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Abstract 

Multi-hop localization is a common method for 

wireless networks. However, when this network is 

anisotropic, the performance of multi-hop localization is 

greatly reduced due to deviation of the relationship 

between hop counts and physical distance. In order to 

improve the performance of multi-hop localization in 

anisotropic networks, this paper uses the 2�  constraint 

least square to build a mapping relationship that 

represents the anisotropy of a network based on anchors. 

During transformations between the hops and the 

physical distances, the proposed algorithm can prevent 

over-fitting through the constraint of some space. The 

proposed algorithm has strong adaptability to the 

complex deployment environment; it overcomes the 

shortcoming of the traditional algorithm which applies 

only to the isotropic network. We also compare our 

method with several related methods, and the results 

show that our proposed method is more efficient than 

others in different topological networks. Furthermore, 

high accuracy can be obtained by this method without 

setting complex parameters. 

Keywords: Multi-hop localization, Anisotropic networks, 

2�  constraint least square, Over-fitting 

1 Introduction 

With the fast development of modem 

microelectronics technology, as a new approach to 

obtain information, wireless communication has also 

experienced fast development, and it has been broadly 

used in various fields such as military [1], disability 

rehabilitation [2], navigation for blind people [3] and 

environmental protection [4]. Different from previous 

communication methods, wireless communication is a 

data-centered communication technology, which can 

realize information transmission between “people and 

object” and “object and object” at any time and at any 

location [5]. Among various wireless communication 

applications, wireless node localization is one 

important supporting technology, and it can not only 

provide the location information of monitored event or 

tracked target, but also provide technical support to 

improve the routing efficiency, optimize network 

coverage and realize topology control. 

Localization refers to determination of the targets’ 

location in a specific coordinate system based on 

certain approach or method; while for wireless 

localization, the wireless communication technology is 

used to determine the coordinate location of the target 

[6]. According to whether it requires measuring the 

actual distance between nodes during the localization 

process, the localization algorithm includes range-

based localization algorithm and range-free 

localization algorithm [7]. According to the results of 

previous research, we can see that the range-based 

wireless localization technique generally require 

complicated hardware equipment, so their application 

in a large-scale network is severely restricted [8]. Due 

to consideration of cost and network scale, the range-

free wireless localization method has the advantages on 

the aspects of cost and technology, especially the 

range-free localization method based on hops. The 

range-free localization method based on hops is also 

called the “multi-hop range-free localization method”, 

which requires simple network protocol with numerous 

system expandability. However, this kind of method 

generally assumes horizon communication between 

wireless nodes and even distribution of nodes, but it 

has ignored that in actual network environment, there 

might be various problems such as irregular 

deployment of nodes, uneven distribution of nodes and 

possible obstacles. These problems will cause hops 

between nodes to change according to the change of 

communication direction, and that the network might 

present anisotropy [9]. 

Take Figure 1 for example, we use 
1 2S Sd  (dotted line) 

to represent the physical distance between nodes 1S  

and 2S  in a certain network, and use 
1 2S Sh  (arrowhead 

straight line) to represent approximate length of the 

shortest path between nodes 1S  and 2S . When the 
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nodes are distributed in the network evenly and 

densely, 
1 2 1 2S S S Sd h∝ , and this kind of network is also 

called the isotropic network; however, when this area 

has an irregular deployment of nodes, uneven 

distribution of nodes or obstacles that might affect 

signal transmission, the network would have an 

anisotropic problem, which will result in 
1 2 1 2S S S Sd h� . 

Therefore, we could intuitively understand that when 

the nodes have even distribution in the network, the 

physical distance between nodes presents a 

proportional relation with hops; when there is 

anisotropic problem in the networks, the proportional 

relation between physical distance and hops would not 

be tenable anymore. 

