum length

of disjoint paths constructed by GHDP in

1 1(, , ...,)
r r

G m m m
−

 is bounded by 2r + . The study for

constructing disjoint paths under the restricted

connectivity can be made further. The algorithm to

construct disjoint paths under other connectivity such

as g-restricted connectivity with 2g ≥ and structure

connectivity [31] has not been studied, which is a

problem worth studying, especially in the deformation

of the hypercube such as the twisted cube [12], the

crossed cube [19], and the spined cube [32].

Acknowledgment

This work is supported by the National Natural

Science Foundation of China (No. 61572337 and No.

61872257), the Natural Science Foundation of the

Jiangsu Higher Education Institutions of China (No.

18KJA520009), the Application Foundation Research

of Suzhou of China (No. SYG201653), and A Project

Funded by the Priority Academic Program

Development of Jiangsu Higher Education Institutions.

The Constructive Algorithm of Vertex-disjoint Paths in the Generalized Hypercube under Restricted Connectivity 2005

References

[1] L. N. Bhuyan, D. P. Agrawal, Generalized Hypercube and

Hyperbus Structures for a Computer Network, IEEE

Transactions on Computers, Vol. 33, No. 4, pp. 323-333,

April, 1984.

[2] C. Guo, G. Lu, D. Li, H. Wu, X. Zhang, Y. Shi, C. Tian, Y.

Zhang, S. Lu, BCube: A High Performance, Server-centric

Network Architecture for Modular Data Centers, Proceedings

of the ACM SIGCOMM 2009 conference on Data

communication, Barcelona, Spain, 2009, pp. 63-74.

[3] J. H. Ahn, N. Binkert, A. Davis, M. McLaren, R. S. Schreiber,

HyperX: Topology, Routing, and Packaging of Efficient

Large-scale Networks, Proceedings of the Conference on

High Performance Computing Networking, Storage and

Analysis, Portland, Oregon, 2009, pp. 1-11.

[4] J. Kim, W. J. Dally, D. Abts, Flattened Butterfly: A Cost-

efficient Topology for High-radix Networks, ACM SIGARCH

Computer Architecture News, Vol. 35, No. 2, pp. 126-137,

May, 2007.

[5] D. Li, J. Wu, On Data Center Network Architectures for

Interconnecting Dual-port Servers, IEEE Transactions on

Computers, Vol. 64, No. 11, pp. 3210-3222, November, 2015.

[6] K. Wada, T. lkeo, K. Kawaguchi, W. Chen, Highly Fault-

tolerant Routings and Fault-Induced Diameter for

Generalized Hypercube Graphs, Journal of Parallel and

Distributed Computing, Vol. 43, No. 1, pp. 57-62, May, 1997.

[7] P. Fragopoulou, S. G. Akl, H. Meijer, Optimal

Communication Primitives on the Generalized Hypercube

Network, Journal of Parallel and Distributed Computing,

Vol. 32, No. 2, pp. 173-187, February, 1996.

[8] S. G. Ziavras, Scalable Multifolded Hypercubes for Versatile

Parallel Computers, Parallel Processing Letters, Vol. 5, No. 2,

pp. 241-250, January, 1995.

[9] A. H. Esfahanian, S. L. Hakimi, On computing a conditional

edge-connectivity of a graph, Information Processing Letters,

Vol. 27, No. 4, pp. 195-199, April, 1988.

[10] A. H. Esfahanian, Generalized Measures of Fault Tolerance

with Application to n-cube Networks, IEEE Transactions on

Computers, Vol. 38, No. 11, pp. 1586-1591, November, 1989.

[11] Y. C. Chen, J. J. M. Tan, Restricted Connectivity for Three

Families of Interconnection Networks, Applied Mathematics

& Computation, Vol. 188, No. 2, pp. 1848-1855, May, 2007.

