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Abstract 

Virtual machines (VMs) consolidation is one of the 

primary methods for improving the energy efficiency of 

cloud data centers. However, aggressive VMs 

consolidation methods may cause the hosts overload and 

produce massive inefficient VM migrations, so that host 

re-overload and even Quality of Service (QoS) degraded. 

Therefore, workloads are increasingly being deployed in 

virtualized cloud data centers to improve energy 

efficiency by using Virtual machines (VMs) 

consolidation. In this paper, we propose VMs selection 

algorithm and VMs placement algorithm for VMs 

consolidation to meet Quality of Service (QoS) for cloud 

applications while maximizing the energy efficiency and 

resource utilization of the data center. The VMs selection 

algorithm develops the relative CPU capacity gains to 

select the VMs which are selected to migrate from 

overloaded hosts. The VMs placement algorithm 

proposes an adaptive reservation CPU capacity for each 

physical host and allocates the selected VM to the hosts 

with idle CPU capacity. We experimented with real 

workloads, and results show that the algorithms can 

significantly reduce the energy consumption and improve 

QoS while decreasing the number of VM migrations. 

Keywords: Cloud computing, Energy efficiency, Quality 

of service, Virtual machine consolidation 

1 Introduction 

As the scale of cloud computing continues to expand, 

there are many large-scale data centers have been 

established around the world [1]. However, the data 

centers can provide emission carbon and generate high 

power consumption which leads to global climate 

change, and the energy cost increased. Data collected 

for the Greenpeace have shown that the energy 

consumption of data centers only in the United States 

has already contributed about 91 billion Kilo Watt 

Hour (KWH), which even exceeds the electricity 

consumption of most countries in one year [2]. Besides, 

it is posing a severe threat to the environment that a 

significant number of carbon dioxides is emitted in the 

process of the data center power supply and cooling 

[3-6]. As a result, the energy-efficient resource 

management strategy has become a crucial part of 

overall cloud centers.  

VM consolidation method can efficiently implement 

energy-saving management in a data center [7]. The 

method periodically detects the CPU usage of the 

physical host in the data center and migrates VMs in 

the low-utilization physical host to other hosts by using 

VM live migration technology [8]. In a data center, the 

VM consolidation method can efficiently improve 

resource utilization and reduce power consumption [9]. 

However, when a VM requests increased computing 

resources, the physical host may not be able to satisfy 

the VM’s request, which results in service level 

agreement (SLA) violations [10]. Therefore, reducing 

the energy consumption with satisfactory SLA is a 

significant challenge for dynamic VM consolidation. 

Recent studies [11-21] have shown that many VM 

consolidation methods focus on a trade-off between 

energy consumption and SLA violations. However, 

these methods can not satisfy the requirements of 

applications for continuous and stable computing 

resources [22]. Thus, it is essential to propose a new 

VM consolidation method so that the data center can 

maintain the low energy consumption status on the 

premise of providing more reliable and stable 

computing services. 

There are two reasons why data centers cannot 

provide stable computing resources. First, when 

physical hosts are over-loaded, the hosts cannot 

provide sufficient computing resources for VMs. 

Second, when the VM during migration, the computing 

performance of the VM is decreased. Thus, we propose 

the MCLQBFD method to address these issues. This 

paper pays more attention to improve the service 

quality of cloud computing services. The main 

contributions of this paper are as follows: 

‧ We propose a reserved CPU model that can reserve 
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CPU resources for physical hosts based on historical 

CPU utilization. This model can prevent host 

overloading caused by cloud workloads fluctuations. 

‧ We propose the minimization of computational loss 

(MCL) algorithm to reduce the computational 

performance loss due to VM migration, the 

algorithm evaluates the total loss of computing 

resources during VM migration and uses a greedy 

strategy to migrate the appropriate VM. 

‧ Based on the reserved CPU model, we add the QoS 

aware best fit decreasing (QBFD) algorithm. This 

algorithm integrates VMs into fewer physical hosts 

without violating the reserved CPU model. 

The remainder of this paper is organized as follows. 

The related works are discussed in Section 2. Section 3 

introduces the system model and evaluation. Section 4 

elucidates MCLQBFD method. The experiment results 

are given in Section 5. Section 6 makes conclusions 

and looks forward to the future. 

