
Optimal Agreement Achievement in a Fog Computing Based IoT 1767

Optimal Agreement Achievement in a Fog Computing Based IoT

Shu-Ching Wang1, Wei-Shu Hsiung 1, Kuo-Qin Yan2, Yao-Te Tsai3,

1 Department of Information Management, Chaoyang University of Technology, Taiwan
2 Department of Business Administration, Chaoyang University of Technology, Taiwan

3 Department of International Business, Feng Chia University, Taiwan

{scwang, s10714902, kqyan}@cyut.edu.tw, yaottsai@fcu.edu.tw*

*Corresponding Author: Yao-Te Tsai; E-mail: yaottsai@fcu.edu.tw

DOI: 10.3966/160792642019102006008

Abstract

Since Fog computing is proposed to enable computing

directly at the edge of the network, which can deliver new

applications and services especially for the Internet of

Things (IoT). In order to provide a high flexible and

reliable platform of IoT, an IoT platform that combining

Fog computing and Cloud computing is proposed in this

study. In an IoT platform, the fault-tolerance is an

important research topic. To cope with the influence from

faulty components, reaching a common agreement at the

presence of faults before performing some special tasks is

essential. However, the previous protocols for the

agreement problem of distributed computing are not

enough for the IoT platform that combining Fog

computing and Cloud computing. In this study, the

agreement problem is revisited. The new proposed

protocol can make all fault-free nodes reach agreement

with minimal rounds of message exchanges and tolerate

the maximal number of allowable faulty components in

the IoT platform that combining Fog computing and

Cloud computing.

Keywords: Internet of Things, Fog computing, Cloud

computing, Interactive consistency problem,

Consensus problem

1 Introduction

The Internet of Things (IoT) paradigm is based on

intelligent and self-configuring nodes (things)

interconnected in a dynamic and global network

infrastructure. The IoT can make many applications,

including consumer electronic devices, home

appliances, medical devices, cameras, and all types of

sensors. This innovation facilitates new interactions

among things and humans, and enables the realization

of smart cities, infrastructures, and services that

enhance the quality of life. It represents the

technologies, enabling ubiquitous and pervasive

computing scenarios. IoT is generally characterized by

real world and small things with limited storage and

processing capacity. It is hard to avoid the

circumstances of faulty behavior occurred in real world.

Sometime, to make all fault-free nodes have a common

value is very important. For instance, the initial time

and the time stamps should be the same for all fault-

free nodes in the system, otherwise, the distributed

system may not be worked well. To reach an

agreement is a part of reliability issue. To ensure that

an IoT environment is reliable, a mechanism is

provided in this study to make all fault free nodes

reach an agreement and free from the influence of

faulty nodes. Since, Cloud computing has virtually

unlimited capabilities in terms of storage and

processing power, hence has most of the IoT issues at

least partially solved. Therefore, the IoT paradigm that

combines the two technologies of cloud and Internet

can provide current and future Internet [4].

Cloud computing is a great option, because the IoT

demand significant compute and storage resources.

Unfortunately, the requirements and design space of

IoT make Cloud computing unfeasible in numerous

scenarios, especially, when the goal is to build a

general and multipurpose platform that can serve a

wide variety of IoT applications [6]. According to the

research by Yannuzzi et al., the main requirements for

designing and building a scalable IoT platform include:

(1) A platform for IoT must support rapid mobility

patterns, even requiring in some cases high throughput

on demand for short time periods. (2) A platform for

IoT must support systems requiring reliable sensing,

analysis, control and actuation, in scenarios subject to

poor or unreliable connectivity to the Cloud and/or

requiring very low latency. (3) A platform for IoT must

be able to manage a large amount of geographically

distributed “things” (either physical or virtual), which

may produce data that require different levels of real

time analytics and data aggregation [24]. Therefore, the

recipe for building scalable IoT platforms is the

following: (a) add Fog computing; (b) add Cloud

computing and smartly combine it with the Fog, and (c)

whenever the platform needs to scale either to cover

more “things”, just add more Fog nodes [24].

The emerging wave of Internet deployment,

especially the IoT needs mobility support and

geographical distribution, as well as location awareness

and low latency. Bonomi et al. argue that Fog

1768 Journal of Internet Technology Volume 20 (2019) No.6

computing can meet these requirements [3]. Fog

computing enables a new breed of applications and

services, and that there is a fruitful interplay between

the Cloud and the Fog, particularly when it comes to

data management and analytics.

Fog computing is a distributed paradigm that

provides Cloud-like services to the network edge. It

leverages Cloud and edge resources along with its own

infrastructure. In essence, the technology deals with

IoT data locally by utilizing clients or edge devices

near users to carry out a substantial amount of storage,

communication, control, configuration, and management.

The approach benefits from edge devices’ close

proximity to sensors, while leveraging the ondemand

scalability of Cloud resources [6].

As network bandwidth and quality outstrip computer

performance, various communication and computing

technologies previously regarded as being of different

domains can now be integrated, such as

telecommunication, multimedia, information technology,

and construction simulation [18]. Thus, applications

associated with network integration have gradually

attracted considerable attention. Similarly, IoT

facilitated through distributed application over

networks has also gained more recognition [12].

As the IoT has greatly encouraged distributed

systems design and practiced to support user-oriented

service applications [18]. However, distributed systems

have grown rapidly in both size and number. In a

distributed computing system, nodes allocated to

different places or in separate units are connected

together so that they collectively may be used to

greater advantage. However, the network infrastructure

and connectivity in IoT applications are becoming

increasingly complex and heterogeneous, opening up

many challenges including reliability [17]. In many

cases, reaching a common agreement in the presence of

faulty components is the central issue of fault-tolerant

distributed computing, because many applications

require such agreement [12]. For instance, the initial

time and the time stamps should be the same or agree

on for all nodes in the system, otherwise, the

distributed system may not be worked well.

Furthermore, many applications of IoT provide the

convenience of users. For users, the system must

provide better reliability and fluency [18]. Therefore,

reliability is one of the most important aspects of IoT.