 

(a) Isotropic network 

 

(b) Anisotropic network 

Figure 1. Nodes distribution in wireless network 

According to the above analysis, the anisotropic 

network is much more complicated than the isotropic 

network. Therefore, the localization of nodes in 

anisotropic network is significantly more difficult than 

that in an ideal environment. As shown in Figure 2, if 

there is any error in the estimated length of the shortest 

path between unknown nodes and anchor nodes, it will 

generate significant influence on the location 

estimation result. According to the problem of multi-

hop localization in anisotropic network, we propose a 

multi-hop localization algorithm that not only applies 

to the ideal environment, but also applies to the 

anisotropic network, and this method has relatively low 

computation complexity and high localization accuracy, 

i.e., ML- 2� CLS (Multi-hop Localization though 

2� Constrained Least Squares). The ML- 2� CLS 

method tries to improve the performance of 

localization algorithm through partial spatial constraint 

of network, so that it can adapt to different network 

environment. 
 

 

Figure 2. Schematic diagram of location error caused 

by distance error 

2 Related Work 

DV-Hop is the most famous multi-hop range-free 

localization algorithm, which was proposed by 

Niculescu et al. [10] based on the DV algorithm and 

the localization principle of GPS, and this is a 

distributive multi-hop range-free localization algorithm 

that conducts computation hop by hop. The 

localization process of DV-Hop algorithm mainly 

consists of three stages, 

In Stage I, each node computes the minimum hops 

from other connecting nodes in the network; 

In Stage II, each anchor node estimates the average 

hop distance based on its physical distance and hops 

from other reference nodes and broadcasts it to the 

network, and the estimated average hop distance can be 

expressed with Formula 1. 

 
ij

i j

i

ij
i j

d

c
h

≠

≠

=

∑
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 (1) 

In which, ijd  refers to the physical distance between 

anchor node i  and anchor node j , and ijh  is 

corresponding minimum hops. The unknown node only 

records the first average hop distance it receives, and 

then combines the minimum hops between various 

anchor nodes to compute the distance between them. 

In Stage III, according to the recorded estimated 

distance from each anchor node, the unknown node 

will estimate its own location via the multilateration 

method. 

In the isotropic network, the DV-Hop algorithm can 

be used to convert hops between nodes into physical 

distance in a linear way, but in the anisotropic network, 

this method to convert hops to physical distance won’t 
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work. However, if hops are still used to replace actual 

physical distance, it will cause sharp decline in the 

performance and estimation accuracy of algorithm. 

When a network is anisotropic, hops between nodes 

may not match physical distance well. To address this 

issue, Lim and Hou [11] from UIUC proposed a 

modified approach PDM (Proximity Distance Map) 

that estimates the distance between nodes. First of all, 

the PDM localization algorithm identifies the physical 

distance and hops between anchor nodes with matrixes 

respectively; then, it uses TSVD (Truncated Singular 

Value Decomposition) to obtain the mapping model 

between two matrixes; finally, with the help of least 

square method, the mapping model is used to estimate 

the physical distance between the unknown node and 

anchor nodes. Compared to previous multi-hop 

localization algorithms, PDM can more actually 

establish the relationship between hops and physical 

distance, and effectively explore related implicit 

information behind data, such as the network topology 

structure and correlation, and as a result, it can 

effectively improve the localization performance. 

However, the PDM method has ignored the conversion 

of order of magnitude between hops and physical 

distance, which tends to result in fluctuation of 

localization performance of the algorithm under 

different density and different communication radius of 

nodes. 

Inspired by the PDM method, Lee et al. [12] 

proposed two range-free multi-hop localization 

algorithms were based on support vector regression, 

i.e., LSVR (Localization through Support Vector 

Regression) and LMSVR (Localization through Multi-

dimensional Support Vector Regression). By 

introducing the kernel function, these two algorithms 

convert localization problem to kernel regression. 

However, depending on the well-known Occam’s razor 

principle [13], a high number of model parameters tend 

to generate the over-fitting problem. During actual 

applications, the LSVR and MSVR algorithms are 

seriously affected by the over-fitting problem, and its 

localization performance is even poorer than that of the 

early PDM method. Then, in 2015 and 2016, Yan et al. 

used the KRR (kernel ridge regression) [14] and KPLS 

(kernel partial least squares) [15] methods to replace 

the multi-parameter SVR method, and the localization 

accuracy was much improved. However, the KRR and 

KPLS methods are also based on nonlinear method, 

and the algorithm has high requirement for hardware. 

