
IP Packing Technique for High-speed Firewall Rule Verification 1737

IP Packing Technique for High-speed Firewall Rule Verification

Suchart Khummanee

Department of Computer Science, Faculty of Informatics, Mahasarakham University, Thailand

 suchart.k@msu.ac.th*

*Corresponding Author: Suchart Khummanee; E-mail: suchart.k@msu.ac.th

DOI: 10.3966/160792642019102006006

Abstract

A network bottleneck is often caused by firewalls

installed between network gateways. As a result, the

overall performance of networks is significantly dropped.

The following solution to resolve such the problem can

be achieved by increasing the speed of firewall rule

verification. Nowadays, there is an open-source matching

framework which is the fastest of rule verification,

namely IPSets. It can verify a number of firewall rules

against huge packets with O(1) worst case access time.

However, IPSets still displays several drawbacks of

usability such as rule management, subnet IP address,

rule conflicts, and memory usage. This paper proposes a

novel firewall structure that can resolve all drawbacks of

IPSets, and obtains the optimal speed of firewall rule

verification at O(1) of access time, called IPack.

According to IPack implementation, the paper applies the

sparse matrix to be data structures to maintain firewall

rules, the Path Selection Diagram (PSD) to eliminate rule

conflicts and IP packing technique to reduce the size of

memory space. The experimental results show that IPSets

drawbacks can be solved by IPack. Especially, the size of

memory space is reduced from O(2
n
) to be O(n) with the

same optimal access time and the speed of IPack is still

equal to IPSets.

Keywords: Firewall, High-speed firewall, Firewall rule

matching, IP packing, Path selection

diagram

1 Introduction

Firewall is a basic network security tool to protect

suspicious packets and unauthorized access between

the trusted and untrusted network zone. Generally,

installing on the network gateway between private

networks (Trusted) and the public network (Untrusted

or Internet), a firewall verifies of all packets at inbound

and outbound interfaces depends on security rules. The

installed firewall on such location, theoretically there

are several advantages. For example, it is the best place

to filter all the network traffic; likewise, the other is to

save the cost of purchasing firewalls because firewalls

can handle whole traffic at the only single network

gateway. In contrast, it is a critical point which may

result a single point of failure (SPOF) and a bottleneck

of networks. If SPOF occurs in networks, the entire

networks will be stopped from working suddenly. One

solution to SPOF is to customize firewalls to be the

distributed system [1]. The bottleneck refers to slow

communication speeds and limits user’s efficiency on

the networks [2]. Solving of the bottleneck of firewalls,

increasing the speed of rule verification is a good

solution to deal with it. In this paper focuses on the

bottleneck networks by improving the speed of firewall

rule verification.

Due to the bottleneck problem caused by firewalls,

in previous years, several researchers have tried to

improve the speed of firewall rule verification which

can be classified by the speed into three groups as

follows. General firewalls, applied to the sequential

searching algorithm or some tree structures, are placed

in the first group such as IPTables [3], Based-Service

grouping [4-5] and the linear time approach [6]. The

time complexity of rule verifying of this group is quite

slow, and it is O(n). The firewalls in the second group

are widely designed by effective tree structures, hence

rule verifying time of this is faster than the first group;

that is O(log(n)) like [7-11], etc. Currently the last

group is an open source framework utility working

with IPTables [3] and Netfilter [12] to be as the

network firewall-namely, IPSets [13]. It can verify any

packet against firewall rules with O(1) worst case

access time by using the perfect hashing technique.

Although IPSets is the fastest framework to verify the

firewall rule nowadays, it has several drawbacks in

terms of usage. The first obstacle is to create the

unique keys for a perfect hashing function. IPSets does

not automatically build unique keys. This responsibility

is pushed to an administrator who is an expert about

firewall rule management. IPSets offers a variety of

key generation formats such as hash:IP:port, hash: net,

etc. For example, the hash:IP:port means combining

between an IP address and a port to be a key like

“1921681180” (Combining between IP 192.168.1.1

and port number 80 by cutting off dots). Another

example is that hash:IP:port:net is a combination

between an IP address, a port number and a subnet

network. For example, 172.16.1.5:80:192. 16.1.0/30

can be enumerated to four unique keys like

1738 Journal of Internet Technology Volume 20 (2019) No.6

“17216158019216810”, “17216158019216811”,

“17216158019216812”, and “17216158019216813”

(Subnet network 192.168.1.0/30 ranging from

192.168.1.0-192.168.1.3). Selecting a key type of

IPSets depends on discretion and suitability

requirements of an administrator directly.

The second barrier to IPSets deployment is to handle

the range of large subnets. For example, it does not

recommend to apply to IP addresses of the A classes

because the number of generated keys may be larger

than the available memory space (Overflowed

memory). A subnet 10.0.0.0/8, for instance, can be

generated to be a set of unique keys ranging from

“10000”, “100001”, “100002”, ..., “10255255253”,

“10255255254”, “10255255255” (~= 16,777,216 keys).

IPSets is built in order to improve the speed of

firewall rule verification or packet matching of

IPTables only. Other functions of the firewall are

handled by IPTables, such as the packet decision,

packet filtering, packet forwarding, the network

address translation (NAT), etc. Thus, IPSets cannot

independently execute by itself without IPTables,

which is the third drawback of the IPSets framework.

As the selection of key generation methods for the

perfect hashing in IPSets also effects on an amount of

the active memory. IPSets, therefore, suggests

administrators to reduce the number of key sets by

setting the size of IP class to a small size such as class

C or B instead of IP class A. While IPSets is executing

and its own memory is running out, it will always

allocate new memory size as 2n bytes for each time. If

the default memory size of IPSets is 210 bytes [13], it

will be allocated as 211, 212, ..., 2n bytes respectively.

Thus, the space complexity is O(2n) which is quite

large. This is the fourth restriction on IPSets usage.

The last IPSets obstacle is related to firewall rule

anomalies or conflicts. Although IPTables cooperates

with IPSets to act as the fastest network firewall today

(The state of the art of the high-speed firewall rule

verification), both still do not support the firewall rule

anomaly detection, which is a highly important

function of network firewalls. The firewall rule

anomaly means two or more different filtering rules

that match against the same packet [14]. As an

anomaly occurs in a firewall running on a network, it

results in low overall network performance, which is a

major cause of the network bottleneck.

In this paper, firstly, aims to eliminate the IPSets

drawbacks and its speed of rule verification is being

still as fast as IPSets, which is O(1) worst case access

time. Second, develops a new whole firewall system

running on the Linux operating system for kernel

version 2.6 or higher. Third, proposes two-dimensional

(2D) sparse matrix structures to store firewall rules,

and to handle all IP address classes. Forth, presents the

IP packing technique which compacts non-zero items

from 2D sparse matrices to one-dimensional (1D)

arrays for reducing the memory space to O(n). Finally,

eradicates rule anomalies by using the path selection

diagram algorithm (PSD) applying from the firewall

decision diagram [15].

2 Background and Related Work

2.1 Basic Firewall, Rule Definition, and Rule

Anomaly

Currently, network infrastructures are widely

designed by gigabit networks because they can support

high-speed traffic from a large number of users.

Firewalls working on such networks also require high

performance. The main function of firewalls is to

restrict accessing resources on the networks by rules,

which will be set properly. For example, firewall rules

basically allow all requests from any client in private

networks (Trusted networks) to any resource of servers

in public networks (Untrusted networks); in contrast,

any server cannot access to clients. A common firewall

rule consists of two essential parts. The first one is a

predicate, and the other is an action. The predicate is

combined with six conditions: Source IP address (SIP),

Destination IP address (DIP), Source Port (SP),

Destination Port (DP), Protocol (Pro), and Interface

(Int). The action part (Act) will be set either to pass or

to drop, if all conditions in the predicate are true.

