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Abstract 

The generalized hypercube is a classical 

interconnection network with excellent properties. It not 

only includes the hypercube network, the 3-ary n-cube 

network, and the complete networks, but also can be used 

to construct data center networks such as FBFLY, BCube, 

HyperX, SWCube, etc. Since the fact that all neighbors of 

one vertex becoming faulty at the same time is almost 

impossible, we assume that each vertex in this paper 

has at least one fault-free neighbor. We use 

1 1( , , ..., )
r r

G m m m
−

 to denote the r-dimensional 

generalized hypercube and 
1 ( )κ G  to denote the 1-

restricted connectivity of 1 1( , , ..., )
r r

G m m m
−

. Then we 

design an algorithm to construct at least 
1 ( )κ G  disjoint 

paths based on any two distinct vertices in 

1 1( , , ..., )
r r

G m m m
−

 under the 1-restricted connectivity. 

The maximum length of these disjoint paths is bounded 

by r+2. 

Keywords: Generalized hypercube, Disjoint path, 

Restricted connectivity, Fault-tolerance 

1 Introduction 

A topology with excellent properties will improve 

the quality of an interconnection network. A good 

topology can make an interconnection network has low 

construction cost, low communication delay, high 

fault-tolerant ability, and so on. So far, researchers 

have proposed many excellent interconnection 

networks’ topologies such as the hypercube, the 

crossed cube, the twisted cube, the Mobius��  cube, etc. 

However, the representation of vertices in these 

networks is limited to binary only, which makes the 

topology not flexible. For letting the representation of 

vertices in networks no longer limited to binary and 

making the structure more general, Laxmi and Dharma 

proposed the generalized hypercube (GH) [1]. The 

generalized hypercube has excellent properties: it is 

easily to expand with recursive structure; it is edge 

symmetric and vertex symmetric; it has low 

communication delay, etc. It includes many 

interconnection networks such as: the hypercube, the 

completed network, the 3-ary n-cube and so on. 

Furthermore, it can be used to construct some data 

center networks [2-5]. Since the generality of the 

generalized hypercube, the study results about it can be 

applied into other networks. Therefore, there are many 

studies based on it [2-4, 6-8]. 

In this paper, we study the algorithm to construct 

vertex-disjoint paths in the generalized hypercube with 

1-restricted connectivity. A topology of interconnection 

network can be modeled by a graph where vertex 

denotes the processor and edge denotes the 

communication link. That is, let ( , )G V E=  denote an 

interconnection network, where V and E represent 

vertex set and edge set, respectively. We use ( )κ G  to 

denote the connectivity of a graph G, which is the 

minimum number of vertices in set S V⊂  and the 

graph G is disconnected when deleting S. We can 

estimate the communication capability of vertices by 

connectivity and we can also use it to measure the 

fault-tolerant ability of one network. However, many 

works assume that the neighbors of one vertex can 

become faulty at the same time when estimating the 

fault-tolerant ability based on the connectivity, which 

has quite low probability. Therefore, in order to more 

accurately measure the communication and fault-

tolerant ability of one network based on connectivity, a 

lot of conditions are added into the connectivity. 

Esfahanian and Hakimi introduced the concept of 

restricted connectivity [9-10]. Let ( )g
κ G be the g-

restricted connectivity of G, which is the minimum 

number of vertices in set F V⊂ , whose deletion 

disconnects G and each vertex has at least g fault-free 

neighbors in each disconnected component. So far, 

there are many studies based on the restricted 

connectivity. Chen et al. studied the restricted vertex 

connectivity and the restricted edge connectivity of 

three families of interconnection networks [11]. Hsieh 

et al. studied the {2, 3}-restricted connectivity of 
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locally twisted cubes [12]. Wang et al. proved that the 

h-restricted connectivity of the data center network 

DCell is almost as (h+1) times as traditional 

connectivity [13-14]. Balbuena and Marcote studied 

the p-restricted edge-connectivity of Kneser graphs 

[15]. Then it has received many attentions from 

outstanding researchers [16-22]. In this paper, we 

assume that each vertex has at least one fault-free 

neighbor which can better reflect the actual 

communication of a network. 

Vertex-disjoint paths are those that do not share any 

common vertex except for end vertices. Disjoint paths 

are fundamental and essential for parallel, distributed 

computing, fault-tolerance, and load balancing of a 

network [23]. For transmitting data in the network 

stably and safely, more and more works are based on 

vertex-disjoint paths. Lai studied the optimal 

construction of all shortest vertex-disjoint paths in the 

hypercube with applications [24]. Furthermore, the 

maximal length of paths is also minimized in the worst 

case. Cheng et al. proposed an ( )O NlogN  recursive 

algorithm to construct n independent spanning trees in 

Mobius��  cubes, and further they constructed n vertex-

disjoint paths based on the n independent spanning 

trees [25]. Cheng et al. proved that there exist two 

vertex-disjoint paths in the balanced hypercube, and 

then they studied the hamiltonian laceability of the 

balanced hypercube based on vertex-disjoint paths [26]. 

Inoue proved that network reliability and the criticality 

of links are greatly dependent on path disjointness [27]. 

However, these works do not consider the restricted 

connectivity when construct vertex-disjoint paths. 

In this paper, we propose algorithms to construct 

vertex-disjoint paths based on any two distinct vertices 

under 1-restricted connectivity. We use 

1 1( , , ..., )
r r

G m m m
−

 to denote the r-dimensional 

generalized hypercube and 1 ( )κ G  to be the 1-restricted 

connectivity. In this paper, we proposed an algorithm 

to construct at least 1 ( )κ G  disjoint paths based on any 

two distinct vertices in the generalized hypercube 

under 1-restricted connectivity in ( )O mr time, where 

the maximum length of these disjoint paths is bounded 

by r+2. 

The rest of this paper is organized as follows. In 

Section 2, we give some basic definitions and notations 

used in this paper and some properties of the 

generalized hypercube. Then, we design the 

construction algorithms to construct vertex-disjoint 

paths in Section 3. In Section 4, we do simulations to 

analyze performances of the proposed algorithm. 

Finally, we provide conclusions of the paper in Section 

5. 

2 Preliminaries 

In this section, we first introduce some definitions 

and notations used in this paper and introduce the 

definition and properties of the generalized hypercube. 

2.1 Definitions and Notations 

Given an undirected simple graph ( ( ), ( ))G V G E G= , 

where ( )V G  and ( )E G  represent vertex set and edge 

set, respectively. Let ( , )u v  be an edge with end 

vertices u and v. If ( , ) ( )u v E G∈ , we call u and v are 

neighbors for each other. Let 1( , )nP u u =  
1 2( ... )nu u u→ → →  be a path from 1

u  to n

u  in 

which any two consecutive vertices are adjacent. Let 
1( , ) ( ... )i j i i j

P u u u u u
+

= → → → . Then we call path 

( , )i j
P u u  to be the sub-path of 1( , )nP u u . Furthermore, 

we write 1 1 1 1( , ) ( ...n i i
P u u u u u

− +

= → → →  

( , )i j
P u u

1... )j n
u u

+

→ → . We use F to represent the 

faulty vertices set of G. If a vertexu F∈ , we call u a 

faulty vertex; otherwise we call it fault-free. If each 

vertex has one fault-free neighbor in graph G-F, we 

call the connectivity of G under this condition as the 1-

restricted connectivity, denoted by 1 ( )κ G . 

