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Abstract 

A network bottleneck is often caused by firewalls 

installed between network gateways. As a result, the 

overall performance of networks is significantly dropped. 

The following solution to resolve such the problem can 

be achieved by increasing the speed of firewall rule 

verification. Nowadays, there is an open-source matching 

framework which is the fastest of rule verification, 

namely IPSets. It can verify a number of firewall rules 

against huge packets with O(1) worst case access time. 

However, IPSets still displays several drawbacks of 

usability such as rule management, subnet IP address, 

rule conflicts, and memory usage. This paper proposes a 

novel firewall structure that can resolve all drawbacks of 

IPSets, and obtains the optimal speed of firewall rule 

verification at O(1) of access time, called IPack. 

According to IPack implementation, the paper applies the 

sparse matrix to be data structures to maintain firewall 

rules, the Path Selection Diagram (PSD) to eliminate rule 

conflicts and IP packing technique to reduce the size of 

memory space. The experimental results show that IPSets 

drawbacks can be solved by IPack. Especially, the size of 

memory space is reduced from O(2
n
) to be O(n) with the 

same optimal access time and the speed of IPack is still 

equal to IPSets. 

Keywords: Firewall, High-speed firewall, Firewall rule 

matching, IP packing, Path selection 

diagram 

1 Introduction 

Firewall is a basic network security tool to protect 

suspicious packets and unauthorized access between 

the trusted and untrusted network zone. Generally, 

installing on the network gateway between private 

networks (Trusted) and the public network (Untrusted 

or Internet), a firewall verifies of all packets at inbound 

and outbound interfaces depends on security rules. The 

installed firewall on such location, theoretically there 

are several advantages. For example, it is the best place 

to filter all the network traffic; likewise, the other is to 

save the cost of purchasing firewalls because firewalls 

can handle whole traffic at the only single network 

gateway. In contrast, it is a critical point which may 

result a single point of failure (SPOF) and a bottleneck 

of networks. If SPOF occurs in networks, the entire 

networks will be stopped from working suddenly. One 

solution to SPOF is to customize firewalls to be the 

distributed system [1]. The bottleneck refers to slow 

communication speeds and limits user’s efficiency on 

the networks [2]. Solving of the bottleneck of firewalls, 

increasing the speed of rule verification is a good 

solution to deal with it. In this paper focuses on the 

bottleneck networks by improving the speed of firewall 

rule verification. 

Due to the bottleneck problem caused by firewalls, 

in previous years, several researchers have tried to 

improve the speed of firewall rule verification which 

can be classified by the speed into three groups as 

follows. General firewalls, applied to the sequential 

searching algorithm or some tree structures, are placed 

in the first group such as IPTables [3], Based-Service 

grouping [4-5] and the linear time approach [6]. The 

time complexity of rule verifying of this group is quite 

slow, and it is O(n). The firewalls in the second group 

are widely designed by effective tree structures, hence 

rule verifying time of this is faster than the first group; 

that is O(log(n)) like [7-11], etc. Currently the last 

group is an open source framework utility working 

with IPTables [3] and Netfilter [12] to be as the 

network firewall-namely, IPSets [13]. It can verify any 

packet against firewall rules with O(1) worst case 

access time by using the perfect hashing technique. 

Although IPSets is the fastest framework to verify the 

firewall rule nowadays, it has several drawbacks in 

terms of usage. The first obstacle is to create the 

unique keys for a perfect hashing function. IPSets does 

not automatically build unique keys. This responsibility 

is pushed to an administrator who is an expert about 

firewall rule management. IPSets offers a variety of 

key generation formats such as hash:IP:port, hash: net, 

etc. For example, the hash:IP:port means combining 

between an IP address and a port to be a key like 

“1921681180” (Combining between IP 192.168.1.1 

and port number 80 by cutting off dots). Another 

example is that hash:IP:port:net is a combination 

between an IP address, a port number and a subnet 

network. For example, 172.16.1.5:80:192. 16.1.0/30 

can be enumerated to four unique keys like 
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“17216158019216810”, “17216158019216811”, 

“17216158019216812”, and “17216158019216813” 

(Subnet network 192.168.1.0/30 ranging from 

192.168.1.0-192.168.1.3). Selecting a key type of 

IPSets depends on discretion and suitability 

requirements of an administrator directly. 

The second barrier to IPSets deployment is to handle 

the range of large subnets. For example, it does not 

recommend to apply to IP addresses of the A classes 

because the number of generated keys may be larger 

than the available memory space (Overflowed 

memory). A subnet 10.0.0.0/8, for instance, can be 

generated to be a set of unique keys ranging from 

“10000”, “100001”, “100002”, ..., “10255255253”, 

“10255255254”, “10255255255” (~= 16,777,216 keys).  

IPSets is built in order to improve the speed of 

firewall rule verification or packet matching of 

IPTables only. Other functions of the firewall are 

handled by IPTables, such as the packet decision, 

packet filtering, packet forwarding, the network 

address translation (NAT), etc. Thus, IPSets cannot 

independently execute by itself without IPTables, 

which is the third drawback of the IPSets framework. 

As the selection of key generation methods for the 

perfect hashing in IPSets also effects on an amount of 

the active memory. IPSets, therefore, suggests 

administrators to reduce the number of key sets by 

setting the size of IP class to a small size such as class 

C or B instead of IP class A. While IPSets is executing 

and its own memory is running out, it will always 

allocate new memory size as 2n bytes for each time. If 

the default memory size of IPSets is 210 bytes [13], it 

will be allocated as 211, 212, ..., 2n bytes respectively. 

Thus, the space complexity is O(2n) which is quite 

large. This is the fourth restriction on IPSets usage.  

The last IPSets obstacle is related to firewall rule 

anomalies or conflicts. Although IPTables cooperates 

with IPSets to act as the fastest network firewall today 

(The state of the art of the high-speed firewall rule 

verification), both still do not support the firewall rule 

anomaly detection, which is a highly important 

function of network firewalls. The firewall rule 

anomaly means two or more different filtering rules 

that match against the same packet [14]. As an 

anomaly occurs in a firewall running on a network, it 

results in low overall network performance, which is a 

major cause of the network bottleneck. 