To ensure that an IoT environment is reliable, a

mechanism to allow a set of nodes to reach an agreed

value is necessary.

In order to provide a high flexible and reliable

platform of IoT, an IoT platform that combining Fog

computing and Cloud computing (FC-IoT) will be

proposed in this study. In the FC-IoT, numerous nodes

are interconnected. Achieving agreement on a same

value in the FC-IoT even if certain components fail,

the protocols are required so that systems can still

operate correctly.

Up to now, there have none related studies involving

agreement issue in the FC-IoT. It is the first time a

protocol is proposed to reach agreement underlying

FC-IoT. In this study, the agreement is revisited with

the assumption of nodes failure due to malicious faults

in FC-IoT. The proposed protocol, FC Agreement

Protocol (FCAP) of FC-IoT, can make all fault-free

nodes reach agreement with minimal rounds of

message exchanges, and tolerate the maximal number

of allowable faulty components.

The rest of this paper is organized as follows.

Section 2 will serve to introduce the related works. The

IoT platform that combining Fog computing and Cloud

computing (FC-IoT) is proposed in Section 3. Then,

the proposed FC Agreement Protocol (FCAP) of FC-

IoT will be brought up and illustrated in detail in

Section 4. In Section 5, an example of executing the

proposed protocol is given. Section 6 is responsible for

proving the complexity of our new protocol. Finally,

Section 7 gives conclusions of this research.

2 The Literature Review

Before the agreement problem can be solved, the

related works must be discussed first. They are the

agreement problems and the failure types of faulty

components.

2.1 The Agreement Problems

In an IoT environment, a mechanism to allow a

given set of nodes to agree on a common value is

necessary for reliable smart city [11, 22]. Such a

unanimity problem was called Byzantine Agreement

(BA) [13]. It requires a number of independent nodes

to reach agreement in cases where some of those nodes

might be faulty. Namely, the goal of BA is making the

fault-free nodes reach a common value.

The BA problem first studied by Lamport et al. is a

well-known paradigm for the problem of achieving

reliability in a distributed network of nodes. The

definitions of the BA problem are [13]:

(1) There are n nodes (n≥4), of which at most one-

third of the total number of nodes could fail without

breaking down a workable network.

(2) The nodes communicate with each other through

message exchange in a fully connected network.

(3) The message’s sender is always identifiable by

the receiver.

(4) A node is chosen as a source, and its initial value

vs is transmitted to other nodes for executing the

protocol.

(5) The faulty component considered is node only.

Agreement is reached if all fault-free nodes agree on

a common value. Based on these assumptions, various

protocols for the BA problem have been developed in

order to meet the following requirements [13]:

Agreement. All fault-free nodes agree on a common

value v.

Optimal Agreement Achievement in a Fog Computing Based IoT 1769

Validity. If the initial value of the source is vs and the

source is fault-free, then all fault-free nodes shall agree

on the value vs; i.e., v = vs.

The consensus problem [16] is extended from BA

problem. The solutions of consensus problem are

defined as protocols, which achieve a consensus and

hope to use the minimum number of rounds of message

exchanges to achieve the maximum number of

allowable faulty capability. In this study, the solution

of consensus problem is concerned in the Fog

computing layer of FC-IoT. The definition of the

problem is to make the fault-free nodes in the Fog

computing layer of FC-IoT to reach consensus. Each

Fog node of Fog computing layer chooses an initial

value to start with, and communicates to each other by

exchanging messages. The Fog nodes are referred to

make a consensus if it satisfies the following

conditions [16]:

Consensus. All fault-free Fog nodes agree on a

common value.

Validity. If the initial value of each fault-free Fog node

ni is vi then all fault-free Fog nodes shall agree on the

value vi.

A closely related sub-problem, the interactive

consistency problem (IC problem) has been studied

extensively [9]. In this study, the solution of IC

problem is concerned in the Cloud computing layer of

FC-IoT. The definition of IC problem is to make the

fault-free Cloud nodes in the Cloud computing layer

reach interactive consistency. Each Cloud node

chooses an initial value and communications with the

others by exchanging messages. There is interactive

consistency in that each Cloud node i has its initial

value vi and agrees on a set of common values.

Therefore, interactive consistency has been achieved if

the following conditions are met [9]:

Consistency. Each fault-free Cloud node agrees on a

common vector V = [v1, v2, …, vn].

Validity. If the initial value of fault-free Cloud node i

is vi, then the i-th value in the common vector V should

be vi.

In previous studies, the BA algorithms were

designed in traditional network topology [1, 9, 13, 19-

21, 23]. Those works reach BA underlying different

topologies respectively, including Broadcasting

Network (BCN), Fully Connected Network (FCN),

Multicasting Network (MCN), Wireless Sensor

Network (WSN), and Cloud Computing environment

(CC). All those previous protocols are not suitable for

FC-IoT due to the difference of the network topology.

The IoT environment is an Internet-based development.

It is a style of computing in which dynamically

scalable and often virtualized resources are provided as

a service over the Internet. Nevertheless, in an IoT

environment, the connected topology is not very

significant. In this study, the consensus problem is to

be solved on the Fog computing layer and IC problem

is to be solved on the Cloud computing layer of the

proposed IoT platform that combining Fog computing

and Cloud computing. And, the proposed protocol, is

named FC Agreement Protocol (in short FCAP) that

can use a minimum number of message exchanges and

can tolerate a maximum number of allowable faulty

components to make each fault-free node reach a

common agreement in the cases of node failure.

2.2 Failure Types

In a distributed system, the network components

may not always work well. A node is said to be fault-

free if it follows protocol specifications during the

execution of a protocol; otherwise, the node is said to

be faulty. The symptoms of node failure can be

classified into two categories. There are dormant fault

and malicious fault (also called as the Byzantine fault)

[13]. The dormant faults of nodes include crashes and

omission. A crash fault happens when a node is broken.

