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Abstract 

Since Fog computing is proposed to enable computing 

directly at the edge of the network, which can deliver new 

applications and services especially for the Internet of 

Things (IoT). In order to provide a high flexible and 

reliable platform of IoT, an IoT platform that combining 

Fog computing and Cloud computing is proposed in this 

study. In an IoT platform, the fault-tolerance is an 

important research topic. To cope with the influence from 

faulty components, reaching a common agreement at the 

presence of faults before performing some special tasks is 

essential. However, the previous protocols for the 

agreement problem of distributed computing are not 

enough for the IoT platform that combining Fog 

computing and Cloud computing. In this study, the 

agreement problem is revisited. The new proposed 

protocol can make all fault-free nodes reach agreement 

with minimal rounds of message exchanges and tolerate 

the maximal number of allowable faulty components in 

the IoT platform that combining Fog computing and 

Cloud computing. 

Keywords: Internet of Things, Fog computing, Cloud 

computing, Interactive consistency problem, 

Consensus problem 

1 Introduction 

The Internet of Things (IoT) paradigm is based on 

intelligent and self-configuring nodes (things) 

interconnected in a dynamic and global network 

infrastructure. The IoT can make many applications, 

including consumer electronic devices, home 

appliances, medical devices, cameras, and all types of 

sensors. This innovation facilitates new interactions 

among things and humans, and enables the realization 

of smart cities, infrastructures, and services that 

enhance the quality of life. It represents the 

technologies, enabling ubiquitous and pervasive 

computing scenarios. IoT is generally characterized by 

real world and small things with limited storage and 

processing capacity. It is hard to avoid the 

circumstances of faulty behavior occurred in real world. 

Sometime, to make all fault-free nodes have a common 

value is very important. For instance, the initial time 

and the time stamps should be the same for all fault-

free nodes in the system, otherwise, the distributed 

system may not be worked well. To reach an 

agreement is a part of reliability issue. To ensure that 

an IoT environment is reliable, a mechanism is 

provided in this study to make all fault free nodes 

reach an agreement and free from the influence of 

faulty nodes. Since, Cloud computing has virtually 

unlimited capabilities in terms of storage and 

processing power, hence has most of the IoT issues at 

least partially solved. Therefore, the IoT paradigm that 

combines the two technologies of cloud and Internet 

can provide current and future Internet [4]. 

Cloud computing is a great option, because the IoT 

demand significant compute and storage resources. 

Unfortunately, the requirements and design space of 

IoT make Cloud computing unfeasible in numerous 

scenarios, especially, when the goal is to build a 

general and multipurpose platform that can serve a 

wide variety of IoT applications [6]. According to the 

research by Yannuzzi et al., the main requirements for 

designing and building a scalable IoT platform include: 

(1) A platform for IoT must support rapid mobility 

patterns, even requiring in some cases high throughput 

on demand for short time periods. (2) A platform for 

IoT must support systems requiring reliable sensing, 

analysis, control and actuation, in scenarios subject to 

poor or unreliable connectivity to the Cloud and/or 

requiring very low latency. (3) A platform for IoT must 

be able to manage a large amount of geographically 

distributed “things” (either physical or virtual), which 

may produce data that require different levels of real 

time analytics and data aggregation [24]. Therefore, the 

recipe for building scalable IoT platforms is the 

following: (a) add Fog computing; (b) add Cloud 

computing and smartly combine it with the Fog, and (c) 

whenever the platform needs to scale either to cover 

more “things”, just add more Fog nodes [24]. 

The emerging wave of Internet deployment, 

especially the IoT needs mobility support and 

geographical distribution, as well as location awareness 

and low latency. Bonomi et al. argue that Fog 
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computing can meet these requirements [3]. Fog 

computing enables a new breed of applications and 

services, and that there is a fruitful interplay between 

the Cloud and the Fog, particularly when it comes to 

data management and analytics. 

Fog computing is a distributed paradigm that 

provides Cloud-like services to the network edge. It 

leverages Cloud and edge resources along with its own 

infrastructure. In essence, the technology deals with 

IoT data locally by utilizing clients or edge devices 

near users to carry out a substantial amount of storage, 

communication, control, configuration, and management. 

The approach benefits from edge devices’ close 

proximity to sensors, while leveraging the ondemand 

scalability of Cloud resources [6]. 

As network bandwidth and quality outstrip computer 

performance, various communication and computing 

technologies previously regarded as being of different 

domains can now be integrated, such as 

telecommunication, multimedia, information technology, 

and construction simulation [18]. Thus, applications 

associated with network integration have gradually 

attracted considerable attention. Similarly, IoT 

facilitated through distributed application over 

networks has also gained more recognition [12]. 

As the IoT has greatly encouraged distributed 

systems design and practiced to support user-oriented 

service applications [18]. However, distributed systems 

have grown rapidly in both size and number. In a 

distributed computing system, nodes allocated to 

different places or in separate units are connected 

together so that they collectively may be used to 

greater advantage. However, the network infrastructure 

and connectivity in IoT applications are becoming 

increasingly complex and heterogeneous, opening up 

many challenges including reliability [17]. In many 

cases, reaching a common agreement in the presence of 

faulty components is the central issue of fault-tolerant 

distributed computing, because many applications 

require such agreement [12]. For instance, the initial 

time and the time stamps should be the same or agree 

on for all nodes in the system, otherwise, the 

distributed system may not be worked well. 

Furthermore, many applications of IoT provide the 

convenience of users. For users, the system must 

provide better reliability and fluency [18]. Therefore, 

reliability is one of the most important aspects of IoT. 

To ensure that an IoT environment is reliable, a 

mechanism to allow a set of nodes to reach an agreed 

value is necessary. 

In order to provide a high flexible and reliable 

platform of IoT, an IoT platform that combining Fog 

computing and Cloud computing (FC-IoT) will be 

proposed in this study. In the FC-IoT, numerous nodes 

are interconnected. Achieving agreement on a same 

value in the FC-IoT even if certain components fail, 

the protocols are required so that systems can still 

operate correctly.  

