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Abstract 

Random walks are basic mechanism for many dynamic 

processes on the network. In this paper, we study the 

global mean first-passage time (GMFPT) of random 

walks on the n-dimensional folded hypercube FQn. FQn 

is a variation of the hypercube Qn by adding 

complementary edges, and characterized with the 

superiorities of smaller diameter and higher connectivity 

than the hypercube. We initiate a more concise formula to 

the Kirchhoff index by using the spectra of the Laplace 

matrix of FQn. We also obtain the explicit formula to 

GMFPT, and the exponent of scaling efficiency 

characterizing the random walks is further determined, 

finding that it takes less time when random walks on FQn 

than on Qn. Moreover, we explore random walks on the 

FQn considering a given trap. Finally, we make some 

comparison with Qn in Kirchhoff index, noticing a more 

effective traffic on FQn. 

Keywords: Random walks, Folded hypercube, Mean 

first-passage time, Kirchhoff index  

1 Introduction 

Random walks are irregular forms of variation, and 

each step in the process of change is random, have 

appealed lots of interest, ranging back from as early as 

1905, to nowadays [2-3]. In general, random walks are 

assumed to have the memoryless nature of Markov 

chains [5]. That is, each state value depends on the 

previous finite state. Random walks theory have a wide 

range of applications in optimization [6], machine 

learning [7], engineering [8], artificial intelligence [9] 

and other fields [10-11, 16, 29]. Some properties of 

random walks, such as dispersal distributions [12], 

first-passage times (sometimes named hitting time) [4], 

and encounter rates [13], have been studied intensively. 

Specially, to have a further understanding of the 

characteristics of graph, many studies have been 

carried out on the first-passage time of random walks 

(FPT). The first-passage time refers to the time when a 

given node i first reaches or exceeds another given 

node j, and thus derived to mean FPT (MFPT, which is 

an average value over all starting sites), global MFPT 

(GMFPT, the mean FPT for whole pairs of nodes). 

Many literatures have discussed the MFPT on 

generalized graphs. Tejedor et al. [14] posed a general 

framework to give a minimal scaling on the GMFPT to 

a target site on complex networks. Condami et al. [4] 

revealed an explicit scaling dependence of the MFPT 

on the volume of the constrained domain and the 

source-target distance, using probability distribution. 

Elsässer and Sauerwald [19] took multiple random 

walks into account and proposed the tight bounds for 

the cover time. Meanwhile, others focused on specific 

graphs and gave the MFPT scaling. By a large number 

of numerical calculations, Zhang et al. [15] showed the 

explicit expression solution for GMFPT on hypercubes, 

with the GMFPT scaling 
n

F V∼  and Zhang et al. [17] 

obtained an exact expression of the MFPT random 

walks on the T-graph, with the GMFPT scaling 
ln 6

ln 3
n

F V∼ . Combining with the recursive properties, 

Comellas et al. [18] recovered the MFPT for random 

walks on recursive trees, with the GMFPT scaling 

( )log
n n

F V V∼ . Zhang et al. [20] also gave a 

solution for the MFPT for random walks on 

pseudofractal scale-free web, with the GMFPT scaling 
ln 2

ln 3
n

F V∼ . These are quantitative indicators pointing 

to transport efficiency in a graph. 

Obviously, numerous efforts have been made in 

exploring the characteristics on the FPT of graphs. Still, 

few works focus on FPT of the n-dimensional folded 

hypercube FQn, which was proposed by El-Amawy 

and Latifi [21] and constitute a variation of the 

hypercube networks with a large numbers of appealing 

properties, see [22] for its strong and conditional 

diagnosability, see [23] for its path embedding, see [24] 

for its connectivity, etc. All these superiorities make 

FQn widely used in parallel computing systems. 

In this paper, we provide an explicit expression to 

solve the GMFPT by deriving through the spectra of 

Laplacian matrix of the folded hypercube, noting that 

though FQn has more edges than Qn, it takes almost 

just 2n units of time when random walks take place. At 
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the same time, we also present a formula to Kf, which 

is different from the precious [28] and more 

comprehensive. The results indicate that the Kf in FQn  

is smaller than in Qn, which means a more effective 

traffic in FQn. Moreover, considering a node with trap, 

we explore the time walking randomly over all notes 

except the trap. 