An omission fault takes place when a node fails to

transmit or receive a message on time or at all. On a

malicious fault, the behavior of a faulty node is

unpredictable and arbitrary. The message transmitted

by a malicious faulty node is random or arbitrary. It is

the most damaging failure type and causes the worst

problem. That is, if the agreement problem can be

solved in a malicious fault case, then the agreement

problem can also be solved in other failure mode.

Therefore, in this study, malicious faults are

investigated, and the means by which fault-free nodes

may reach agreement in the FC-IoT platform are

explored. In addition, Bousbiba and Klaus also indicate

that BA in an asynchronous network is impossible

even if only one crash faulty node [3]. Hence, the

assumption of underlying FC-IoT is synchronous.

3 The Network Structure

With the advancement and development of various

technologies, computing problems become more

complicated and larger [18]. A Cloud computing

environment allows a user faster operation of Internet

applications. The majority of Cloud computing

infrastructure consists of reliable services delivered

through data centers and built on servers with different

levels of virtualization technologies [14]. The services

are accessible anywhere that has access to networking

infrastructure. Commercial offerings must meet the

quality of service requirements of customers, and

typically offer service-level agreements [18]. Therefore,

a distributed system must be having high stability to

handle instances where many users utilize a given

environment. In this section, the proposed IoT platform

is discussed.

In order to provide a high flexible and reliable

platform of IoT, an IoT platform that combining Fog

computing and Cloud computing (FC-IoT) is proposed

in this study. The topology of FC-IoT is shown in

1770 Journal of Internet Technology Volume 20 (2019) No.6

Figure 1. There are three layers in the FC-IoT: IoT

sensors layer, Fog computing layer and Cloud

computing layer. The IoT sensors layer is consisted by

sensor nodes, which is responsible for sensing the data

required by the IoT application. The Fog computing

layer is constructed by Fog groups; each Fog group is

composed of a large number of Fog nodes, responsible

for the processing of specific information and

judgments. The Cloud computing layer is made up of

many Cloud nodes, which provide Cloud users'

services.

Figure 1. The topology of FC-IoT

In the IoT environment, through the combination of

a large number of sensors, various types of sensing

data in real life can be collected. These huge sensing

data from all over are used, and then a wide range of

application services can be provided. For example, FC-

IoT proposed in this study can be used in the

monitoring system for prevention of earth-rock-flow

disaster. At FC-IoT, the sensed data of the sensors in

different regions are sent to the corresponding Fog

groups in the Fog computing layer, and the data are

processed by the Fog nodes in the specific Fog group.

The related monitoring information of different regions

is collected by each Fog group, and then the collected

information is analyzed and judged in each Fog group.

Finally, the status of different regions is transmitted to

the disaster prevention center at the Cloud computing

layer. Figure 2 is an example of the monitoring system

for prevention of earth-rock-flow disaster constructed

by FC-IoT.

Figure 2. An example of the monitoring system for

prevention of earth-rock-flow disaster constructed by

FC-IoT

Recently, VANET becomes increasingly popular in

many countries. It is an important element of the

Intelligent Transportation Systems (ITSs) [15].

Vehicles and roadside equipment can form a VANET

and communicate with each other via wireless and

multi-hop communications. When the traffic control

system of ITS is constructed by IoT, then the

connecting vehicles are used to get the data required by

the ITS [8]. The VANET environment contains

numerous challenges for communication, many of

which can be addressed by a clustered network [10]. A

cluster-based VANET consists of a set of loosely or

tightly connected nodes that work together so that, in

many respects, they can be viewed as a single system.

For example, the nodes in a cluster at the same traffic

intersection can detect the status of traffic is smooth,

with lots of traffic or traffic congestion. When the

traffic control system is constructed by FC-IoT, then

the IoT sensors layer is used to sense the data required

by the ITS. The Fog computing layer is used to catch

the traffic status of each intersection of road. The

Cloud computing layer is used to provide the services

of traffic control. An example of the traffic control

system constructed by FC-IoT is shown in Figure 3.

Figure 3. An example of the traffic control system

constructed by FC-IoT

In short, the FC-IoT is proposed by Fog computing,

where data can be analyzed and processed by devices

in the network rather than being centralized in the

Cloud computing. By coordinating and managing the

computing and storage resources at the edge of the

network, more and more connected devices and the

emerging needs of IoT can be processed by the Fog

computing. When the technological requirements and

constraints of the IoT applications are properly fulfilled,

it is up to the platform designer to decide whether an

endpoint should be served by the Cloud, the Fog, or an

adequate combination of the two at any given time

during the service lifetime [24]. According to the

above features, the Fog computing can be made as an

appropriate platform for providing the critical services

and applications of IoT, including connected vehicle,

smart grid, and wireless sensor and actuator

networks, ... and so on [24].

Optimal Agreement Achievement in a Fog Computing Based IoT 1771

4 The Proposed Protocol

In this study, the agreement problem is discussed in

an IoT platform that combining Fog computing and

Cloud computing (FC-IoT), there is no delay of nodes

or communication media is included in our discussion.

Therefore, the nodes executing our new protocol

should receive the messages from other nodes within a

predictable time period. If the message is not received

on time, the message must have been influenced by

faulty components.

In this research, FCAP is used to solve the

agreement problem in an FC-IoT with malicious

fallible nodes. With consideration for efficient

agreement, the nodes of the sensors layer in IoT is used

to detect the required data of a specific IoT application,

the Consensus is applied to the Fog nodes of Fog

computing layer, and the Interactive Consistency is

applied to each Cloud node in Cloud computing layer.

In the agreement problem, the number of faulty

components can be allowed is determined by the total

number of nodes. In Lamport et al.’s protocol [13], the

constraints is n>3f where n is the number of nodes and

f is the total number of allowable malicious faulty

nodes in the distributed system. Therefore, the

constraints of the FCAP are shown in follow.