Up to now, there have none related studies involving 

agreement issue in the FC-IoT. It is the first time a 

protocol is proposed to reach agreement underlying 

FC-IoT. In this study, the agreement is revisited with 

the assumption of nodes failure due to malicious faults 

in FC-IoT. The proposed protocol, FC Agreement 

Protocol (FCAP) of FC-IoT, can make all fault-free 

nodes reach agreement with minimal rounds of 

message exchanges, and tolerate the maximal number 

of allowable faulty components.  

The rest of this paper is organized as follows. 

Section 2 will serve to introduce the related works. The 

IoT platform that combining Fog computing and Cloud 

computing (FC-IoT) is proposed in Section 3. Then, 

the proposed FC Agreement Protocol (FCAP) of FC-

IoT will be brought up and illustrated in detail in 

Section 4. In Section 5, an example of executing the 

proposed protocol is given. Section 6 is responsible for 

proving the complexity of our new protocol. Finally, 

Section 7 gives conclusions of this research. 

2 The Literature Review 

Before the agreement problem can be solved, the 

related works must be discussed first. They are the 

agreement problems and the failure types of faulty 

components. 

2.1 The Agreement Problems 

In an IoT environment, a mechanism to allow a 

given set of nodes to agree on a common value is 

necessary for reliable smart city [11, 22]. Such a 

unanimity problem was called Byzantine Agreement 

(BA) [13]. It requires a number of independent nodes 

to reach agreement in cases where some of those nodes 

might be faulty. Namely, the goal of BA is making the 

fault-free nodes reach a common value.  

The BA problem first studied by Lamport et al. is a 

well-known paradigm for the problem of achieving 

reliability in a distributed network of nodes. The 

definitions of the BA problem are [13]:  

(1) There are n nodes (n≥4), of which at most one-

third of the total number of nodes could fail without 

breaking down a workable network.  

(2) The nodes communicate with each other through 

message exchange in a fully connected network. 

(3) The message’s sender is always identifiable by 

the receiver. 

(4) A node is chosen as a source, and its initial value 

vs is transmitted to other nodes for executing the 

protocol. 

(5) The faulty component considered is node only. 

Agreement is reached if all fault-free nodes agree on 

a common value. Based on these assumptions, various 

protocols for the BA problem have been developed in 

order to meet the following requirements [13]: 

Agreement. All fault-free nodes agree on a common 

value v. 
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Validity. If the initial value of the source is vs and the 

source is fault-free, then all fault-free nodes shall agree 

on the value vs; i.e., v = vs. 

The consensus problem [16] is extended from BA 

problem. The solutions of consensus problem are 

defined as protocols, which achieve a consensus and 

hope to use the minimum number of rounds of message 

exchanges to achieve the maximum number of 

allowable faulty capability. In this study, the solution 

of consensus problem is concerned in the Fog 

computing layer of FC-IoT. The definition of the 

problem is to make the fault-free nodes in the Fog 

computing layer of FC-IoT to reach consensus. Each 

Fog node of Fog computing layer chooses an initial 

value to start with, and communicates to each other by 

exchanging messages. The Fog nodes are referred to 

make a consensus if it satisfies the following 

conditions [16]: 

Consensus. All fault-free Fog nodes agree on a 

common value. 

Validity. If the initial value of each fault-free Fog node 

ni is vi then all fault-free Fog nodes shall agree on the 

value vi. 

A closely related sub-problem, the interactive 

consistency problem (IC problem) has been studied 

extensively [9]. In this study, the solution of IC 

problem is concerned in the Cloud computing layer of 

FC-IoT. The definition of IC problem is to make the 

fault-free Cloud nodes in the Cloud computing layer 

reach interactive consistency. Each Cloud node 

chooses an initial value and communications with the 

others by exchanging messages. There is interactive 

consistency in that each Cloud node i has its initial 

value vi and agrees on a set of common values. 

Therefore, interactive consistency has been achieved if 

the following conditions are met [9]: 

Consistency. Each fault-free Cloud node agrees on a 

common vector V = [v1, v2, …, vn]. 

Validity. If the initial value of fault-free Cloud node i 

is vi, then the i-th value in the common vector V should 

be vi. 

In previous studies, the BA algorithms were 

designed in traditional network topology [1, 9, 13, 19-

21, 23]. Those works reach BA underlying different 

topologies respectively, including Broadcasting 

Network (BCN), Fully Connected Network (FCN), 

Multicasting Network (MCN), Wireless Sensor 

Network (WSN), and Cloud Computing environment 

(CC). All those previous protocols are not suitable for 

FC-IoT due to the difference of the network topology. 

The IoT environment is an Internet-based development. 

It is a style of computing in which dynamically 

scalable and often virtualized resources are provided as 

a service over the Internet. Nevertheless, in an IoT 

environment, the connected topology is not very 

significant. In this study, the consensus problem is to 

be solved on the Fog computing layer and IC problem 

is to be solved on the Cloud computing layer of the 

proposed IoT platform that combining Fog computing 

and Cloud computing. And, the proposed protocol, is 

named FC Agreement Protocol (in short FCAP) that 

can use a minimum number of message exchanges and 

can tolerate a maximum number of allowable faulty 

components to make each fault-free node reach a 

common agreement in the cases of node failure. 

2.2 Failure Types 

In a distributed system, the network components 

may not always work well. A node is said to be fault-

free if it follows protocol specifications during the 

execution of a protocol; otherwise, the node is said to 

be faulty. The symptoms of node failure can be 

classified into two categories. There are dormant fault 

and malicious fault (also called as the Byzantine fault) 

[13]. The dormant faults of nodes include crashes and 

omission. A crash fault happens when a node is broken. 

An omission fault takes place when a node fails to 

transmit or receive a message on time or at all. On a 

malicious fault, the behavior of a faulty node is 

unpredictable and arbitrary. The message transmitted 

by a malicious faulty node is random or arbitrary. It is 

the most damaging failure type and causes the worst 

problem. That is, if the agreement problem can be 

solved in a malicious fault case, then the agreement 

problem can also be solved in other failure mode.  