Given rn to be any firewall rule, and rn is subset of R

(rn ⊂ R) where R denotes all rules. In addition, rn{…}

represents conditions of each rule. So that, rn={SIP, DIP, SP,

DP, Pro, Int} is any source and destination IP address, any

source and destination port, any protocol, an arriving-

packet interface of rn respectively. Let pk is any

incoming or outgoing packet over the firewall; then

pk={SIP, DIP, SP, DP, Pro} is a source and destination IP

address, a source and destination port, and a protocol

of pk respectively. Rule r3 in Table 1, for example, the

firewall will allow private packets across to other

public networks if pk{SIP} ∈ r3{SIP}, pk{DIP} ∈ r3{DIP}, pk{SP}

∈ r3{SP}, pk{DP} ∈ r3{DP}, and pk{Pro} ∈ r3{Pro} are true by

processing over the interface A. Thus, pk{SIP} ∈

{192.168.1.0, ..., 192.168.1.255}, pk{DIP} ∈ {0.0.0.0, ...,

255.255.255.255}, pk{SP,DP} ∈ {0, 1, ..., 65,535}, and

pk{Pro} ∈ {0, 1, ..., 255} are true. Rule r4 exactly drops

all public packets that will pass into the private

networks via the interface B. The final rule (r5) always

blocks every packet from any to any network.

Table 1. Firewall rule examples

No. SIP DIP SP DP Pro Int Act

r1 192.168.1.0/24 * 137-445 * A drop

r2 192.168.1.0/24 200.30.5.100 * 113 UDP A drop

r3 192.168.1.0/24 * * * * A pass

r4 * 192.168.1.0/24 * * * B drop

r5 * * * * * * drop

Note. *(SIP, DIP) = (0-232)-1, *(SP, DP) = (0-216)-1, *(Pro)

= TCP or UDP.

IP Packing Technique for High-speed Firewall Rule Verification 1739

Firewall rule anomalies often arise from unclear

understanding of rule definitions. For example, rule r2

and r3 are overlapping for all condition fields with

different actions (Rule r2 = drop, r3 = pass). Therefore,

we can say that the firewall rule anomalies arise from

“The conditions appearing in terms of the predicate of

two or more rules overlap, but there are the different

actions”. Al-Shaer and Hamed [16] first defined

anomaly patterns for firewall rules in 2004. They

defined five types of anomalies, which are shadowing,

correlation, generalization, redundancy, and

irrelevancy anomaly. Later, many researchers

endeavored to resolve rule anomaly problems as

follows. Khummanee et al. [8] proposed the single

domain decision approach to reduce the root cause of

anomalies, by the key contribution of this method

required acceptable or unacceptable rules only. Liu et

al. [17] presented the systematic approach to compress

firewall rules, and they claimed that this technique

could reduce the number of firewalls more than 50%;

however, firewall rule anomalies remained especially

the redundancy of the rules. Applying log analysis and

dynamic rule re-ordering to improve the efficiency of

the anomaly management is contributed by Lubna et al.

[18], and adapting the Apriori algorithm to detect

anomaly attacks on firewall rules [19]. Although the

researchers can resolve some anomaly problems, they

cannot eliminate all anomalies of firewall rules

completely. Interestingly, there is research that can

solve the anomaly problems effectively by using the

firewall decision diagram (FDD) contributed by Liu

[20]. FDD can eliminate all anomalies, but it must

process rules in order from the top to the bottom of the

rules only.

2.2 Sparse Matrix and Packing Techniques

A sparse matrix is a matrix where most elements are

zero; in other words, it is a matrix that contains very

few nonzero elements as following equation (1). Let S

be a matrix where S ∈ Zcol * row by col and row ∈ N0,

thus S is a sparse matrix since the number of non-zero

elements of S is O(min{col, row}) [21]. Most of the

sparse matrices applied to science and engineering are

two-dimensional. For example, S is two-dimension

sparse matrix consisting of four columns (col = 4) and

four rows (row = 4). The total memory space used to

store all elements of S is col * row * k, where k is the

memory size (Byte) to keep individual elements. The

total memory space of S to maintain signed integers is

4 * 4 * 2 (bytes) = 32 bytes in C programming

language.

 4* 4

5 0 0 0

0 9 0 0

6 4 3 0

0 1 0 2

col row
S Z

= =

⎡ ⎤
⎢ ⎥
⎢ ⎥= ∈
⎢ ⎥
⎢ ⎥
⎣ ⎦

 (1)

To reduce a total memory size of a sparse matrix can

be done by collecting only non-zero elements, and the

technique is called the sparse matrix packing. Packing

techniques often require complicated data structures to

store non-zero elements, and especially it must be able

to retrieve non-zero elements, stored in such structures,

to the original matrix correctly [22]. Generally,

packing techniques are classified by the storage space

(Point or block) into two categories [23]: the first one

is the point based storage formats, which maintains a

single non-zero element with only one element of a

matrix space such as the coordinate storage (COO),

compressed row storage (CRS) and so on, and the

other is the block-based storage formats, which

maintains a block of non-zero elements of the matrix

such as the block coordinate storage (BCOO), block

compressed row storage (BCRS) and so forth. In this

paper, the concept of BCRS is only presented because

it performed well and was applied to the packing

methodology. BCRS is applied from CRS format as

shown in Figure 1. It can save the cost of memory size

effectively if each sub-block is large and non-zero

elements in each sub-block are dense. In the Figure 1,

BCRS requires three arrays including the block of non-

zero elements (BNZ), column index (col_ind), and row

pointer (row_ptr). BNZ contains square dense sub-

blocks of non-zero elements. For instance, the

dimension of each sub-block is 2 * 2, thus the sub-

blocks are stored {{{5, 0}, {0, 9}}, {{6, 4}, {0, 1}},

{{3, 0}, {0, 2}}} by a sequence of the sub-block

address number. The col_ind indicates the column of

each sub-block; for instance, the sub-blocks of {{5, 0},

{0, 9}} and {{6, 4}, {0, 1}} are in the column 0, and

{{3, 0}, {0, 2}} is in the column 1. Last, the row_ptr

specifies the first address of sub-blocks in each row;

for example, the first sub-block address in the row no.

1 of BCRS is 1. BCRS can save the memory space

more than CRS (CRS = 38, BCRS = 36 bytes).

Figure 1. CRS and BCRS storage format

2.3 Hash and Perfect Hashing Techniques

A hash function is used for mapping (Hashing) data

of capricious size to fixed size. Returned values from a

function are called hash values. A data structure used

to map keys to values is called a hash table, which

1740 Journal of Internet Technology Volume 20 (2019) No.6

usually implements an associative array abstract data

type [24]. A hash function computes an index from the

key into an array of buckets. Indeed, the hash function

will attempt to assign a unique free slot in the bucket to

any key. However, it might generate the same index for

more than one key, called the hashing collision

problem. The collision is the big problem of hash

functions, and it must be handled or resolved by a

systematic approach in some way such as separate

chaining, open addressing, robin hood hashing and etc.,

[25]. The effectiveness of a good hashing depends on a

good hash function, therefore choosing a hash function

is very important. The basic hashing uses a single or

fixed hash function which is not the efficacy. To

improve the performance of a basic hashing, it can be

done by choosing a randomized function from a family

of hash functions instead of the fixed hash function.