The rest of this paper is organized as follows: In 

Section 2, we propose some terms and notations may 

used throughout the whole paper; In Section 3, we give 

the exact solutions to random walks on folded 

hypercubes and explore the mean first-passage time 

(MFPT) with a located trap; In Section 4, we have 

some discussion in terms of Kf and GMFPT when 

compared with Qn. Finally, we give the conclusions. 

2 Preliminaries 

In this section, we first present some terms and 

notations used throughout the paper. We then review 

the hypercube and folded hypercube. 

2.1 Terminology and Notation 

Let G = (V, E) be a graph, where the vertex set V is a 

nonempty and finite set, and the edge set E is a subset 

of {(i, j) | (i, j) is an unordered pair of V}. 

The mean first-passage time [1] is portraying as 

follows: 

 2ij ji ijF F E r+ = × , (1) 

where Fij denotes the FPT for the walker walking from 

i to j, E denotes the whole number of edges of G, and 

rij is introduced by Klein and Randié [25] to depict the 

effective resistance between nodes i and j in G. 

Moreover, they introduced the Kirchhoff index (Kf) to 

capture the sum of resistance distances of all pairs of 

nodes, i.e., 

 f ij

i j

K r

<

=∑ . (2) 

Since rij is not an easily quantifiable data, and 

Laplacian matrix can better reflect the nature of the 

network, Zhu et al. [26] showed another relationship as 

follows: 

 
2

1nV

f n

ii

K V
λ

=

= ×∑ , (3) 

where Vn is the number of nodes ( 2
n

V ≥ , and 

1 20 λ λ� �= ,…, 
nV

λ� are the eigenvalues of 

Laplacian matrix L, where L D A= − ). Let D be the 

diagonal matrix whose ith diagonal entry di is the 

degree of the vertex Vi( 1 i n≤ ≤ ), while A denotes 

Adjacency matrix, and L defined as follows: 

 

, ,

1, , ( , ) ,

0, .

i

ij

d i j

L i j and edge i j belongs to G

otherwise

=

= − ≠

⎧
⎪
⎨
⎪
⎩

  

Concurrently, we denote ijF  to be the expected time 

for walking by random from nodes i  to j , and 
n

F〈 〉  

are the average of expected time over all node pairs. 

The latter, is also named as global mean first passage 

time (GMFPT). ( )
sum

F n  denotes the sum of ijF  over 

whole pairs of nodes. 

2.2 Folded Hypercubes 

The following we will introduce some notations 

about hypercubes and folded hypercubes. The topology 

of a hypercube network is an n -dimensional 

hypercube, which is an undirected graph, denoted as 

n
Q . It can be defined by the following sequence, 

 1 2
{ ..., : 0,1, 1, 2, , },

n i
V x x x x i n= ∈ = � .  

The two nodes in n
Q  are connected by edges if and 

only if there exists one and only one different 

coordinate. That means, for node 1 2
...

n
x x x x= and node 

1 2
...

n
y y y y= , always have 

1

| | 1

n

i i

i

x y

=

− =∑ . 

 

Figure 1. Two-dimensional folded hypercube FQ2 and 

three-dimensional folded hypercube FQ3 

The n -dimensional folded hypercube FQn [24] is 

obtained by adding complementary edges to the 

hypercube Qn (see Figure 1). Clearly, FQn is ( 1)n + -

regular and ( 1)n + -connected. Let Vn and En be the 

total number of nodes and edges in FQn, then 2
n

n
V = , 

( 1)
( 1)2

n

n
E n

−

= + . The diameter of n-dimensional FQn  

is
2

n⎡ ⎤
⎢ ⎥⎢ ⎥

, and the folded hypercube preserve the 

symmetric characteristic of hypercubes. The unique 

superiorities make the folded hypercube considered to 

be a challenging and attractive network structure to 

replace the hypercube network. It is also a preferred 

structure in parallel processing and parallel computing 

systems. 
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Lemma1. [24] Let Sp be a spectra of Laplacian matrix 

of FQn , then 

2
0 2 4 2

1 1 1 1

0 4 8 4

2
p

n

n n n n

n

S

C C C C
+ + + +

⎢ ⎥
⎢ ⎥⎣ ⎦

=

⎡ ⎤⎡ ⎤
⎢ ⎥⎢ ⎥⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

�

�

. 