Therefore, in this study, malicious faults are 

investigated, and the means by which fault-free nodes 

may reach agreement in the FC-IoT platform are 

explored. In addition, Bousbiba and Klaus also indicate 

that BA in an asynchronous network is impossible 

even if only one crash faulty node [3]. Hence, the 

assumption of underlying FC-IoT is synchronous. 

3 The Network Structure 

With the advancement and development of various 

technologies, computing problems become more 

complicated and larger [18]. A Cloud computing 

environment allows a user faster operation of Internet 

applications. The majority of Cloud computing 

infrastructure consists of reliable services delivered 

through data centers and built on servers with different 

levels of virtualization technologies [14]. The services 

are accessible anywhere that has access to networking 

infrastructure. Commercial offerings must meet the 

quality of service requirements of customers, and 

typically offer service-level agreements [18]. Therefore, 

a distributed system must be having high stability to 

handle instances where many users utilize a given 

environment. In this section, the proposed IoT platform 

is discussed. 

In order to provide a high flexible and reliable 

platform of IoT, an IoT platform that combining Fog 

computing and Cloud computing (FC-IoT) is proposed 

in this study. The topology of FC-IoT is shown in 
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Figure 1. There are three layers in the FC-IoT: IoT 

sensors layer, Fog computing layer and Cloud 

computing layer. The IoT sensors layer is consisted by 

sensor nodes, which is responsible for sensing the data 

required by the IoT application. The Fog computing 

layer is constructed by Fog groups; each Fog group is 

composed of a large number of Fog nodes, responsible 

for the processing of specific information and 

judgments. The Cloud computing layer is made up of 

many Cloud nodes, which provide Cloud users' 

services. 

 

Figure 1. The topology of FC-IoT 

In the IoT environment, through the combination of 

a large number of sensors, various types of sensing 

data in real life can be collected. These huge sensing 

data from all over are used, and then a wide range of 

application services can be provided. For example, FC-

IoT proposed in this study can be used in the 

monitoring system for prevention of earth-rock-flow 

disaster. At FC-IoT, the sensed data of the sensors in 

different regions are sent to the corresponding Fog 

groups in the Fog computing layer, and the data are 

processed by the Fog nodes in the specific Fog group. 

The related monitoring information of different regions 

is collected by each Fog group, and then the collected 

information is analyzed and judged in each Fog group. 

Finally, the status of different regions is transmitted to 

the disaster prevention center at the Cloud computing 

layer. Figure 2 is an example of the monitoring system 

for prevention of earth-rock-flow disaster constructed 

by FC-IoT. 

  

Figure 2. An example of the monitoring system for 

prevention of earth-rock-flow disaster constructed by 

FC-IoT 

Recently, VANET becomes increasingly popular in 

many countries. It is an important element of the 

Intelligent Transportation Systems (ITSs) [15]. 

Vehicles and roadside equipment can form a VANET 

and communicate with each other via wireless and 

multi-hop communications. When the traffic control 

system of ITS is constructed by IoT, then the 

connecting vehicles are used to get the data required by 

the ITS [8]. The VANET environment contains 

numerous challenges for communication, many of 

which can be addressed by a clustered network [10]. A 

cluster-based VANET consists of a set of loosely or 

tightly connected nodes that work together so that, in 

many respects, they can be viewed as a single system. 

For example, the nodes in a cluster at the same traffic 

intersection can detect the status of traffic is smooth, 

with lots of traffic or traffic congestion. When the 

traffic control system is constructed by FC-IoT, then 

the IoT sensors layer is used to sense the data required 

by the ITS. The Fog computing layer is used to catch 

the traffic status of each intersection of road. The 

Cloud computing layer is used to provide the services 

of traffic control. An example of the traffic control 

system constructed by FC-IoT is shown in Figure 3. 

 

Figure 3. An example of the traffic control system 

constructed by FC-IoT 

In short, the FC-IoT is proposed by Fog computing, 

where data can be analyzed and processed by devices 

in the network rather than being centralized in the 

Cloud computing. By coordinating and managing the 

computing and storage resources at the edge of the 

network, more and more connected devices and the 

emerging needs of IoT can be processed by the Fog 

computing. When the technological requirements and 

constraints of the IoT applications are properly fulfilled, 

it is up to the platform designer to decide whether an 

endpoint should be served by the Cloud, the Fog, or an 

adequate combination of the two at any given time 

during the service lifetime [24]. According to the 

above features, the Fog computing can be made as an 

appropriate platform for providing the critical services 

and applications of IoT, including connected vehicle, 

smart grid, and wireless sensor and actuator 

networks, ... and so on [24]. 
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4 The Proposed Protocol 

In this study, the agreement problem is discussed in 

an IoT platform that combining Fog computing and 

Cloud computing (FC-IoT), there is no delay of nodes 

or communication media is included in our discussion. 

Therefore, the nodes executing our new protocol 

should receive the messages from other nodes within a 

predictable time period. If the message is not received 

on time, the message must have been influenced by 

faulty components. 

In this research, FCAP is used to solve the 

agreement problem in an FC-IoT with malicious 

fallible nodes. With consideration for efficient 

agreement, the nodes of the sensors layer in IoT is used 

to detect the required data of a specific IoT application, 

the Consensus is applied to the Fog nodes of Fog 

computing layer, and the Interactive Consistency is 

applied to each Cloud node in Cloud computing layer. 

In the agreement problem, the number of faulty 

components can be allowed is determined by the total 

number of nodes. In Lamport et al.’s protocol [13], the 

constraints is n>3f where n is the number of nodes and 

f is the total number of allowable malicious faulty 

nodes in the distributed system. Therefore, the 

constraints of the FCAP are shown in follow. 

Constraint of IoT sensors layer. nRj>⎣(nFj -1)/2⎦+fmRj 

where nRj is the number of sensor nodes and fmRj is the 

total number of allowable malicious faulty sensor 

nodes in Region Rj of IoT sensor layer. This constraint 

specifies the number of sensor nodes required in 

Region Rj of IoT sensor layer. 

Constraint of Fog computing layer. nFj>⎣(nFj -

1)/3⎦+2fmFj where nFj is the number of Fog nodes and 

fmFj is the total number of allowable malicious faulty 

Fog nodes in Fog group Fj of Fog computing layer. 