2 Background 

Recent work has shown that cloud computing has 

been widely used in all walks of life. However, the 

massive computing resources requirements aggravated 

the burden of cloud data centers, which increases 

energy consumption and degrade QoS [11-13]. 

Beloglazov et al. [7] designed a VM consolidation 

method to manage a cloud data center. This approach 

achieved a tradeoff between energy cost and QoS in 

the data center. They divided the process of VM 

consolidation into four phases: (1) determining when a 

physical host is overloaded; (2) determining when a 

physical host is underloaded; (3) selecting some VMs 

from the overloaded and underloaded hosts (4) 

allocating the selected VM to idle hosts. Their work 

reduced energy consumption due to VM consolidation. 

However, the proposed host overload detection 

algorithm was limited to heuristics, which leads to the 

result is the suboptimal solution. Therefore, 

Beloglazov and Buyya [12] proposed a novel method 

to solve the problem of the sub-optimal overloaded 

host. They optimized the host overload detection 

problem by maximizing the average interaction time 

under the specified QoS target based on the Markov 

chain model and used the Multisize Sliding Window 

workloads estimation technology to handle unknown 

non-stationary workloads. Corradi et al. [14] proposed 

a cloud platform management method to optimize VM 

consolidation from three perspectives of energy cost, 

computing resources, and network. Their experimental 

results showed the feasibility of VM consolidation in 

cloud data centers.  

The above studies saved the energy cost of the data 

center using VM live migration. However, they have 

little focus on performance degradation and additional 

energy costs caused by VM migration. Xu et al. [15] 

proposed a lightweight interference-aware VM real-

time migration strategy (iAware) that estimates the 

performance of VMs by the experience of benchmark 

workloads testing on the Xen cluster platform. This 

strategy decreased the number of VM migrations based 

on previous work. Tao et al. [16] established a BGM-

BLA to optimize VM consolidation by considering 

energy consumption, VM communication, and VM 

migration. They divided the VM migration into two 

parts: (1) dividing the VMs into different groups; (2) 

determining the best way to allocate the groups into 

physical hosts. The method performed well regarding 

computational time, and the Pareto sets obtained. Ye et 

al. [17] presented an analysis-based VM consolidation 

framework, which minimizes the number of actively 

physical hosts while maintaining satisfactory 

performance for a variety of workloads. The 

management framework contained two modules: (1) 

consolidation planning module, which can minimize 

the number of active hosts according to a given set of 

workloads; (2) migration planning module, which can 

minimize the number of VM migrations by a 

polynomial time algorithm. The framework efficiently 

reduced the number of physical hosts in the data center 

while maintaining the high performance of the 

workloads. Shidik et al. [18] proposed a virtual 

machine selection model based on fuzzy Markov 

normal algorithm for dynamic virtual machine 

consolidation to improve the energy efficiency of cloud 

data centers. Their proposed fuzzy logic has been used 

to classify the attributes of VM candidates, and the 

Markov Normal Algorithm is used to determine which 

class of VMs should be migrated from an overloaded 

host. Shidik et al. [19] proposed a VM selection 

method based on K-means clustering technique and 

computational model Markov conventional algorithm 

(K-mMA). The purpose of the VM selection is to 

select the appropriate VM that should migrate from the 

overloaded physical machine and avoid 

oversubscribing the host, thereby improving the energy 

efficiency and quality of service (QOS) of the cloud 

data center. 

The VM placement problem of VM consolidation is 

strictly NP-hard, the heuristic algorithm can be used to 

solve it. Therefore, Farahnakian et al. [20] proposed a 

distributed system architecture and online optimization 

meta-heuristic algorithm Ant Colony System (ACS) to 

perform dynamic VM integration. Their work achieved 

the lower energy consumption of cloud data centers 

while maintaining the required SLA. Based on the 

research, Liu et al. [21] proposed an OEMACS 

algorithm that combines order exchange and migration 

(OEM) local search techniques with the ACS algorithm. 