3 A rigorous Solution for GMFPT 

In this section, by mathematical deducing, we 

initiate an exact solution to GMFPT when random 

walks in FQn. Further, since the expression of GMFPT 

is constituted of polynomials, we determine the scaling 

of GMFPT to simplify the calculation. Meanwhile, we 

discuss the GMFPT with a trap. 

3.1 GMFPT Over all Node Pairs 

It is well known that 
n

F〈 〉  (GMFPT over all node 

pairs) and sum
F  (the sum of ijF  over all note pairs) can 

be shown as the following expression 

 

1( ) 1
( )

( 1) ( 1)

V

i j j

n

sum

n ij

n n n n

F n
F F n

V V V V

−

≠

〈 〉 = =
− −

∑∑  (4) 

and 

 

1

( )

V

i j j

n

sum ijF F n

−

≠

=∑∑ . (5) 

According to the .(1)(2)Eqs  showed above, we can 

obtain the results below, i.e. 

 

1

( ) 2 ( )

V

ij n f n

i j j

n

sum n
F E r n E K FQ

−

≠

= =∑∑ . (6) 

Further, applying .(3)(6)Eqs , then we can get that 

 

1

1

( )

( 1)

1
( )

( 1)

2 1
 .

( 1)

n

n

sum

n

n n

V

ij

i j jn n

V

n

n

in n i

F n
F

V V

F n

V V

E
V

V V λ

−

≠

=

〈 〉 =
−

=
−

=
−

∑∑

∑

  (7) 

Next, for convenience, we define 
2

1

i i

Vn

n

λ
=

Ω =∑  in 

.(7)Eq . Notice that Lemma 1 had informed us the 

spectra of Laplacian matrix of FQn  as: 

2
0 2 4 2

1 1 1 1

0 4 8 4
2

p

n

n n n n

n

S

C C C C

⎢ ⎥
⎢ ⎥
⎣ ⎦

+ + + +

⎡ ⎤⎡ ⎤
⎢ ⎥⎢ ⎥

⎢ ⎥= ⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

�

�

. 

It follows that the eigenvalue of Laplacian matrix of 

FQn are 0, 4, 8,  , 4 , , 4
2 2

k n
… …

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥

and the multiplicity of 

4

2

k⎡ ⎤
⎢ ⎥⎢ ⎥

 is
2

2

1

k

n
C

+

⎢ ⎥
⎢ ⎥⎣ ⎦ . Then Lemma 2 will be useful as it 

recasts 
2

1
V

i i

n

n

λ
=

Ω =∑  as follows. 

Lemma 2. The expression of 
n

Ω  is 

2 2

1 1

1 11 1 1

2 24 2 2

n n

n

i i

n n

i ii i
= =

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥+ +

Ω = =
⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

∑ ∑ . 

Proof. Lemma 1 presents the spectra of Laplacian 

matrix of FQn, by deductive calculation, we can get the 

{ }p nS FQ  and 
n

Ω  of folded hypercubes with a lower 

dimension. 

When 1
1, 2n V= = , then 1

0 4

{ } ,

1 1
pS FQ =

⎛ ⎞
⎜ ⎟
⎝ ⎠

 

since 
2

1 1

4
n

i i

Vn

λ
=

Ω = =∑ , it can also be recasted 

as: 1

21 1

24 4

Ω = × =
⎛ ⎞
⎜ ⎟
⎝ ⎠

 . 

When 2
2, 4n V= = , then 2

0 4

{ } ,

1 3
p

S FQ =

⎛ ⎞
⎜ ⎟
⎝ ⎠

 

similarly,
2

1 1 3
3

4 4

V

i i

n

n

λ
=

Ω = = × =∑ , it can also be 

recasted as: 2

31 3

24 4

Ω = × =
⎛ ⎞
⎜ ⎟
⎝ ⎠

. 