[12] S.-Y. Hsieh, H.-W. Huang, C.-W. Lee, {2,3}-restricted

Connectivity of Locally Twisted Cubes, Theoretical

Computer Science, Vol. 615, pp. 78-90, February, 2016.

[13] X. Wang, J. Fan, J. Zhou, C.-K. Lin, The Restricted h-

connectivity of the Data Center Network DCell, Discrete

Applied Mathematics, Vol. 203, pp. 144-157, April, 2016.

[14] X. Wang, J. Fan, X. Jia, C.-K. Lin, An Efficient Algorithm to

Construct Disjoint Path Covers of DCell Networks,

Theoretical Computer Science, Vol. 609, No. P1, pp. 197-210,

January, 2016.

[15] C. Balbuena, X. Marcote, The p-restricted Edge-connectivity

of Kneser Graphs, Applied Mathematics and Computation,

Vol. 343, pp. 258-267, February, 2019.

[16] J. Fan, K. Li, S. Zhang, W. Zhou, B. Cheng, One-to-one

Communication in Twisted Cubes under Restricted

Connectivity, Frontiers of Computer Science in China, Vol. 4,

No. 4, pp. 489-499, December, 2010.

[17] L. Lin, S.-Y. Hsieh, R. Chen, L. Xu, C.-W Lee, The

Relationship between g-restricted Connectivity and g-good-

neighbor Fault Diagnosability of General Regular Networks,

IEEE Transactions on Reliability, Vol. 67, No.1, pp. 285-296,

March, 2018.

[18] H. Lü, T. Wu, The Restricted h-connectivity of Balanced

Hypercubes, arXiv preprint arXiv: 1805. 08461, May, 2018.

[19] S. Wang, X. Ma, The g-extra Connectivity and Diagnosability

of Crossed Cubes, Applied Mathematics and Computation,

Vol. 336, pp. 60-66, November, 2018.

[20] P. Li, M. Xu, Fault-tolerant Strong Menger (edge)

Connectivity and 3-extra Edge-connectivity of Balanced

Hypercubes, Theoretical Computer Science, Vol. 707, pp. 56-

68, January, 2018.

[21] D.-W. Yang, Y.-Q. Feng, J. Lee, J.-X. Zhou, On Extra

Connectivity and Extra Edge-connectivity of Balanced

Hypercubes, Applied Mathematics and Computation, Vol.

320, pp. 464-473, March, 2018.

[22] X. Cai, E. Vumar, The Super Connectivity of Folded Crossed

Cubes, Information Processing Letters, Vol. 142, pp. 52-56,

February, 2019.

[23] K. Kaneko, S. Peng, Disjoint Paths Routing in Pancake

Graphs, IEEE International Conference on Parallel and

Distributed Computing, Applications and Technologies

(PDCAT), Taipei, Taiwan, 2006, pp. 254-259.

[24] C.-N. Lai, Optimal Construction of All Shortest Node-disjoint

Paths in Hypercubes with Applications, IEEE Transactions

on Parallel and Distributed Systems, Vol. 23, No. 6, pp.

1129-1134, June, 2012.

[25] B. Cheng, J. Fan, X. Jia, S. Zhang, B. Chen, Constructive

Algorithm of Independent Spanning Trees on Möbius Cubes,

The Computer Journal, Vol. 56, No. 11, pp. 1347-1362,

November, 2013.

[26] D. Cheng, R.-X. Hao, Y.-Q. Feng, Two Node-disjoint Paths

in Balanced Hypercubes, Applied Mathematics and

Computation, Vol. 242, pp. 127-142, September, 2014.

[27] T. Inoue, Reliability Analysis for Disjoint Paths, IEEE

Transactions on Reliability, Vol. 68, No. 3, pp. 985-998,

September, 2019.

[28] L.-H. Hsu, C.-K. Lin, Graph Theory and Interconnection

Networks, CRC Press, 2008.