The generalized hypercube is a general class of 

hypercube structures which is designed to be used in 

the parallel and distributed environments [1]. Then we 

give the definition of an r-dimensional generalized 

hypercube as follows: 

Definition 1. For any integer 1r ≥ , an r-dimensional 

generalized hypercube, denoted by 1 1( , , ..., )
r r

G m m m
−

, 

has 1

r

i im=
∏  vertices, where im  is the number of 

vertices in each dimension. Each vertex u in 

1 1( , , ..., )
r r

G m m m
−

 can be denoted by an r-digit 

identifier 1 1...

r r
u u u

−

, where 0 1i iu m≤ ≤ −  with1 i r≤ ≤ . 

Two vertices in 1 1( , , ..., )
r r

G m m m
−

 are adjacent if and 

only if their identifiers differ at exactly one position. 

Figure 1 demonstrates the structure of (3, 4)G  and 

(3,3, 4)G . We know that (3,3, 4)G  is constructed by 3 

(3, 4)G s. Therefore, one 1 1( , , ..., )
r r

G m m m
−

 is made up 

of 
r

m  1 2 1( , , ..., )
r r

G m m m
− −

. 

  

(a)                                               (b)  

Figure 1. The structure of G(3,4) and the structure of 

G(3,3,4) 

According to [1], we have the following theorems. 
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Theorem 1. The connectivity of 1 1( , , ..., )
r r

G m m m
−

 is 

1
( )

r

i
i

κ G m
=

=∑ . 

Theorem 2. The diameter of 1 1( , , ..., )
r r

G m m m
−

 is r. 

2.2 Properties of 1 1( , ,..., )
r r

G m m m
−

 Under 1-

restricted Connectivity 

In this paper, we assume that each vertex in 

1 1( , , ..., )
r r

G m m m
−

 has at least one fault-free neighbor. 

For simplicity, let G represent 1 1( , , ..., )
r r

G m m m
−

 in the 

following section and these two symbols can be used 

alternately. Given two arbitrary vertices 

1 1 1 1... ...r r k k ku u u u u u u
− + −

=  and 1 1 1 1... ...

r r n n n
v v v v v v v

− + −
=  

in 1 1( , , ..., )
r r

G m m m
−

. Let 1 1 1 1... ...r r k kx u u u gu u
− + −

=  be a 

u's fault-free neighbor, ku g≠ ; and 

1 1 1 1... ...

r r n n
y v v v qv v

− + −
=  be a v's fault-free neighbor, 

n
v q≠ . We use an array 1 1[ , , ..., ]

uv α α
L l l l

−

=  to indicate 

positions at which u and v have different value. 

For example, when u=000000 and v=003102, then 

[4,3,1]
uv
L =  and 3α = , since at positions 4, 3, and 1, u 

and v have different bits. If u and v are adjacent, then 

they have exactly one different bit. Furthermore, we 

use hamming distance to represent the distance 

between u and v, denoted by ( , )h u v , which is defined 

as the cardinality of { | }i ii u v≠  [28], i.e., 

( , ) | |
uv

h u v L α= = . In this paper, we consider paths 

between u and v whose distance is at least 2, i.e., 2α ≥  

since we already proved that we can design an 

algorithm to construct at least 1 ( )κ G  disjoint paths 

when 1α =  and this result has been accepted by 

hpcc2019 conference. 

According to [29], we have the following theorem: 

Theorem 3. The 1-restricted connectivity of 

1 1( , , ..., )
r r

G m m m
−

 is 1 ( ) 2 ( )κ G κ G n= − , where 

max{ |1 }in m i r= ≤ ≤ . 

3 Disjoint Paths 

In this section, we design algorithms to construct 

vertex-disjoint paths in G  under 1-restricted 

connectivity. Given any two vertices u and v, and their 

neighbors x and y, we can use four kinds of methods to 

construct disjoint paths which end vertices are u and v. 

Since we assume that each vertex in G  has at least 

fault-free neighbor, therefore paths constructed in this 

paper may contain the neighbors of end vertices. In 

there, we redefine the definition of vertex-disjoint 

paths: paths are vertex-disjoint if they have no 

common vertices other than vertex in set {u, x, y, v}. 

The first way is to construct paths which do not pass 

through vertex x as shown in Figure 2(a). The second 

way is to construct paths which must pass through x as 

shown in Figure 2(b). The third way is to construct 

paths which do not pass through x but must pass 

through y as shown in Figure 2(c). The fourth way is to 

construct paths which pass through vertices x and y at 

the same time, as shown in Figure 2(d). 

   

   (a)                                 (b) 

     

   (c)                                 (d) 

Figure 2. Four kinds of disjoint paths. 

3.1 The Base Paths 

Firstly, we introduce how to construct path between 

two vertices by Algorithm 1. The process of path 

construction is just a process of bit-changing. For 

example, let u=0000, v = 0433, then one of paths 

between u and v is 0000→0003→0033→0433. Let P 

be a path from u to v and the number of different bits 

between two vertices satisfies 2 α r≤ ≤ . So in P there 

will be at least α  bit-changes, meaning the length of P 

is at leastα . Our target is to construct vertex-disjoint 

paths between u and v, and our final algorithm 

constructs each path by splicing a few (up to 3) sub-

paths. 

As just mentioned, going from a vertex u to the next 

vertex is equivalent to changing one bit of u. So by 

selecting the bits to change in certain order, we are 

actually selecting a particular path. In Algorithm 1, 

when specifying a sub-path, we give the bit-location to 

start the change (denoted by s) and the bit-location to 

terminate the change (denoted by t). For example, let u 

= 000000, and v=032433. Then the different bit 

position array 
uv
L  is [5, 4,3, 2,1]

uv
L = . Let s = 1, t = 3, 

which means that the path starts by first changing the 

bit at location 1l , then 2l , and ends at 3l . Thus, the 

corresponding sub-path is u = 000000 →  

00003→000033→000433. (Note: it has not reached v 

yet since it is a sub-path.) 