When 33, 8n V= = , then 3

0 4 8

{ }

1 6 1
p

S FQ =

⎛ ⎞
⎜ ⎟
⎝ ⎠

, 

similarly, 
2

1 1 1 13

6 1

4 8 8
i

i

n
v

n

λ=

Ω = = × + × =∑ ,it can also be 

recasted as: 

3

4 41 1 13

2 44 8 8

Ω = × + × =
⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

. 

When 44, 16n V= = , then 

4

0 4 8
{ }

1 10 5
pS FQ =

⎛ ⎞
⎜ ⎟
⎝ ⎠

, 

similarly, 
2

1 1 1 25
10 15

4 8 8

V

i i

n

n

λ
=

Ω = = × + × =∑ , 

it can also be recasted as: 

4

5 51 1 25

2 44 8 8

Ω = × + × =
⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

. 
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When 55, 32n V= = , then 

5

0 4 8 12
{ }

1 15 15 1
p

S FQ =

⎛ ⎞
⎜ ⎟
⎝ ⎠

, 

similarly, 
2

1 1 1 1 137
15 15 1

4 8 12 24

,

V

n

i i

n

λ
=

Ω = = × + × + × =∑  

it can also be recasted as: 

5

6 6 61 1 1 137

2 4 64 8 12 24

.Ω = × + × + × =
⎛ ⎞ ⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠

 

Subsequently, using mathematical induction, we can 

easily prove that the lemma conclusions mentioned 

above are all established. 

Lemma 3. Let  

 
2

1

11

22

n

n

i

n

a

ii
=

⎡ ⎤
⎢ ⎥⎢ ⎥ +

=

⎛ ⎞
⎜ ⎟
⎝ ⎠

∑ , (8) 

then 

)

1 2

1 2 2 2 2 1 1
...

2 1 2 1 1

1
1 .

2

n n

n
a

n n n n

+

= + + + + − + +

+ +

+ +

⎛ ⎞ ⎛
⎜⎜ ⎟
⎝⎝ ⎠

�

 

Proof. First, we denote 

 
1

1
n

n

i

n

b

i i
=

=

⎛ ⎞
⎜ ⎟
⎝ ⎠

∑ . (9) 

Because an and bn have similar structure, we will 

make use of the existing results to proof the lemma. 

Here we introduce the following two identities referred 

to [27], i.e., 

( ) 1 1 1
1

2 3

r
Hn r r r

n

= + + + +�  

and 

 ( ) ( )
1

1 1

1
i

in n

n

i i

nxx
H

ii i
= =

−

= +

⎛ ⎞
⎜ ⎟
⎝ ⎠

∑ ∑ , (10) 

and we separately deal with the cases below. 

Case 1. 2x = . 

We substitute it to .(10)Eq  and get that 

 
( )1

1 1

2 1
i

n n

n

i i

n

H

ii i
= =

= +

⎛ ⎞
⎜ ⎟
⎝ ⎠

∑ ∑ . (11) 

Combining .(9)Eq  with .(11)Eq , we infer that 

1 2

2 2 2 2

1 2 1

1 1 1
1 .

1 2

n n

n
b

n n

n n

−

= + + + + −

−

+ + + +

−

⎛ ⎞
⎜ ⎟
⎝ ⎠

⎛ ⎞
⎜ ⎟
⎝ ⎠

�

�

 

Further, to present the exact polynomials of an, we 

consider the following situation. 

Case 2. 0x = . 

In this case, we can easily obtain that 

 
( ) ( )
1

1

1
0

i
n

n

i

n

H

ii
=

−

= +

⎛ ⎞
⎜ ⎟
⎝ ⎠

∑ , (12) 

i.e. 

( )

1 1 1 1

0

1 2 3 41 2 3 4

1 1 1

1 .