In this paper, firstly, aims to eliminate the IPSets 

drawbacks and its speed of rule verification is being 

still as fast as IPSets, which is O(1) worst case access 

time. Second, develops a new whole firewall system 

running on the Linux operating system for kernel 

version 2.6 or higher. Third, proposes two-dimensional 

(2D) sparse matrix structures to store firewall rules, 

and to handle all IP address classes. Forth, presents the 

IP packing technique which compacts non-zero items 

from 2D sparse matrices to one-dimensional (1D) 

arrays for reducing the memory space to O(n). Finally, 

eradicates rule anomalies by using the path selection 

diagram algorithm (PSD) applying from the firewall 

decision diagram [15]. 

2 Background and Related Work 

2.1 Basic Firewall, Rule Definition, and Rule 

Anomaly 

Currently, network infrastructures are widely 

designed by gigabit networks because they can support 

high-speed traffic from a large number of users. 

Firewalls working on such networks also require high 

performance. The main function of firewalls is to 

restrict accessing resources on the networks by rules, 

which will be set properly. For example, firewall rules 

basically allow all requests from any client in private 

networks (Trusted networks) to any resource of servers 

in public networks (Untrusted networks); in contrast, 

any server cannot access to clients. A common firewall 

rule consists of two essential parts. The first one is a 

predicate, and the other is an action. The predicate is 

combined with six conditions: Source IP address (SIP), 

Destination IP address (DIP), Source Port (SP), 

Destination Port (DP), Protocol (Pro), and Interface 

(Int). The action part (Act) will be set either to pass or 

to drop, if all conditions in the predicate are true. 

Given rn to be any firewall rule, and rn is subset of R 

(rn ⊂  R) where R denotes all rules. In addition, rn{…} 

represents conditions of each rule. So that, rn={SIP, DIP, SP, 

DP, Pro, Int} is any source and destination IP address, any 

source and destination port, any protocol, an arriving-

packet interface of rn respectively. Let pk is any 

incoming or outgoing packet over the firewall; then 

pk={SIP, DIP, SP, DP, Pro} is a source and destination IP 

address, a source and destination port, and a protocol 

of pk respectively. Rule r3 in Table 1, for example, the 

firewall will allow private packets across to other 

public networks if pk{SIP} ∈ r3{SIP}, pk{DIP} ∈ r3{DIP}, pk{SP} 

∈ r3{SP}, pk{DP} ∈ r3{DP}, and pk{Pro} ∈ r3{Pro} are true by 

processing over the interface A. Thus, pk{SIP} ∈ 

{192.168.1.0, ..., 192.168.1.255}, pk{DIP} ∈ {0.0.0.0, ..., 

255.255.255.255}, pk{SP,DP} ∈  {0, 1, ..., 65,535}, and 

pk{Pro} ∈ {0, 1, ..., 255} are true. Rule r4 exactly drops 

all public packets that will pass into the private 

networks via the interface B. The final rule (r5) always 

blocks every packet from any to any network. 

Table 1. Firewall rule examples 

No. SIP DIP SP DP Pro Int Act

r1 192.168.1.0/24 *  137-445 * A drop 

r2 192.168.1.0/24 200.30.5.100 * 113 UDP A drop 

r3 192.168.1.0/24 * * * * A pass 

r4 * 192.168.1.0/24 * * * B drop 

r5 * * * * * * drop 

Note. *(SIP, DIP) = (0-232)-1, *(SP, DP) = (0-216)-1, *(Pro) 

= TCP or UDP. 
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Firewall rule anomalies often arise from unclear 

understanding of rule definitions. For example, rule r2 

and r3 are overlapping for all condition fields with 

different actions (Rule r2 = drop, r3 = pass). Therefore, 

we can say that the firewall rule anomalies arise from 

“The conditions appearing in terms of the predicate of 

two or more rules overlap, but there are the different 

actions”. Al-Shaer and Hamed [16] first defined 

anomaly patterns for firewall rules in 2004. They 

defined five types of anomalies, which are shadowing, 

correlation, generalization, redundancy, and 

irrelevancy anomaly. Later, many researchers 

endeavored to resolve rule anomaly problems as 

follows. Khummanee et al. [8] proposed the single 

domain decision approach to reduce the root cause of 

anomalies, by the key contribution of this method 

required acceptable or unacceptable rules only. Liu et 

al. [17] presented the systematic approach to compress 

firewall rules, and they claimed that this technique 

could reduce the number of firewalls more than 50%; 

however, firewall rule anomalies remained especially 

the redundancy of the rules. Applying log analysis and 

dynamic rule re-ordering to improve the efficiency of 

the anomaly management is contributed by Lubna et al. 

[18], and adapting the Apriori algorithm to detect 

anomaly attacks on firewall rules [19]. Although the 

researchers can resolve some anomaly problems, they 

cannot eliminate all anomalies of firewall rules 

completely. Interestingly, there is research that can 

solve the anomaly problems effectively by using the 

firewall decision diagram (FDD) contributed by Liu 

[20]. FDD can eliminate all anomalies, but it must 

process rules in order from the top to the bottom of the 

rules only. 

2.2 Sparse Matrix and Packing Techniques 

A sparse matrix is a matrix where most elements are 

zero; in other words, it is a matrix that contains very 

few nonzero elements as following equation (1). Let S 

be a matrix where S ∈ Zcol * row by col and row ∈ N0, 

thus S is a sparse matrix since the number of non-zero 

elements of S is O(min{col, row}) [21]. Most of the 

sparse matrices applied to science and engineering are 

two-dimensional. For example, S is two-dimension 

sparse matrix consisting of four columns (col = 4) and 

four rows (row = 4). The total memory space used to 

store all elements of S is col * row * k, where k is the 

memory size (Byte) to keep individual elements. The 

total memory space of S to maintain signed integers is 

4 * 4 * 2 (bytes) = 32 bytes in C programming 

language.  