Algorithm 1 (PA) as below is the pseudocode to 

describe the procedure to construct up to three sub-

paths from vertex 0z  to vertex tz . Since the path 

constructed by Algorithm 1 may be just a sub-path 

of
uv
P , vertex 0z  is not necessarily u and vertex tz  is 

not necessarily v. PA's inputs 1s , 2s  and 3s  are the 
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three start bit-locations, while 1t , 2t  and 3t  are the three 

terminal bit-locations. Lines 2--5 calculate the length 

for each of three sub-paths. Then lines 6--8 describe 

how to change bits in the 1st sub-path. Similarly, lines 

9--11 describe how to change bits in the 2nd sub-path, 

and lines 12--14 describe how to change bits in the 3rd 

sub-path. Finally, the fifth line outputs the constructed 

paths. 

 

Algorithm 1: 0 1 1 2 2 3 3( , , , , , , , , )
uv

PA z v L s t s t s t  

Input: source vertex 0z , terminal vertex v , the array 

uv
L , and indexes 1 1 2 2 3 3, , , , ,s t s t s t . 

Output: a path from 0z  to tz , 1 2 3t m m m= + + . 

begin 

for 1i = to 3 do 

if 0is ≠ then | | 1i i im t s= − + ; 

else 0im = ; 

end for 

if 1 0s ≠ then 

11

11
1( ) ls i

s i

v

i i l
z z

+ −

+ −
−

= for 11 i m≤ ≤ ; 

end if 

if 2 0s ≠ then 

12 1

12 1
1( ) ls i m

s i m

v

i i l
z z

+ − −

+ − −
−

= for 1 1 21m i m m+ ≤ ≤ + ; 

end if 

if 3 0s ≠ then 

13 1 2

13 1 2
1( ) ls i m m

s i m m

v

i i l
z z

+ − − −

+ − − −
−

= ,  

1 2 1 2 31m m i m m m+ + ≤ ≤ + + ; 

end if 

return 
1 2 30 1( , , ..., )

m m m
z z z

+ +
; 

end 

 

Since bit-changing is a basic operation in Algorithm 

1, we use iu  to denote the i-th bit of vertex u and we 

use j

iu  to denote the vertex obtained by changing u's i-

th bit to j. For example, if u=010203, then 1 3u = , 
1

4
u = 

010204, 3u = 2, and 
3

4
u  = 010403. In Algorithm 1, 

when constructing the first sub-path, vertex 
11

11
1( ) ls i

s i

v

i i l
z z

+ −

+ −
−

=  for 1 ii m≤ ≤ . For example, let u = 

000000, v = 113112, 1s = 2, 1t = 4, and 0z u= , then 

[6,5, 4,3, 2,1]
uv
L =  and 1 3m = . The 2 1 1

2 1 1
1 0( ) lv

l
z z

+ −

+ −

= , 

where 2 1 1 2 2l l
+ −

= =  and
2 1 1 2 1lv v
+ −

= = , 1

1 0 2( )z z= =  

1

2(000000) = 000010. Similarly, 2 2 1

2 2 1
2 1( ) l

v

l
z z

+ −

+ −

=  

33

3

1

1 33
( ) (000010) (000010) 000110l

v v

l
z= = = =  and 3z =  

42 3 1 4

2 3 1 4

3

2 2 44
( ) ( ) (000110) (000110) 003110l l

v v v

l l
z z

+ −

+ −

= = = = . 

The first sub-path is 000000 →  000010→ 000110→  

003110. Then the changing of vertices in the second 

sub-path and the third sub-path are similarly. 

Then we use an example to illustrate the 

construction path process of our algorithm. For 

example, let u = 000000, v = 113112, and 0z u= , then 

[6,5, 4,3, 2,1]
uv
L = . If the whole path contains just one 

sub-path, then path PA( 0z , v, 
uv
L , 1, 6, 0, 0, 0, 

0)=000000 →  000002 →  000012 →  000112 →  

003112→  013112→  113112. 

The following is a path composed of two sub-paths: 

PA( 0z , v, 
uv

L , 4, 6, 1, 3, 0, 0) =000000 →  003000 

→013000→113000 and113002→113012→113112. 

And a path composed of three sub-paths:  

PA( 0z , v, 
uv
L , 5, 6, 3, 4, 1, 2) = 000000  010000→  

110000→ , 110100 113100→ , and 

113102 113112→ . 

From the structural process above, we can see that 

the maximum length of paths constructed by Algorithm 

1 is ( , )h u v . 

Then according to the construction process of 

Algorithm 1, we can get the following lemma. 

Lemma 1. Vertices in each path constructed by 

Algorithm 1 are different. 

Proof. In Algorithm 1, we let that { 1s , 1 1s + , …, 

1t }∩  { 2s , 2 1s + , …, 2t }∩  { 3s , 3 1s + , …, 3t }=∅ , 

which denotes that the location of bit-changing is 

different for all vertices in each path. Therefore, 

vertices 0z , 1z , …, 
α
z  are different. 

The lemma holds. 

3.2 The First Method to Construct Paths 

In this section, we design Algorithm 2 to construct 

vertex-disjoint paths from u to v, where all paths 

circumventing a particular vertex x which is a neighbor 

of u. We use 1P  to denote the path set obtained by 

Algorithm 2. The input of u, v are two end vertices of 

paths obtained by Algorithm 2, k is the location of the 

bit at which u and x are different, r is the dimension of 

the generalized hypercube, G represents 

1 1( , , ..., )
r r

G m m m
−

, and 
uv
L  is the position array of 

different bits between u and v. The meaning of these 

parameters in following algorithms is the same. 

In Algorithm 2, the line 2 assigns values to each 

parameter. Then lines 3--15 construct paths from u to v. 

The line 16--19 determines whether k belongs to
uv
L . 

Finally, the line 20 outputs the path set 1P  and deletes 

the path that passes through vertex x. 

Note that we can start a bit-changing process from 

any bit. For1 i r≤ ≤ , let the starting bit be i, and let 1

i
P  

represent the set of all paths with starting bit i. 

 

Algorithm 2: 2 1( , , , , ,1, )
uv

BP u v G k L r−  

Input: vertices u  and v , the graph G  and the array 

uv
L , and indexes ,1,k r . 

Output: disjoint paths from u  to v , which do not pass 

through x . 

begin 

     1P ←∅ , | |
uv

α L= , 1 2 2 3 3 0s s t s t= = = = = , 1t α= . 
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     for 1i =  to r  do 

for 0j = to 1im − do 

if iu j≠ then 

if uvi L∉  then 

1 1 { , ( , , ,1, 1, 0, 0, 0, 0), }j
uviP P u PA u v L α v= −∪ ; 

else 

let 1s be the index such that 
1s
l i= ;  

2 1s = , 2 1 1t s= − ;  

1 1 1 1 2 2 3 3{ , ( , , , 1, , , , , ), };j
i uvP P u PA u v L s t s t s t v= +∪

end if 

end if 

end for 

end for 

if 
uv

k L∈ then 

let 1s be the index such that 
1

;
s
l k=  2 1s = , 2 1 1t s= − ; 

end if 

return 1 1 1 2 2 3 3{( , ( , , , 1, , , , , ), )}kx

uvk
P u PA u v L s t s t s t v− + ; 

end 

 

Algorithm 2 will call Algorithm 1 (PA). If we start a 

bit-changing process from i-th bit, then the range of the 

i-th bit of j

iu  is [0, 1im − ] \{ iu }. Therefore, the 

number of paths in 1

i
P  is 1im − . The number of paths 

in 1P  is 
1
( 1) ( )

r

i
i

m κ G
=

− =∑ . Then deleting the path 

that passes through x, and the number of paths 

constructed by Algorithm 2 is ( ) 1κ G − . 