[29] L. Guo, X. Wang, C.-K. Lin, J. Zhou, J. Fan, A Fault-free

Unicast Algorithm in the Generalized Hypercube with

Restricted Faulty Vertices, International Journal of

Foundations of Computer Science, Vol. 28, No. 7, pp. 915-

929, November, 2017.

[30] M. Tong, C. Liu, T. Fan, Routing Algorithms for Shortest

Paths in Faulty Generalized Hypercubes, Chinese Journal of

Computers, Vol. 21, No. 12, pp. 1074-1083, December, 1998.

[31] G. Wang, C.-K. Lin, B. Cheng, J. Fan, W. Fan, Structure

Fault-tolerance of the Generalized Hypercube, The Computer

Journal, Vol. 62, No. 10, pp. 1463-1476, October, 2019.

2006 Journal of Internet Technology Volume 20 (2019) No.6

[32] W. Zhou, J. Fan, X. Jia, S. Zhang, The Spined Cube: A New

Hypercube Variant with Smaller Diameter, Information

processing letters, Vol. 111, No. 12, pp. 561-567, June, 2011.

Biographies

Guijuan Wang received the B.S. and

M.S. degrees in computer science

from Qufu Normal University, in

2013 and 2016, respectively. She is

currently a Ph.D. candidate in

computer science at Soochow

University. Her research interests

include parallel and distributed systems, algorithms,

and interconnection architectures.

Jianxi Fan received the B.S., M.S.,

and Ph.D. degrees in computer

science from Shandong Normal

University, Shandong University, and

City University of Hong Kong, China,

in 1988, 1991, and 2006, respectively.

He is currently a professor of

computer science in the School of

Computer Science and Technology at Soochow

University, China. He visited as a research fellow the

Department of Computer Science at City University of

Hong Kong, Hong Kong (October 2006–March 2007,

June 2009–August 2009, June 2011–August 2011). His

research interests include parallel and distributed

systems, interconnection architectures, design and

analysis of algorithms, and graph theory.

Yali Lv received the B.S., M.S., and

Ph.D. degrees in computer science

from Henan Normal University,

Yunnan University, and Soochow

University, China, in 2003, 2006, and

2018, respectively. Her current

research interests include interconnection networks for

parallel and distributed computing, graph theory, and

algorithms.

Baolei Cheng received the B.S., M.S.,

and Ph.D. degrees in Computer

Science from the Soochow University

in 2001, 2004, 2014, respectively. He

is currently an Associate Professor of

Computer Science with the School of

Computer Science and Technology at

the Soochow University, China. His research interests

include parallel and distributed systems, algorithms,

interconnection architectures, and software testing.

Shuangxiang Kan received the B.S.

degree in information and computing

science from Changshu Institute of

Technology in 2018. He is currently a

master candidate in computer science

at Soochow University. He research

interests include parallel and

distributed systems, algorithms, and graph theory.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (Japan Color 2001 Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJDFFile false
 /CreateJobTicket true
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHT <FEFF005B683964DA300C005000440046002800310032003000300064007000690029300D005D0020>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
 <<
 /AddBleedMarks true
 /AddColorBars false
 /AddCropMarks true
 /AddPageInfo true
 /AddRegMarks false
 /BleedOffset [
 8.503940
 8.503940
 8.503940
 8.503940
]
 /ConvertColors /NoConversion
 /DestinationProfileName (sRGB IEC61966-2.1)
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /ClipComplexRegions true
 /ConvertStrokesToOutlines false
 /ConvertTextToOutlines false
 /GradientResolution 400
 /LineArtTextResolution 1200
 /PresetName <FEFF005B9AD889E367905EA6005D>
 /PresetSelector /HighResolution
 /RasterVectorBalance 1
 >>
 /FormElements true
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MarksOffset 0
 /MarksWeight 0.283460
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PageMarksFile /JapaneseWithCircle
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [1200 1200]
 /PageSize [612.000 792.000]
>> setpagedevice