This technique, called the universal hashing, can

significantly reduce the number of collisions. Even

though the universal hashing is highly effective, it still

cannot resolve the collisions. In fact, we can make the

number of collided keys of the universal hashing to be

zero if we have known all keys in advance or keys are

static. Such technique is called the perfect hashing. The

perfect hashing guarantees whether it can build a hash

table with no collisions.

2.4 IPSets

2.4.1 IPTables and IPSets Framework

Although IPSets [13] is just an extension framework

of the IPTables firewall [3], it has improved the speed

of rule verification of IPTables from O(n) to O(1) [26].

That is, IPTables has become the best of high-speed

firewalls now. The IPTables and IPSets framework is

shown in Figure 2.

Figure 2. IPTables and IPSets framework on Linux

Supposing that, there is any incoming packet

arriving at an inbound interface (Network interface:

NIC) of the IPTables firewall. The packet is passed up

through the Netfilter Kernel Modules (NKM) layer to

filter only required packet depending on the network

policy. The network policy is configured by an

administrator with the iptables-config utility on

IPTables layer. In case that IPSets is enabled, firewall

rules will be configured by the ipsets-config, a

command-line user interface, instead of the iptables-

config. The packet, forwarding from NKM to IPTables

layer, will be handled by Linux kernel. However, first,

an admin needs to enable IP forwarding feature of

Linux kernel by issuing the command as “sysctl-w

net.ipv4.ip forward = 1”. After the packet arriving to

IPTables, it will be thrown to IPSets core for verifying

against rules in the next step. Rules of IPSets can be

configured in several ways, as discussed in

Introduction section, for example, hash:IP:port, hash:

net, etc. The role of IPSets core matches the packet

only, other functions will be handled by IPTables such

as IP forwarding, logging, chaining and so on. After

the packet validation process has been completed, the

packet will be decided either to pass or to drop

(Action). If the action is to drop, IPTables will throw

the packet away immediately. Otherwise, it will

forward the packet to a destination next. The packet,

which is forwarded to a destination network over an

outbound interface, called an outgoing packet as shown

in Figure 2.

2.4.2 IPSets Workflows

As mentioned earlier, the perfect hashing has been

applied to IPSets in order to speed up rule verification.

In this section will explain the detailed IPSets

workflows as shown in Figure 3. The first step is

creating a set of IPSets rules (Circle number 1).

Supposing the type of rule chosen is hash:IP:port,

such as DIP ranging from 192.168.1.0 to 192.168.1.9

(10 IP addresses), DP = 80 and Act = accept. The

second step (Circle number 2) is to generate a set of

keys by the Cartesian Product between DIP and DP

from the rule set in step 1, for example, {‘1921681080’,

’1921681180’, ’...’, ’1921681980’}. The number of

keys in this step is 11 keys. The generated keys from

step 2 are hashed and stored in the bucket in order to

group duplicate keys as shown in the 3rd step. The

algorithm used to hash the keys is FNV [27] because it

is a fast hash processing and very low collision rate as

shown in Algorithm 1. Inputs of FNV require a hash

function from the function family (d) and a key that

will be hashed. The output is usually called a digest (p)

which is always the fixed length, even though the keys

are different lengths. To compute the location of a key

in a bucket, the modulus (mod = %) is used between a

digest and the table size. If the locations of digests are

collided, the perfect hashing will be stored at the same

keys in the same bucket in a stacked manner (Step 3

and Algorithm 2). For example, the keyi =

“1921681880” and keyj = “1921681980” are the

collision while they are hashing by the function H(d,

keyi) and H(d, keyj) = 2. The d = 0 means the first

function in the function family, and d will be

incremented one by one from 0 to n when key

collisions occur (d = 1 = 2sd function, d = 2 = 3rd

function, ..., d = (n-1) = nth function).

IP Packing Technique for High-speed Firewall Rule Verification 1741

Figure 3. IPSets workflows with the perfect hashing

Algorithm 1. The FNV hash algorithm

1. Input: d, a key

2. Output: p (a hashed key)

3. if Input has both d and a key then

4. if d == 0 then

5. d � 0x01000193

6. end if

7. while c � read a char from a key until NULL do

8. d � ((d * 0x01000193) ^ ord(c)) & 0xffffffff

9. end while

10. Else

11. return NULL # any input error

12. end if

13. return p � d

14. End

Algorithm 2. Perfect hashing of IPSets

1. Input: dictionary (dict) of key and value (‘key’:value)

2. Output: G, V (G = intermediate, V = values table)
3. set size >> |dict|

4. # put all keys to buckets

5. create bucket[size][], G[size], V[size]

6. while keyi � read dict until NULL do

7. p � FNV-hash (0, keyi) mod size

8. bucket [p].append(keyi)

9. end while

10. # put all unique keys from buckets to G, V table

11. while key � read bucket[d][*] until NULL do

12. if |key| == 1 then

13. put 0 � G[d] (d ∈ N0)

14. put value from dict(key) � V[d]

15. end if

16. end while

17. # put all collided keys from buckets to G, V table

18. while keys � read bucket[d][*] until NULL do

19. if |keys| > 1 then

20. d = 1

21. while key � read keys until NULL do

22. p � FNV-hash(d, key) mod size

23. if put d � G[p] then collision then

24. p � rehash(d++, key) until no collision

25. end if

26. V[p] � read value from dict(key), G[p] � d

27. end while

28. end if

29. end while

30. End

After all keys in step 2 have been successfully

hashed by the function H(0, keyi) into the buckets,

IPSets will hash all keys in each bucket to the

intermediate (G) and value table (V) again as

illustrated in step 4. If any bucket holds only one key,

the key does not collide like the bucket number 0 and 1

in step 3. In the opposite case, if any bucket holds more

than one key, the keys in these buckets are collisions as

the bucket number 2. Step 4, a key in each bucket (No

collision) will be hashed by the function H(0, keyi)

again. The hash function 0 will be put in the table G,

and the action will be placed in the table V. For

example, the bucket 0 keeps the key ’1921681080’,

which is hashed by the function 0, the algorithm will

put 0 at the address 0 in G and place 1 (Action = accept)

at the address 0 in V. For another example, keys in the

bucket 2 (Collisions) will be hashed by H(1, keyi) such

as H(1, “1921681880”) = 2 and H (1, “1921681980”) =

4. Fortunately, in this example, both keys are not the

collision, so the function number 1 (1) will be put at

the address 2 in G, and the action (accept = 1) will be

put at the address 2 (for “1921681880”) and 4

(“1921681980”) in the table V. Noticeably, if both

key ’1921681880’ and “1921681980” in the bucket 2

are hashed and then collided. They can be solved by

increasing the function number (d) from 1 to 2, ..., n

and re-hashing until there is no collision as illustrated

in step 5.

1742 Journal of Internet Technology Volume 20 (2019) No.6

2.4.3 IPSets Matching Process

The packet matching (Verifying) of IPSets is shown

in Figure 4 and Algorithm 3. Supposing that an

incoming packet pi consisting of DIP = 192.168.1.9

and DP = 80 is arriving to the IPSets, the pi will be

formatted to be a key as “1921681980” (Step 1). After

that, the key will be hashed by H (0, “1921681980”) =

2. The number 2 indicates the address that holds the

hash function number 1 in G table (Step 3). The key

“1921681980” will be hashed again by H(1,

“1921681980”) = 4 in V table (Step 4). This address

(Number 4) keeps the accepted action (accept = 1) for

processing this packet. That is, this packet can pass to

any destination address (Step 5).