2

n

n n n n

n

nn n

−

= + − + +

−

+ + + + +

⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠

⎛ ⎞
⎜ ⎟
⎝ ⎠

�

�

 

Note that 1x =  is useless during all the deriving, so 

we ignore it here. Combining .(11)Eq with .(12)Eq , we 

get that 

( ) ( ) ( )
1 1

1 1 1

12 1
.

ii
n n n

n n

i i i

n n

H H

i ii i i
= = =

−

= + + +

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

∑ ∑ ∑  

Further, we can get a simplification as follows:  

 
( ) ( )1

1 1 1

11 2
2 .

i i
n n n

n

i i i

n n

H

i ii i i
= = =

−

+ = −

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

∑ ∑ ∑  (13) 

Specially, when 1n = , both sides of formula come to 

0 . While 2n ≥ , we can find that the odd terms on the 

left side of the equation are eliminated and the even 

terms are doubled. To get the expression of the sum of 

even terms, we recast the .(13)Eq  into 

1

2

1 1

1 1 2
2 , 2.

22 2

n

i
n

n

i i

n

H n

ii i

−

= =

⎡ ⎤
⎢ ⎥⎢ ⎥

= − ≥
⎛ ⎞⎛ ⎞

⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

∑ ∑  

Thus, an can be expressed similarly, that is 

 

2

1

1

1

1

1 2

11

22

1 2
2

2

1 2 2 2 2 1 1
1

2 1 2 1 1

.

n

n

i

i
n

n

i

n n

n

a

ii

H

i

n n n n

=

+

+

=

+

⎡ ⎤
⎢ ⎥⎢ ⎥ +

=

= −

= + + + + − + + +

+ +

⎛ ⎞
⎜ ⎟
⎝ ⎠

⎛ ⎞
⎜ ⎟
⎝ ⎠

⎛ ⎞ ⎛ ⎞
⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠

∑

∑

� �

 (14) 

Hence, Lemma 3 is proved completely. 

Combining Lemma 2 with Lemma 3, we have the 

following theorem. 

Theorem 1. The GMFPT of n
FQ  is 

( ) ( )
1 1 2

1 2 1 2 2 2 2 1 1 1

1 .

2 1 2 1 1 22 1
n

n

n n n

n

F

n n n n

− +

+

= + + + + − + + + +

+ +−

⎡ ⎛ ⎞ ⎤
⎜ ⎟⎢ ⎥⎣ ⎝ ⎠ ⎦

� �

Proof. Since 



Random Walks on the Folded Hypercube 1991 

 

 
1 2

1

2

1
,

2

1 2 2 2 2 1 1 1
1

2 1 2 1 1 2

n n

n n

a

n n n n

+

Ω

=

=

⎡ ⎛ ⎞ ⎤⎛ ⎞
+ + + − + + + +⎢ ⎜ ⎟ ⎜ ⎟⎥+ +⎝ ⎠⎦⎝ ⎠⎣

� �

                      (15) 

we substitute .(15)Eq  into .(7)Eq , obtaining that  

( ) 1 1 2

2

1

1 2 1 2 2 2 2 1 1 1
1 .

2 1 2 1 1 22 1

n

n
n

n

n n n

n

E
F

V

n

n n n n

− +

= Ω

−

+
= + + + + − + + + +

+ +−

⎡ ⎛ ⎞ ⎤⎛ ⎞
⎜ ⎟⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎝ ⎠ ⎦

� �

 

Hence, Theorem 1 holds. □ 

Lemma 4. [15] For non-negative integers n , then 

1

lim 2
n

n

→∞

+

=∑ ,where 
1 0

1

2 ( 1 )

n

i

n i

n

n i+ =

+

=

+ −

∑ ∑ . 

Since the exact formula of 
n

F  is some complicated 

when random walks on 
n

FQ as it is given in Theorem 1, 

we will evaluate the scaling of it to make calculation 

easier as follows.  

Theorem 2. 2
n

n
n

F V=∼ . 

Proof. By Theorem 1 and Lemma 4, we can deduce 

that 

( )

( )

( )
( )( )

0

1 1 2

1

1

1 1

1

lim

1 2 1 2 2 2 2
lim

2 1 2 1 2 1

1 1 1
1

1 2

2 1 1
lim 2

2 2 2 2 ( 1 )

1 1 1
( 1) 1

1 2

1 1 1
2 2 2 1 1

1 2
lim

2 2

2 .