This constraint specifies the number of Fog nodes 

required in Fog group Fj of Fog computing layer. 

Constraint of Cloud computing layer. nC>⎣(nC-

1)/3⎦+2fmC where nC is the number of Cloud nodes and 

fmC is the total number of allowable malicious faulty 

Cloud nodes in Cloud computing layer. This constraint 

specifies the number of Cloud nodes required in Cloud 

computing layer. 

(Constraint of IoT sensors layer) specifies the 

number of sensor nodes in IoT sensors layer required; 

due to the unit of the Region Rj of IoT sensor layer is 

sensor node, so that an agreement can be achieved if 

nRj>⎣(nFj -1)/2⎦+fmRj. (Constraint of Fog computing 

layer) specifies the number of Fog nodes in Fog group 

Fj of Fog computing layer required; due to the unit of 

the Fog group Fj of Fog computing layer is Fog node, 

so that an agreement can be achieved if nFj>⎣(nFj -

1)/3⎦+2fmFj. (Constraint of Cloud computing layer) 

specifies the number of Cloud nodes in Cloud 

computing layer required; due to the unit of the Cloud 

computing layer is Cloud node, so that an agreement 

can be achieved if nC>⎣(nC-1)/3⎦+2fmC. 

In this study, FCAP is proposed to solve the 

agreement problem with fallible nodes underlying an 

IoT platform that combining Fog computing and Cloud 

computing (FC-IoT). The proposed protocol FCAP is 

divided into three parts based on the three layers of 

FC-IoT. The nodes of IoT sensor layer execute Sensing 

and Transmission Process, the nodes of Fog 

computing layer execute Consensus Process, and the 

nodes of Cloud computing layer execute Interactive 

Consistency Process.  

In Sensing and Transmission Process, the sensor 

node senses the related information for the specific 

application service in a particular region. Then, the 

related information for the specific application service 

is transferred to the corresponding Fog group of Fog 

computing layer. In Consensus Process, the Fog node 

takes the majority value of the sensing data received 

from IoT sensors layer firstly, and the majority value is 

used as the initial value (vi) of Fog node to execute 

function Agreement. When the Consensus value of 

each Fog group is gotten, the value is represented as 

the result of a specific service in a particular region. 

Finally, the Consensus value is transferred to Cloud 

computing layer. In Interactive Consistency Process, 

the primary work of nodes in Cloud computing layer is 

to collect the results of a specific service in different 

regions, and then the request vector of the interactive 

consistency can be obtained to provide an integrated 

service such as the intelligent traffic controller or the 

monitoring system for prevention of earth-rock-flow 

disaster. The progression steps of FCAP are shown in 

Figure 4. 
 

 

Figure 4. The progression steps of FCAP 

 

FCAP is initiated by the nodes of IoT sensor layer to 

get the related information for the specific application 

service. The nodes of Fog computing layer need to 

execute Consensus Process and the nodes of Cloud 

computing layer need to execute Interactive 

Consistency Process. In the Consensus Process and 

Interactive Consistency Process, the function 

Agreement will be called.  

There are two phases of function Agreement, one is 
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the Message Exchange Phase, and the other is 

Decision Making Phase. The parameters of Agreement 

include σ, vs, and nA, where σ is the required rounds, vs 

is the initial value and nA is the number of nodes 

participating in the agreement. In order for all fault-

free nodes to reach agreement, each node must collect 

enough exchanged messages from all other nodes if 

they are fault-free. As a result, exchanging the received 

values helps fault-free nodes to collect enough 

exchanged messages. 

Fischer and Lynch proved that ⎣(n-1)/3⎦+1 is the 

necessary and sufficient rounds of message exchanges 

to solve an agreement problem, where n is the number 

of nodes in the underlying network [9]. Based on the 

works of Fischer and Lynch, ⎣(n-1)/3⎦+1 rounds of 

message exchanges are the lower bound for solving the 

agreement problem [9]. Therefore, the required rounds 

σ is ⎣(nFj–1)/3⎦+1 when Fog nodes execute the function 

Agreement of Consensus Process, where nFj is the 

number of nodes in Fog group Fj of Fog computing 

layer and nFj>3. And, the required rounds σ is ⎣(nC–

1)/3⎦+1 when Cloud nodes execute the function 

Agreement of Interactive Consistency Process, where 

nC is the number of nodes in Cloud computing layer 

and nC>3. 

The received messages of Message Exchange Phase 

are stored in a tree structure called the information-

gathering tree (ig-tree), which is similar to that 

proposed by Bar-Noy et al. [2]. Each fault-free node 

maintains such an ig-tree during the execution of 

FCAP. In the first round of Message Exchange Phase, 

node i transmits its initial value to other nodes. 

However, each receiver node could always identify the 

sender of a message is assumed. When a fault-free 

node receives the message sent from the node i, it 

stores the received value, denoted as val(i), at the root 

of its ig-tree. In the second round, each node transmits 

root value of its ig-tree to all other nodes. If node 1 

sends message val(i) to node 2, then node 2 stores the 

received message, denoted as val(i1), in vertex i1 of its 

ig-tree. Similarly, if node 2 sends message val(i1) to 

node 1, the received message is named val(i12) and 

stored in vertex i12 of node 1’s ig-tree in the third 

round. Generally, message val(i12…n), stored in the 

vertex i12…n of an ig-tree, implies that the message 

just received was sent through the node i, the node 1,…, 

the node n; and the node n is the latest nodes to pass 

the message. When a message is transmitted through a 

node more than once, the name of the node will also be 

repeated correspondingly. For instance, message 

val(11), stored in vertex 11, and indicates that the 

message is sent to node 1, then to node 1 again; 

therefore name 1 appears twice in vertex name 11. In 

summary, the root of ig-tree is always named i to 

denote that the stored message is sent from the node i 

in the first round; and the vertex of an ig-tree is labeled 

by a list of node names. The node name list contains 

the names of the nodes through which the stored 

message was transferred. Figure 5 shows an example 

of ig-tree. In the Message Exchange Phase of function 

Agreement, the vertices with repeated node names in 

each ig-tree will be deleted. Finally, all fault-free nodes 

use function VOTE to remove the faulty influence 

from faulty nodes to obtain the common value. Among 

them, the function VOTE only calculates the non-value 

“α” of all the vertices of the α-th level of the ig-tree 

(excluding the last level of the ig-tree), where 1≤α≤σ. 