The algorithm allocates VMs from a global 

optimization perspective, placing more VMs in fewer 

active hosts. Zhang et al. [22] weighed the cost of 

network communication and the cost of VM migration, 

and then completed the integration of VMs by different 
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group intelligence algorithms (GA, ABC, PSO, and 

ACO). Li et al. [23] developed a Bayesian network 

estimation model (BNEM) for VM live migration 

based on cloud data centers. They proposed a hybrid 

Bayesian network-based VM consolidation (BN-VMC) 

method, which consists of three algorithms 

corresponding to different phases of VM consolidation. 

Zhou et al. [24] proposed a new algorithm called 

EEOM, which considers CPU and memory factors.  

All the above works considered a tradeoff between 

energy consumption (host operating, VM migration, 

network communication) and QoS (VM computing 

performance). However, the applications require data 

centers to provide higher QoS of computing power. 

Melhem et al. [25] proposed an overload host detection 

algorithm based on the Markov prediction model and a 

VM placement algorithm based on the physical host 

that has received the migrated VM. Their work 

drastically reduced data center SLA violations, 

allowing data centers to support applications better. 

However, this method caused the data center’s energy 

consumption rise sharply, which is contrary to the 

design goal of the VM consolidation method. 

Therefore, we propose a new method that aims to 

increase the energy efficiency of data centers while 

meeting the computing resource requirements of 

applications.  

3 System Model and Evaluation 

3.1 System Model 

In this paper, the target system is a cloud data center 

that provides computing resources for Cloud 

applications. The data center has a large number of 

heterogeneous physical hosts which contains multicore 

CPU, memory, and network I/O [26-27]. The millions 

of instructions per second (MIPS) are units of CPU 

computing performance, and the storage system is 

network attached storage (NAS) [28]. As shown in 

Figure 1, the users first submit Cloud tasks to global 

manager and signs a service level agreement with 

cloud service providers. Then, the global manager 

sends the users’ request to local managers. Finally, the 

local manager creates the VMs on physical hosts 

according to the request. 

In a data center, 
1 2

{p , ,..., ,..., }
i N

P p p p=  represents 

a set that consists of N physical hosts and 

i 1 2
{ , ,..., ,..., }

j m
V v v v v=  represents a set that consists of 

m VMs deployed in 
i
p . 

j
v  represents the jth VM, mc

j
v  represents the max 

CPU computing capacity, rc

j
v  is the current requested 

CPU computing resources, and u

j
v  represents the 

current CPU utilization. The relationships of ,

mc

j
v  rc

j
v  

and u

j
v  is defined as follows: 
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Figure 1. The mechanism of cloud data center 
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3.2 Power Model 

The CPU, memory, disk storage, and network 

interfaces mostly determine the power consumption of 

physical hosts. However, the energy cost of CPU is the 

most significant part. Based on the studies [7, 29-30], 

the power of the host is linearly related to its CPU 

utilization, and the idle hosts still generate 70% of the 

max power cost. Therefore, Equation (4) represents the 

power model of a physical host. 

 max max( ) (1 ) uE p k p k p p= × + − × ×  (4) 

Where max

p  is the maximum power of physical host 

when CPU utilization is 100%; k is the ratio of the 

power consumption of the idle host to the fully loaded 

host and is set to 0.7 [31]. Thus, the total energy cost of 

a host is as follows. 

 
1

0

t

( ( ))u

t

EC E p t dt= ∫
 

(5)  
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3.3 Live Migration Cost 

VM live migration technology allows VMs transfers 

between physical hosts without stalling. During 

migration, the average computing performance 

degradation of VM is equivalent to 10% of the CPU 

utilization [8]. Equation (6) expresses the migration 

time of VM. Thus, the live migration cost of VM can 

be calculated by (7). 
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j bw

i

v
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where m

j
T  represents the jth VM’s migration time, 

ram

j
v  is the memory of the VM, bw

i
p  represents 

available network bandwidth of the host, 
0
t  is the start 

time of the VM migration, v
du

j  represents CPU 

utilization loss by VM migration, ( )u

j
v t  is the VM’s 

CPU utilization at time t. 

3.4 QoS Evaluation 

In this paper, QoS reflects the stability of the cloud 

data center to provide computing services for Cloud 

applications when the Cloud applications fail to obtain 

sufficient computing resources from the data center, 

which causes SLA violations and degradation of QoS. 