Figure 4. Packet matching procedure of IPSets

Algorithm 3. Look up the value in hash table G, V

1. Input: G, V and a key

2. Output: a value

3. d = G[FNV-hash(0, key) mod len(G)]

4. if d == 0 then

5. return V[FNV-hash(0, key) mod len(G)]

6. else

7. if d > 0 then

8. return V[FNV-hash(d, key) mod len(G)]

9. else

10. print ”Not found”

11. end if

12. end if

13. End

2.4.4 IPSets Memory Consumption

According to IPSets memory management, the

default memory of G and V table is 1,024 bytes [13];

however, the system administrator can make changes

at any time. In the situation where G and V table are

not sufficient for all key generation process, both will

be automatically increased by 2n such as 211, 212, ..., 2n.

Thus, IPSets, consuming the memory usage, is O(2n).

2.4.5 IPSets Configuration

There are two steps to configure IPSets to act as the

firewall in conjunction with IPTables:

(1) Declaring a set of firewall rule is based on an

option type, such as hash:IP, hash: net, and so on. For

this example, this paper will only show hash: net as

follows:

create a set of IPSets rules named myset as hash: net

ipset create myset hash: net

add the myset subnet network addresses to IPSets

engine ipset add myset 192.168.1.0/24 ipset add

myset 192.168.2.0/24:

(2) Binding the set of IPSets rules to IPTables is: #

configure IPTables to drop src addresses iptables-I

INPUT-m set-match-set myset src-j DROP.

3 Key Contributions

Nowadays, IPSets is the fastest open source

matching framework for IPTables. It is able to verify

any rule against any packet by O(1). However, it still

has several drawbacks. In this paper, a new structured

firewall is proposed. The new firewall can overcome

the drawback of IPSets, and can obtain the same

optimal speed as performed by IPSets, which is O(1).

This paper consolidates six main contributions as

follows:

(1) The paper develops a new structured firewall by

C language on Linux kernel, called IPack. It is the full

firewall, not just an extension like IPSets.

(2) IPack improves the memory consumption of

IPSets from O(2n) to O(n) by applying the sparse

matrix structure and IP packing algorithm.

(3) It does not declare rule types like IPSets, it can

declare firewall rules in the general pattern freely.

(4) It can detect and correct rule anomalies by using

the Path Section Diagram (PSD), unlike IPSets does

not.

(5) It can handle all IP address classes (A-D) but

IPSets is not supported the large class such as the A

class.

(6) IPSets requires a lot of skills to design firewall

rules, but IPack does not.

4 IP Packing Design

The design process of IPack has five phases shown

in Figure 5. Each design phase can resolve the IPSets

drawbacks respectively. The details of each phase are

follows:

4.1 Phase 1: Creating Rule-Based Firewall

Rule-based firewall is now a popular rule fashion

such as IPTables, Cisco ASA, Windows defender, and

so on. A rule base is a set of rules that declares what

packets can be passed or dropped. Rule base normally

works on a top-down approach in which the first rule

in the rule list is executed first. If the traffic is allowed

by the first rule, the subsequence rules will never be

executed. Rule base typically has the format of

{Source, Destination, Service, Interface, Action}, such

IP Packing Technique for High-speed Firewall Rule Verification 1743

Figure 5. IPack design process

as {192.168.1.0/24, 200.150.10.0/28, TCP, eth0,

DROP}. The advantages of rule base: admins can

create rules freely with basic firewall knowledge (No

need to be expert), and rules are arranged in order to

make them easy to understand. Therefore, this paper

still chooses the rule-based interface to make firewall

rules for the phase 1 in Figure 5. In order to explain the

IPack design, this paper selects the five elements of the

rule as SIP, DIP, DP, Pro, and Act, shown in Table 2

because the elements are unique to make a decision

path for PSD in the next phase.

Table 2. Simple rules to demonstrate IPack design

No. SIP DIP DP Pro Act

r1 192.168.1.0/28 * 80 * a

r2 192.168.1.16/28 * 25-30 * a

r3 192.168.1.0/24 * 60-90 * d

In Table 2, there are three rules. The 1st rule (r1)

allows (a) source IP addresses (SIP) ranging from

192.168.1.0-15 (16 IP addresses) to any destination

address (DIP = *), a destination port number 80 (DP),

and any protocol (Pro = * = TCP or UDP). The rule (r2)

accepts SIP addresses from 192.168.1.16-.31 (16 IPs),

DIP = any, DP = 25-30, and Pro = any. The last rule

(r3) drops (d) SIP from 192.168.1.0-.255 (256 IPs),

both DIP and Pro = any and DP = 60-90. Noticeably,

rule r3 conflicts against r1 and r2 (Overlapping between

SIP and DP, and different action), but rule r1 does not

conflict with rule r2.

The phase 1’s conclusions. Rules are created

according to user requirements independently, and not

assigned any group type like IPSets (To resolve the

admin skills, IP classes, and difficult rule declaration).

4.2 Phase 2: Converting Rule-Based to PSD

Tree

The rules from the phase 1 will be converted to Path

Selection Diagram (PSD) in order to eliminate conflict

problems. The key principle of PSD is to merge all

duplicated rules to unique rules. The second phase

begins by reading the rules from the first phase in the

sequence as shown in Figure 5. For example, the r1 in

Table 2 is read first. For creating the PSD tree structure,

the root node is constructed on the tree first as

illustrated in step 1 of Figure 6. After the root node is

created on PSD tree, PSD algorithm inserts the ports of

each rule by a sequence to PSD. For example, the port

number 80 ([80]) of the r1 is inserted to the first child

node on PSD-named, N{i,j} (i = level name, j = node

number in each level). So, N{i=1,j=1} means the first

node in the DP level (Step 2 in Figure 6). Next, the

algorithm connects the root node to each child node in

DP level by building a link state-named, L{k,l} (k =

level name, l = link number in each level). The

L{k=1,l=1}, for example, is to link between the root node

to the first child node (N{i=1,j=1}) in DP level. Upon

r1{DP} is already created on the tree, then the ports of

r2{DP} ([25, 30]) will be constructed on the tree in step 3.

r2{DP} ⊄ r1{DP}, so PSD algorithm will create a new

node named N{1,2} and a new link named L{1,2} from the

root node to N{1,2} on the tree. The last step in this level

is creating all ports of r3. The r3{DP} is the superset of

r1{DP} (r3{DP} ⊇ r1{DP}), so r3{DP}-r1{DP} = [60, 90]-[80]

= [60, 79] and [81, 90] respectively. New node N{1,3}

and N{1,4} are created on the tree in step 4. The port

number 80 of r3 is merged to N{1,1} because it is

duplicated with r1{DP}. The last process in this DP level

is to link between the root to N{1,3} and N{1,4} by L{1,3}

and L{1,4} respectively. After all, the nodes in the DP

level are created successfully; the next process is to

construct all the destination IP addresses (DIP) of rules

in the DIP level on the tree. The first operation at this

level is constructing DIP of r1. r1{DIP} is created as node

N{2,1} ranging from 0.0.0.0 to 255.255.255.255(*), and

the L{2,1} links between N{1,1} and N{2,1} as illustrated in

step 5 of Figure 7. While the r2{DIP} can be inserted to

the tree as the node N{2,2} immediately because of r2{DP}

⊄ r1{DP} (Step 6). The port numbers of r3 is the

superset of r1{DP}, so inserting r3{DIP} to the tree has to

consider with three paths: the path of L{1,1} (N{2,1}),

L{1,3} (N{2,3}), and L{1,4} (N{2,4}) in the step 7 of Figure 7.