Since VOTE(α) is a common value, the impact of 

faulty nodes will be removed and each fault-free node 

can reach an agreed value. When the function VOTE is 

applied to the root of each corresponding ig-tree, and 

then the common value VOTE(i) is obtained. The 

proposed protocol FCAP is presented in Figure 6. 

 

Figure 5. An example of ig-tree 

5 An Example of Executing FCAP 

Taking the traffic control system constructed by FC-

IoT as an example to execute FCAP is presented in 

Figure 7. In Sensing and Transmission Process, each 

sensor node in the IoT sensor layer senses the traffic 

status. The sensing data of each node in the Region R1 

of IoT sensor layer is shown in Figure 7(a), and nodes 

s12 and s15 are assumed in malicious fault. The sensing 

traffic statuses of the specific road intersection in 

Region R1 are transferred to Fog group F1 of Fog 

computing layer. 

In Consensus Process, each Fog node in Fog group 

F1 receives the sensing traffic statuses transferred from 

sensor nodes in the Region R1. The received traffic 

statuses are taken as the majority and the majority 

value is used as the initial value (vi) of Fog node in Fog 

group F1 when function Agreement is executed. Since 

nodes s12 and s15 are malicious faulty nodes, it is 

assumed that the traffic status they transmit is 

malicious. However, as long as the total number of 

failed nodes does not exceed half of the total number 

of nodes in Region R1, the majority value obtained is 

still the correct values. Then, the number of rounds 

required, σ = ⎣(nFj–1)/3⎦+1, is computed and 

Agreement(σ, vi, nFj) is executed. The initial value of 

each node in Fog group F1 of Fog computing layer is 

shown in Figure 7(b). 
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Figure 6. Protocol FCAP 

 

IoT Sensor Layer 

 

Figure 7. (a) The sensing data of each node in the Region R1 of IoT sensor layer 

For this example, two rounds (σ=⎣(nF1–1)/3⎦+1 

=⎣(5–1)/3⎦+1=2, where nF1 is the number of nodes in 

Fog group F1) are required to exchange the messages 

when Agreement is executed. In this example, there are 

five nodes in Fog group F1 and Fog node f15 is assumed 

in malicious fault. Figure 7(b) is the initial value of 

each node in Fog group F1. During the first round of 

Message Exchange Phase, each node of Fog group F1 

parallel transmits the initial value to all nodes of Fog 

group F1 and stores the received nF1 (=5) values in the 
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corresponding root of each ig-tree, as shown in Figure 

7(c). In the second round, each node parallel transmits 

the values in the root of the corresponding ig-tree to 

other nodes in Fog group F1 and stores the received 

values in level 1 of the nF1 (=5) corresponding ig-trees. 

The progression of nodes f11 and f13 during Message 

Exchange Phase is shown in Figsure 7(d) and 7(f). 

Subsequently, in the Decision Making Phase, the ig-

tree is reorganized by deleting those vertices with 

repeated node names. The corresponding ig-tree of 

nodes f11 and f13 is shown in Figure 7(e) and 7(g). Then, 

function VOTE is applied on the ig-tree root of each 

node to take the majority value. The majority value of 

the agreement vector is taken, and the Consensus value 

is obtained. The Consensus value of nodes f11 and f13 is 

obtained and shown in Figure 7(h). The Consensus 

value of each Fog group in the Fog computing layer 

represents the traffic state of each region. Finally, the 

Consensus value is transferred to the Cloud computing 

layer. 

 

Fog Computing Layer 

Majority(1,0,1,1,0)=1 

 

Execute Agreement(σ, vi, nFj)=(2,1,5) 

Figure 7. (b) The initial value of each node in Fog 

group F1 of Fog computing layer 

 

Figure 7. (c) The ig-tree of each node in Fog group F1 

of Fog computing layer at the first round of Message 

Exchange Phase 

 

Figure 7. (d) The final ig-tree of f11 after the Message 

Exchange Phase 

Figure 7. (e) The ig-tree of f11 by Decision 

Making Phase 
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Figure 7. (f) The final mg-tree of f13 after the Message 

Exchange Phase 

Figure 7. (g) The ig-tree of f13 by Decision 

Making Phase 

 
VOTE(1)= majority(val(12),val(13),val(14),val(15))=majority(1, 1, 1, 1)=1 

VOTE(2)= majority(val(21),val(23),val(24),val(25))=majority(1, 1, 1, 0)=1 

VOTE(3)= majority(val(31),val(32),val(34),val(35))=majority(1, 1, 1, 0)=1 

VOTE(4)= majority(val(41),val(42),val(43),val(45))=majority(1, 1, 1, 0)=1 

VOTE(5)= majority(val(51),val(52),val(53),val(54))=majority(1, 0, 0, 0)=0 

Consensus value of f11 =(1,1,1,1,0)=1 

VOTE(1)= majority(val(12),val(13),val(14),val(15))=majority(1, 1, 1, 0)=1 

VOTE(2)= majority(val(21),val(23),val(24),val(25))=majority(1, 1, 1, 1)=1 

VOTE(3)= majority(val(31),val(32),val(34),val(35))=majority(1, 1, 1, 1)=1 

VOTE(4)= majority(val(41),val(42),val(43),val(45))=majority(1, 1, 1, 1)=1 

VOTE(5)= majority(val(51),val(52),val(53),val(54))=majority(1, 0, 0, 0)=0 

Consensus value of f13 =(1,1,1,1,0)=1 

Figure 7. (h) The common value VOTE(i) by in Decision Making Phase of Fog computing layer 

In the Interactive Consistency Process, the Cloud 

node in the Cloud computing layer receives the 

Consensus value sent from Fog nodes in the Fog group 

of Fog computing layer. The received Consensus 

values are taken as the majority. In addition, the 

majority value is used as the initial value of Cloud 

node when function Agreement is executed. The initial 

value of each node in Cloud computing layer is shown 

in Figure 7(i). 