One of the simple and efficient schemes is weighted 

least square multi-hop localization [16]. The idea is to 

reduce localization errors by giving the optimal 

weights to each estimated distances. Each node 

estimates distance to an anchor by its hop count to the 

anchor. One drawback of this approach is that the 

algorithm requires distribution variance of nodes is 

equal. However, this is hard to do in a real 

environment. Recently, selective 3-Anchor DV-hop 

approach is presented in [17]. In this approach, every 

unknown node estimates its location by picking only 

three best anchor nodes. Zhao et al. [18] proposed the 

Locally Weighted Linear Regression DV-hop (LWLR-

DV-hop) method on the basis of selective 3-Anchor 

DV-hop. LWLR-DV-hop approach employs local 

weighted least square to further reduce the deviation in 

hop count and physical distance conversion. However, 

some common nodes in the network may have little 

anchor nodes in close range, so they have to choose a 

longer distance anchor nodes. In addition, more distant 

anchor nodes contain more accumulated errors, which 

reduces the localization accuracy of the common nodes. 

In this paper, by referring to the PDM, LSVR and 

MSVR methods, we propose an efficient multi-hop 

localization method that can not only adapt to 

complicated operation environment, but also control 

the complexity of the model. The algorithm limits 

selection of anchor nodes within a certain scope with 

the 2� CLS method to reduce the complexity of model, 

which can prevent the over-fitting problem. In the 

meantime, the algorithm also conducts standard 

processing of hops and physical distance, which can 

prevent the influence of localization scale on the 

algorithm performance. 

3 Localization Problem Formulation 

The nodes localization problem of anisotropic 

network can be specifically described as: 

Assume there are m n+  nodes 

{ }1 2, , , , ,
m m n

S S S S S += � �  in a ( )2 3d d or d= = -

dimension network, in which, the first m  nodes 

{ }1, 2, ,m iS i m=� �V  are anchor nodes, and the rest 

n  nodes are unknown nodes 

{ }1, 2, ,n jS j m m m n= + + +� �V . For a 2-

dimension network, the coordinate of node 
α

S  can be 

expressed as: 

 ( ) ( )
T

, 1, 2, , , ,
α α α

Cor S x y for α m m n= = +� �  (2) 

The m n+  nodes in the d –dimension network 

space can be abstracted into an undirected graph 

( ),
m n

G V V E= ∪ , in which, E  represents the edge set 

between all node pairs that can communicate with each 

other. If and only if nodes ,
m n

α β V V∈ ∪  in undirected 

graph G  are neighbors will there exist an edge 
,α βE  

between nodes ,α β . For the anchor nodes, because 

their coordinates are known in advance, the physical 

distance between any two anchor nodes can be 

obtained, and their physical distance can be expressed 

as: 
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( ) ( ) ( )

( ) ( )
2 2 2

,

,

,

i k i k

i k i k

i k m

d S S Cor S Cor S

x x x x

S S

= −

= − + − ∈

∈

�

V

 (3) 

Assume the distance between anchor nodes and 

unknown nodes is expressed with ( ),i jδ S S . Therefore, 

we can sum up the range-free multi-hop localization 

problem in anisotropic network as: the process to 

recover the coordinates of all unknown nodes in 
n

V  

under the constraints of the set of all anchor nodes 
m

V  

and ( ),k lδ S S . However, during multi-hop localization, 

the physical distance between unknown node and 

anchor nodes is unknown, and only the hops between 

them can be obtained, i.e., ( ),i jh S S  is used to express 

the hops between unknown nodes and anchor nodes. 

Assume there is a mapping function 

( ) ( ): , , ,i j i jf h S S δ S S→  and the multi-hop localization 

problem can be defined as: the process to recover the 

coordinates of all unknown nodes in 
n

V  under the 

constraints of the set of all anchor nodes 
m

V  and 

mapping functions .f  

In the isotropic network, the distance between nodes 

can be approximately expressed by hops. However, in 

the anisotropic network, the node’s sensing ability is 

not only related to distance, but also to the 

communication direction between nodes. In recent 

years, a popular research subject of multi-hop 

localization is to build the hops-physical distance 

conversion model based on machine learning method. 