 4* 4

5 0 0 0

0 9 0 0

6 4 3 0

0 1 0 2

col row
S Z

= =

⎡ ⎤
⎢ ⎥
⎢ ⎥= ∈
⎢ ⎥
⎢ ⎥
⎣ ⎦

 (1) 

To reduce a total memory size of a sparse matrix can 

be done by collecting only non-zero elements, and the 

technique is called the sparse matrix packing. Packing 

techniques often require complicated data structures to 

store non-zero elements, and especially it must be able 

to retrieve non-zero elements, stored in such structures, 

to the original matrix correctly [22]. Generally, 

packing techniques are classified by the storage space 

(Point or block) into two categories [23]: the first one 

is the point based storage formats, which maintains a 

single non-zero element with only one element of a 

matrix space such as the coordinate storage (COO), 

compressed row storage (CRS) and so on, and the 

other is the block-based storage formats, which 

maintains a block of non-zero elements of the matrix 

such as the block coordinate storage (BCOO), block 

compressed row storage (BCRS) and so forth. In this 

paper, the concept of BCRS is only presented because 

it performed well and was applied to the packing 

methodology. BCRS is applied from CRS format as 

shown in Figure 1. It can save the cost of memory size 

effectively if each sub-block is large and non-zero 

elements in each sub-block are dense. In the Figure 1, 

BCRS requires three arrays including the block of non-

zero elements (BNZ), column index (col_ind), and row 

pointer (row_ptr). BNZ contains square dense sub-

blocks of non-zero elements. For instance, the 

dimension of each sub-block is 2 * 2, thus the sub-

blocks are stored {{{5, 0}, {0, 9}}, {{6, 4}, {0, 1}}, 

{{3, 0}, {0, 2}}} by a sequence of the sub-block 

address number. The col_ind indicates the column of 

each sub-block; for instance, the sub-blocks of {{5, 0}, 

{0, 9}} and {{6, 4}, {0, 1}} are in the column 0, and 

{{3, 0}, {0, 2}} is in the column 1. Last, the row_ptr 

specifies the first address of sub-blocks in each row; 

for example, the first sub-block address in the row no. 

1 of BCRS is 1. BCRS can save the memory space 

more than CRS (CRS = 38, BCRS = 36 bytes). 

 

Figure 1. CRS and BCRS storage format 

2.3 Hash and Perfect Hashing Techniques 

A hash function is used for mapping (Hashing) data 

of capricious size to fixed size. Returned values from a 

function are called hash values. A data structure used 

to map keys to values is called a hash table, which 
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usually implements an associative array abstract data 

type [24]. A hash function computes an index from the 

key into an array of buckets. Indeed, the hash function 

will attempt to assign a unique free slot in the bucket to 

any key. However, it might generate the same index for 

more than one key, called the hashing collision 

problem. The collision is the big problem of hash 

functions, and it must be handled or resolved by a 

systematic approach in some way such as separate 

chaining, open addressing, robin hood hashing and etc., 

[25]. The effectiveness of a good hashing depends on a 

good hash function, therefore choosing a hash function 

is very important. The basic hashing uses a single or 

fixed hash function which is not the efficacy. To 

improve the performance of a basic hashing, it can be 

done by choosing a randomized function from a family 

of hash functions instead of the fixed hash function. 

This technique, called the universal hashing, can 

significantly reduce the number of collisions. Even 

though the universal hashing is highly effective, it still 

cannot resolve the collisions. In fact, we can make the 

number of collided keys of the universal hashing to be 

zero if we have known all keys in advance or keys are 

static. Such technique is called the perfect hashing. The 

perfect hashing guarantees whether it can build a hash 

table with no collisions.  

2.4 IPSets 

2.4.1 IPTables and IPSets Framework  

Although IPSets [13] is just an extension framework 

of the IPTables firewall [3], it has improved the speed 

of rule verification of IPTables from O(n) to O(1) [26]. 

That is, IPTables has become the best of high-speed 

firewalls now. The IPTables and IPSets framework is 

shown in Figure 2. 

 

Figure 2. IPTables and IPSets framework on Linux 

Supposing that, there is any incoming packet 

arriving at an inbound interface (Network interface: 

NIC) of the IPTables firewall. The packet is passed up 

through the Netfilter Kernel Modules (NKM) layer to 

filter only required packet depending on the network 

policy. The network policy is configured by an 

administrator with the iptables-config utility on 

IPTables layer. In case that IPSets is enabled, firewall 

rules will be configured by the ipsets-config, a 

command-line user interface, instead of the iptables-

config. The packet, forwarding from NKM to IPTables 

layer, will be handled by Linux kernel. However, first, 

an admin needs to enable IP forwarding feature of 

Linux kernel by issuing the command as “sysctl-w 

net.ipv4.ip forward = 1”. After the packet arriving to 

IPTables, it will be thrown to IPSets core for verifying 

against rules in the next step. Rules of IPSets can be 

configured in several ways, as discussed in 

Introduction section, for example, hash:IP:port, hash: 

net, etc. The role of IPSets core matches the packet 

only, other functions will be handled by IPTables such 

as IP forwarding, logging, chaining and so on. After 

the packet validation process has been completed, the 

packet will be decided either to pass or to drop 

(Action). If the action is to drop, IPTables will throw 

the packet away immediately. Otherwise, it will 

forward the packet to a destination next. The packet, 

which is forwarded to a destination network over an 

outbound interface, called an outgoing packet as shown 

in Figure 2. 

2.4.2 IPSets Workflows  

As mentioned earlier, the perfect hashing has been 

applied to IPSets in order to speed up rule verification. 

In this section will explain the detailed IPSets 

workflows as shown in Figure 3. The first step is 

creating a set of IPSets rules (Circle number 1). 