For this example, two rounds (σ= ⎣(nC–1)/3⎦+1+1 

=⎣(5–1)/3⎦+1=2, where nC is the number of nodes in 

Cloud computing layer) are required to execute 

Agreement. In this example, there are five nodes in 

Cloud computing layer and Cloud node c3 is assumed 

in malicious fault. Figure 7(i) is the initial value of 

each node in Cloud computing layer. During the first 

round of Message Exchange Phase, each node of 

Cloud computing layer parallel transmits the initial 

value to all nodes of Cloud computing layer and stores 

the received nC (=5) values in the corresponding root of 

each ig-tree, as shown in Figure 7(j). In the second 

round, each node parallel transmits the values in the 

root of the corresponding ig-tree to other nodes in 

Cloud computing layer and stores the received values 

in level 1 of the nC (=5) corresponding ig-trees. The 

progression of nodes c1 and c4 during Message 

Exchange Phase is shown in Figs. 7(k) and 7(m). 

Subsequently, in the Decision Making Phase, the ig-

tree is reorganized and the corresponding ig-tree of 

nodes c1 and c4 is shown in Figs. 7(l) and 7(n). Then, 

function VOTE is applied on the ig-tree root of each 

node to take the majority value. 
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Cloud Computing Layer 

 

Majority(1,1,1,1, 0)=1 

 

Execute Agreement(σ, vj, nC)=(2,1,5) 

Figure 7. (i) The initial value of each node in Cloud 

computing layer 

 

Figure 7. (j) The ig-tree of each node in Cloud 

computing layer at the first round of Message 

Exchange Phase 

 

 

Figure 7. (k) The final ig-tree of c1 after the Message 

Exchange Phase 

Figure 7. (l) The ig-tree of c1 by Decision Making 

Phase 

 

  

Figure 7. (m) The final mg-tree of c4 after the 

Message Exchange Phase 

Figure 7. (n) The ig-tree of c4 by Decision 

Making Phase 
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The majority value obtained through function 

Agreement is mapped to a traffic status at the specific 

traffic intersection. The IC value is a vector, and each 

element in the vector is the majority value obtained 

through Agreement function. Each element is used to 

present the traffic status of a specific traffic 

intersection. The IC value of nodes c1 and c4 is shown 

in Figure 7(o). Eventually, the agreement is reached in 

FC-IoT. Finally, the service of traffic control system 

can be supported by each Cloud node in Cloud 

computing layer. 

 

VOTE(1)= majority(val(12),val(13),val(14),val(15))=majority(1, 0, 1, 1)=1 

VOTE(2)= majority(val(21),val(23),val(24),val(25))=majority(1, 1, 1, 1)=1 

VOTE(3)= majority(val(31),val(32),val(34),val(35))=majority(0, 1, 0, 0)=0 

VOTE(4)= majority(val(41),val(42),val(43),val(45))=majority(1, 1, 0, 1)=1 

VOTE(5)= majority(val(51),val(52),val(53),val(54))=majority(1, 1, 1, 1)=1 

ICc1=(1,1,0,1, 1) 

VOTE(1)= majority(val(12),val(13),val(14),val(15))=majority(1, 0, 1, 1)=1 

VOTE(2)= majority(val(21),val(23),val(24),val(25))=majority(1, 0, 1, 1)=1 

VOTE(3)= majority(val(31),val(32),val(34),val(35))=majority(0, 1, 0, 0)=0 

VOTE(4)= majority(val(41),val(42),val(43),val(45))=majority(1, 1, 0, 1)=` 

VOTE(5)= majority(val(51),val(52),val(53),val(54))=majority(1, 1, 1, 1)=` 

ICc4=(1,1,0,1,1) 

Figure 7. (o) The common value VOTE(i) in Decision Making g Phase of Cloud computing layer 

Figure 7. The example of executing the FCAP 

6 The Complexity of FCAP 

The following theorems are used to prove the 

complexity of FCAP. The complexity of FCAP is 

evaluated in terms of (1) the minimal number of rounds 

of message exchanges, and (2) the maximum number 

of allowable faulty nodes. Theorems 1 and 2 below 

will show that the optimal solution is reached. 

Theorem 1. The number of required rounds of 

message exchanges by FCAP is the minimum. 

Proof. The total number of required rounds of message 

exchanges by FCAP can be discussed by three layer of 

FC-IoT. 

(1) IoT sensor layer. In IoT sensor layer, each 

sensor passes the received sensing data to Fog 

computing layer. Therefore, only one round of message 

exchange is needed. 

(2) Fog computing layer. Because message passing 

is required only in the Message Exchange Phase, the 

Message Exchange Phase is time consuming. Dolev 

and Reischuk pointed out that ⎣(n–1)/3⎦+1 rounds are 

the minimum number of rounds to send sufficient 

messages to achieve agreement in an n-node fallible 

distributed system [7]. However, in the fallible Fog 

computing layer, the nodes maybe in malicious fault. 

In addition, each node in the fallible Fog computing 

layer must exchange messages with other nodes. 

Therefore, a constraint on the minimum number of 

rounds can be applied to the study. In other words, in 

Fog computing layer, there are nFj nodes in Fog group 

Fj of Fog computing layer, FCAP needs ⎣(nFj–1)/3⎦+1 

rounds to exchange messages. In an F-groups Fog 

computing layer, the nodes in each Fog group execute 

FCAP parallel, where F is the total number of groups 

in the Fog computing layer of FC-IoT. Therefore, the 

required rounds of executing FCAP by each node in all 

Fog groups are depended on the number of nodes in 

Fog group.  

(3) Cloud computing layer. As in the discussion of 

the number of message exchanges required in the Fog 

computing layer. In the Cloud computing layer, the 

research of Dolev and Reischuk can still be applied [7]. 

In Cloud computing layer, there are nC nodes in Cloud 

computing layer, FCAP needs ⎣(nC–1)/3⎦+1 rounds to 

exchange messages.  