Inspired by that method, through constraint of partial 

space in anisotropic network, we can obtain relatively 

accurate hops-physical distance conversion models to 

improve the localization performance. In this paper, we 

propose the ML- 2� CLS method, and its entire process 

is showed in Figure 3. 

Step 1(Data collection): After the program starts 

operation, any anchor node i mS ∈V  in the network 

exchanges hops information with the remained nodes 

α m n
S ∈ ∪V V , and in the meantime, it will send its 

location information ( )iCor S  to other nodes in the 

network. 

Step 2 (Building model): Any anchor node i mS ∈V  

uses 2� CLS to build its mapping model 2CLSi� , and 

broadcasts it to other nodes in the network. Finally, m  

mapping models ( )2 1 2 2 2CLS , CLS , , CLS
m

� � � �  are 

sent to all nodes in the network. 

Step 3 (Location estimation): The unknown node 

k nS ∈V  in the network uses the mapping model 

obtained in Step 2 to estimate its physical distances 

from all anchor nodes; finally, the coordinate of 

unknown nodes are estimated by the multilateration 

method in a distributed manner. 

 

Figure 3. The framework of ML- 2� CLS algorithm. 

Firstly, the algorithm collects by distance vector 

protocol. After that, in the building model phase, the 

mapping model is constructed by 2� CLS, using data 

consist of the known hop-counts and physical distances. 

Finally, the physical distances of the unknown node are 

predicted by the learned mapping model and the 

location of unknown nodes are estimated by 

multilateration method. 

During the operation process of algorithm, each 

node adopts the flooding broadcast information to 

compute hops in the network, so the communication 

overhead of ML- 2� CLS is ( )2O n , in which, n  refers 

to the number of nodes in the network. 

3.1 Data Collection 

At the data collection stage, the actual 

communication process is as follows: each anchor node 

i mS ∈V  broadcasts a data packet to all other nodes, and 

in this way, each node would know the shortest hops 

from other nodes in the network. 

Assume [ ]
T

,1 ,, ,i i i mh h= �h  is the hops vector 

between anchor nodes i mS ∈V  and other anchor nodes 

in the network, in which, ( )
,

, , ,i k i k i k mh h S S S S= ∈V , 

and 
,

0i ih = . The hops between all anchor nodes can be 

expressed with matrix H , 

 [ ]1 , , m= �H h h  (4) 

Similarly, assume [ ]
T

,1 ,, ,i i i md d= �d  is the physical 

distance vector between anchor node i mS ∈V  and other 

anchor nodes, in which, ( )
,

, , ,i k i k i k md d S S S S= ∈V , 

and 
,

0i id = . The distance information between all 

anchor nodes can be expressed as, 

 [ ], ,i m= �D d d  (5) 

Assume jh  is the hops vector between j th 

unknown node j nS ∈V  and all other anchor nodes 

k mS ∈V  , and lh  can be expressed as, 
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 [ ]
T

,1 ,, ,l l l mh h= �h  (6) 

In which, ( )
,

, ,k l k l k m l nh h S S S and S= ∈ ∈V V . 

3.2 Building Model 

During the building model stage, any anchor node 

i mS ∈V  builds a hops-physical distance mapping 

model. According to the literature [19], there is a 

mapping relation T
d ∝w h  between the physical 

distance and hops. After anchor node iS  collects m  

pairs of hops and physical distance ( )
,

,k i kdh , it will 

build the mapping model if , 

 ( ) T

i j i jf θ=h h  (7) 

In order to prevent inconsistent order of magnitudes 

during hops-physical distance conversion with the 

change of factors such as network scale and node 

communication radius, we have conducted standard 

processing of data pair ( )
,

,k i kdh . According to 

Formula 7, we can see that parameter { }
1

m

i
i

θ
=

 can be 

set freely, so any one anchor node uses all anchor 

nodes to build the mapping model, as shown in Figure 

4 (a). 