Supposing the type of rule chosen is hash:IP:port, 

such as DIP ranging from 192.168.1.0 to 192.168.1.9 

(10 IP addresses), DP = 80 and Act = accept. The 

second step (Circle number 2) is to generate a set of 

keys by the Cartesian Product between DIP and DP 

from the rule set in step 1, for example, {‘1921681080’,  

’1921681180’, ’...’, ’1921681980’}. The number of 

keys in this step is 11 keys. The generated keys from 

step 2 are hashed and stored in the bucket in order to 

group duplicate keys as shown in the 3rd step. The 

algorithm used to hash the keys is FNV [27] because it 

is a fast hash processing and very low collision rate as 

shown in Algorithm 1. Inputs of FNV require a hash 

function from the function family (d) and a key that 

will be hashed. The output is usually called a digest (p) 

which is always the fixed length, even though the keys 

are different lengths. To compute the location of a key 

in a bucket, the modulus (mod = %) is used between a 

digest and the table size. If the locations of digests are 

collided, the perfect hashing will be stored at the same 

keys in the same bucket in a stacked manner (Step 3 

and Algorithm 2). For example, the keyi = 

“1921681880” and keyj = “1921681980” are the 

collision while they are hashing by the function H(d, 

keyi) and H(d, keyj) = 2. The d = 0 means the first 

function in the function family, and d will be 

incremented one by one from 0 to n when key 

collisions occur (d = 1 = 2sd function, d = 2 = 3rd 

function, ..., d = (n-1) = nth function). 
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Figure 3. IPSets workflows with the perfect hashing 

Algorithm 1. The FNV hash algorithm 

1. Input: d, a key 

2. Output: p (a hashed key) 

3. if Input has both d and a key then 

4.    if d == 0 then 

5.       d � 0x01000193 

6.    end if 

7.    while c � read a char from a key until NULL do 

8.           d � ((d * 0x01000193) ^ ord(c)) & 0xffffffff 

9.    end while 

10. Else 

11.    return NULL # any input error 

12. end if 

13. return p � d 

14. End 

 

Algorithm 2. Perfect hashing of IPSets 

1. Input: dictionary (dict) of key and value (‘key’:value)

2. Output: G, V (G = intermediate, V = values table) 
3. set size >> |dict| 

4. # put all keys to buckets 

5. create bucket[size][], G[size], V[size] 

6. while keyi � read dict until NULL do 

7.        p � FNV-hash (0, keyi) mod size 

8.        bucket [p].append(keyi) 

9. end while 

10. # put all unique keys from buckets to G, V table 

11. while key � read bucket[d][*] until NULL do 

12.       if |key| == 1 then 

13.           put 0 � G[d] (d ∈ N0) 

14.           put value from dict(key) � V[d] 

15.       end if 

16. end while 

17. # put all collided keys from buckets to G, V table

18. while keys � read bucket[d][*] until NULL do 

19.      if |keys| > 1 then 

20.         d = 1 

21.         while key � read keys until NULL do 

22.          p � FNV-hash(d, key) mod size 

23.          if put d � G[p] then collision then 

24.             p � rehash(d++, key) until no collision 

25.          end if 

26.          V[p] � read value from dict(key), G[p] � d

27.        end while 

28.     end if 

29. end while 

30. End 

 

After all keys in step 2 have been successfully 

hashed by the function H(0, keyi) into the buckets, 

IPSets will hash all keys in each bucket to the 

intermediate (G) and value table (V) again as 

illustrated in step 4. If any bucket holds only one key, 

the key does not collide like the bucket number 0 and 1 

in step 3. In the opposite case, if any bucket holds more 

than one key, the keys in these buckets are collisions as 

the bucket number 2. Step 4, a key in each bucket (No 

collision) will be hashed by the function H(0, keyi) 

again. The hash function 0 will be put in the table G, 

and the action will be placed in the table V. For 

example, the bucket 0 keeps the key ’1921681080’, 

which is hashed by the function 0, the algorithm will 

put 0 at the address 0 in G and place 1 (Action = accept) 

at the address 0 in V. For another example, keys in the 

bucket 2 (Collisions) will be hashed by H(1, keyi) such 

as H(1, “1921681880”) = 2 and H (1, “1921681980”) = 

4. Fortunately, in this example, both keys are not the 

collision, so the function number 1 (1) will be put at 

the address 2 in G, and the action (accept = 1) will be 

put at the address 2 (for “1921681880”) and 4 

(“1921681980”) in the table V. Noticeably, if both 

key ’1921681880’ and “1921681980” in the bucket 2 

are hashed and then collided. They can be solved by 

increasing the function number (d) from 1 to 2, ..., n 

and re-hashing until there is no collision as illustrated 

in step 5. 
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2.4.3 IPSets Matching Process  

The packet matching (Verifying) of IPSets is shown 

in Figure 4 and Algorithm 3. Supposing that an 

incoming packet pi consisting of DIP = 192.168.1.9 

and DP = 80 is arriving to the IPSets, the pi will be 

formatted to be a key as “1921681980” (Step 1). After 

that, the key will be hashed by H (0, “1921681980”) = 

2. The number 2 indicates the address that holds the 

hash function number 1 in G table (Step 3). The key 

“1921681980” will be hashed again by H(1, 

“1921681980”) = 4 in V table (Step 4). This address 

(Number 4) keeps the accepted action (accept = 1) for 

processing this packet. That is, this packet can pass to 

any destination address (Step 5).  

 

Figure 4. Packet matching procedure of IPSets 

Algorithm 3. Look up the value in hash table G, V 

1. Input: G, V and a key 

2. Output: a value 

3. d = G[FNV-hash(0, key) mod len(G)] 

4. if d == 0 then 

5.       return V[FNV-hash(0, key) mod len(G)] 

6. else 

7. if d > 0 then 

8.           return V[FNV-hash(d, key) mod len(G)] 

9.    else 

10.        print ”Not found” 

11.    end if 

12. end if 

13. End 

 

2.4.4 IPSets Memory Consumption  

According to IPSets memory management, the 

default memory of G and V table is 1,024 bytes [13]; 

however, the system administrator can make changes 

at any time. In the situation where G and V table are 

not sufficient for all key generation process, both will 

be automatically increased by 2n such as 211, 212, ..., 2n. 

Thus, IPSets, consuming the memory usage, is O(2n). 

2.4.5 IPSets Configuration  

There are two steps to configure IPSets to act as the 

firewall in conjunction with IPTables: 

(1) Declaring a set of firewall rule is based on an 

option type, such as hash:IP, hash: net, and so on. For 

this example, this paper will only show hash: net as 

follows: 

# create a set of IPSets rules named myset as hash: net 

ipset create myset hash: net 

# add the myset subnet network addresses to IPSets 

engine ipset add myset 192.168.1.0/24 ipset add 

myset 192.168.2.0/24: 

(2) Binding the set of IPSets rules to IPTables is: # 

configure IPTables to drop src addresses iptables-I 

INPUT-m set-match-set myset src-j DROP. 