Constraint of IoT sensors layer. nRj>⎣(nFj -1)/2⎦+fmRj

where nRj is the number of sensor nodes and fmRj is the

total number of allowable malicious faulty sensor

nodes in Region Rj of IoT sensor layer. This constraint

specifies the number of sensor nodes required in

Region Rj of IoT sensor layer.

Constraint of Fog computing layer. nFj>⎣(nFj -

1)/3⎦+2fmFj where nFj is the number of Fog nodes and

fmFj is the total number of allowable malicious faulty

Fog nodes in Fog group Fj of Fog computing layer.

This constraint specifies the number of Fog nodes

required in Fog group Fj of Fog computing layer.

Constraint of Cloud computing layer. nC>⎣(nC-

1)/3⎦+2fmC where nC is the number of Cloud nodes and

fmC is the total number of allowable malicious faulty

Cloud nodes in Cloud computing layer. This constraint

specifies the number of Cloud nodes required in Cloud

computing layer.

(Constraint of IoT sensors layer) specifies the

number of sensor nodes in IoT sensors layer required;

due to the unit of the Region Rj of IoT sensor layer is

sensor node, so that an agreement can be achieved if

nRj>⎣(nFj -1)/2⎦+fmRj. (Constraint of Fog computing

layer) specifies the number of Fog nodes in Fog group

Fj of Fog computing layer required; due to the unit of

the Fog group Fj of Fog computing layer is Fog node,

so that an agreement can be achieved if nFj>⎣(nFj -

1)/3⎦+2fmFj. (Constraint of Cloud computing layer)

specifies the number of Cloud nodes in Cloud

computing layer required; due to the unit of the Cloud

computing layer is Cloud node, so that an agreement

can be achieved if nC>⎣(nC-1)/3⎦+2fmC.

In this study, FCAP is proposed to solve the

agreement problem with fallible nodes underlying an

IoT platform that combining Fog computing and Cloud

computing (FC-IoT). The proposed protocol FCAP is

divided into three parts based on the three layers of

FC-IoT. The nodes of IoT sensor layer execute Sensing

and Transmission Process, the nodes of Fog

computing layer execute Consensus Process, and the

nodes of Cloud computing layer execute Interactive

Consistency Process.

In Sensing and Transmission Process, the sensor

node senses the related information for the specific

application service in a particular region. Then, the

related information for the specific application service

is transferred to the corresponding Fog group of Fog

computing layer. In Consensus Process, the Fog node

takes the majority value of the sensing data received

from IoT sensors layer firstly, and the majority value is

used as the initial value (vi) of Fog node to execute

function Agreement. When the Consensus value of

each Fog group is gotten, the value is represented as

the result of a specific service in a particular region.

Finally, the Consensus value is transferred to Cloud

computing layer. In Interactive Consistency Process,

the primary work of nodes in Cloud computing layer is

to collect the results of a specific service in different

regions, and then the request vector of the interactive

consistency can be obtained to provide an integrated

service such as the intelligent traffic controller or the

monitoring system for prevention of earth-rock-flow

disaster. The progression steps of FCAP are shown in

Figure 4.

Figure 4. The progression steps of FCAP

FCAP is initiated by the nodes of IoT sensor layer to

get the related information for the specific application

service. The nodes of Fog computing layer need to

execute Consensus Process and the nodes of Cloud

computing layer need to execute Interactive

Consistency Process. In the Consensus Process and

Interactive Consistency Process, the function

Agreement will be called.

There are two phases of function Agreement, one is

1772 Journal of Internet Technology Volume 20 (2019) No.6

the Message Exchange Phase, and the other is

Decision Making Phase. The parameters of Agreement

include σ, vs, and nA, where σ is the required rounds, vs

is the initial value and nA is the number of nodes

participating in the agreement. In order for all fault-

free nodes to reach agreement, each node must collect

enough exchanged messages from all other nodes if

they are fault-free. As a result, exchanging the received

values helps fault-free nodes to collect enough

exchanged messages.

Fischer and Lynch proved that ⎣(n-1)/3⎦+1 is the

necessary and sufficient rounds of message exchanges

to solve an agreement problem, where n is the number

of nodes in the underlying network [9]. Based on the

works of Fischer and Lynch, ⎣(n-1)/3⎦+1 rounds of

message exchanges are the lower bound for solving the

agreement problem [9]. Therefore, the required rounds

σ is ⎣(nFj–1)/3⎦+1 when Fog nodes execute the function

Agreement of Consensus Process, where nFj is the

number of nodes in Fog group Fj of Fog computing

layer and nFj>3. And, the required rounds σ is ⎣(nC–

1)/3⎦+1 when Cloud nodes execute the function

Agreement of Interactive Consistency Process, where

nC is the number of nodes in Cloud computing layer

and nC>3.

The received messages of Message Exchange Phase

are stored in a tree structure called the information-

gathering tree (ig-tree), which is similar to that

proposed by Bar-Noy et al. [2]. Each fault-free node

maintains such an ig-tree during the execution of

FCAP. In the first round of Message Exchange Phase,

node i transmits its initial value to other nodes.

However, each receiver node could always identify the

sender of a message is assumed. When a fault-free

node receives the message sent from the node i, it

stores the received value, denoted as val(i), at the root

of its ig-tree. In the second round, each node transmits

root value of its ig-tree to all other nodes. If node 1

sends message val(i) to node 2, then node 2 stores the

received message, denoted as val(i1), in vertex i1 of its

ig-tree. Similarly, if node 2 sends message val(i1) to

node 1, the received message is named val(i12) and

stored in vertex i12 of node 1’s ig-tree in the third

round. Generally, message val(i12…n), stored in the

vertex i12…n of an ig-tree, implies that the message

just received was sent through the node i, the node 1,…,

the node n; and the node n is the latest nodes to pass

the message. When a message is transmitted through a

node more than once, the name of the node will also be

repeated correspondingly. For instance, message

val(11), stored in vertex 11, and indicates that the

message is sent to node 1, then to node 1 again;

therefore name 1 appears twice in vertex name 11. In

summary, the root of ig-tree is always named i to

denote that the stored message is sent from the node i

in the first round; and the vertex of an ig-tree is labeled

by a list of node names. The node name list contains

the names of the nodes through which the stored

message was transferred. Figure 5 shows an example

of ig-tree. In the Message Exchange Phase of function

Agreement, the vertices with repeated node names in

each ig-tree will be deleted. Finally, all fault-free nodes

use function VOTE to remove the faulty influence

from faulty nodes to obtain the common value. Among

them, the function VOTE only calculates the non-value

“α” of all the vertices of the α-th level of the ig-tree

(excluding the last level of the ig-tree), where 1≤α≤σ.