Therefore, we use the degradation of computational 

performance as a criterion to evaluate SLA violations 

by research [12]. It consists of two parts: 

(1) SLATAH indicates the ratio of physical host 

overload time to physical host runtime and is defined 

in (8). 

 
i 1

1
i

i

N
s

a

T
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N T
=
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Where 
i
s

T  is the time of SLA violations when p
i
 is 

overload, 
i
a
T  is the total operation time of p

i
. 

(2) PDM represents the ratio of the loss of 

computing resources during VM migration to the 

request computing resources of all VMs and is defined 

in (9). 
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Where 
jd

C  is the loss of computing resources 

during the migration of v
j
, 

jr
C  represents the overall 

requested computing resources of v .
j

 SLAV is 

regarded as a combined metric to measure the QoS of 

the data center and is calculated as follows:  

 SLAV SLATAH PDM= ×   (10) 

4 Mclqbfd Method 

The VM consolidation method divided into four 

parts: (1) host overload detection; (2) host underload 

detection; (3) VM selection; (4) VM placement. The 

goal of this paper is to ensure whether the data center 

processes cloud data efficiently. Therefore, we have 

improved and updated the traditional method of VM 

consolidation:  

(1) We propose a reserve CPU model, which is 

applied to solve the host re-overload caused by host 

overload detection algorithm. 

(2) To better satisfy the computing power 

requirements of the Cloud application, we proposed the 

MCL algorithm to reduce the computational 

performances loss in the process of VM consolidation. 

(3) For VM placement, we proposed the QBFD 

algorithm that combines the reserve CPU model in (1) 

with the BFD [32] algorithm. The QBFD can prevent 

degradation of computing performance due to 

workload fluctuations. 

4.1 Reserve CPU Model 

Cloud applications have high requirements for data 

processing timeliness. In practice, the virtual 

machine’s workload is unpredictable and fluctuating, 

which causes the physical host to be overloaded twice 

when the workload fluctuates after the virtual machine 

is placed. To prevent avoid secondary overload of the 

physical host and the Cloud data cannot be processed 

efficiently due to physical host overload, we reserve a 

part of the CPU resources for physical hosts to cope 

with possible load fluctuations. The reserve CPU space 

should satisfy three conditions: (1) The reserved space 

should be dynamically adaptive, and the size depends 

on historical CPU utilization fluctuations; (2) The 

reserved space should not be affected by abnormal 

historical data; (3) The closer the data is to the current 

time, the greater the impact on the reserved CPU space. 

Reserve CPU Space

Available CPU

 

Figure 2. The CPU model of a physical host 
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Figure 2 shows the CPU model of a physical host. 

To achieve the above two conditions, we design the 

reserve CPU space through the data of the historical 

CPU utilization of the physical host, which is acquired 

by the data center at equal intervals.  

For the first two conditions, we implement the 

following method. For historical CPU utilization data 

set {x }( 1,2,...)
t

t = , We use a sliding window to collect 

and use it and the size of window is k. When the total 

amount of historical data k is smaller than the window 

size, all the historical data is processed and the 

collected data set is 
1 2

{x , ,..., }
k

x x ; when the total 

amount k of the historical data is larger than the 

window size, the latest historical data within the 

window size is adopted and the collected data set is 

1 1
{ ,..., , }

end k end end
x x x

− + −
. Then let end k= , so that the 

collected data set is integrated into a new data set 

1 2
{x , ,..., }

k
x x . 

To avoid being affected by abnormal historical data, 

we pre-process the historical data, identify the outliers 

in the data through the criterion [33], and then replace 

the outliers with the mean.  

  
1

1
k

i

i

x x
k

=

= ∑  (11) 

 
k

2

1

1
( )

i

i

x x

n

σ

=

= −∑  (12) 

 
   if  3  < x < 3

x

    other

i

i

x x x

x

σ σ⎧ − +⎪
= ⎨
⎪⎩

 (13) 

 b | |
i i

x x= −  (14) 

Where x
i
 represents the ith CPU utilization in the 

history data, x  is the mean of the data, σ  is the data’s 

standard deviation, 
i
b  is the absolute value of x

i
 

deviation. In a data center, the value of 
i
b  changes as 

the historical data of the collected physical host 

constantly changes. Therefore, we regard { }
i
b  as the 

baseline to describe the range of data center workload 

fluctuations, which can be updated over time. 