3 Key Contributions 

Nowadays, IPSets is the fastest open source 

matching framework for IPTables. It is able to verify 

any rule against any packet by O(1). However, it still 

has several drawbacks. In this paper, a new structured 

firewall is proposed. The new firewall can overcome 

the drawback of IPSets, and can obtain the same 

optimal speed as performed by IPSets, which is O(1). 

This paper consolidates six main contributions as 

follows: 

(1) The paper develops a new structured firewall by 

C language on Linux kernel, called IPack. It is the full 

firewall, not just an extension like IPSets. 

(2) IPack improves the memory consumption of 

IPSets from O(2n) to O(n) by applying the sparse 

matrix structure and IP packing algorithm. 

(3) It does not declare rule types like IPSets, it can 

declare firewall rules in the general pattern freely. 

(4) It can detect and correct rule anomalies by using 

the Path Section Diagram (PSD), unlike IPSets does 

not. 

(5) It can handle all IP address classes (A-D) but 

IPSets is not supported the large class such as the A 

class. 

(6) IPSets requires a lot of skills to design firewall 

rules, but IPack does not. 

4 IP Packing Design 

The design process of IPack has five phases shown 

in Figure 5. Each design phase can resolve the IPSets 

drawbacks respectively. The details of each phase are 

follows: 

4.1 Phase 1: Creating Rule-Based Firewall 

Rule-based firewall is now a popular rule fashion 

such as IPTables, Cisco ASA, Windows defender, and 

so on. A rule base is a set of rules that declares what 

packets can be passed or dropped. Rule base normally 

works on a top-down approach in which the first rule 

in the rule list is executed first. If the traffic is allowed 

by the first rule, the subsequence rules will never be 

executed. Rule base typically has the format of 

{Source, Destination, Service, Interface, Action}, such  
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Figure 5. IPack design process 

as {192.168.1.0/24, 200.150.10.0/28, TCP, eth0, 

DROP}. The advantages of rule base: admins can 

create rules freely with basic firewall knowledge (No 

need to be expert), and rules are arranged in order to 

make them easy to understand. Therefore, this paper 

still chooses the rule-based interface to make firewall 

rules for the phase 1 in Figure 5. In order to explain the 

IPack design, this paper selects the five elements of the 

rule as SIP, DIP, DP, Pro, and Act, shown in Table 2 

because the elements are unique to make a decision 

path for PSD in the next phase. 

Table 2. Simple rules to demonstrate IPack design 

No. SIP DIP DP Pro Act 

r1 192.168.1.0/28 * 80 * a 

r2 192.168.1.16/28 * 25-30 * a 

r3 192.168.1.0/24 * 60-90 * d 

 

In Table 2, there are three rules. The 1st rule (r1) 

allows (a) source IP addresses (SIP) ranging from 

192.168.1.0-15 (16 IP addresses) to any destination 

address (DIP = *), a destination port number 80 (DP), 

and any protocol (Pro = * = TCP or UDP). The rule (r2) 

accepts SIP addresses from 192.168.1.16-.31 (16 IPs), 

DIP = any, DP = 25-30, and Pro = any. The last rule 

(r3) drops (d) SIP from 192.168.1.0-.255 (256 IPs), 

both DIP and Pro = any and DP = 60-90. Noticeably, 

rule r3 conflicts against r1 and r2 (Overlapping between 

SIP and DP, and different action), but rule r1 does not 

conflict with rule r2. 

The phase 1’s conclusions. Rules are created 

according to user requirements independently, and not 

assigned any group type like IPSets (To resolve the 

admin skills, IP classes, and difficult rule declaration). 

4.2 Phase 2: Converting Rule-Based to PSD 

Tree 

The rules from the phase 1 will be converted to Path 

Selection Diagram (PSD) in order to eliminate conflict 

problems. The key principle of PSD is to merge all 

duplicated rules to unique rules. The second phase 

begins by reading the rules from the first phase in the 

sequence as shown in Figure 5. For example, the r1 in 

Table 2 is read first. For creating the PSD tree structure, 

the root node is constructed on the tree first as 

illustrated in step 1 of Figure 6. After the root node is 

created on PSD tree, PSD algorithm inserts the ports of 

each rule by a sequence to PSD. For example, the port 

number 80 ([80]) of the r1 is inserted to the first child 

node on PSD-named, N{i,j} (i = level name, j = node 

number in each level). So, N{i=1,j=1} means the first 

node in the DP level (Step 2 in Figure 6). Next, the 

algorithm connects the root node to each child node in 

DP level by building a link state-named, L{k,l} (k = 

level name, l = link number in each level). The 

L{k=1,l=1}, for example, is to link between the root node 

to the first child node (N{i=1,j=1}) in DP level. Upon 

r1{DP} is already created on the tree, then the ports of 

r2{DP} ([25, 30]) will be constructed on the tree in step 3. 

r2{DP} ⊄  r1{DP}, so PSD algorithm will create a new 

node named N{1,2} and a new link named L{1,2} from the 

root node to N{1,2} on the tree. The last step in this level 

is creating all ports of r3. The r3{DP} is the superset of 

r1{DP} (r3{DP} ⊇  r1{DP}), so r3{DP}-r1{DP} = [60, 90]-[80] 

= [60, 79] and [81, 90] respectively. New node N{1,3} 

and N{1,4} are created on the tree in step 4. The port 

number 80 of r3 is merged to N{1,1} because it is 

duplicated with r1{DP}. The last process in this DP level 

is to link between the root to N{1,3} and N{1,4} by L{1,3} 

and L{1,4} respectively. After all, the nodes in the DP 

level are created successfully; the next process is to 

construct all the destination IP addresses (DIP) of rules 

in the DIP level on the tree. The first operation at this 

level is constructing DIP of r1. r1{DIP} is created as node 

N{2,1} ranging from 0.0.0.0 to 255.255.255.255(*), and 

the L{2,1} links between N{1,1} and N{2,1} as illustrated in 

step 5 of Figure 7. While the r2{DIP} can be inserted to 

the tree as the node N{2,2} immediately because of r2{DP} 

⊄  r1{DP} (Step 6). The port numbers of r3 is the 

superset of r1{DP}, so inserting r3{DIP} to the tree has to 

consider with three paths: the path of L{1,1} (N{2,1}), 

L{1,3} (N{2,3}), and L{1,4} (N{2,4}) in the step 7 of Figure 7. 