n

i

i

n n n

n

n

n

n

n n

n

F
n

n

n

n nn

n n

n

n in

n

n n

n

n n

n

n

=

− +

+

+

− +

+

→ ∞

+

+ + + +

− +
→ ∞

− + + + +

+

+

=

− + −
→ ∞

+ + + + +

+

− + + + + +

+
=

−
→ ∞

=

=

⎡ ⎛ ⎞
⎜ ⎟⎢⎣ ⎝ ⎠

⎤
⎥⎦

⎡ ⎛ ⎞
⎜ ⎟⎢⎣ ⎝ ⎠

⎤−
⎥⎦

⎡ ⎤
⎢ ⎥⎣ ⎦

∑

�

�

�

�

 

Hence, as n  approaches infinity, 
n

F  obey the 

exponential function of 2
n

, which can be expressed as 

2
n

n

F ∼  . As we can see, the value roughly coincide 

with 
n

V , implying that it takes almost 2
n

 units times 

when random walks on
n

FQ . 

3.2 GMFPT with a Trap 

In this section, we discuss Markovian random walks 

on 
n

FQ  in case of a given trap, labeled as T
i . Denote 

Ti n
F  as the average ijF  over all nodes in 

n
FQ , 

excluding the trap Ti . Note node i and j, we define that 

the random walks are of nearest neighbor type if 

0,ijp >  implies i j∼ , 

and a simple random walk on node i, is given by 

1
, ,

( )

0, otherwise.

ij

i j
p deg i=

⎧
⎪
⎨
⎪⎩

∼

 

Then, specifying the transition probabilities as 

( 1) ( 1)( ( ) )
n n

ij ij ij V VP P p
− × −

= , and i
F  as the first time for a 

given node i to reach Ti , we can depict F obeying the 

equation: 

1i ij j

j

F P F= +∑ , 

obviously, T
i i≠ . It can also be expressed as the 

following formula, i.e. 

F Me= , 

where 1
( 1) ( 1) ( )

n nV V ijM PI
−

− × −
= − , I denotes ( 1)

n
V − -

dimensional unit matrix, while e  is the ( 1)
n

V − -

dimensional unit vector, respectively. 

We can obtain F when n  is low, however, the 

exponential growth of 
n

V  makes it hard to deal with 

when n  is larger. To overcome the computational 

problems brought by high-dimension, we introduce the 

following expression as supplement: 

1

0

1
 

( )

1 1
 

( 1)

1 1
 

( 1)

.

1
T

n

i ijn

i jn

n ij

i jn n

V

ij

i i jn n

n

F F

V

V F

V V

F

V V

F

≠

≠

−

= ≠

=

= × × ×

−

= ×

−

=

−

∑

∑

∑∑

 

The results notify us that random walk on FQ from a 

given trap to other nodes takes the same time as 
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GMFPT. Furthermore, we found that the location of 

trap has little effect on the scaling of the GMFPT for 

random walks on 
n

FQ  for the reason that 
n

FQ  

preserves the symmetric character of hypercubes. Thus, 

according to the definition, it is straightforward to 

verify that 
Ti n

F  can also be regarded as the MFPT. 

4 Kirchhoff Index 

In the following, we first provide a more concise 

formula to the Kirchhoff index in
n

FQ . Then, we will 

take n
Q  and 

n
FQ as examples to discuss in terms of 

Kirchhoff index. 

Based on the .(3)Eq  and .(15)Eq , we can obtain the 

exact expression of ( )K FQnf as following: 

( )

0 0

1

( )

1 2
1 1 2 2 2 2

2

2 2 1 2 1

1 1 1
1

1 2

11
2 .

2

12

1 1

n n

k k

f n n

k

nK FQ V

n n
n

n n

n n

n

k k
= =

−

+

=

+

+ + +

+

− + + + +

+

−

Ω

=

=

+ +

⎡ ⎛ ⎞
⎜ ⎟⎢ ⎜ ⎟⎢⎣ ⎝ ⎠

⎤
⎥⎦

⎛ ⎞
⎜ ⎟
⎝ ⎠
∑ ∑

�

�

 

It is worthwhile to note that the conclusion of our 

( )K FQnf is much more concise than the one referred in 

[28].  