Then we will see how the algorithm works by going 

over an example. We set the generalized hypercube is 

G(4, 4, 4, 4, 4). Let u = 00000, v = 00111, x = 00010. 

Then [3, 2,1]
uv
L = . We have 2k = , at which u and x 

differ, and 
uv

k L∈ . According to BP2-1, we can 

construct paths with the value of i from 1 to 5. We 

know that when uvi L∈  the values of i are 1, 2, 3 and 

when uvi L∉  the values of i are 4, 5. Then we can get 

the path sets as follows: 
1

1 {(00000 0000P j= → 0001 0011j j→ → → 00111) 

| 10 1,j m≤ ≤ − 1}j u≠ = 
1

{( , ( , ,j
u PA u v ,

uv
L 2, 3, 0, 0, 0, 

0), v) 1 1| 0 1, }j m j u≤ ≤ − ≠ . 
2

1 {(00000 000 0P j= → 001 0 001 1j j→ → → 00111) 

| 20 1,j m≤ ≤ − 2}j u≠ = 
2

{( , ( , ,j
u PA u v ,

uv
L 3, 3, 1, 1, 0, 

0), v) 2 2| 0 1, }j m j u≤ ≤ − ≠ . 
3

1 {(00000 00 00P j= → 00 01 00 11j j→ → → 00111) 

| 30 1,j m≤ ≤ − 3}j u≠ = 
3

{( , ( , ,j
u PA u v ,

uv
L 1, 2, 0, 0, 0, 

0), v) 3 3| 0 1, }j m j u≤ ≤ − ≠ . 
4

1 {(00000 0 000P j= → 0 001 0 011j j→ → → 0j111

00111)→ | 40 1,j m≤ ≤ − 4}j u≠ = 
4

{( , ( , ,j
u PA u v  

,
uv
L 1, 3, 0, 0, 0, 0), v) 4 4| 0 1, }j m j u≤ ≤ − ≠ . 

5

1 {(00000 0000P j= → 0001 0011j j→ → → j0111

00111)→ | 50 1,j m≤ ≤ − 5}j u≠ = 
5

{( , ( , ,j
u PA u v  

,
uv
L 1, 3, 0, 0, 0, 0), v) 5 5| 0 1, }j m j u≤ ≤ − ≠ . 

We know 2k = , then we need to delete the path that 

passes through x, p =( 00000 →  00010 →  00110 

→00111). Then 2 2

1 1P P p= − . Therefore, the path set 
1 2 3 4 5

1 1 1 1 1 1P P P P P P= ∪ ∪ ∪ ∪ . 

We will prove paths constructed by Algorithm 2 are 

disjoint. Then we have the following lemma. 

Lemma 2. For1 i r≤ ≤ , Algorithm 2 constructs at least 

( ) 1κ G −  disjoint paths based on u and v which do not 

pass through vertex x. 

Proof. We use 1N  to represent the number of paths 

in 1P . Then 1
1
( 1) 1 ( ) 1

r

i
i

N m κ G
=

= − − = −∑ . We let 

1Q  and 2Q  be two different paths, where 1 2 1,Q Q P∈ . 

We will prove that paths 1Q  and 2Q  are disjoint. There 

are two cases. 

Case 1: For 1 i r≤ ≤ , 1 2 1,

i
Q Q P∈ . Since 1Q  and 2Q  

are two different paths, the values of i -th bit are 

different in 1Q  and 2Q . Therefore, for any two vertices 

1 1( )v V Q∈  and 2 2( )v V Q∈ , we have 1 2i iv v≠ . Thus, 

paths 1Q  and 2Q  are disjoint. 

Case 2: For 1 i w r≤ ≠ ≤ , 1 1

i
Q P∈  and 2 1

w

Q P∈ . For 

any two different vertices 1v  and 2v  such that 

1 1( )v V Q∈  and 2 2( )v V Q∈ , we have three subcases as 

follows. 

Case 2.1: 
uv

i L∉  and 
uv

w L∉ . Vertices in paths 1Q  

and 2Q  are different in i-th and w-th bits. Namely, 

1 2i iv v≠  and 1 2
w w

v v≠ . Therefore, paths 1Q  and 2Q  

are disjoint. 

Case 2.2: 
uv

i L∈ , 
uv

w L∉  or 
uv

i L∉ , 
uv

w L∈ . 

Without loss of generality, we let 
uv

i L∈ , 
uv

w L∉ , then 

vertices in 1Q  and 2Q  are different in i-th bit. Namely, 

1 2i iv v≠ . Therefore, paths 1Q  and 2Q  are disjoint. 

Case 2.3. ,
uv

i w L∈ . Since i w≠ , according to 

Algorithm 2, the first position of variable bit and the 

last position of variable bit in two paths are different. 

Then, since the ordering of variable bit in two paths are 

the same, there is no vertex that is the same in two 

paths. Let 1pl i=  and 
2p

l w= . It is obvious that 

1 1 11 1
p pl lv v

− 2 2 11 1
p pl lv v

− 1
2

pl
v≠  

1 2 21 12 2 2
p p pl l lv v v
− −

. 

Therefore, paths 1Q  and 2Q  are disjoint. 

The lemma holds. 

3.3 The Second Method to Construct Paths 

We design Algorithm 3 to construct vertex-disjoint 

paths from u to v in which all paths pass through vertex 

x. In Algorithm 3, lines 1--2 assign values to each 

parameter. Then lines 3--41 construct paths from x to v. 

Finally, the line 42 outputs the path set 2P . In this 

section, we use 2P  to denote the path set obtained by 

Algorithm 3. 
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Algorithm 3: 2 2( , , , , , ,1, )
uv

BP u v x G k L r−  

Input: vertices u  and v , the graph G  and the array, 

uv
L  and indexes ,1,k r . 