Similar to inserting DIP, source IP addresses of r1 

ranging from 192.168.1.0 to 192.168.1.15 (/28) are 

inserted as the node N{3,1} in the first path of PSD tree 

(Step 8 of Figure 8). After that, PSD algorithm 

establishes a link L{3,1} from N{2,1} at DIP level to N{3,1} 

at SIP level. The r2{DP} is not the subset of any rule, so 

r2{SIP} will be inserted into N{3,2} in the second path on 

the tree without any action (Step 9). 
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Figure 6. Inserting all ports from rules to PSD (DP level) 

 

Figure 7. Inserting all destination IP addresses from the rules to PSD (DIP level) 

After that, PSD algorithm establishes a link L{3,1} 

from N{2,1} at DIP level to N{3,1} at SIP level. The r2{DP} 

is not the subset of any rule, so r2{SIP} will be inserted 

into N{3,2} in the second path on the tree without any 

action (Step 9). This node maintains source IP 

addresses ranging from 192.168.1.16-.31 (/28 = 16 IPs), 

and a link connects from N{2,2} to N{3,2}, called L{3,2}. 

The last step (10) of the SIP level is inserting r3{SIP}. 

Owing to r3{DP} ⊇  r1{DP} and r3{SIP} ⊇  r1{SIP}, so r3{SIP} 

will be created on three paths: the path L{1,1}, L{1,3}, and 

L{1,4} respectively. Node N{3,3}, N{3,4} and N{3,5} are 

created on the tree. N{3,3} contains 240 IPs ranging 

from192.168.1.16-.255, N{3,4}, and N{3,5} holds 256 IPs 

(192.168.1.0/24). The link L{3,3}, L{3,4}, and L{3,5} 

connect to their nodes from DIP to SIP level 

respectively as shown in step 10 of Figure 8. The final 

step (Step 11 in Figure 9) of creating PSD phase is to 

build the protocol node into the tree at the Pro level. 

For example, protocols of r1 is any (*), which is both 

TCP and UDP protocol. The action of r1 is the 

acceptance (a), and it will be stored in the first node 

N{4,1} of the Pro level. In practice, the a is equal to 1 

and d is equal to 0. The protocols of the remaining 

rules can be implemented similarly to inserting the SIP. 

Noticeably, the ordering of the rule fields on the tree 

structure is DP, DIP, SIP, and Pro respectively. This 

arrangement will minimize the number of branches of 

the tree. In addition, the four fields (DP, DIP, SIP, 

PRO) of a firewall rule are sufficient to verify how to 

match a packet against any rule. The Figure 9 is the 

completed PSD tree structure after phase 2 is finished. 

The data type used to store rules is represented below, 

and the algorithms, converting rules to the tree 

structure, are shown in Algorithm 4 and Algorithm 5. 

 

Figure 8. Inserting all source IP addresses from the rules to PSD (SIP level) 
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Figure 9. Inserting protocols and actions from the rules to PSD (Pro level) 

Algorithm 4. The Path Selection Diagram (PSD) 

1. Input: Rules {r1, r2, ..., rn}, where n ∈ Z+, n ≠  0

2. Output: The Path Selection Diagram (PSD) 

3. if PSD = NULL then 

4. # Create the root node and first path of PSD tree

5.    r1 � Read firewall Rules 

6.    node* root � new node(NULL), node* head  

   � root 

7.    while f � Read each field from r1 until NULL 

   do 

8.           head.child = new node(f) 

9.           head = head.child 

10.    end while # The first path was successfully  

   created 

11.    while rule � Read each rule from Rules do 

12.           head � root.child 

13.           f � Read first field from rule 

14.           Call Subtree(head, f, rule) 

15.    end while 

16. end if 

17. Return PSD 

18. End 

 

Algorithm 5. Subtree (node, f, rule) 

1. Input: head, f = each field of rule, rule 

2. Output: Subtree 

3. # First case: f ⊄ all fields in flat level 

4. if head.data-f == φ  and head.sibling == NULL 

then 

5.    head.sibling � new node(f) 

6.    head � head.sibling 

7.    while f � Read each field from rule do 

8.           head.child � new node(f) 

9.           head � head.child 

10.     end while 

11.     Return 

12. Else 

13.    if head.data-f == φ  and head.sibling ≠  NULL  

   then 

14.       head � head.sibling 

15.       Call Subtree(head, f, rule) 

16.    end if 

17.    Return 

18. end if # Finished first case 

19. # Second case: f == all fields in deep level 

20. if head.data-f == 0 and head.child == NULL 

then 

21.    Return 

22. else 

23.    if head.data-f == 0 and head.child ≠  NULL  

   then 

24.       head � head.child 

25.       f � head.data 

26.       Call Subtree(head, f, rule) 

27.     end if 

28. end if 

29. # Third case: f ⊂ of all fields in flat and deep 

level 

30. if head.data-f ≠  φ  then 

31.    d � head.data-f 

32.    head � head.sibling 

33.    Call Subtree(head, d, rule) 

34.    head � head.child 

35.    Call Subtree(head, f, rule) 

36. end if 

37. End 

 

struct { 

      SET data; #data as SET data type 

      struct node* sibling; 

      struct node* child; 

 } node; 

 

The phase 2’s conclusions. After PSD tree has been 

built successfully, it is guaranteed that conflicts will 

not occur. Supposing a packet pi consists of DP = 80, 
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DIP = any, SIP = 192.168.1.10, and Pro = TCP, this 

packet will be matched both r1 and r3 in Table 2. In 

traditional firewalls, the conflict arises because the 

action of r1 and r3 is different. However, this situation 

does not occur with PSD tree because the packet will 

be traversed by the path number 1 only, and this packet 

will be adjudged to be acceptable (a). 