Similar to inserting DIP, source IP addresses of r1

ranging from 192.168.1.0 to 192.168.1.15 (/28) are

inserted as the node N{3,1} in the first path of PSD tree

(Step 8 of Figure 8). After that, PSD algorithm

establishes a link L{3,1} from N{2,1} at DIP level to N{3,1}

at SIP level. The r2{DP} is not the subset of any rule, so

r2{SIP} will be inserted into N{3,2} in the second path on

the tree without any action (Step 9).

1744 Journal of Internet Technology Volume 20 (2019) No.6

Figure 6. Inserting all ports from rules to PSD (DP level)

Figure 7. Inserting all destination IP addresses from the rules to PSD (DIP level)

After that, PSD algorithm establishes a link L{3,1}

from N{2,1} at DIP level to N{3,1} at SIP level. The r2{DP}

is not the subset of any rule, so r2{SIP} will be inserted

into N{3,2} in the second path on the tree without any

action (Step 9). This node maintains source IP

addresses ranging from 192.168.1.16-.31 (/28 = 16 IPs),

and a link connects from N{2,2} to N{3,2}, called L{3,2}.

The last step (10) of the SIP level is inserting r3{SIP}.

Owing to r3{DP} ⊇ r1{DP} and r3{SIP} ⊇ r1{SIP}, so r3{SIP}

will be created on three paths: the path L{1,1}, L{1,3}, and

L{1,4} respectively. Node N{3,3}, N{3,4} and N{3,5} are

created on the tree. N{3,3} contains 240 IPs ranging

from192.168.1.16-.255, N{3,4}, and N{3,5} holds 256 IPs

(192.168.1.0/24). The link L{3,3}, L{3,4}, and L{3,5}

connect to their nodes from DIP to SIP level

respectively as shown in step 10 of Figure 8. The final

step (Step 11 in Figure 9) of creating PSD phase is to

build the protocol node into the tree at the Pro level.

For example, protocols of r1 is any (*), which is both

TCP and UDP protocol. The action of r1 is the

acceptance (a), and it will be stored in the first node

N{4,1} of the Pro level. In practice, the a is equal to 1

and d is equal to 0. The protocols of the remaining

rules can be implemented similarly to inserting the SIP.

Noticeably, the ordering of the rule fields on the tree

structure is DP, DIP, SIP, and Pro respectively. This

arrangement will minimize the number of branches of

the tree. In addition, the four fields (DP, DIP, SIP,

PRO) of a firewall rule are sufficient to verify how to

match a packet against any rule. The Figure 9 is the

completed PSD tree structure after phase 2 is finished.

The data type used to store rules is represented below,

and the algorithms, converting rules to the tree

structure, are shown in Algorithm 4 and Algorithm 5.

Figure 8. Inserting all source IP addresses from the rules to PSD (SIP level)

IP Packing Technique for High-speed Firewall Rule Verification 1745

Figure 9. Inserting protocols and actions from the rules to PSD (Pro level)

Algorithm 4. The Path Selection Diagram (PSD)

1. Input: Rules {r1, r2, ..., rn}, where n ∈ Z+, n ≠ 0

2. Output: The Path Selection Diagram (PSD)

3. if PSD = NULL then

4. # Create the root node and first path of PSD tree

5. r1 � Read firewall Rules

6. node* root � new node(NULL), node* head

 � root

7. while f � Read each field from r1 until NULL

 do

8. head.child = new node(f)

9. head = head.child

10. end while # The first path was successfully

 created

11. while rule � Read each rule from Rules do

12. head � root.child

13. f � Read first field from rule

14. Call Subtree(head, f, rule)

15. end while

16. end if

17. Return PSD

18. End

Algorithm 5. Subtree (node, f, rule)

1. Input: head, f = each field of rule, rule

2. Output: Subtree

3. # First case: f ⊄ all fields in flat level

4. if head.data-f == φ and head.sibling == NULL

then

5. head.sibling � new node(f)

6. head � head.sibling

7. while f � Read each field from rule do

8. head.child � new node(f)

9. head � head.child

10. end while

11. Return

12. Else

13. if head.data-f == φ and head.sibling ≠ NULL

 then

14. head � head.sibling

15. Call Subtree(head, f, rule)

16. end if

17. Return

18. end if # Finished first case

19. # Second case: f == all fields in deep level

20. if head.data-f == 0 and head.child == NULL

then

21. Return

22. else

23. if head.data-f == 0 and head.child ≠ NULL

 then

24. head � head.child

25. f � head.data

26. Call Subtree(head, f, rule)

27. end if

28. end if

29. # Third case: f ⊂ of all fields in flat and deep

level

30. if head.data-f ≠ φ then

31. d � head.data-f

32. head � head.sibling

33. Call Subtree(head, d, rule)

34. head � head.child

35. Call Subtree(head, f, rule)

36. end if

37. End

struct {

 SET data; #data as SET data type

 struct node* sibling;

 struct node* child;

 } node;

The phase 2’s conclusions. After PSD tree has been

built successfully, it is guaranteed that conflicts will

not occur. Supposing a packet pi consists of DP = 80,

1746 Journal of Internet Technology Volume 20 (2019) No.6

DIP = any, SIP = 192.168.1.10, and Pro = TCP, this

packet will be matched both r1 and r3 in Table 2. In

traditional firewalls, the conflict arises because the

action of r1 and r3 is different. However, this situation

does not occur with PSD tree because the packet will

be traversed by the path number 1 only, and this packet

will be adjudged to be acceptable (a).

4.3 Phase 3: Mapping PSD Tree to Sparse

Matrices

The PSD tree from phase 2 is fetched to the input of

phase 3. This phase aims to speed up the memory

access from O(logn) of the PSD tree to O(1) by

indexing on the matrix. Furthermore, firewall rules

stored in the PSD tree are also shared so the size of the

tree can be optimal. The sparse matrix is two-

dimensional (2D), excluding the matrix used to store

the port number is one dimensional (1D) as the

following Figure 10. The DP matrix is used to store

port numbers ranging from 0 to 65535. If each port

consumes 16-bit integer, the total memory

consumption of DP is � 131 kilobytes (65,536 * 16

bits for supporting 65,536 rules). The number of

protocols used for IPv4 is 28, so the memory space for

Pro is � 33.55 megabytes (256 * 8 bits (for actions) *

65,536). Unlike the case of DIP and SIP, both are four

octets for IPv4, which is divided into four parts by dots

such as 192.168.1.10. Thus, the matrix space for

storing both DIP and SIP is 4 octets * 256 * 16 bits *

65,536 * 2, which is � 268 megabytes. Tree mapping

to matrices can be done simply by starting each breadth

level. For example, the DP level is mapped first, the

port number 80 is mapped to the 80th address of the 1D

matrix of DP, and this address keeps the path number 1

as shown in Figure 11. Other ports in this flat level are

also implemented in the same way. The port number

ranges from 25 to 30, pointing to the address 25 to 30

in the DP matrix and storing the path number 2. The

addresses ranging from 60 to 79 store the path number

3, and addresses ranging from 81 to 90 store the path

number 4. For the second flat level (DIP), IPs of all

routes range from 0.0.0.0 to 255.255.255.255, but they

differ in path directions. Thus, the row number 1 of all

DIP matrices is set to be 1 (Path no. 1), and the number

2, 3 and 4 are set to all elements of the row number 2,

3 and 4 respectively. For SIP level, the path 1 and 2

share DIP endpoint, so they use the same memory

space in the first row of SIP matrices together. For

example, the matrix of octet 1 (Address 192), octet 2

(168), and octet 3 (1) are set to be ‘X’ (Don’t care

term), and other addresses are set to 0. In practice, ‘X’

is set to anything (Usually to be-1). The continuous

memory from the position 0 to 15 of the matrix (Octet

4) keeps number 1 (Path 1), and the position 16 to 255

keep number 2 (Path 2). For the other routes in SIP

level, they have the similar mapping. In the Pro level,

it only uses the TCP and UDP protocol, thus the

position number 6 (UDP) and 17 (TCP) is set to be 0

(accept) or 1 (deny).