Since VOTE(α) is a common value, the impact of

faulty nodes will be removed and each fault-free node

can reach an agreed value. When the function VOTE is

applied to the root of each corresponding ig-tree, and

then the common value VOTE(i) is obtained. The

proposed protocol FCAP is presented in Figure 6.

Figure 5. An example of ig-tree

5 An Example of Executing FCAP

Taking the traffic control system constructed by FC-

IoT as an example to execute FCAP is presented in

Figure 7. In Sensing and Transmission Process, each

sensor node in the IoT sensor layer senses the traffic

status. The sensing data of each node in the Region R1

of IoT sensor layer is shown in Figure 7(a), and nodes

s12 and s15 are assumed in malicious fault. The sensing

traffic statuses of the specific road intersection in

Region R1 are transferred to Fog group F1 of Fog

computing layer.

In Consensus Process, each Fog node in Fog group

F1 receives the sensing traffic statuses transferred from

sensor nodes in the Region R1. The received traffic

statuses are taken as the majority and the majority

value is used as the initial value (vi) of Fog node in Fog

group F1 when function Agreement is executed. Since

nodes s12 and s15 are malicious faulty nodes, it is

assumed that the traffic status they transmit is

malicious. However, as long as the total number of

failed nodes does not exceed half of the total number

of nodes in Region R1, the majority value obtained is

still the correct values. Then, the number of rounds

required, σ = ⎣(nFj–1)/3⎦+1, is computed and

Agreement(σ, vi, nFj) is executed. The initial value of

each node in Fog group F1 of Fog computing layer is

shown in Figure 7(b).

Optimal Agreement Achievement in a Fog Computing Based IoT 1773

Figure 6. Protocol FCAP

IoT Sensor Layer

Figure 7. (a) The sensing data of each node in the Region R1 of IoT sensor layer

For this example, two rounds (σ=⎣(nF1–1)/3⎦+1

=⎣(5–1)/3⎦+1=2, where nF1 is the number of nodes in

Fog group F1) are required to exchange the messages

when Agreement is executed. In this example, there are

five nodes in Fog group F1 and Fog node f15 is assumed

in malicious fault. Figure 7(b) is the initial value of

each node in Fog group F1. During the first round of

Message Exchange Phase, each node of Fog group F1

parallel transmits the initial value to all nodes of Fog

group F1 and stores the received nF1 (=5) values in the

1774 Journal of Internet Technology Volume 20 (2019) No.6

corresponding root of each ig-tree, as shown in Figure

7(c). In the second round, each node parallel transmits

the values in the root of the corresponding ig-tree to

other nodes in Fog group F1 and stores the received

values in level 1 of the nF1 (=5) corresponding ig-trees.

The progression of nodes f11 and f13 during Message

Exchange Phase is shown in Figsure 7(d) and 7(f).

Subsequently, in the Decision Making Phase, the ig-

tree is reorganized by deleting those vertices with

repeated node names. The corresponding ig-tree of

nodes f11 and f13 is shown in Figure 7(e) and 7(g). Then,

function VOTE is applied on the ig-tree root of each

node to take the majority value. The majority value of

the agreement vector is taken, and the Consensus value

is obtained. The Consensus value of nodes f11 and f13 is

obtained and shown in Figure 7(h). The Consensus

value of each Fog group in the Fog computing layer

represents the traffic state of each region. Finally, the

Consensus value is transferred to the Cloud computing

layer.

Fog Computing Layer

Majority(1,0,1,1,0)=1

Execute Agreement(σ, vi, nFj)=(2,1,5)

Figure 7. (b) The initial value of each node in Fog

group F1 of Fog computing layer

Figure 7. (c) The ig-tree of each node in Fog group F1

of Fog computing layer at the first round of Message

Exchange Phase

Figure 7. (d) The final ig-tree of f11 after the Message

Exchange Phase

Figure 7. (e) The ig-tree of f11 by Decision

Making Phase

Optimal Agreement Achievement in a Fog Computing Based IoT 1775

Figure 7. (f) The final mg-tree of f13 after the Message

Exchange Phase

Figure 7. (g) The ig-tree of f13 by Decision

Making Phase

VOTE(1)= majority(val(12),val(13),val(14),val(15))=majority(1, 1, 1, 1)=1

VOTE(2)= majority(val(21),val(23),val(24),val(25))=majority(1, 1, 1, 0)=1

VOTE(3)= majority(val(31),val(32),val(34),val(35))=majority(1, 1, 1, 0)=1

VOTE(4)= majority(val(41),val(42),val(43),val(45))=majority(1, 1, 1, 0)=1

VOTE(5)= majority(val(51),val(52),val(53),val(54))=majority(1, 0, 0, 0)=0

Consensus value of f11 =(1,1,1,1,0)=1

VOTE(1)= majority(val(12),val(13),val(14),val(15))=majority(1, 1, 1, 0)=1

VOTE(2)= majority(val(21),val(23),val(24),val(25))=majority(1, 1, 1, 1)=1

VOTE(3)= majority(val(31),val(32),val(34),val(35))=majority(1, 1, 1, 1)=1

VOTE(4)= majority(val(41),val(42),val(43),val(45))=majority(1, 1, 1, 1)=1

VOTE(5)= majority(val(51),val(52),val(53),val(54))=majority(1, 0, 0, 0)=0

Consensus value of f13 =(1,1,1,1,0)=1

Figure 7. (h) The common value VOTE(i) by in Decision Making Phase of Fog computing layer

In the Interactive Consistency Process, the Cloud

node in the Cloud computing layer receives the

Consensus value sent from Fog nodes in the Fog group

of Fog computing layer. The received Consensus

values are taken as the majority. In addition, the

majority value is used as the initial value of Cloud

node when function Agreement is executed. The initial

value of each node in Cloud computing layer is shown

in Figure 7(i).