4.3 Phase 3: Mapping PSD Tree to Sparse 

Matrices 

The PSD tree from phase 2 is fetched to the input of 

phase 3. This phase aims to speed up the memory 

access from O(logn) of the PSD tree to O(1) by 

indexing on the matrix. Furthermore, firewall rules 

stored in the PSD tree are also shared so the size of the 

tree can be optimal. The sparse matrix is two-

dimensional (2D), excluding the matrix used to store 

the port number is one dimensional (1D) as the 

following Figure 10. The DP matrix is used to store 

port numbers ranging from 0 to 65535. If each port 

consumes 16-bit integer, the total memory 

consumption of DP is �  131 kilobytes (65,536 * 16 

bits for supporting 65,536 rules). The number of 

protocols used for IPv4 is 28, so the memory space for 

Pro is �  33.55 megabytes (256 * 8 bits (for actions) * 

65,536). Unlike the case of DIP and SIP, both are four 

octets for IPv4, which is divided into four parts by dots 

such as 192.168.1.10. Thus, the matrix space for 

storing both DIP and SIP is 4 octets * 256 * 16 bits * 

65,536 * 2, which is �  268 megabytes. Tree mapping 

to matrices can be done simply by starting each breadth 

level. For example, the DP level is mapped first, the 

port number 80 is mapped to the 80th address of the 1D 

matrix of DP, and this address keeps the path number 1 

as shown in Figure 11. Other ports in this flat level are 

also implemented in the same way. The port number 

ranges from 25 to 30, pointing to the address 25 to 30 

in the DP matrix and storing the path number 2. The 

addresses ranging from 60 to 79 store the path number 

3, and addresses ranging from 81 to 90 store the path 

number 4. For the second flat level (DIP), IPs of all 

routes range from 0.0.0.0 to 255.255.255.255, but they 

differ in path directions. Thus, the row number 1 of all 

DIP matrices is set to be 1 (Path no. 1), and the number 

2, 3 and 4 are set to all elements of the row number 2, 

3 and 4 respectively. For SIP level, the path 1 and 2 

share DIP endpoint, so they use the same memory 

space in the first row of SIP matrices together. For 

example, the matrix of octet 1 (Address 192), octet 2 

(168), and octet 3 (1) are set to be ‘X’ (Don’t care 

term), and other addresses are set to 0. In practice, ‘X’ 

is set to anything (Usually to be-1). The continuous 

memory from the position 0 to 15 of the matrix (Octet 

4) keeps number 1 (Path 1), and the position 16 to 255 

keep number 2 (Path 2). For the other routes in SIP 

level, they have the similar mapping. In the Pro level, 

it only uses the TCP and UDP protocol, thus the 

position number 6 (UDP) and 17 (TCP) is set to be 0 

(accept) or 1 (deny). 

 

Figure 10. 1D and 2D matrices for storing firewall rules 

 

Figure 11. Mapping all paths and nodes from the PSD tree to matrices 
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The phase 3’s conclusions. Searching time of tree 

structures are usually O(logn) but the matrices are O(1). 

The goals of this phase are to change the searching 

time from O(logn) to O(1) and represent redundant data 

from the shared rules. 

4.4 Phase 4: Packing Sparse Matrices to 1D 

Arrays 

Interestingly, the data in the matrices from phase 3 

are very duplicate and low non-zero elements. In other 

words, it means a wasted memory space. The object of 

this phase is to decrease the amount of a wasted 

memory by the packing method, called IP Packing. 

The principle of this method is to compact the data 

from the 2D matrix structures to 1D arrays as shown in 

Figure 12. First, the DP matrix is already 1D array 

structure, so we do not pack this matrix. Next, DIP 

matrices are packed to the 1D array. The Row Lookup 

Table (RLT) is used to address to the actual data in the 

1D array of each DIP octet. RLT has two columns: 

COL (Column index) for calculating an address of an 

actual data in the 1D array and END for identifying the 

last number of each DIP octet. If the END is an 

asterisk (*), it means any number from 0 to 255. For 

example, the first row of the DIP octet 1 ranging from 

0 to 255 contains the path number 1, thus the RLT 

records the number 0 (Starting position of the 1D array) 

to the COL and “*” to the END. The second row of the 

DIP octet 1 (Containing the path number 2) is 

compacted to the second row in RLT. The COL 

contains the number 1 pointing to the address number 1 

in the 1D array. For the remaining rows of the DIP 

octet 1, they have the same operations. The data of 

each row of DIP octet 2, 3, and 4 are compacted to the 

1D{o2-o4} array and RTL{o2−o4} respectively. The next 

step is a compactness of all 2D of SIP octets to 1D 

arrays. For example, the row no. 1 of the SIP octet 1 

contains only one non-zero value, which is “X” (Don’t 

care term) in the column number 192. The address of 

this value in the 1D array of SIP{O1} is 0 because this 

value is the first element in its 1D array; therefore, the 

COL in the first row of RLT must be subtracted by-192 

in order to point to the zero address in the 1D array. 

The END of this row is 192 because it has only one 

value. In case of the SIP octet 4, the row no.1 contains 

a set of several path numbers; for example, the 

positions ranging from 0 to 15 contain the number 1 

(Path number 1), and the positions starting from 16 to 

255 pack up the number 2. The compactness algorithm 

copies all values from the row no.1 in SIP octet 4 to the 

1D array positioning 0 to 255 (256 addresses), and the 

index of the 1D array points to the address 256 

automatically for storing the next data set. The COL 

and END record 0 and 255 in the RLT table 

respectively. The next row of SIP octet 4 (Row no.2) 

contains the number 3, starting at position 16 to 31, so 

the COL of RLT records 240 (256-16), and the END 

records 31 (The last number of SIP octet 4), and the 1D 

array of SIP octet 4 starting from 256 to 271 is 

replaced by 3. Other rows have the same compacted 

operation as mentioned above, and as shown in the 

following Figure 12.  

 

Figure 12. Packing all matrices to 1D arrays 

The phase 4’s conclusions. The data structures after 

packing process: 1) one 1D for DP; 2) 4 Row Look up 

Tables (RLT of DIP{o1−o4}) and one 1D for DIP; 3) 4 

Row Look up Tables (RLT of SIP{o1−o4}) and one 1D 

for SIP; and 4) one Row Look up Table (RLT of PRO) 

and one 1D for Pro. The memory space of IPack after 

this phrase is O(n). 