Output: disjoint paths from u  to v  which all pass  

through x . 

begin 

2P ←∅ , | |
uv

α L= , 1 2 1 2 0s s a a= = = = , 0 ,

j

in x=

11

11
1 0( ) ,

la

a

v

l
n n

+

+

=  1( ) kv

k k
n n= ; 

for 1i =  to r  do 

for 0j = to 1im − do 

if 
uv

k L∈  then 

let 1s be the index such that 
1s
l k= ; 

end if 

if 
uv

i L∈  then 

let 2s be the index such that 
2s

l i= ; 

end if 

if i k≠  && iu j≠ then 

if   | | 3
uv

L == && 
uv

k L∈ && i == max  

{ \{ }}
uv
L k then 

{ \{ , }}m uvl L k i= ; 

2 2 0 0{ , , , (( ) , , , ,0,0,0,0), };kv

k uvP P u x n PA n L m m v= ∪  

else 

if 1s ==0 then 

if 2s ==0 then 

1 1,a s=  2 3 0,a a= =  1 ,b α=  2 3 0;b b= =  

else 

1 2a s= , 2 1a = , 3 0a = , 1b α= ,  

2 2 1b s= − , 3 0b = ; 

end if 

else 

if 2s ==0 then 

1 2a s= , 2 1a = , 3 0a = , 1b α= ,  

2 2 1b s= − , 3 0b = ; 

end if  

if 1 2s s>  then 

1 1a s= , 2 1a = , 3 2 1a s= + , 1b α= ,  

2 2 1b s= − , 3 1 1b s= − ; 

else 

1 1a s= , 2 2 1a s= + , 3 1a = ,  

1 2 1b s= − , 2b α= , 3 1 1b s= − ; 

end if 

2 2 0 1 1

1 2 2 3 3

{ , , , , ( , , 2,

, , , , ), };

k uvP P u x n n PA n L a

b a b a b v

= +∪
 

end if 

end for 

end for  

return 2P ; 

end 

 

For 1 i r≤ ≤  and i k≠ , we let the starting bit be i, 

and let 2

i
P  represent the set of all paths with starting bit 

i. Algorithm 3 will call Algorithm 1 (PA). If we start a 

bit-changing process from bit i, the range of the value 

of iu  is [0, 1im − ]\{ iu }. Therefore, the number of 

paths in 2

i
P  is 1im − . The number of paths in 2P  is 

1,
( 1) ( ) 1

r

i k
i i k

m κ G m
= ≠

− = − +∑ . 

Then we will see how the algorithm works by going 

over an example. We set the generalized hypercube is 

G(4, 4, 4, 4, 4). Let u = 00000, v = 00111, x = 00010. 

Then [3, 2,1]
uv
L = . We have 2k = , at which u and x 

differ, and 
uv

k L∈ . According to the algorithm, we can 

construct paths with the value of i from 1 to 5 and 2i ≠ . 

We know that when uvi L∈  the values of i are 1, 2, 3 

and when uvi L∉  the values of i are 4, 5. Then we can 

get the path sets as follows: 
1

2 {(00000 00010P = → 0001 0011j j→ → → 00111) 

| 10 1,j m≤ ≤ − 1}j u≠ = 2 2 3

1 1 2 1 2 3
{( , , , ( ) , (( ) ) ,j j v j v v
u x x x x

2 3 4

1 2 3 4
(((( ) ) ) , , , 0, 0, 0, 0,0, 0), )j v v v

uvPA x v L v 1| 0 j m≤ ≤ −

1, 1j u≠ }. 
3

2 {(00000 00010P = → 00 10 00 11j j→ → →00111) 

| 30 1,j m≤ ≤ − 3}j u≠ = 1 1 4

3 3 1 3 1 4
{( , , , ( ) , ((( ) )j j v j v v
u x x x PA x

,v ,
uv
L 0, 0, 0, 0, 0, 0), v) 3 3| 0 1, }j m j u≤ ≤ − ≠ . 

4

2 {(00000 00010P = → 0 010 0 011 0 111j j j→ → →

00111) | 40 1,j m≤ ≤ − 4}j u≠ =
4

{( , , ,ju x x
2

4 2
( ) ,j v
x  

2 1 2 1 3

4 2 1 4 2 1 3
(( ) ) , (((( ) ) ) , , ,j v v j v v v

uvx PA x v L 0, 0, 0, 0, 0, 0), v) 

|0 j≤  4 41, }m j u≤ − ≠ . 
5

2 {(00000 00010 0010 0011P j j= → → → → j0111 

00111) | 50 1,j m≤ ≤ − 5}j u≠ =
5

{( , , ,ju x x
2

5 2
( ) ,j v
x  

2 1 2 1 3

5 52 1 2 1 3
(( ) ) , (((( ) ) ) , , ,j v v j v v v

uvx PA x v L 0, 0, 0, 0, 0, 0), v) 

|0 j≤  5 51, }m j u≤ − ≠ . 

Therefore, the path set 1 3 4 5

2 2 2 2 2P P P P P= ∪ ∪ ∪ . 

We will prove paths constructed by Algorithm 3 are 

disjoint. Then we have the following lemma. 

Lemma 3. Algorithm 3 can construct ( ) 1kκ G m− +  

disjoint paths based on u and v in which each path 

passes through x. 

Proof. We use 2N  to denote the number of paths in 2P . 

Thus, 2
1

( ( 1)) ( 1) ( )
r

i k k
i

N m m κ G m
=

= − − − = −∑ 1+ . 

Then we set 2

i
P  to be the i-th path set of 2P , where 

1 i r≤ ≤  and i k≠ . We let 1Q  and 2Q  be two different 

paths, where 1 2 2,Q Q P∈ . We will prove that paths 1Q  

and 2Q  are disjoint. There are two cases. 

Case 1: For 1 i r≤ ≤  and i k≠ , 1 2 2,

i
Q Q P∈ . The 

values of j in i-th bit are different in 1Q  and 2Q . 

Therefore, vertices in 1Q  and 2Q  are different in i-th 

bit. Thus, paths 1Q  and 2Q  are disjoint. 

Case 2: For 1 i w r≤ ≠ ≤ , i k≠ , w k≠ , 1 1

i
Q P∈  and 

2 1

w

Q P∈ . For any two different vertices 1v  and 2v  
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such that 11 ( )v V Q∈  and 22 ( )v V Q∈ , we have three 

subcases as follows 

Case 2.1: 
uv

i L∉  and 
uv

w L∉ . Vertices in paths 1Q  

and 2Q  are different in i-th and w-th bits. Namely, 

1 2i iv v≠  and 1 2
w w

v v≠ . Therefore, paths 1Q  and 2Q  

are disjoint. 

Case 2.2: 
uv

i L∈ , 
uv

w L∉  or 
uv

i L∉ . Without loss of 

generality, we let 
uv

i L∈ ,
uv

w L∉ , then vertices in 1Q  

and 2Q  are different in i-th bit. Namely, 1 2i iv v≠ . 

Therefore, paths 1Q  and 2Q  are disjoint. 

Case 2.3: ,
uv

i w L∈ . When 
uv

k L∉ , the proof is 

similar to that of case 2.3 in Lemma 2. 

The lemma holds. 

3.4 The Third Method to Construct Paths 

In this section, we design Algorithm 4 to construct 

vertex-disjoint paths from u to v in which all paths 

circumventing vertex x and pass through v's neighbor y . 