  

(a) Hops space of ordinary 

multi-hop localization 

(b) Hops space of 

Subspace-Constrained 

Figure 4. Hops space 

In order to avoid the over-fitting problem during 

convert hops to physical distance, we constrain the 

parameters within a certain scale, i.e., 

 
( )

2

min
θ

J θ

subject to θ R≤
 (8) 

In which, ( ) ( )( )
2

,

1

1
min

2

m

i j i j
θ

i

J θ f d
=

= −∑ h ; R  

refers to the radius, as shown in Figure 4(b). For 

Formula 8, we can adopt the 2�  constrained least 

squares, and the mapping model can be solved within 

certain radius scope. 

Through the Lagrange duality method, Formula 8 

can be transferred to Formula 9, i.e. 

 
( ) ( )2

maxmin
2

0

θλ

λ
J θ θ R

subject to λ

⎡ ⎤
⎢ ⎥+ −
⎢ ⎥⎣ ⎦

≥

 (9) 

In which, λ  is the Lagrange multiplier, and we use 

2λ  here to divide out 2 generated by computation of 

partial differential related to θ . If the Lagrange 

multiplier λ  of Lagrange duality method is decided by 

the radius R  of circle, which is directly specified, the 

solution ˆθ  to the least square learning method 

constrained by 2�  can be obtained through the 

following formula, 

 ( )
2ˆ argmin

2θ

λ
θ J θ θ

⎡ ⎤
⎢ ⎥= +
⎢ ⎥⎣ ⎦

 (10) 

In the literature [20], they proved that the algorithm 

would have optimum performance when there are 5 to 

15 hops between nodes. Therefore, in this paper, we 

assume the anchor node only use radius R to build the 

mapping model for neighbor anchor nodes within four 

hops. 

In Formula 10, the first item ( )J θ  represents the 

fitting degree of training samples, and the minimum 

value can be obtained by combining the second item 

2

2

λ
θ  to prevent over-fitting of training samples. For 

the objective function of Formula 10, set the partial 

differential of parameter θ  as 0, and the solution ˆθ  to 

the least square learning method constrained by 2�  can 

be obtained through Formula 11, 

 ( )
1

T T
ˆθ λ

−

= + dΗ Η Ι Η  (11) 

In which, Ι  is the identity matrix. By adding the 

hop matrix T
Η Η  with λΙ , it can improve the 

algorithm performance to prevent over-fitting, which 

can further solve the inverse matrix more stably. If 

consideration is given to design the SVD (singular 

value decomposition) of hops matrix Η , i.e., 

 T

1

m

i i i

i

κ ψ

=

=∑ ϕH  (12) 

In which, iκ , iψ  and iϕ  are called the singular 

value, left singular vector and right singular vector 

respectively. All singular values are negative, and the 

singular vectors satisfy orthogonality, i.e., 

 

( )

( )

( )

( )

T

T

1

0

1

0

i k

i k

i k
ψ ψ

i k

i k

i k

⎧⎪ =⎪=⎨
⎪ ≠⎪⎩

⎧⎪ =⎪
=⎨
⎪ ≠⎪⎩

ϕ ϕ
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At this point, the solution ˆθ  to the 2�  constraint 

least squares, or the hops-physical distance mapping 

model can be expressed as, 

 T

2

1

ˆ

m

k

k k

kk

κ
θ ψ

κ λ
=

=
+

∑ ϕd  (13) 

Through constraint of 2� CLS, the over-fitting 

problem during building model process can be 

alleviated in a certain degree. However, according to 

Formula 11, we find that the accuracy of mapping 

model depends on the Lagrange multiplier λ , and 

different accuracies of mapping model can be obtained 

by choosing different λ  values. Common methods 

used to determine λ  include GCV (Generalized Cross-

Validation), L-corner, etc. We utilized the GCV 

method in this paper. The GCV method is an intuitive 

method based on the posterior estimation information, 

which is not dependent on the prior information and 

assumption. The λ  value is determined based on the 

criterion of minimum mean value, and its computation 

criterion is, 

( )
( )( )

( )( )

2
1

T T

2

1
T T

1

1

λ
m

GCV λ

trace λ
m

−

−

− +

=
⎡ ⎤
⎢ ⎥− +
⎢ ⎥⎣ ⎦

I H H H I H d

I H H H I H

 (14) 

By obtaining the minimum value of Formula 14, the 

optimal λ  value can be determined. 