For the last condition, we apply the sum of weighted 

deviations to estimate the size of the reserve CPU. The 

formula for data pre-processing is as follows.  

 
k

1

1

1

ft (1 ) i

k i

i

bλ λ
−

− +

=

= − ∑  (15) 

Where ft  is reserve CPU space, ( (0,1))λ ∈  is weight 

coefficients of history data. In (15), the closer the data 

is to the current time, the greater the effect on ft  under 

a given parameter λ , which is decided by section 5. 

Further, 
k

1

1

(1 ) 1i

i

λ λ
−

=

− =∑  is always constant when k 

approaches infinity, which is one reason for designing 

the equation. 

In this paper, we regard the local regression (LR) as 

host overload detection based on research [7] and 

assume the maximum CPU utilization of the physical 

is 1 ft− . 

4.2 VM Selection Algorithm 

To improve the processing speed of cloud 

applications, we must minimize the loss of 

computational performance during VM migration. 

Therefore, we propose MCL algorithm to achieve two 

goals: 

(1) Makes the CPU usage of the migrated physical 

host less than 1 ft− , which represents the host is no 

overload.  

(2) Reduce the computational computing 

performance loss caused by VM migration, which 

ensures that the Cloud application runs correctly. 

When the VMs of the host are migrated to other 

hosts, the computational performance of the VMs are 

degraded during the migration. The loss of computing 

resources is defined as follows. 

 l
du mc

j j jv v= ×  (16) 

Where v
j

 is a VM that is migrated from the 

overloaded host, l
j
 represents the loss of CPU capacity 

during the migration of v
j
. 

Algorithm 1 shows the VM selection for overloaded 

hosts. This algorithm uses a greedy strategy to select 

the VM with the least performance degradation in the 

migration process. First, the algorithm obtains the 

performance loss of VM migration in the current 

physical host. Then, the VMs are sorted in ascending 

order based on performance loss. Finally, the VMs are 

continuously migrated in order until the physical host 

is no overload. If m is the number of the VMs and n is 

the number of overloaded hosts, the time complexity of 

Algorithm 1 is O (n*m). 

 

Algorithm 1. Minimization of Computational Loss (MCL) 

1. Input: overloadedHostList 

2. Output: selectedVmList  

3. selectedVmList NULL← ; 

4. foreach host in overloadedHostList do 

5.       vmList←host.getVmList(); 

6.       hUtil←host.getUtil(); 

7.       foreach vm in vmList do 

8.            Calculate l   for vm by using  (16); 

9.            vm.updataLoss( l );    

10.       end for 

11.       Sort vmList by increasing order of l    

12.       foreach vm in vmList do 
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13.           if  vm.getUtil() > hUtil - host.getFt()   

14.                selectedVmList.add(vm);  

15.                host.removeVm(vm);  

16. else 

17.                 break;  

18.           end if 

19.        end for 

20. end for 

21. return seletedVmList; 

 

4.3 VM Placement Algorithm 

Once selecting VMs from overloaded hosts, the next 

step is to allocate the VMs to idle hosts that have 

available CPU utilization. We propose a QBFD 

algorithm to reduce the possibility of host re-overload 

while increasing the resource utilization of the host to 

keep the data center running at low power. Thus, it is 

necessary to evaluate the CPU usage increase of the 

host after the VM migration. 

 
,

u rc

j ju

i j mc

i

v v
p

p

×
Δ =  (17) 

Where 
,

u

i j
pΔ  is increased CPU usage after 

i
p  

receives v
j
. When the VM migration is complete, the 

remaining available CPU utilization of the host is 

written as follow: 

 
i, ,

1
u

j i i j
ft pϕ = − − Δ  (18) 

Where 
i, j

ϕ  is remaining available CPU usage of 
i
p  

after 
i
p  receives v

j
, 

i
ft  is the reserve CPU space of 

i
p . When placing the VMs, the QBFD algorithm 

minimizes the remaining available CPU resources 

while maintaining reserve CPU resources. 