Figure 10. 1D and 2D matrices for storing firewall rules

Figure 11. Mapping all paths and nodes from the PSD tree to matrices

IP Packing Technique for High-speed Firewall Rule Verification 1747

The phase 3’s conclusions. Searching time of tree

structures are usually O(logn) but the matrices are O(1).

The goals of this phase are to change the searching

time from O(logn) to O(1) and represent redundant data

from the shared rules.

4.4 Phase 4: Packing Sparse Matrices to 1D

Arrays

Interestingly, the data in the matrices from phase 3

are very duplicate and low non-zero elements. In other

words, it means a wasted memory space. The object of

this phase is to decrease the amount of a wasted

memory by the packing method, called IP Packing.

The principle of this method is to compact the data

from the 2D matrix structures to 1D arrays as shown in

Figure 12. First, the DP matrix is already 1D array

structure, so we do not pack this matrix. Next, DIP

matrices are packed to the 1D array. The Row Lookup

Table (RLT) is used to address to the actual data in the

1D array of each DIP octet. RLT has two columns:

COL (Column index) for calculating an address of an

actual data in the 1D array and END for identifying the

last number of each DIP octet. If the END is an

asterisk (*), it means any number from 0 to 255. For

example, the first row of the DIP octet 1 ranging from

0 to 255 contains the path number 1, thus the RLT

records the number 0 (Starting position of the 1D array)

to the COL and “*” to the END. The second row of the

DIP octet 1 (Containing the path number 2) is

compacted to the second row in RLT. The COL

contains the number 1 pointing to the address number 1

in the 1D array. For the remaining rows of the DIP

octet 1, they have the same operations. The data of

each row of DIP octet 2, 3, and 4 are compacted to the

1D{o2-o4} array and RTL{o2−o4} respectively. The next

step is a compactness of all 2D of SIP octets to 1D

arrays. For example, the row no. 1 of the SIP octet 1

contains only one non-zero value, which is “X” (Don’t

care term) in the column number 192. The address of

this value in the 1D array of SIP{O1} is 0 because this

value is the first element in its 1D array; therefore, the

COL in the first row of RLT must be subtracted by-192

in order to point to the zero address in the 1D array.

The END of this row is 192 because it has only one

value. In case of the SIP octet 4, the row no.1 contains

a set of several path numbers; for example, the

positions ranging from 0 to 15 contain the number 1

(Path number 1), and the positions starting from 16 to

255 pack up the number 2. The compactness algorithm

copies all values from the row no.1 in SIP octet 4 to the

1D array positioning 0 to 255 (256 addresses), and the

index of the 1D array points to the address 256

automatically for storing the next data set. The COL

and END record 0 and 255 in the RLT table

respectively. The next row of SIP octet 4 (Row no.2)

contains the number 3, starting at position 16 to 31, so

the COL of RLT records 240 (256-16), and the END

records 31 (The last number of SIP octet 4), and the 1D

array of SIP octet 4 starting from 256 to 271 is

replaced by 3. Other rows have the same compacted

operation as mentioned above, and as shown in the

following Figure 12.

Figure 12. Packing all matrices to 1D arrays

The phase 4’s conclusions. The data structures after

packing process: 1) one 1D for DP; 2) 4 Row Look up

Tables (RLT of DIP{o1−o4}) and one 1D for DIP; 3) 4

Row Look up Tables (RLT of SIP{o1−o4}) and one 1D

for SIP; and 4) one Row Look up Table (RLT of PRO)

and one 1D for Pro. The memory space of IPack after

this phrase is O(n).

4.5 Phase 5: Testing Firewall Rule Matching

This section shows the processes of the firewall rule

matching or verifying against an incoming or outgoing

packet by IPack. Supposing an incoming packet pi

consists of DIP = 200.10.0.100, SIP = 192.168.1.16,

DP = 80, and the TCP protocol (Number 17) will pass

1748 Journal of Internet Technology Volume 20 (2019) No.6

through IPack. Step 1, the DP of pi is used to point to

the address number 80 in the 1D array of DP as shown

in Figure 13. The data in this address is used to point to

the row number 1 of RLT for DIP. The row no. 1 of all

RLT of DIP contains COL = 0 and END = ‘*’, which

means that it is any IP address (END = *) and points to

the column 0 (COL = 0) in the 1D array of DIP (Step

2). The column 0 of all 1D array of DIP contains the

number 1 (Row no.1) pointing to their row number in

RLT of SIP. Step 3, each SIP octet of pi is computed

with each COL in RTL of SIP, such as the first octet of

SIP of pi subtracts the COL in row number 1 of RLT

for SIP{o1} (192-192) = 0, the 2nd
 octet of SIP of pi

subtracts the COL in row no. 1 of RLT for SIP{o2}

(168-168) = 0, the 3rd octet of SIP of pi subtracts the

COL in row no. 1 of RLT for SIP{o3} (1-1) = 0, and the

last octet of SIP of pi subtracts the COL in row no. 1 of

RLT for SIP{o4} (16-0) = 16. The address number 0 of

the 1D array of SIP{o1,o2,o3} is ‘X’, and it refers to the

ignored terms. However, there will be at least one term

that is not ‘X’, which is the SIP{o4}(16). This address

(16) stores the row number of RLT of the next level

(Pro), which is the number 2 (Row no. 2 of RLT for

Pro). In Figure 13, COL keeps the number 7, and END

collects the number 17 (Protocol TCP). Thus, the

firewall matching algorithm will calculate the Pro of pi

(17) with the data stored in COL (7). The result is 24

(17 + 7), which is the pointer to the firewall decision at

the address 24 of the 1D for Pro. The packet pi is

decided to be a drop (0) immediately. Matching any

packet against IPack is shown in Algorithm 6.

Figure 13. Matching an incoming packet against firewall rules in IPack structures

Algorithm 6. Packet matching algorithm of IPack

1. Input: a packet pi, 1-D of DP, RLT and 1-D of

 DIPo1−o4, RLT and 1-D of SIPo1−o4, RLT

 and 1-D of Pro

2. Output: drop (0) or accept (1)

3. dp � read DP from pi, dp � read 1D-DP[dp]