3.3 Location Estimation 

Each unknown node starts location estimation after 

receiving m  hops-physical distance mapping models 

and the hops vector from unknown nodes to anchor 

nodes ( ) ( ) ( ){ }1 1 2 2
ˆ ˆ ˆ, , , , , ,

m m
θ θ θ�h h h . Let 

 
T

,1 ,
ˆ ˆˆ

j j j md d⎡ ⎤=
⎢ ⎥⎣ ⎦

�d  (15) 

is the estimated distance between unknown nodes 

j nS ∈V  and m
 

anchor nodes { }
1

m

i m
i

S
=

⊂V , in which, 

,

ˆ

i jd  is the estimated distance between j nS ∈V  and 

i mS ∈V . The estimated distance vector ˆ

jd
 

can be 

obtained through the following method, 

 
( ) ( )

T T

,1 . 1

T

1

ˆ ˆˆ

ˆ ˆ

j j j m j m j

j m j

d d f f

θ θ

⎡ ⎤ ⎡ ⎤= =
⎢ ⎥ ⎣ ⎦⎣ ⎦

⎡ ⎤=
⎢ ⎥⎣ ⎦

� �

�

d h h

h h

 (16) 

In the network, after the unknown node completes 

estimation of its distances to all anchor nodes, it would 

use the multilateration estimation method for position 

estimation. 

4 Algorithm Simulation and Performance 

Analysis 

In order to verify the performance of ML- 2� CLS, 

we designed a series of simulation experiments on the 

MATLAB platform, and compared its performance 

with the performance of similar localization algorithms, 

such as DV-hop, PDM and LSVR. In the experiment, 

we mainly investigated the influence of various indices 

on the localization performance, such as the 

anisotropic factors, proportion of anchor nodes and 

node density. Therefore, in the experiment, we would 

not focus on factors such as the node communication 

cost, node life cycle and message passing method. The 

experiment scenario used the alphabetic network 

topology (C-shaped, S-shaped, Z-shaped) commonly 

adopted by similar algorithms, and for specific network 

parameters, see Table 1. 

Table 1. Network parameters 

Nodes number 400 

Anchor nodes ratio 
Between 30,40,50,60,70,80, at 10 

intervals 

Network topology 

Within the range of 500*500, 

topologies are C-shaped, S-shaped 

and Z-shaped 

Radio radius 

The communication radius of 

nodes is 50, 60, 70 and 80, 

respectively. 

 

To be fair, we use root mean squares (RMS) as the 

criterion for localization accuracy, and RMS can be 

expressed as, 

 ( ) ( )( )2 2

1

1 ˆ ˆ

tN

i i i i

t
i

RMS x x y y
N

=

= − + −∑  (17) 

In which, ˆ ˆ( , )i ix y  refers to the estimated coordinate 

position of i -th node, and ( , )i ix y  is the actual 

coordinate position of i -th node; tN  refers to the 

number of nodes that can be located. 

4.1 Anisotropic Factors 

The anisotropic problem can be caused by various 

reasons, such as irregular deployment of nodes, uneven 

distribution of nodes and barriers. The C-shaped, S-

shaped, and Z-shaped network topology can reflect the 

anisotropic problem, so we assume the nodes are 

evenly distributed in the C-shaped, S-shaped, and Z-

shaped networks. Figure 5 shows that there are 400 

nodes in the network, 12.5% of which are anchor nodes 

(represented by hexagrams), and the rest nodes are 

unknown nodes (represented by circles). 
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(a) C-shaped topology network 

 

 (b) S-shaped topology network 

 

(c) Z-shaped topology network 

Figure 5. Anisotropic network 

Assume all nodes are homogeneous, i.e., they have 

equal transmission radius R =60. Table 2 shows the 

final localization results of the four localization 

algorithms of DV-hop, PDM, LSVR and ML- 2� CLS 

under the node distribution as shown in Figure 5. In it, 

the circle represents the estimated location of unknown 

nodes; the straight line connects the actual coordinate 

of unknown nodes with its estimated coordinate, and 

the longer the line is, the bigger the localization error. 