The pseudo-code is the QBFD algorithm that 

allocates the selected VMs. This algorithm selects the 

best physical host for each selected VM. The best host 

satisfies the condition: (1) the remainder available CPU 

utilization of the host is more significant than zero after 

the VM placement; (2) the remaining CPU utilization 

of the host is the smallest. If m is the number of the 

VMs and n is the number of overloaded hosts, the time 

complexity of Algorithm 2 is O (n*m). 

 

Algorithm 2. QoS Aware Best Fit Decreasing (QBFD) 

1. Input: hostList, migrationList 

2. foreach vm in migrationList do 

3.      rMin ←  MAX 

4.      allocatedHost NULL←  

5.       foreach host in hostList do 

6. r←Calculate using equation (18) 

7.             if r > 0 && r < rMin then 

8.                rMin ←  r  

9.                allocatedHost ←host 

10.            end if 

11.        end for 

12.       if allocatedHost NULL≠  then 

13.           allocate vm to allocatedHost 

14.       end if 

15. end for 

 

5 Experimental Environment and Results 

5.1 Experimental Setup 

To evaluate the MCLQBFD algorithm, this paper 

simulated a data center by using CloudSim toolkit [34]. 

CloudSim is a cloud simulation software from the 

CloudBus project team that supports cloud computing 

infrastructure and application modeling, simulation and 

experimentation. The data center is consisted of 400 

HP ProLiant ML110 G4 (Intel Xeon 3040, 2 cores * 

1.86GHz) and 400 HP ProLiant ML110 G5 (Intel Xeon 

3075, 2 cores * 2.26GHz) physical hosts. According to 

SPECpower, the maximum power consumption of the 

two types of physical hosts is 117W and 135W 

respectively. 

In the data center, we simulated four different VMs 

whose parameters came from Amazon EC2. Table 1 

shows the four VM types in the experiment.  

Table 1. Types of Amazon EC2 

VM Types MIPS Memory (GB) 

High-CPU Medium Instance 2500 0.85 

Extra Large Instance 2000 3.75 

Small Instance 1000 1.70 

Micro Instance 500 0.613 

 

We used PlanetLab trace [35] from a real 

infrastructure. The PlanetLab trace contains the CPU 

utilization of physical hosts by measured every 5 

minutes from more than the thousand VMs for ten days. 

Table 2 shows the PlanetLab trace information. 

Table 2. PlanetLab trace information 

Date Number of VMs  Mean(%) St.dev.(%) 

2011/03/03 1052 12.31% 17.09% 

2011/03/06 898 11.44% 16.83% 

2011/03/09 1061 10.70% 15.57% 

2011/03/22 1516 9.26% 12.78% 

2011/03/25 1078 10.56% 14.14% 

2011/04/03 1463 12.39% 16.55% 

2011/04/09 1358 11.12% 15.09% 

2011/04/11 1233 11.56% 15.07% 

2011/04/12 1054 11.54% 15.15% 

2011/04/20 1033 10.43% 15.21% 

 



Based on QoS and Energy Efficiency Virtual Machines Consolidation Techniques in Cloud 1855 

 

5.1 Experimental Setup 

Evaluate the performance of the VM consolidation 

approach in terms of six different performance metrics, 

which are energy consumption (EC), SLA violations 

(SLAV), SLA time per active host (SLATAH), 

performance degradation due to migrations (PDM), the 

number of VM migrations (VMM), and ESV that is 

combined evaluations of energy consumption and 

SLAV [4]. ESV is defined as the following: 

 ESV EC SLAV= ×  (19) 

5.2 Experiment and Analysis  

In the section, we conducted two experiments:  

In Experiment 1, we determined the weight coefficients 

of the reserve CPU model.  

In Experiment 2, to verify the feasibility of the 

MCLQBFD method, we used the combination strategy 

of four host overloaded detection algorithms (THR, 

MAD, IQR, and LR) and three VM selection 

algorithms (MMT, MC, and RS) as benchmark 

methods. In the same experimental environment, we 

compare the MCLQBFD method with the EEOM [21] 

method, the RUA [36] method and the benchmark 

algorithm. 