For this example, two rounds (σ= ⎣(nC–1)/3⎦+1+1

=⎣(5–1)/3⎦+1=2, where nC is the number of nodes in

Cloud computing layer) are required to execute

Agreement. In this example, there are five nodes in

Cloud computing layer and Cloud node c3 is assumed

in malicious fault. Figure 7(i) is the initial value of

each node in Cloud computing layer. During the first

round of Message Exchange Phase, each node of

Cloud computing layer parallel transmits the initial

value to all nodes of Cloud computing layer and stores

the received nC (=5) values in the corresponding root of

each ig-tree, as shown in Figure 7(j). In the second

round, each node parallel transmits the values in the

root of the corresponding ig-tree to other nodes in

Cloud computing layer and stores the received values

in level 1 of the nC (=5) corresponding ig-trees. The

progression of nodes c1 and c4 during Message

Exchange Phase is shown in Figs. 7(k) and 7(m).

Subsequently, in the Decision Making Phase, the ig-

tree is reorganized and the corresponding ig-tree of

nodes c1 and c4 is shown in Figs. 7(l) and 7(n). Then,

function VOTE is applied on the ig-tree root of each

node to take the majority value.

1776 Journal of Internet Technology Volume 20 (2019) No.6

Cloud Computing Layer

Majority(1,1,1,1, 0)=1

Execute Agreement(σ, vj, nC)=(2,1,5)

Figure 7. (i) The initial value of each node in Cloud

computing layer

Figure 7. (j) The ig-tree of each node in Cloud

computing layer at the first round of Message

Exchange Phase

Figure 7. (k) The final ig-tree of c1 after the Message

Exchange Phase

Figure 7. (l) The ig-tree of c1 by Decision Making

Phase

Figure 7. (m) The final mg-tree of c4 after the

Message Exchange Phase

Figure 7. (n) The ig-tree of c4 by Decision

Making Phase

Optimal Agreement Achievement in a Fog Computing Based IoT 1777

The majority value obtained through function

Agreement is mapped to a traffic status at the specific

traffic intersection. The IC value is a vector, and each

element in the vector is the majority value obtained

through Agreement function. Each element is used to

present the traffic status of a specific traffic

intersection. The IC value of nodes c1 and c4 is shown

in Figure 7(o). Eventually, the agreement is reached in

FC-IoT. Finally, the service of traffic control system

can be supported by each Cloud node in Cloud

computing layer.

VOTE(1)= majority(val(12),val(13),val(14),val(15))=majority(1, 0, 1, 1)=1

VOTE(2)= majority(val(21),val(23),val(24),val(25))=majority(1, 1, 1, 1)=1

VOTE(3)= majority(val(31),val(32),val(34),val(35))=majority(0, 1, 0, 0)=0

VOTE(4)= majority(val(41),val(42),val(43),val(45))=majority(1, 1, 0, 1)=1

VOTE(5)= majority(val(51),val(52),val(53),val(54))=majority(1, 1, 1, 1)=1

ICc1=(1,1,0,1, 1)

VOTE(1)= majority(val(12),val(13),val(14),val(15))=majority(1, 0, 1, 1)=1

VOTE(2)= majority(val(21),val(23),val(24),val(25))=majority(1, 0, 1, 1)=1

VOTE(3)= majority(val(31),val(32),val(34),val(35))=majority(0, 1, 0, 0)=0

VOTE(4)= majority(val(41),val(42),val(43),val(45))=majority(1, 1, 0, 1)=`

VOTE(5)= majority(val(51),val(52),val(53),val(54))=majority(1, 1, 1, 1)=`

ICc4=(1,1,0,1,1)

Figure 7. (o) The common value VOTE(i) in Decision Making g Phase of Cloud computing layer

Figure 7. The example of executing the FCAP

6 The Complexity of FCAP

The following theorems are used to prove the

complexity of FCAP. The complexity of FCAP is

evaluated in terms of (1) the minimal number of rounds

of message exchanges, and (2) the maximum number

of allowable faulty nodes. Theorems 1 and 2 below

will show that the optimal solution is reached.

Theorem 1. The number of required rounds of

message exchanges by FCAP is the minimum.

Proof. The total number of required rounds of message

exchanges by FCAP can be discussed by three layer of

FC-IoT.

(1) IoT sensor layer. In IoT sensor layer, each

sensor passes the received sensing data to Fog

computing layer. Therefore, only one round of message

exchange is needed.

(2) Fog computing layer. Because message passing

is required only in the Message Exchange Phase, the

Message Exchange Phase is time consuming. Dolev

and Reischuk pointed out that ⎣(n–1)/3⎦+1 rounds are

the minimum number of rounds to send sufficient

messages to achieve agreement in an n-node fallible

distributed system [7]. However, in the fallible Fog

computing layer, the nodes maybe in malicious fault.

In addition, each node in the fallible Fog computing

layer must exchange messages with other nodes.

Therefore, a constraint on the minimum number of

rounds can be applied to the study. In other words, in

Fog computing layer, there are nFj nodes in Fog group

Fj of Fog computing layer, FCAP needs ⎣(nFj–1)/3⎦+1

rounds to exchange messages. In an F-groups Fog

computing layer, the nodes in each Fog group execute

FCAP parallel, where F is the total number of groups

in the Fog computing layer of FC-IoT. Therefore, the

required rounds of executing FCAP by each node in all

Fog groups are depended on the number of nodes in

Fog group.