Table 2. Localization results of four algorithms under 

anisotropic networks 

 DV-hop PDM 

C
-s
h
a
p
ed

 

  
RMS 162.014 26.731 

 LSVR ML- 2� CLS 

C
-s
h
a
p
ed

 

  
RMS 31.633 21.904 

 DV-hop PDM 

S
-s
h
a
p
ed

 

  
RMS 223.341 31.273 

 LSVR ML- 2� CLS 

S
-s
h
a
p
ed

 

  
RMS 37.851 24.534 

 DV-hop PDM 

Z
-s
h
a
p
ed

 

  
RMS 124.803 28.945 

 LSVR ML- 2� CLS 

Z
-s
h
a
p
ed

 

  
RMS 32.971 23.499 

 

According to Table 2, the DV-hop method uses 

fixed hops-physical distance conversion coefficient, 

and in the anisotropic network, the conversion between 

hops and distance tends to generate deviation; although 

the PDM method can solve the deviation problem 

during hops-physical distance conversion in a certain 

degree, it cannot well solve the data class problem of 

hops and physical distance; for LSVR, the selection of 

the combinations of multiple parameters tends to result 

in over-fitting of final results (the estimated positions 

of unknown nodes tend to present a curve); the ML-

2� CLS method proposed in this paper has higher 

localization accuracy than all the above localization 

methods. 
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4.2 Anchor Nodes Ratio 

Another factor that affects the node localization 

accuracy is the ratio of anchor nodes. In order to 

reduce the one-sidedness of the results of one 

experiment, we conducted 100 simulations to each type 

of anisotropic network. Figure 6(a) to Figure 6(c) 

shows the histograms of RMS mean values in 100 

simulation experiments under different proportions of 

anchor nodes. We can see that the DV-hop method 

cannot well adapt to localization in the anisotropic 

network, its RMS value is close to 200 in C-shaped and 

S-shaped networks and close to 150 in Z-shaped 

network, which presents fluctuation with the increase 

of anchor nodes. The LSVR and PDM methods and the 

ML- 2� CLS method proposed by us have higher 

localization accuracy than the DV-hop method, and the 

RMS value decreases progressively with the increase 

of anchor nodes. The ML- 2� CLS method proposed in 

our paper has the lowest RMS values in three 

anisotropic networks. In the C-shaped topology, the 

localization accuracy of ML- 2� CLS method is 88.9%, 

19.8% and 26.6% higher than that of the DV-hop, 

PDM and LSVR methods respectively; in the S-shaped 

topology, the localization accuracy of ML- 2� CLS 

method is 86.7%, 19.8% and  32.2% higher than that of 

the DV-hop, PDM and LSVR methods respectively; in 

the Z-shaped topology, the localization accuracy of 

ML- 2� CLS method is 82.8%, 19.2% and 27% higher 

than that of the DV-hop, PDM and LSVR methods 

respectively.