(1) Determining weight coefficient λ  

The value of the weight coefficient λ  in the reserve 

CPU model must first be determined. The weight 

coefficient determines the impact of the actual CPU 

utilization on a reserve CPU model. In the experiment, 

we used the real workload from Table 2 (date: 

2011/03/03) to compare the energy consumption (EC), 

SLAV, and ESV of the data center under different 

weight coefficient λ  (λ  changes from 0.0 to 1.0, with 

a step size of 0.05). Figure 3, Figure 4 and Figure 5 

respectively show energy consumption, SLAV, and 

ESV with different weight coefficient λ  in the data 

center. 
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Figure 3. Energy consumption under different weight 

coefficient 
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Figure 4. SLAV under different weight coefficient 

Weight coefficient λ

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.05

0.10

0.15

0.20

E
SV

 (x
0.

01
)

 

Figure 5. ESV under different weight coefficient 

The curve in Figure 1 shows that the energy 

consumption of the data center is high during weight 

coefficient λ  is between 0 and 0.8, and the energy cost 

is rapidly reduced during the process of raising the 

weight coefficient λ  from 0.8 to 1.0. This is because 

when the weight coefficient λ  is between 0.8 and 1.0, 

the reserved CPU model is gradually less affected by 

the latest historical data, which allows the physical host 

to release more available computing resources, thereby 

reducing the energy consumption of the data center. 

Figure 2 shows the SLA violations of the data center 

are falls when the weight coefficient λ  rises from 0 to 

0.9, and the SLA violations rise rapidly during weight 

coefficient from 0.9 to 1.0. The main reason is that 

during the period of 0.9 to 1.0, the reserved CPU 

becomes smaller, the probability of physical host 

overload is greatly increased and new virtual machine 

migrations are generated, which make the SLA 

violation increase rapidly. Combining the above two 

figures, we identify that the energy consumption 

decreases and the SLA violations increase when the 

weight coefficient λ  rises from 0.9 to 1.0. The curve 

in Figure 5 represents the ESV, and we can identify 

that the data center has the lowest value of ESV when 

=0.9.λ  This is because ESV is a comprehensive 

measure of energy consumption and SLA violations. 

As can be seen from Figure 3 and Figure 4, the data 

center energy consumption and SLAV are both at a 

low level when =0.9.λ  Therefore, the weight 

coefficient λ  is set to 0.9 in this paper. 
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(2) Comparing the performance between different 

methods 

Table 3 provides the comparison results of different 

methods in terms of the six performance evaluations. 

Each value in Table 3 represents the average 

performance per day after the data center is running for 

ten days, and the numbers following the name of each 

method are the parameters of the corresponding 

method. 

Table 3. Six performance evaluations of different VM consolidation methods  

Method EC (kWh) SLATAH (%) PDM (%) SLAV (x0.0001) ESV (x0.01) VMM 

MCLQBFD 117.33 3.8980 0.0240 0.0975 0.1115 10211 

RUA 123.39 3.7600 0.0310 0.1201 0.1438 12690 

EEOM 127.62 3.9713 0.0290 0.1152 0.1469 11713 

THR-MMT-0.8 188.45 5.0380 0.0680 0.3371 0.6256 26601 

THR-MC-0.8 179.33 6.9110 0.1000 0.6989 1.2410 23961 

THR-RS-0.8 180.80 6.9540 0.1020 0.6991 1.2507 24217 

MAD-MMT-2.5 183.43 5.0540 0.0650 0.3348 0.6061 26305 

MAD-MC-2.5 173.74 7.0390 0.1010 0.7111 1.2252 23420 

MAD-RS-2.5 174.96 7.0820 0.1010 0.7111 1.2338 23736 

IQR-MMT-1.5 187.50 5.0230 0.0650 0.3288 0.6071 26497 

IQR-MC-1.5 177.66 6.9160 0.0980 0.6805 1.1976 23394 

IQR-RS-1.5 179.06 6.9730 0.0970 0.6793 1.2061 23796 

LR-MMT-1.2 161.81 6.2130 0.0800 0.4974 0.7951 28175 

LR-MC-1.2 148.47 7.4840 0.1020 0.7609 1.1185 23931 

LR-RS-1.2 147.61 7.6220 0.1030 0.7781 1.1381 23779 

 