The previous literature [15] had shown us that 

1 1

( )

1 2
2 2 2 2 1 1 11

 2 1
1 2 1 1 2

21
2 ,

1
k

n n

k k

K Q Vn n nf

n n
n

n n n n

n

k k
= =

−

= Ω

−
−

= + + + − + + + +

− −

−
=

⎡ ⎤⎛ ⎞ ⎛ ⎞⎜ ⎟⎢ ⎥⎜ ⎟⎜ ⎟ ⎝ ⎠⎢ ⎥⎝ ⎠⎣ ⎦

⎛ ⎞
⎜ ⎟
⎝ ⎠
∑ ∑

� �  

and we have arranged the values of low dimension into 

the following Table 1. 

Table 1. Kirchhoff index of 
n

Q and 
n

FQ  from 1n =  to 

10n =  

n  ( )K Qnf  ( )K FQnf  

1 1 0.5 

2 5 3 

3 19.333 13 

4 68.667 50 

5 236.53 182.67 

6 809.07 653.33 

7 2779.3 2322.7 

8 9638.6 8272 

9 33816 29626 

10 
5

1.2 10×  
5

1.07 10×  

 

As is manifested above, we can easily find that the 

Kirchhoff index in 
n

FQ  are much less than in 
n

Q  in the 

case of same dimension. This may be because the 

diameter of 
n

FQ is 
2

n⎡ ⎤
⎢ ⎥⎢ ⎥

 and 
n

FQ  is ( )1n + - regular and 

( )1n + - connected. All these superior characteristics 

may lead to a more efficient traffic.  

Moreover, we sort out the values of GMFPT based 

on Theorem 1 and [15] into Table 2, varying from 1n =  

to 15n = . Figure 2 is given to make an intuitive 

perception. It is clearly that the values are neatly yield 

to exponential distributions, as is proved in Theorem 2. 

Further, we find that random walks on 
n

FQ always 

takes less units time than on 
n

Q . 

Table 2. GMFPT of 
n

Q and 
n

FQ  from 1n = to 15n =  

n  GMFPT in 
n

Q  GMFPT in 
n

FQ  

1 1 1 

2 3.33333 3 

3 8.28571 7.43 

4 18.3111 16.67 

5 38.1505 35.35 

6 77.0539 72.59 

7 153.188 146.31 

8 302.386 291.95 

9 595.518 579.76 

10 1173.04 1149.11 

11 

12 

13 

14 

15 

2313.71 

4571.44 

9047.78 

17935.2 

35599.7 

2276.96 

4515.11 

8956.75 

17787.9 

35357.2 

 

So far, 
n

FQ had been proved that it has the 

superiorities of smaller diameter and higher 

connectivity than
n

Q , and preserves the symmetric 

characteristic of 
n

Q . Additionally, we claim that 

GMPFT on 
n

FQ is roughly as short as 2
n

, less than the 

ones on 
n

Q . This explicit result appears to be appealing 

because it strengthens that 
n

FQ  is considered to be a 

powerful and challenging network structure to replace 

the hypercube network. 
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Figure 2. GMFPT of random walks on 
n

FQ and
n

Q . 

5 Conclusion 

In this paper, we present a more concise formula to 

Kirchhoff index in terms of FQn by deriving using the 

spectra of Laplacian matrix. Concurrently, we give an 

exact expression to solve the GMFPT, and then 

determine the GMFPT scaling, which roughly equals 

to 2
n

. Moreover, considering a node with trap, we find 

it takes the same time as GMFPT when walking 

randomly over all notes except the trap. In addition, an 

indication that the fK  in FQn is smaller than in Qn 

indicates a more effective traffic in FQn. Furthermore, 

values of GMFPT in FQn is also smaller in quantity, 

confirming the analytical results again.  

It makes sense to devote to the study of random 

walks on the FQn, for the reason that random walk is 

the basic mechanism for many dynamic processes on 

the network and FQn is a mature and appealing 

structure widely used. In fact, network based on the 

topology of FQn are extended to many areas, such as 

parallel computing systems, optimization, machine 

learning, engineering, artificial intelligence and other 

fields. We expect that by providing the explicit 

solution to GMFPT could guide and boost related 

studies of random walks, and lead to a more 

comprehensive understanding of the folded hypercube. 
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