We use 3P  to denote the path set obtained by 

Algorithm 4.  

 

Algorithm 4: 2 3( , , , , , ,1, )
uv

BP u v y G n L r−  

Input: vertices u , v  and y, the graph G  and the array 
uv

L , and indexes ,1,n r . 
Output: disjoint paths from u  to v  which all pass 

through x . 
begin 

3P ←∅ , | |uvα L= , 1 2 0s s= = ; 
for 1i =  to r  do 

for 0j = to 1im − do 
if 

uv
n L∈  then 
let 1s be the index such that 

1s
l n= ; 

end if 
if 

uv
i L∈  then 
let 2s be the index such that 

2s
l i= ; 

end if 
if i n≠  && iu j≠ then 

if 1s ==0 && 2s ==0 then 

1 2 3 0a a a= = = , 1b α= , 2 3 0b b= = ; 
end if 
if 1s ==0 && 2s >0 then 

1 2a s= , 2 1a = , 3 0a = , 1b α= , 2 2 1b s= − ,  

3 0b = ; 
end if 
if 1s >0 && 2s ==0 then 

1 1a s= , 2 1a = , 3 0a = , 1b α= , 2 1 1b s= − ,  

3 0b = ; 
end if 
if 1s > 2s  then 

1 1a s= , 2 1a = , 3 2 1a s= + , 1b α= ,  

2 2 1b s= − , 3 1 1b s= − ; 
else 

1 1a s= , 2 2 1a s= + , 3 1a = , 1 2 1b s= − ,  

2b α= , 3 1 1b s= − ; 
end if 

3 3 1 1 2 2 3 3{ , , (( ) , , 1, , , , ,

) , };

nj j y
i i n uvP P u u PA u L a b a b a b

y v

= +∪
 

end if 
end for 

end for  
return 3P ; 
end 

 

In Algorithm 4, the line 1 assigns values to each 

parameter. Then lines 3--33 construct paths from u to v 

which circumvents x and passes through y . Finally, 

line 34 outputs the path set 3P . For 1 i r≤ ≤ and i n≠ , 

let this starting bit be i, and let 3

i
P  represent the set of 

all paths with starting bit i. Algorithm 4 will call 

Algorithm 1 (PA). If we start a bit-changing process 

from bit i, then the range of the value of iu  is [0, 

1im − ] \{ iu }. 

Therefore, the number of paths in 3

i
P  is 1im − . The 

number of paths in 3P  is
1
( 1) ( )

r

i
i

m κ G
=

− =∑ . Then 

deleting the path that passes through x, the number of 

paths constructed by Algorithm 4 is ( ) 1κ G − . 

Then we will see how the algorithm works by going 

over an example. We set the generalized hypercube is 

G(4, 4, 4, 4, 4). Let u = 00000, v = 00111, x = 00001, 

and y =00121. Then [3, 2,1]
uv
L = . We have 1k =  and 

2n =  at which y  and v differ, and ,
uv

k n L∈ . 

According to the algorithm, we can construct paths 

with the value of i from 1 to 5. We know that when 

uvi L∈  the values of i are 1, 2, 3 and when uvi L∉  the 

values of i are 4, 5. Then we can get the path sets as 

follows: 
1

3 {(00000 0000P j= → 0002 0012 00121j j→ → →

00111)→ | 10 1,j m≤ ≤ − 1}j u≠ = 
1 1

{( , , (( ) ,nj j y
nu u PA u  

, ,uvv L 3, 3, 1, 1, 0, 0), y, v) 1 1| 0 1, }j m j u≤ ≤ − ≠ . 
2

3 {(00000 000 0P j= → 001 0 001 1 00121j j→ → →  

00111)→ | 20 1,j m≤ ≤ − 2}j u≠ = 3

2 2 3
{( , , (( ) ,j j v
u u PA u  

, ,uvv L  1, 1, 0, 0, 0, 0), y, v) 2 2| 0 1, }j m j u≤ ≤ − ≠ . 
3

3 {(00000 00 00 00 20 00 21 00121P j j j= → → → →

00111)→ | 30 1,j m≤ ≤ − 3}j u≠ = 
3 3

{( , , (( ) ,nj j y
nu u PA u  

, ,uvv L 1, 1, 0, 0, 0, 0), y, v) 3 3| 0 1, }j m j u≤ ≤ − ≠ . 
4

3 {(00000 0 000P j= → 0 020 0 120 0 121j j j→ → →

00121 00111)→ → | 40 1,j m≤ ≤ − 4}j u≠ = 
4

{( , ,ju u  

4
(( ) , , ,nj y

n uvPA u v L 3, 3, 1, 1, 0, 0), y, v) | 40 1,j m≤ ≤ −  

4}j u≠ . 
5

3 {(00000 0000 0020 0021 0121P j j j j= → → → →

00121 00111)→ → | 50 1,j m≤ ≤ − 5}j u≠ = 
5

{( , ,ju u   

5
(( ) , , ,nj y

n uvPA u v L 3, 3, 1, 1, 0, 0), y, v) | 

50 1,j m≤ ≤ −  5}j u≠ . 

We know 2k = , then we need delete the path that 

passes through x, (00000 00010 00110p = → → →  

00111) . Then 2 2

3 3P P p= − . Therefore, the path set 
1 2 3 4 5

3 3 3 3 3 3P P P P P P= ∪ ∪ ∪ ∪ . 

We will prove paths constructed by Algorithm 4 are 
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disjoint. Then we have the following lemma. 

Lemma 4. Algorithm 4 can construct ( ) 1κ G −  disjoint 

paths based on u and v in which each path passes 

through x and passes through y . 

Proof. We use 3N  to denote the number of paths in set 

3P . Thus, 3
1

( ( 1)) 1 ( ) 1
r

i
i

N m κ G
=

= − − = −∑ . Then we 

set 3

i
P  to be the i-th path set of 3P , where 1 i r≤ ≤ . We 

let 1Q  and 2Q  be two different paths, where 

1 2 3,Q Q P∈ . We will prove that paths 1Q  and 2Q  are 

disjoint. The proof is similar to Lemma 3. 

The lemma holds. 

3.5 The Fourth Method to Construct Paths 

Finally, we design Algorithm 5 to construct vertex-

disjoint paths from u to v in which all paths pass 

through x and y . In Algorithm 5, the lines 1--2 assign 

values to each parameter and define the values of four 

vertices respectively. Then lines 3--34 construct paths 

from u to x then to y to v. Finally, the line 35 outputs 

the paths constructed by Algorithm 5. In this section, 

we use 4P  to denote the path set obtained by 

Algorithm 5. 

For 1 i r≤ ≤  and i k≠ , we let the starting bit be i, 

and let 4

i
P  represent the set of all paths with starting bit 

i. Algorithm 5 will call Algorithm 1 (PA). If we start a 

bit-changing process from bit i, the range of the value 

of iu  is [0, 1im − ] \{ iu }. 