(3) Cloud computing layer. As in the discussion of

the number of message exchanges required in the Fog

computing layer. In the Cloud computing layer, the

research of Dolev and Reischuk can still be applied [7].

In Cloud computing layer, there are nC nodes in Cloud

computing layer, FCAP needs ⎣(nC–1)/3⎦+1 rounds to

exchange messages.

In short, number of required rounds of message

exchanges by FCAP in FC-IoT is the minimum.

Theorem 2. The number of allowable faulty nodes by

FCAP is the maximum.

Proof. The total number of allowable faulty nodes by

FCAP can be discussed by three layer of FC-IoT.

(1) IoT sensor layer. Since the number of faulty

nodes in each Region of IoT sensor layer does not

exceed half, and the majority value of the Region can

be determined. Therefore, TFS be the total number of

allowable faulty nodes in IoT sensor layer.

TFS=∑
1=

R

j mRjf where R is the total number of Regions in

IoT sensor layer and fmRj is the total number of

allowable malicious faulty sensor nodes in Region Rj.

In addition, fmRj ≤ ⎣(nRj-1)/2⎦ where nRj is the number of

sensor nodes in Region Rj.

(2) Fog computing layer. Fischer and Lynch

indicate the lower bound for agreement problem for

node faults as f ≤ ⎣(n-1)/3⎦, where f is the total number

of allowable malicious faulty nodes and n is the total

number of nodes in a distributed computing system [9].

However, the fault status of our assumption is also that

nodes are faulty. Therefore, f ≤ ⎣(n-1)/3⎦ in the study of

Fischer and Lynch [9] can be applied to fmFj ≤ ⎣(nFj -

1778 Journal of Internet Technology Volume 20 (2019) No.6

1)/3⎦ in the Fog computing layer, where fmFj is the total

number of allowable malicious faulty Fog nodes in Fog

group Fj and nFj is the number of Fog nodes in Fog

group Fj. Then, TFF= ∑F
j mFjf
1=

where F is the total

number of Fog groups in the Fog computing layer of

FC-IoT, and TFF is the total number of allowable faulty

nodes in Fog computing layer.

(3) Cloud computing layer. The research result of

Fischer and Lynch [9] also can be applied to Cloud

computing layer. Therefore, fmC is the total number of

allowable faulty nodes in Cloud computing layer, and

fmC ≤ ⎣(nC-1)/3⎦ where nC is the number of Cloud nodes.

In short, the maximum number of allowable faulty

components by FCAP is T=TFS+TFF+fmC = ∑
1=

R

j mRjf +

∑F
j mFjf
1=

+ ⎣(nC-1)/3⎦. And, T is the maximum number

of allowable faulty nodes in FC-IoT.

As a result, FCAP takes the minimum number of

rounds and tolerates the maximum number of faulty

components to make fault-free nodes reach a common

consistency. The optimality of the protocol is proven.

7 Conclusions

The IoT could enable innovations that enhance the

quality of life, but it generates unprecedented amounts

of data that are difficult for traditional systems, the

cloud, and even edge computing to handle. Fog

computing is designed to overcome these limitations

[6]. Fog computing extends the Cloud Computing

paradigm to the edge of the network, thus enabling a

new breed of applications and services [3].

While Fog nodes provide localization, therefore

enabling low latency and context awareness, the Cloud

provides global centralization. Many applications

require both Fog localization, and Cloud globalization,

particularly for analytics and Big Data. In this study, a

high flexible and reliable IoT platform is proposed that

combining Fog computing and Cloud computing (FC-

IoT). By using FC-IoT, the monitoring system for

prevention of earth-rock-flow disaster and the traffic

control system can be constructed.

The agreement problem is fundamental in a

distributed system, and has been extensively studied.

Network topology is an important issue related to

consistency. However, FC-IoT is a new concept for

distributed systems. It has greatly encouraged

distributed system design and practice to support user-

oriented services. In this paper, the FCAP protocol is

proposed to make all fault-free nodes reach agreement.

This protocol can use a minimal number of rounds of

message exchanges and tolerate a maximal number of

allowable faulty components in a malicious fallible

FC-IoT.

Merely considering component faults in the

agreement problem is insufficient for the highly

reliable distributed system of an IoT environment. A

related closely problem is called the Fault Diagnosis

Agreement (FDA) problem [5]. The objective of

solving the FDA problem is to make each fault-free

node detect or locate the common set of faulty

components in the distributed system. Therefore,

solving the FDA problem for the highly reliable

distributed system underlying topology of FC-IoT is

included in our future works.

Acknowledgments

This work was supported in part by the Ministry of

Science and Technology MOST 107-2221-E-324-005-

MY3.

References

[1] O. Babaoglu, D. Rogério, Streets of Byzantium: Network

Architectures for Fast Reliable Broadcasts, IEEE

Transactions on Software Engineering, Vol. 9, pp. 546-554,

June, 1985.

[2] A. Bar-Noy, D. Dolev, C. Dwork, H. R. Strong, Shifting

Gears: Changing Algorithms on the Fly to Expedite

Byzantine Agreement, Information and Computation, Vol. 97,

No. 2, pp. 205-233, April, 1992.

[3] F. Bonomi, R. Milito, J. Zhu, S. Addepalli, Fog Computing

and its Role in the Internet of Things, The first edition of the

MCC Workshop on Mobile Cloud Computing, Helsinki,

Finland, 2012, pp. 13-16.

[4] A. Botta, W. De Donato, V. Persico, A. Pescapé, On the

Integration of Cloud Computing and Internet of Things, The

2014 International Conference on Future Internet of Things

and Cloud, Barcelona, Spain, 2014, pp. 23-30.

[5] O. Bousbiba, E. Klaus, A Fast Byzantine Fault-Tolerant

Diagnostic Agreement Protocol for Synchronous Distributed

Systems, The 29th International Conference on Architecture

of Computing Systems, Nuremberg, Germany, 2016, pp. 1-11.