4. if RLT-DIP[dp][END]o1−o4 == * then

5. dipo1−o4 � RLT-DIP[dp][COL]o1−o4

6. dip-io1 � 1D-DIP[dipo1]o1,

 dip-io2 � 1D-DIP[dipo2]o2,

 dip-io3 � 1D-DIP[dipo3]o3,

 dip-io4 � 1D-DIP[dipo4]o4

7. Else

8. dipo1−o4 � read DIP from pi

9. if dipo1−o4 0 1D-DIP[dp][END]o1−o4 then

10. dip-io1 � 1D-DIP[dp][COL]o1 + dipo1,

 dip-io2 � 1D-DIP[dp][COL]o2 + dipo2,

 dip-io3 �1D-DIP[dp][COL]o3 + dipo3,

 dip-io4 � 1D-DIP[dp][COL]o4 + dipo4

11. Else

12. return drop # a packet mismatch while

 check DIP

13. end if

14. end if

15. if RLT-SIP[dip-io1−o4][END]o1−o4 == * then

16. sipo1−o4 � RLT-SIP[dip-io1−o4][COL]o1−o4

17. sip-io1 � 1D-SIP[sipo1]o1,

 sip-io2 � 1D-SIP[sipo2]o2,

 sipio3 � 1D-SIP[sipo3]o3,

 sip-io4 � 1D-SIP[sipo4]o4

18. else

19. sipo1−o4 � read SIP from pi

20. if sipo1−o4 ≤ 1D-SIP[dip-io1−o4][END]o1−o4 then

21. sip-io1 � 1D-SIP[dip-io1][COL]o1 + sipo1,

 sip-io2 � 1D-SIP[dip-io2][COL]o2 + sipo2,

 sip-io3 � 1D-SIP[dip-io3][COL]o3 + sipo3,

 sip-io4 � 1D-SIP[dip-io4][COL]o4 + sipo4

22. else

23. return drop # a packet miss match while check

 SIP

24. end if

25. end if

IP Packing Technique for High-speed Firewall Rule Verification 1749

26. pro-i � read only sip-io1−o4 ≠ ‘X’

27. pro � read Pro from pi

28. if pro ≤ RLT[pro-i][END] then

29. pro-i � RLT-PRO[pro-i][COL] + pro

30. return 1D-PRO[pro-i]

31. else

32. return drop # a packet miss match while check

 Pro

33. end if

34. End

The final phase (5) conclusion: the concept of IPack

matching process is to use the information header of an

incoming or outgoing packet to act as pointers to RLTs

and 1D structures, thus the speed of matching packets

is O(1).

5 IPack Implementation

The IPack firewall has been developed by the

C/C++ language (GCC 4.4.7) and GNU Make 3.8 on

64-bit Linux kernel version 2.6. IPack consists of two

parts: the user space and kernel space.

The user space (IPack.o) parses the firewall rules

from an administrator like adding, editing, and

removing rules; it also builds the PSD tree. If firewall

rules are valid according to grammar rules, they will

pass through to the kernel space by /procf file system.

The kernel space (IPack_klm.ko) executes the rules

passed by an administrator from /procf file by using the

procf_read() and procf_write() function. The main

function of IPack kernel space is to block, pass, and

capture packets based on the built-in inbound and

outbound filtering function as illustrated in Figure 14.

IPack source files can be downloaded from https://isan.

msu.ac.th/suchart/IPack/.

Figure 14. Implementing IPack on real Linux system

6 Testbed Network Environment

IPack and IPsets are tested on the real-world

network as shown in Figure 15. This paper uses IPERF

software [28], a tool for active measurements of the

maximum achievable bandwidth on IP networks, for

both firewall throughput testing. The firewalls are

installed on the client site [29]. Throughput testing is

achieved by evaluating the response time of packets

from the IPERF server, the packets are generated from

the IPERF client via the installed firewalls. The client-

side network connectivity starts from the 3BB (ISP)

using VDSL technology, which has a bandwidth of

30/5 Mbps (Download/Upload stream), connecting to

the Internet. The server site network starts at the

Internet to UNINET (ISP), and the endpoint

connection is at Mahasarakham University, Thailand,

and the IPERF server is installed here. Firewalls are

tested by the most popular protocols [30], i.e., TCP and

UDP. The criteria for testing TCP against firewalls: the

window size = 16, 32, and 64 KB respectively, the

interval time = 1 sec, and the concurrent = 1

connection. In UDP testing, the bandwidth size used to

test firewalls is 100 Mbps. The number of rule sets are

100, 500, 1,000, 2,000, 3,000, 4,000, 5,000, 10,000,

20,000, 30,000 respectively.

Figure 15. IPack vs IPSets testbed on the real network

7 Firewall Performance Evaluation

Both firewall performances are evaluated by two

approaches: the processing speed and memory usage.

The processing speed is divided into two parts: the

speed for building data structures and speed for

matching rules. First, the time to build IPack data

structures using Algorithm 4 and Algorithm 5 takes

O(n2), which is similar to IPSets using Algorithm 2.

Second, the matching time of both techniques is equal

to O(1) because IPSets uses hash tables and IPack

applies array structures for accessing the data. In the

case of memory consumption, if hash tables of IPSets

are not enough to store the data, the hash table size will

be increased by 2n. Thus, the space complexity is O(2n).

However, IPack is slightly different for allocating the

memory because it uses the array as the data structures.

For example, in the worst case (Figure 12), IPack

allocates 2 * n (Number of rules) * 9 (Number of RTLs)

+ 65,536 (1D of DP) + 256 * n * 9 (1D of DIP, SIP

and Pro) = 65,536 + 2,322 * n; therefore, the space

complexity of IPack is O(n).

The firewalls’ TCP throughputs running on the real-

world network are shown in Figure 16 and Figure 17.

Figure 16 shows throughputs of the packet transfers

between IPSets and IPack by different TCP window

sizes. The number of firewall rules is evaluated with

1750 Journal of Internet Technology Volume 20 (2019) No.6

both firewalls running from 100 to 30,000. Observed

by the overall, throughputs of both firewalls are similar.

For example, the throughputs are around 275, 482 and

659 KB/sec by the windows sizes as 16, 32, 64 KB

respectively. In Figure 17, throughputs are measured

by the amount of data received and sent at the bit rate.

Both firewalls can be processed consistently without

depending on the number of firewall rules. The

throughputs of windows sizes are 16, 32, 64 KB

around 2.2, 3.7 and 5.35 Mbps respectively. According

to the UDP transfers, they have tested in the same way

as TCP, measuring packet-level and bit-rate traffic at a

data transfer rate of 100 Mbps. The results are still

constant about 11 KB/sec at packet-level transfers

(Figure 18) and 97 Mbps/sec at bit-rate transfers

(Figure 19).

Figure 16. Packet transfers of IPSets and IPack (TCP)

Figure 17. Binary transfers of IPSets and IPack (TCP)

Figure 18. Packet transfers of IPSets and IPack (UDP)

Figure 19. Binary transfers of IPSets and IPack (UDP)

8 Conclusion

This paper designs and develops the firewall with

O(1) worst case access time, called IPack. It can

resolve the drawbacks of IPSets such as the rule

management, rule conflicts, and the IP classes.

Especially, it consumes memory usage less than IPSets.

IPack is also tested on the real-world network, the

results show that it can operate on the high-speed

networks as IPSets. The algorithm applied with IPSets

is the perfect hashing, and it works on IPTables.

However, IPack uses the path selection diagram (PSD),

sparse matrix and packing algorithm, and operates on

Netfilter. IPSets handles with packet verification

(Matching rules against packets) only for the packet

decisions (accept or deny) to be processed by IPTables.

Unlike IPack, which is designed to fully support

firewall operations, excluding NAT (Network Address

Translation) and the packet filtering. The final

conclusions between IPSets and IPack are shown in

Table 3.

Table 3. Summaries of IPSets vs IPack performance

Description of
Firewall Feature

IPSets IPack

Time complexity for building structures O(n2) O(n2)

Time complexity for rule verifying O(1) O(1)

Space complexity O(2n) O(n)

IP class supports (A, B, C and D) B, C, D All

Basic operations of firewalls Matching All

Rule anomaly detection and correction No Yes

Rule definition Manual Auto

Admin skills for handling firewalls Expert Normal

Note. basic operations: matching, decision and forwarding.