  

(a) Effect of anchor nodes fraction in C-shaped 

network 

(b) Effect of anchor nodes fraction in S-shaped 

network 

 

(c) Effect of anchor nodes fraction in Z-shaped network 

Figure 6. Simulation results of anisotropic network with different ratio of anchors 

Table 3 shows the time analysis of four multi-hop 

localization algorithms in above experiment 

environment with 50 anchor nodes, and 100 

experiments were conducted. 
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Table 3. Running time in anisotropic network 

CPU TIME(m)  DV-hop PDM LSVR ML- 2� CLS 

average 1.068 1.504 2.067 1.706 

median 1.066 1.501 2.066 1.702 

Worst 1.098 1.534 2.161 1.795 

50anchors,350 

unknown nodes (C-shaped) 

standard deviation 0.009 0.017 0.029 0.020 

average 1.068 1.502 2.066 1.709 

median 1.067 1.501 2.063 1.708 

Worst 1.116 1.535 2.114 1.745 

50anchors,350 

unknown nodes (S-shaped) 

standard deviation 0.011 0.017 0.023 0.017 

average 1.075 1.521 2.081 1.718 

median 1.073 1.523 2.081 1.718 

Worst 1.124 1.588 2.129 1.767 

50anchors,350 

unknown nodes (Z-shaped) 

standard deviation 0.013 0.021 0.023 0.016 

 

When building the model, the ML- 2� CLS method 

has the same computation complexity as the PDM 

method, both of which is ( )3O m . However, the ML-

2� CLS method chooses the optimum λ  value based 

on the GCV method, so the operation time of ML-

2� CLS is more optimal than that of DV-hop method, 

slightly more optimal than that of PDM method, and 

significantly more optimal than that of LSVR method. 

4.3 Node Density 

In this section, we also conducted experiment to 

estimate the influence of node density on localization 

error. In general, the number of nodes’ average 

neighbors 
2

t

A

N R
ρ

S

×

=  is used to represent the node 

density, in which, AS  refers to the size of node 

deployment area. In order to change the density of 

nodes in the network, we adopt the way to adjust the 

communication radius of the node in the experiment. 

When the node communication radius changes within 

the range of [50, 80], in the C-shaped network, the 

variation range of ρ  is [2.6, 5.6]; in the S-shaped area, 

the variation range of ρ  is [2.19 4.36]; in the Z-shaped 

area, the variation range of ρ  is [2.22 4.65]. In Fig.7, 

the histograms show the RMS mean values by using 

four multi-hop localization methods in the anisotropic 

network under different communication radiuses, and 

these mean values were obtained from 100 simulation 

experiments. In theory, with the increase of node 

communication radius, the number of neighbors would 

increase accordingly, and the hop distance (i.e., hops) 

of nodes would become closer to the actual distance. 

However, it is not the case in reality. As described in 

the literature [21], in the multi-hop network, the node 

distribution is Poisson distribution, and the increase of 

communication radius will not increase the localization 

accuracy, but results in fluctuation. According to 

Figure 7, we can see that although the localization 

accuracy presents fluctuation with the change of 

communication radius, no matter how the 

communication radius changes, the method proposed 

in this paper is always superior to the DV-hop, PDM 

and LSVR methods. High transmitting distance will 

increase the node transmission distance, but it involves 

high energy consumption, whereas although small 

transmitting distance requires lower energy, it will 

involve many hops and routes. Therefore, according to 

the deductions of literature [22] and partial space 

radius set in this paper, we set the communication 

radius at 60 in the experiment in Section 5.1 and 5.2. 

  

(a) The average RMS of different 

communication radius in C-shaped 

networks. 

(b) The average RMS of different 

communication radius in S-shaped 

networks. 

(c) The average RMS of different 

communication radius in Z-shaped 

networks. 

Figure 7. Effects on localization accuracy of nodes’ communication radius 
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5 Conclusion 

This paper proposes a range-free localization 

method ML- 2� CLS, which can be used to build the 

hops-physical distance relationship model with 2� CLS. 

First of all, the algorithm standardizes the hops and 

physical distance to prevent the order of magnitudes 

problem during the conversion process. Then, the 

algorithm prevents the over-fitting problem during the 

model building process by restricting the hops scale, 

and in this way, it can control the complexity and 

improve the generalization ability of the model. In the 

meantime, the algorithm has also obtained the optimal 

value of Lagrange multiplier with the GCV method, in 

this way to improve the algorithm’s localization 

accuracy. Various experiments of anisotropic network 

all show that compared to similar algorithms, the ML-

2� CLS method proposed in this paper has better 

localization performance and stronger adaptability. 
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