In short, number of required rounds of message 

exchanges by FCAP in FC-IoT is the minimum. 

Theorem 2. The number of allowable faulty nodes by 

FCAP is the maximum. 

Proof. The total number of allowable faulty nodes by 

FCAP can be discussed by three layer of FC-IoT. 

(1) IoT sensor layer. Since the number of faulty 

nodes in each Region of IoT sensor layer does not 

exceed half, and the majority value of the Region can 

be determined. Therefore, TFS be the total number of 

allowable faulty nodes in IoT sensor layer. 

TFS=∑
1=

R

j mRjf  where R is the total number of Regions in 

IoT sensor layer and fmRj is the total number of 

allowable malicious faulty sensor nodes in Region Rj. 

In addition, fmRj ≤ ⎣(nRj-1)/2⎦ where nRj is the number of 

sensor nodes in Region Rj. 

(2) Fog computing layer. Fischer and Lynch 

indicate the lower bound for agreement problem for 

node faults as f ≤ ⎣(n-1)/3⎦, where f is the total number 

of allowable malicious faulty nodes and n is the total 

number of nodes in a distributed computing system [9]. 

However, the fault status of our assumption is also that 

nodes are faulty. Therefore, f ≤ ⎣(n-1)/3⎦ in the study of 

Fischer and Lynch [9] can be applied to fmFj ≤ ⎣(nFj -
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1)/3⎦ in the Fog computing layer, where fmFj is the total 

number of allowable malicious faulty Fog nodes in Fog 

group Fj and nFj is the number of Fog nodes in Fog 

group Fj. Then, TFF= ∑F
j mFjf
1=

where F is the total 

number of Fog groups in the Fog computing layer of 

FC-IoT, and TFF is the total number of allowable faulty 

nodes in Fog computing layer.  

(3) Cloud computing layer. The research result of 

Fischer and Lynch [9] also can be applied to Cloud 

computing layer. Therefore, fmC is the total number of 

allowable faulty nodes in Cloud computing layer, and 

fmC ≤ ⎣(nC-1)/3⎦ where nC is the number of Cloud nodes. 

In short, the maximum number of allowable faulty 

components by FCAP is T=TFS+TFF+fmC = ∑
1=

R

j mRjf + 

∑F
j mFjf
1=

+ ⎣(nC-1)/3⎦. And, T is the maximum number 

of allowable faulty nodes in FC-IoT. 

As a result, FCAP takes the minimum number of 

rounds and tolerates the maximum number of faulty 

components to make fault-free nodes reach a common 

consistency. The optimality of the protocol is proven. 

7 Conclusions 

The IoT could enable innovations that enhance the 

quality of life, but it generates unprecedented amounts 

of data that are difficult for traditional systems, the 

cloud, and even edge computing to handle. Fog 

computing is designed to overcome these limitations 

[6]. Fog computing extends the Cloud Computing 

paradigm to the edge of the network, thus enabling a 

new breed of applications and services [3].  

While Fog nodes provide localization, therefore 

enabling low latency and context awareness, the Cloud 

provides global centralization. Many applications 

require both Fog localization, and Cloud globalization, 

particularly for analytics and Big Data. In this study, a 

high flexible and reliable IoT platform is proposed that 

combining Fog computing and Cloud computing (FC-

IoT). By using FC-IoT, the monitoring system for 

prevention of earth-rock-flow disaster and the traffic 

control system can be constructed.  

The agreement problem is fundamental in a 

distributed system, and has been extensively studied. 

Network topology is an important issue related to 

consistency. However, FC-IoT is a new concept for 

distributed systems. It has greatly encouraged 

distributed system design and practice to support user-

oriented services. In this paper, the FCAP protocol is 

proposed to make all fault-free nodes reach agreement. 

This protocol can use a minimal number of rounds of 

message exchanges and tolerate a maximal number of 

allowable faulty components in a malicious fallible 

FC-IoT. 

Merely considering component faults in the 

agreement problem is insufficient for the highly 

reliable distributed system of an IoT environment. A 

related closely problem is called the Fault Diagnosis 

Agreement (FDA) problem [5]. The objective of 

solving the FDA problem is to make each fault-free 

node detect or locate the common set of faulty 

components in the distributed system. Therefore, 

solving the FDA problem for the highly reliable 

distributed system underlying topology of FC-IoT is 

included in our future works. 

Acknowledgments 

This work was supported in part by the Ministry of 

Science and Technology MOST 107-2221-E-324-005- 

MY3. 

References 

[1] O. Babaoglu, D. Rogério, Streets of Byzantium: Network 

Architectures for Fast Reliable Broadcasts, IEEE 

Transactions on Software Engineering, Vol. 9, pp. 546-554, 

June, 1985. 

[2] A. Bar-Noy, D. Dolev, C. Dwork, H. R. Strong, Shifting 

Gears: Changing Algorithms on the Fly to Expedite 

Byzantine Agreement, Information and Computation, Vol. 97, 

No. 2, pp. 205-233, April, 1992. 

[3] F. Bonomi, R. Milito, J. Zhu, S. Addepalli, Fog Computing 

and its Role in the Internet of Things, The first edition of the 

MCC Workshop on Mobile Cloud Computing, Helsinki, 

Finland, 2012, pp. 13-16. 

[4] A. Botta, W. De Donato, V. Persico, A. Pescapé, On the 

Integration of Cloud Computing and Internet of Things, The 

2014 International Conference on Future Internet of Things 

and Cloud, Barcelona, Spain, 2014, pp. 23-30. 

[5] O. Bousbiba, E. Klaus, A Fast Byzantine Fault-Tolerant 

Diagnostic Agreement Protocol for Synchronous Distributed 

Systems, The 29th International Conference on Architecture 

of Computing Systems, Nuremberg, Germany, 2016, pp. 1-11. 

[6] A. V. Dastjerdi, R. Buyya, Fog Computing: Helping the 

Internet of Things Realize Its Potential, Computer, Vol. 49, 

No. 8, pp. 112-116, August, 2016. 