 

Algorithm 5: 2 4( , , , , , , , ,1, )
uv

BP u v x y G k n L r−  

Input: vertices u , v , x, and y, the graph G  and the 

array 
uv

L , and indexes , ,1,k n r . 

Output: disjoint paths from u  to v  which all pass 

through x and y. 

begin 

4P ←∅ , | |
uv

α L= , 1 2 0s s= = , 1 1a s= , 2 2a s= ,  

0 ,

j

in x=  11

11
1 0( ) ,

la

a

v

l
n n

+

+

=  1( ) ny

n nn n= ; 

for 1i =  to r  do 

for 0j = to 1im − do 

if i k≠  && iu j≠ then 

if 
uv

k L∈  then 

let 1s be the index such that 
1s
l k= ; 

end if 

if 
uv

i L∈  then 

let 2s be the index such that 
2s

l i= ; 

end if 

if 1s ==0 && 2s ==0 then 

1 2 3 0a a a= = = , 1b α= , 2 3 0b b= = ; 

end if 

if 1s ==0 && 2s >0 then 

1 2a s= , 2 1a = , 3 0a = , 1b α= , 2 2 1b s= − ,  

3 0b = ; 

end if 

if 1s >0 && 2s ==0 then 

1 1a s= , 2 1a = , 3 0a = , 1b α= , 2 1 1b s= − ,  

3 0b = ; 

end if 

if 1s > 2s  then 

1 1a s= , 2 1a = , 3 2 1a s= + , 1b α= ,  

2 2 1b s= − , 3 1 1b s= − ; 

else 

1 1a s= , 2 2 1a s= + , 3 1a = , 1 2 1b s= − ,  

2b α= , 3 1 1b s= − ; 

end if 

4 4 0 1 1 1 2 2 3 3{ , , , , ( , , 2, , , , ,

) , };

n uv
P P u x n n PA n L a b a b a b

y v

= +∪
 

end if 

end for 

end for  

return 4P ; 

end 

 

Therefore, the number of paths in 4

i
P is 1im − . The 

number of paths in 4P  is 
1,

( 1) ( )
r

i k
i i k

m κ G m
= ≠

− = −∑  

1+ . 

Then we will see how the algorithm works by going 

over an example. We set the generalized hypercube is 

G(4, 4, 4, 4, 4). Let u = 00000, v = 00111, x = 00020, 

and y = 00101. Then [3, 2,1]
uv
L = . We have 2k = , 

2n = , and ,
uv

k n L∈ . According to the algorithm, we 

can construct paths with the value of i from 1 to 5 and 

2i ≠ . We know that when 
uv

i L∈  the values of i are 1, 

2, 3 and when 
uv

i L∉  the values of i are 4, 5. Then we 

can get the path sets as follows: 
1

4 {(00000 00020 0002 0012 0010P j j j= → → → →

00101 00111)→ → | 10 1,j m≤ ≤ − 1}j u≠ =
1

{( , , ,ju x x

3 3 2

1 3 1 3 2
( ) , ((( ) ) , , , 0, 0, 0, 0, 0, 0), , )j v j v y

uvx PA x v L y v | 0 j≤ ≤  

1 11,m j u− ≠ }. 
3

4 {(00000 0020P = → 00 20 00 21 00 31j j j→ → →  

00131 00111)→ → | 30 1,j m≤ ≤ − 3}j u≠ =
3

{( , , ,ju x x  

1 1 2

3 1 3 1 2
( ) , ((( ) )j v j v v
x PA x ,v ,

uv
L 0, 0, 0, 0, 0, 0), y, v) 

| 0 j≤ ≤  3 3| 1, }m j u− ≠ . 
4

4 {(00000 00020 0 020 0 021 0 031P j j j= → → → →

0 131 00131 00111)j→ → → | 40 1,j m≤ ≤ − 4}j u≠ = 

4
{( , , ,ju x x

1

4 1
( ) ,j v
x  1 2

4 1 2
((( ) ) , , ,j v y

uvPA x v L 3, 3, 0, 0, 0, 0), 

y, v) | 0 j≤  4 41, }m j u≤ − ≠ . 
5

4 {(00000 00020 0020 0021 0031P j j j= → → → →

0131 00131 00111)j→ → → | 50 1,j m≤ ≤ − 5}j u≠ =

5
{( , , ,ju x x

1

5 1
( ) ,j v
x  1 2

5 1 2
((( ) ) , , ,j v y

uvPA x v L 3, 3, 0, 0, 0, 0), 

y, v) | 0 j≤  5 51, }m j u≤ − ≠ . 

Therefore, the path set 1 3 4 5

4 4 4 4 4P P P P P= ∪ ∪ ∪ . 
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We will prove paths constructed by Algorithm 5 are 

disjoint. Then we have the follow lemma. 

Lemma 5. Algorithm 5 can construct ( ) 1kκ G m− +  

disjoint paths based on u and v in which each path 

passes through both x and y . 

Proof. We use 4N  to denote the number of paths in set 

4 .P  Thus, 4
1,

( 1) 1 ( ) 1.
r

i k
i i k

N m κ G m
= ≠

= − − = − +∑  Then 

we set 4

i
P  to be the i-th path set of 4P , where 1 i r≤ ≤  

and i k≠ . We let 1Q  and 2Q  be two different paths, 

where 1 2 4,Q Q P∈ . We will prove that paths 1Q  and 2Q  

are disjoint. The proof is similar to Lemma 3. 

The lemma holds. 

3.6 The Disjoint Paths Base on any Two 

Distinct Vertices in the Generalized 

Hypercube 

In this section, we will use the four kinds of 

algorithms above mentioned to construct disjoint path 

based on any two distinct vertices in 

1 1( , , ..., )
r r

G m m m
−

. According to GHDP, we know that 

the complexity of these two algorithms is ( )O mr , 

where m is the cardinal of each dimension and r is the 

dimension of the generalized hypercube. The 

maximum length of these paths constructed by four 

algorithms is 2r + . Then, we have the following 

theorem. 

 

Algorithm 6: ( , , , , , , , ,1, )
uv

GHDP u v x y G k n L r  

Input: vertices u , v , x and y, the graph G  and the 

array 
uv

L , and indexes , ,1,k n r . 

Output: disjoint paths from u  to v . 

begin 

P ←∅ ; 

if n k== && k nx y==  then 

2 1 2 4P BP BP= − −∪ ; 

else 

2 2 2 3P BP BP= − −∪ ; 

end if  

return P ; 

end 

 

Theorem 4. Algorithm 6 can construct at least 
1 ( )κ G disjoint paths based on any two distinct vertices 

in 1 1( , , ..., )
r r

G m m m
−

under 1-restricted connectivity.  