References

[1] X. Jia, J. K. H. Wang, Distributed Firewall for p2p Network

in Data Center, 2013 IEEE International Conference on

Consumer Electronics, Shenzhen, China, 2013, pp. 15-19.

[2] C. Wang, D. Zhang, H. Lu, J. Zhao, Z. Zhang, Z. Zheng, An

Experimental Study on Firewall Performance: Dive into the

Bottleneck for Firewall Effectiveness, 2014 10th

International Conference on Information Assurance and

Security, Okinawa, Japan, 2014, pp. 71-76.

IP Packing Technique for High-speed Firewall Rule Verification 1751

[3] H. Welte, P. N. Ayuso, The Iptables Project, IPTables

Research Report 1077, June, 2014.

[4] R. Zhan-rui, W. Yong-jun, S. Yong-lin, Based-service

Grouping Firewall Policy Conflict Checking, CSAE 2011-

2011 IEEE International Conference on Information Science

and Engineering, Jeju Island, Korea (South), 2011, pp. 33-37.

[5] L. Zhang, M. Huang, A Firewall Rules Optimized Model

Based on Service-Grouping, WISA 2015-2015 12th Web

Information System and Application Conference, Jinan, China,

2015, pp. 142-146.

[6] H. B. Acharya, M. G. Gouda, Linear-time verification of

Firewalls, 2009 17th IEEE International Conference on

Network Protocols, Princeton, NJ, USA, 2009, pp. 133-140

[7] H. Hamed, A. El-Atawy, E. Al-Shaer, On Dynamic

Optimization of Packet Matching in High-Speed Firewalls,

IEEE Journal on Selected Areas in Communications, Vol. 24,

No. 10, pp. 1817-1830, October, 2006.

[8] S. Khummanee, A. Khumseela, S. Puangpronpitag, Towards

a New Design of Firewall: Anomaly Elimination and Fast

Verifying of Firewall Rules, JCSSE 2013-2013 The 2013

10th International Joint Conference on Computer Science

and Software Engineering, Maha Sarakham, Thailand, 2013,

pp. 93-98.

[9] T. Chomsiri, X. He, P. Nanda, Z. Tan, Hybrid Tree-rule

Firewall for High Speed Data Transmission, IEEE

Transactions on Cloud Computing, Vol. 4, No. 99, pp. 1-13,

April, 2016.

[10] D. Rovniagin, A. Wool, The Geometric Efficient Matching

Algorithm for Firewalls, IEEE Transactions on Dependable

and Secure Computing, Vol. 8, No. 1, pp. 147-159, July, 2011.

[11] H. Thomas, HiPAC High Performance Packet Classification

for Netfilter, Master Thesis, Universitat des Saarlandes,

Fachbereich, German, 2004.

[12] H. Welte, P. N. Ayuso, The Packet Filtering Framework,

Netfiler Research Report 2016, May, 2016.

[13] J. Kadlecsik, IP Sets Framework, IPSet Research Report 2017,

April, 2017.

[14] H. Hu, G. J. Ahn, K. Kulkarni, Detecting and Resolving

Firewall Policy Anomalies, IEEE Transactions on

Dependable and Secure Computing, Vol. 9, No. 3, pp. 318-

331, January, 2012.

[15] F. Chen, B. Bruhadeshwar, A. X. Liu, A Cross-domain

Privacy-preserving Protocol for Cooperative Firewall

Optimization, 2011 IEEE Proceedings INFOCOM, Shanghai,

China, 2011, pp. 2903-2911.

[16] E. S. Al-Shaer, H. H. Hamed, Modeling and Management of

Firewall Policies, IEEE Transactions on Network and Service

Management, Vol. 1, No. 1, pp. 2-10, April, 2004.

[17] A. X. Liu, E. Torng, C. R. Meiners, Firewall Compressor: An

Algorithm for Minimizing Firewall Policies, IEEE

INFOCOM 2008-2008 The 27th Conference on Computer

Communications, Phoenix, AZ, USA, 2008, pp. 691-699.

[18] K. Lubna, R. Cyiac, Kavitha Karun A., Firewall Log Analysis

and Dynamic Rule Re-Ordering in Firewall Policy Anomaly

Management Framework, ICGCE 2013-2013 International

Conference on Green Computing, Communication and

Conservation of Energy, Chennai, India, 2013, pp. 853-856.

[19] E. Saboori, S. Parsazad, Y. Sanatkhani, Automatic Firewall

Rules Generator for Anomaly Detection Systems with Apriori

Algorithm, ICACTE 2010-2010 3rd International Conference

on Advanced Computer Theory and Engineering, Chengdu,

China, 2010, pp. 57-60.

[20] A. X. Liu, Formal Verification of Firewall Policies, 2008

IEEE International Conference on Communications, Beijing,

China, 2008, pp. 1494-1498.

[21] S. Pissanetsky, SparseMatrix Technology, Academic Press

Inc, 1984.

[22] L. Robert, Data Structures and Algorithms in Java, 2nd

Edition, Pearson Education, 2017.

[23] R. Shahnaz, A. Usman, I. R. Chughtai, Review of Storage

Techniques for Sparse Matrices, 2005 Pakistan Section

Multitopic Conference, Karachi, Pakistan, 2005, pp. 1-7.

[24] S. A. V. Alfred, J. Menezes, P. C. van Oorschot, Handbook of

Applied Cryptography, CRC Press, 1996.

[25] T. H. Cormen, C. E. Leiserson, R. L. Rivest, C. Stein,

Introduction to Algorithms, Third Edition, The MIT Press,

2009.

[26] J. Kadlecsik, G. Psztor, Netfilter Performance Testing,

Netfiler Research Report 2004, December, 2004.

[27] L. C. Noll, The Core of the FNV Hash, FNV Research Report

2013, April, 2013.

[28] B. A. Jon Dugan, E. Seth, IPERF-the Ultimate Speed Test

Tool for TCP, UDP and SCTP, IPERF Testing Report 2017,

June, 2017.

[29] K. M. Elleithy, R. C. Reddy, Comparison of Personal

Firewalls Security and Performance Issues, Journal of

Internet Technology, Vol. 3, No. 3 , pp. 175-186, Jul. 2002.

[30] D.-R. Lin, C.-I. Wang, D. J. Guan, An Efficient Blind

Verifying for Firewall Using Online/Offline Signcryption,

Journal of Internet Technology, Vol. 13, No. 4 , pp. 607-613,

July, 2012.

Biography

Suchart Khummanee received the

B.Eng. degree in Computer

Engineering from the King Mongkut’s

Institute of Technology Ladkrabang,

the M.Sc. degree in Computer Science

from the Khon Kaen University, and

the Ph.D. degree in Computer Engineering from the

Khon Kaen University, Thailand. He is currently a full

lecturer of Computer Science at the Mahasarakham

University, Thailand. His research interests in the

network security, computer networks, and Internet of

things (IoT).

1752 Journal of Internet Technology Volume 20 (2019) No.6

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (Adobe RGB \0501998\051)
 /CalCMYKProfile (Japan Color 2001 Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHT <FEFF005b683964da300c9ad86a94002851fa8840002b89d27dda0029300d005d0020005b683964da300c8f3851fa0033003000300064002851fa88400029300d005d00204f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks true
 /AddPageInfo false
 /AddRegMarks false
 /BleedOffset [
 8.503940
 8.503940
 8.503940
 8.503940
]
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MarksOffset 9.354330
 /MarksWeight 0.141730
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed true
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