Energy consumption is used to compare the power 

costs of different methods in the data center. As shown 

in Table 3, MCLQBFD method always outperforms 

other methods in terms of energy consumption, and the 

value of energy consumption is 117.33 kWh. The 

QBFD method maintains reserved CPU space while 

increasing resource utilization, shutting down many 

physical hosts to reduce the power consumption. The 

result shows that even if the MCLQBFD method 

reserves a part of CPU utilization to prevent host 

overload, it can still guarantee high energy efficiency 

in the data center. The benchmark method’s lowest 

energy consumption has reached 147.61kWh that is the 

highest energy consumption in all methods. RUA 

method consumes less energy than the benchmark 

method and EEOM. The reason is RUA proposes the 

PA, which is a low-workload detection parameter that 

reduces the data center by continuously reallocating 

virtual machines. In contrast, compared the RUA 

method, EEOM method, best performing benchmark 

method, the energy efficiency of the MCLQBFD 

method is improved by 4.91%, 8.06%, 20.51%.  

SLAV reflects the QoS provided by the data center 

for computing resources. SLAV consists of two parts, 

one is SLATAH, which indicates that losing the 

computing resources due to physical host overload, and 

the other part is PDM, which indicates that wasting 

computational resources due to VM migration. From 

Table 3, the SLATAH value of the MCLQBFD method 

is 3.898%, the PDM value is 0.024%, and the SLAV 

value is 0.0975
-4, which is lower than other methods. 

There are two main reasons for this: First, the 

MCLQBFD algorithm is always able to maintain the 

normal working load state of the physical host for a 

long time, which greatly reduces the frequency of 

overload of the physical host. Second, it reduces a 

large number of virtual machine migrations, thereby 

reducing the computational resource loss caused by 

virtual machine migration. From the SLAV index, the 

MCLQBFD method is 18.82%, 15.36%, 70.35% lower 

than the RUA method, EEOM method, and IQR-

MMT-1.5, which indicates that our method can 

effectively improve the QoS of the cloud data center. 

ESV represents the overall performance of the data 

center in both energy consumption and SLAV. As 

shown in Table 3, the ESV value of the MCLQBFD 

algorithm is much lower than the other methods, 

because the method outperforms other methods in term 

of both energy consumption and SLAV. In general, 

compared with the RUA method, EEOM method, and 

benchmark algorithm, the proposed method is reduced 

by 22.46%, 24.10%, and 81.60%. 

VMM represents the number of VM migrations in 

the data center. The VMM of the MCLQBFD method 

is 10211, which is higher than the 12690 VM 

migrations of the RUA and 11713 VM migrations of 

the EEOM. ECLQBFD has the least frequent migration 

of the benchmark methods. From Table 3, it can be 

seen that there is little host over-load in the 

MCLQBFD method, which makes it unnecessary for 

the physical host to migrate many VMs to make the 

work-load of the host return to normal. Therefore, the 

proposed method is reduced by 19.54%, 12.82%, and 

56.35% compared with RUA, EEOM, and benchmark 

algorithms. 

The experimental results show that the MCLQBFD 

method outperforms other methods in five performance 

indexes, and only slightly inferior to the RUA method 

in VMM. In particular, MCLQBFD method is very 

prominent on SLAV. Therefore, the MCLQBFD 
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method can more effectively satisfy the massive 

computing resources required for cloud applications. 

6 Conclusion and Future Work 

With the expansion of cloud computing applications, 

the demand for data processing and application storage 

has grown excessively. Cloud computing services 

provide customers with a large number of computing 

resources and storage space, which effectively 

promotes the further development of other industries. 

This paper proposes a method called MCLQBFD to 

improve the quality of data center computing services 

with lower energy consumption. In this work, we 

proposed a CPU fault-tolerance model to prevent 

physical hosts overload. Then, we proposed the MCL 

algorithm to reduce the computational performance 

loss caused due to the VM migration. Finally, we 

designed the QBFD algorithm based on the CPU fault-

tolerance model to achieve the data center low-power 

operation while ensuring the quality of the data center.  

In the future, we plan to combine reinforcement 

learning with data center management and conduct 

experiments in a real cloud platform. 
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