Proof. Algorithm 6 constructs disjoint paths based on 

any two distinct vertices u and v in 1 1( , , ..., )
r r

G m m m
−

 

under 1-restricted connectivity. Obviously, we use 

BP2-1 and BP2-4 as a combination, BP2-2 and BP2-3 

as a combination to construct the disjoint paths, 

respectively. According to Lemma 2 and Lemma 4, the 

numbers of disjoint paths constructed by BP2-1 and 

BP2-3 are both ( ) 1κ G − . According to Lemma 3 and 

Lemma 5, the numbers of disjoint paths constructed by 

BP2-2 and BP2-4 are both ( ) 1kκ G m− + . In 

Algorithm 6, GHDP calls the two algorithms in 

different cases. Then according to Theorem 3, the 

number of disjoint paths constructed by Algorithm 6 is 

at least 1 ( )κ G .  

4 Simulation 

In this section, we do simulations to analyze the 

performances of GHDP and compare it to other one 

existing algorithm. The simulation experiments are 

based on the eclipse tool. Then to avoid the 

occasionally of experimental results, every data we 

gotten in the experiment is the average of running 60 

times. There are two parameters to evaluate the 

performances of algorithms: PN (The Number of 

Disjoint Paths) and FPN (The Number of Fault-

tolerance Disjoint Paths). In [30], Tong et al. 

introduced an algorithm to construct disjoint paths in 

the generalized hypercube. However, the algorithm in 

[30] did not consider the restricted connectivity and it 

only considered the connectivity of the generalized 

hypercube. We called the algorithm proposed by Tong 

et al. to be ADP. Then we compare PN and FPN of 

GHDP and ADP, respectively. 

4.1 The Number of Disjoint Paths (PN) 

There we use the PN indicator to estimate two 

algorithms in different 1 1( , ,..., ).
r r

G m m m
−

 For simplicity, 

we let 1 1...

r r
m m m

−

= = = . 

Then we run these two algorithms in two groups of 

graphs. The first group of graphs is G (5, 5, 5, 5, 5), 

G (6, 6, 6, 6, 6), G (7, 7, 7, 7, 7), G (8, 8, 8, 8, 8), and 

G (9, 9, 9, 9, 9). The second group of graphs is G (7, 7, 

7), G (7, 7, 7, 7), G (7, 7, 7, 7, 7), G (7, 7, 7, 7, 7, 7), 

and G (7, 7, 7, 7, 7, 7, 7). The results are shown in 

Figure 3. 

  

(a)                                       (b) 

Figure 3. The comparation of GHDP and ADP about 

PN 

In Figure 3(a), the abscissa denotes the number of 

vertices in each dimension of 1 1( , , ..., )
r r

G m m m
−

 and 

5r = . In Figure 3(b), the abscissa represents the value 

of r of 1 1( , , ..., )
r r

G m m m
−

 and the number of vertices in 

each dimension is 7. Based on 3(a) and 3(b), we know 
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that the number of disjoint paths constructed by GHDP 

is much larger than that constructed by ADP. For 

example, GHDP can construct 35 disjoint paths and 

ADP can only construct 20 disjoint paths in G (5, 5, 5, 

5, 5); GHDP can construct 65 disjoint paths and ADP 

can only construct 36 disjoint paths in G (7, 7, 7, 7, 7, 

7); GHDP can construct 80 disjoint paths and ADP can 

only construct 45 disjoint paths in G (10, 10, 10, 10, 

10). The larger the graph dimension, the greater the 

performance difference between the two algorithms. 

4.2 The Number of Fault-tolerance Disjoint 

Paths(FPN) 

In this section, we assume that there are many faulty 

vertices in 1 1( , , ..., )
r r

G m m m
−

. Then, we use GHDP 

and ADP to construct fault-free disjoint paths in the 

generalized hypercube. We use N to represent the 

number of faulty vertices. Let the value of N be 20, 60, 

120, 180, 240, 300, and 360, respectively. In 

simulation, we assume that the distribution of faulty 

vertices in random. Then we run these two algorithms 

in four graphs: G (6, 6, 6, 6, 6), G (7, 7, 7, 7, 7), G (8, 

8, 8, 8, 8), and G (10, 10, 10, 10, 10), respectively. 

Finally, we compared the number of fault-free disjoint 

paths constructed by GHDP and ADP (as shown in 

Figure 4. The value of FPN in Figure 4 is the average 

number of fault-free disjoint paths based on any two 

distinct vertices in the generalized hypercube. 

 

(a)                                        (b) 

 

(c)                                      (d) 

Figure 4. The comparation of GHDP and ADP about 

FPN 

Base on Figure 4(a), 4(b), 4(c), and 4(d), we know 

that the larger the scale of the network, the smaller the 

impact of the faulty vertices on the construction of 

disjoint paths. Clearly, the more faulty vertices in one 

network, the fewer fault-free disjoint paths are 

constructed based on any two distinct vertices. For 

example, when the number of faulty vertices is 120 in 

G (6, 6, 6, 6, 6), the number of fault-free disjoint paths 

constructed by GHDP based on any two distinct 

vertices is at least 42; However, when the number of 

faulty vertices is 300 in G (6, 6, 6, 6, 6), the number of 

fault-free disjoint paths constructed by GHDP based on 

any two distinct vertices is 23. 

From four figures, we know that GHDP has stronger 

fault-tolerance than ADP. For example, when the 

number of faulty vertices is 240 in G (7, 7, 7, 7, 7), the 

number of fault-free disjoint paths constructed by 

GHDP based on any two distinct vertices is 51, and the 

number of fault-free disjoint paths constructed by ADP 

based on any two distinct vertices is only 29; when the 

number of faulty vertices based on any two distinct 

vertices is 360 in G (10, 10, 10, 10, 10), the number of 

fault-free disjoint paths constructed by GHDP based on 

any two distinct vertices is 78, and the number of fault-

free disjoint paths constructed by ADP based on any 

two distinct vertices is only 44. 

As a consequence, we can construct more disjoint 

paths by using GHDP than ADP. When there are many 

faulty vertices in one network, GHDP can construct 

more fault-free disjoint paths than ADP. Thus, GHDP 

has stronger fault-tolerant ability than ADP. The 

performance of GHDP is better than ADP. 

5 Conclusion and Further Work 

In this paper, we are the first to propose an 

algorithm GHDP to construct disjoint paths based on 

any two distinct vertices in GH under 1-restricted 

connectivity. We can construct at least 1 ( )κ G disjoint 

paths in ( )O mr  time by GHDP. The maximum length 

of disjoint paths constructed by GHDP in 

1 1( , , ..., )
r r

G m m m
−

 is bounded by 2r + . The study for 

constructing disjoint paths under the restricted 

connectivity can be made further. The algorithm to 

construct disjoint paths under other connectivity such 

as g-restricted connectivity with 2g ≥  and structure 

connectivity [31] has not been studied, which is a 

problem worth studying, especially in the deformation 

of the hypercube such as the twisted cube [12], the 

crossed cube [19], and the spined cube [32]. 
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