[7] D. Dolev, R. Reischuk, Bounds on Information Exchange for 

Byzantine Agreement, Journal of the ACM, Vol. 32, No. 1, 

pp. 191-204, January, 1985. 

[8] M. Ficco, C. Esposito, Y. Xiang, F. Palmieri, Pseudo-

Dynamic Testing of Realistic Edge-Fog Cloud Ecosystems, 

IEEE Communications Magazine, Vol. 55, No. 11, pp. 98-

104, November, 2017. 

[9] M. J. Fischer, N. A. Lynch, A Lower Bound for The Assure 

Interactive Consistency, Information Processing Letters, Vol. 

14, No. 4, pp. 183-186, June, 1982. 

[10] Y. L. Hsieh, K. Wang, Dynamic Overlay Multicast for Live 

Multimedia Streaming in Urban VANETs, Computer 

Networks, Vol. 56, No. 16, pp. 3609-3628, November, 2012. 

[11] J. Jin, J. Gubbi, S. Marusic, M. Palaniswami, An Information 

Framework for Creating a Smart City Through Internet of 

Things, IEEE Internet of Things Journal, Vol. 1, No. 2, pp. 



Optimal Agreement Achievement in a Fog Computing Based IoT 1779 

 

112-121, April, 2014. 

[12] P. Kumar, S. K. Gupta, Abstract Model of Fault Tolerance 

Algorithm in Cloud Computing Communication Networks, 

International Journal on Computer Science and Engineering, 

Vol. 3, No. 9, pp. 3283-3290, September, 2011. 

[13] L. Lamport, R. Shostak, M. Pease, The Byzantine General 

Problem, ACM Transactions on Programming Languages 

and Systems, Vol. 4, Issue 3, pp. 382-401, July, 1982. 

[14] V. Mauch, M. Kunze, M. Hillenbrand, High Performance 

Cloud Computing, Future Generation Computer Systems, Vol. 

29, No. 6, pp. 1408-1416, August, 2012. 

[15] R. Merzouki, A. K. Samantaray, P. M. Pathak, B. O. 

Bouamama, Intelligent Mechatronic Systems: Modeling, 

Control and Diagnosis, Springer, London, 2013. 

[16] F. J. Meyer, D. K. Pradhan, Consensus with Dual Failure 

Modes, IEEE Transactions on Parallel and Distributed 

Systems, Vol. 2, No. 2, pp. 214-222, April, 1991. 

[17] Y. Mo, L. Xing, W. Guo, S. Cai, Z. Zhang, J. H. Jiang, 

Reliability Analysis of IoT Networks with Community 

Structures, IEEE Transactions on Network Science and 

Engineering, 2018, DOI: 10.1109/TNSE.2018.2869167. 

[18] D. Puthal, B. P .S. Sahoo, S. Mishra, S. Swain, Cloud 

Computing Features, Issues, and Challenges: A Big Picture, 

2015 International Conference on Computational Intelligence 

and Networks, Bhubaneshwar, 2015, pp. 116-123. 

[19] H. S. Siu, Y.H. Chin, W.P. Yang, A Note on Consensus on 

Dual Failure Modes, IEEE Transactions on Parallel and 

Distributed Systems, Vol. 7, No. 3, pp. 225-230, March, 1996. 

[20] S. C. Wang, S. S. Wang, K. Q. Yan, Reaching Optimal 

Interactive Consistency in a Fallible Cloud Computing 

Environment, Journal of Information Science and 

Engineering, Vol. 34, No. 1, pp. 205-223, January, 2018. 

[21] S. C. Wang, K. Q. Yan, C. F. Cheng, Efficient Multicasting 

Agreement Protocol, Computer Standards & Interfaces, Vol. 

26, No. 2, pp. 93-111, March, 2004. 

[22] A. Whitmore, A. Anurag, D. X. Li, The Internet of Things-A 

Survey of Topics and Trends, Information Systems Frontiers, 

Vol. 17, No. 2, pp. 261-274, March, 2015.  

[23] K. Q. Yan, S. C. Wang, C. S. Peng, S. S. Wang, Optimal 

Malicious Agreement Protocol for Cluster-based Wireless 

Sensor Networks, ScienceAsia, Vol. 40S, No. 1, pp. 8-15, 

February, 2014. 

[24] M. Yannuzzi, R. Milito, R. Serral-Gracià, D. Montero, M. 

Nemirovsky, Key Ingredients in an IoT Recipe: Fog 

Computing, Cloud Computing, and More Fog Computing, 

2014 IEEE 19th International Workshop on Computer Aided 

Modeling and Design of Communication Links and Network, 

Athens, Greece, 2014, pp. 325-329. 

 

 

 

 

 

 

 

 

Biographies 

Shu-Ching Wang is a Professor at 

the Department of Information 

Management, Chaoyang University of 

Technology, Taiwan. Her current 

research interests include distributed 

data processing and reliability. 

 

 

Wei-Shu Hsiung is a Ph.D. student of 

the Department of Information 

Management, Chaoyang University of 

Technology, Taiwan. His current 

research interests include distributed 

processing and fault tolerant. 

 

 

Kuo-Qin Yan is a Professor at the 

Department of Business Administration, 

Chaoyang University of Technology, 

Taiwan. His current research interests 

include distributed fault tolerant 

computing and mobile computing. 

 

 

Yao-Te Tsai is an assistant professor 

in the Department of International 

Business, Feng Chia University. His 

interests include internet of things and 

data analytics. 
 

 



1780 Journal of Internet Technology Volume 20 (2019) No.6 

 

 



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (Adobe RGB \0501998\051)
  /CalCMYKProfile (Japan Color 2001 Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness false
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHT <FEFF005b683964da300c9ad86a94002851fa8840002b89d27dda0029300d005d0020005b683964da300c8f3851fa0033003000300064002851fa88400029300d005d00204f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks true
      /AddPageInfo false
      /AddRegMarks false
      /BleedOffset [
        8.503940
        8.503940
        8.503940
        8.503940
      ]
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles true
      /MarksOffset 9.354330
      /MarksWeight 0.141730
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /LeaveUntagged
      /UseDocumentBleed true
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