[6] A. V. Dastjerdi, R. Buyya, Fog Computing: Helping the

Internet of Things Realize Its Potential, Computer, Vol. 49,

No. 8, pp. 112-116, August, 2016.

[7] D. Dolev, R. Reischuk, Bounds on Information Exchange for

Byzantine Agreement, Journal of the ACM, Vol. 32, No. 1,

pp. 191-204, January, 1985.

[8] M. Ficco, C. Esposito, Y. Xiang, F. Palmieri, Pseudo-

Dynamic Testing of Realistic Edge-Fog Cloud Ecosystems,

IEEE Communications Magazine, Vol. 55, No. 11, pp. 98-

104, November, 2017.

[9] M. J. Fischer, N. A. Lynch, A Lower Bound for The Assure

Interactive Consistency, Information Processing Letters, Vol.

14, No. 4, pp. 183-186, June, 1982.

[10] Y. L. Hsieh, K. Wang, Dynamic Overlay Multicast for Live

Multimedia Streaming in Urban VANETs, Computer

Networks, Vol. 56, No. 16, pp. 3609-3628, November, 2012.

[11] J. Jin, J. Gubbi, S. Marusic, M. Palaniswami, An Information

Framework for Creating a Smart City Through Internet of

Things, IEEE Internet of Things Journal, Vol. 1, No. 2, pp.

Optimal Agreement Achievement in a Fog Computing Based IoT 1779

112-121, April, 2014.

[12] P. Kumar, S. K. Gupta, Abstract Model of Fault Tolerance

Algorithm in Cloud Computing Communication Networks,

International Journal on Computer Science and Engineering,

Vol. 3, No. 9, pp. 3283-3290, September, 2011.

[13] L. Lamport, R. Shostak, M. Pease, The Byzantine General

Problem, ACM Transactions on Programming Languages

and Systems, Vol. 4, Issue 3, pp. 382-401, July, 1982.

[14] V. Mauch, M. Kunze, M. Hillenbrand, High Performance

Cloud Computing, Future Generation Computer Systems, Vol.

29, No. 6, pp. 1408-1416, August, 2012.

[15] R. Merzouki, A. K. Samantaray, P. M. Pathak, B. O.

Bouamama, Intelligent Mechatronic Systems: Modeling,

Control and Diagnosis, Springer, London, 2013.

[16] F. J. Meyer, D. K. Pradhan, Consensus with Dual Failure

Modes, IEEE Transactions on Parallel and Distributed

Systems, Vol. 2, No. 2, pp. 214-222, April, 1991.

[17] Y. Mo, L. Xing, W. Guo, S. Cai, Z. Zhang, J. H. Jiang,

Reliability Analysis of IoT Networks with Community

Structures, IEEE Transactions on Network Science and

Engineering, 2018, DOI: 10.1109/TNSE.2018.2869167.

[18] D. Puthal, B. P .S. Sahoo, S. Mishra, S. Swain, Cloud

Computing Features, Issues, and Challenges: A Big Picture,

2015 International Conference on Computational Intelligence

and Networks, Bhubaneshwar, 2015, pp. 116-123.

[19] H. S. Siu, Y.H. Chin, W.P. Yang, A Note on Consensus on

Dual Failure Modes, IEEE Transactions on Parallel and

Distributed Systems, Vol. 7, No. 3, pp. 225-230, March, 1996.

[20] S. C. Wang, S. S. Wang, K. Q. Yan, Reaching Optimal

Interactive Consistency in a Fallible Cloud Computing

Environment, Journal of Information Science and

Engineering, Vol. 34, No. 1, pp. 205-223, January, 2018.

[21] S. C. Wang, K. Q. Yan, C. F. Cheng, Efficient Multicasting

Agreement Protocol, Computer Standards & Interfaces, Vol.

26, No. 2, pp. 93-111, March, 2004.

[22] A. Whitmore, A. Anurag, D. X. Li, The Internet of Things-A

Survey of Topics and Trends, Information Systems Frontiers,

Vol. 17, No. 2, pp. 261-274, March, 2015.

[23] K. Q. Yan, S. C. Wang, C. S. Peng, S. S. Wang, Optimal

Malicious Agreement Protocol for Cluster-based Wireless

Sensor Networks, ScienceAsia, Vol. 40S, No. 1, pp. 8-15,

February, 2014.

[24] M. Yannuzzi, R. Milito, R. Serral-Gracià, D. Montero, M.

Nemirovsky, Key Ingredients in an IoT Recipe: Fog

Computing, Cloud Computing, and More Fog Computing,

2014 IEEE 19th International Workshop on Computer Aided

Modeling and Design of Communication Links and Network,

Athens, Greece, 2014, pp. 325-329.

Biographies

Shu-Ching Wang is a Professor at

the Department of Information

Management, Chaoyang University of

Technology, Taiwan. Her current

research interests include distributed

data processing and reliability.

Wei-Shu Hsiung is a Ph.D. student of

the Department of Information

Management, Chaoyang University of

Technology, Taiwan. His current

research interests include distributed

processing and fault tolerant.

Kuo-Qin Yan is a Professor at the

Department of Business Administration,

Chaoyang University of Technology,

Taiwan. His current research interests

include distributed fault tolerant

computing and mobile computing.

Yao-Te Tsai is an assistant professor

in the Department of International

Business, Feng Chia University. His

interests include internet of things and

data analytics.

1780 Journal of Internet Technology Volume 20 (2019) No.6

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (Adobe RGB \0501998\051)
 /CalCMYKProfile (Japan Color 2001 Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHT <FEFF005b683964da300c9ad86a94002851fa8840002b89d27dda0029300d005d0020005b683964da300c8f3851fa0033003000300064002851fa88400029300d005d00204f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks true
 /AddPageInfo false
 /AddRegMarks false
 /BleedOffset [
 8.503940
 8.503940
 8.503940
 8.503940
]
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MarksOffset 9.354330
 /MarksWeight 0.141730
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed true
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