4.5 Phase 5: Testing Firewall Rule Matching 

This section shows the processes of the firewall rule 

matching or verifying against an incoming or outgoing 

packet by IPack. Supposing an incoming packet pi 

consists of DIP = 200.10.0.100, SIP = 192.168.1.16, 

DP = 80, and the TCP protocol (Number 17) will pass 
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through IPack. Step 1, the DP of pi is used to point to 

the address number 80 in the 1D array of DP as shown 

in Figure 13. The data in this address is used to point to 

the row number 1 of RLT for DIP. The row no. 1 of all 

RLT of DIP contains COL = 0 and END = ‘*’, which 

means that it is any IP address (END = *) and points to 

the column 0 (COL = 0) in the 1D array of DIP (Step 

2). The column 0 of all 1D array of DIP contains the 

number 1 (Row no.1) pointing to their row number in 

RLT of SIP. Step 3, each SIP octet of pi is computed 

with each COL in RTL of SIP, such as the first octet of 

SIP of pi subtracts the COL in row number 1 of RLT 

for SIP{o1} (192-192) = 0, the 2nd
 octet of SIP of pi 

subtracts the COL in row no. 1 of RLT for SIP{o2} 

(168-168) = 0, the 3rd octet of SIP of pi subtracts the 

COL in row no. 1 of RLT for SIP{o3} (1-1) = 0, and the 

last octet of SIP of pi subtracts the COL in row no. 1 of 

RLT for SIP{o4} (16-0) = 16. The address number 0 of 

the 1D array of SIP{o1,o2,o3} is ‘X’, and it refers to the 

ignored terms. However, there will be at least one term 

that is not ‘X’, which is the SIP{o4}(16). This address 

(16) stores the row number of RLT of the next level 

(Pro), which is the number 2 (Row no. 2 of RLT for 

Pro). In Figure 13, COL keeps the number 7, and END 

collects the number 17 (Protocol TCP). Thus, the 

firewall matching algorithm will calculate the Pro of pi 

(17) with the data stored in COL (7). The result is 24 

(17 + 7), which is the pointer to the firewall decision at 

the address 24 of the 1D for Pro. The packet pi is 

decided to be a drop (0) immediately. Matching any 

packet against IPack is shown in Algorithm 6.  

 

 

Figure 13. Matching an incoming packet against firewall rules in IPack structures 

Algorithm 6. Packet matching algorithm of IPack 

1. Input: a packet pi, 1-D of DP, RLT and 1-D of  

            DIPo1−o4, RLT and 1-D of SIPo1−o4, RLT  

            and 1-D of Pro 

2. Output: drop (0) or accept (1) 

3. dp � read DP from pi, dp � read 1D-DP[dp] 

4. if RLT-DIP[dp][END]o1−o4 == * then 

5.    dipo1−o4 � RLT-DIP[dp][COL]o1−o4 

6.    dip-io1 � 1D-DIP[dipo1]o1,  

   dip-io2 � 1D-DIP[dipo2]o2, 

   dip-io3 � 1D-DIP[dipo3]o3,  

   dip-io4 � 1D-DIP[dipo4]o4 

7. Else 

8.    dipo1−o4 � read DIP from pi 

9.    if dipo1−o4 0 1D-DIP[dp][END]o1−o4 then 

10.       dip-io1 � 1D-DIP[dp][COL]o1 + dipo1,  

      dip-io2 � 1D-DIP[dp][COL]o2 + dipo2,  

      dip-io3 �1D-DIP[dp][COL]o3 + dipo3,  

      dip-io4 � 1D-DIP[dp][COL]o4 + dipo4 

11.     Else 

12.         return drop # a packet mismatch while  

        check DIP 

13.     end if 

14. end if 

15. if RLT-SIP[dip-io1−o4][END]o1−o4 == * then 

16.    sipo1−o4 � RLT-SIP[dip-io1−o4][COL]o1−o4 

17.    sip-io1 � 1D-SIP[sipo1]o1,  

   sip-io2 � 1D-SIP[sipo2]o2,  

   sipio3 � 1D-SIP[sipo3]o3,  

   sip-io4 � 1D-SIP[sipo4]o4 

18.  else 

19.      sipo1−o4 � read SIP from pi 

20. if sipo1−o4 ≤  1D-SIP[dip-io1−o4][END]o1−o4 then 

21.    sip-io1 � 1D-SIP[dip-io1][COL]o1 + sipo1,  

   sip-io2 � 1D-SIP[dip-io2][COL]o2 + sipo2,  

   sip-io3 � 1D-SIP[dip-io3][COL]o3 + sipo3,  

   sip-io4 � 1D-SIP[dip-io4][COL]o4 + sipo4 

22. else 

23.     return drop # a packet miss match while check 

    SIP 

24. end if 

25. end if 
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26. pro-i � read only sip-io1−o4 ≠  ‘X’ 

27. pro � read Pro from pi 

28. if pro ≤  RLT[pro-i][END] then 

29.    pro-i � RLT-PRO[pro-i][COL] + pro 

30.    return 1D-PRO[pro-i] 

31. else 

32.     return drop # a packet miss match while check 

    Pro 

33. end if 

34. End 

 

The final phase (5) conclusion: the concept of IPack 

matching process is to use the information header of an 

incoming or outgoing packet to act as pointers to RLTs 

and 1D structures, thus the speed of matching packets 

is O(1). 

5 IPack Implementation 

The IPack firewall has been developed by the 

C/C++ language (GCC 4.4.7) and GNU Make 3.8 on 

64-bit Linux kernel version 2.6. IPack consists of two 

parts: the user space and kernel space.  

The user space (IPack.o) parses the firewall rules 

from an administrator like adding, editing, and 

removing rules; it also builds the PSD tree. If firewall 

rules are valid according to grammar rules, they will 

pass through to the kernel space by /procf file system. 

The kernel space (IPack_klm.ko) executes the rules 

passed by an administrator from /procf file by using the 

procf_read() and procf_write() function. The main 

function of IPack kernel space is to block, pass, and 

capture packets based on the built-in inbound and 

outbound filtering function as illustrated in Figure 14. 

IPack source files can be downloaded from https://isan. 

msu.ac.th/suchart/IPack/. 

 

Figure 14. Implementing IPack on real Linux system 

6 Testbed Network Environment 

IPack and IPsets are tested on the real-world 

network as shown in Figure 15. This paper uses IPERF 

software [28], a tool for active measurements of the 

maximum achievable bandwidth on IP networks, for 

both firewall throughput testing. The firewalls are 

installed on the client site [29]. Throughput testing is 

achieved by evaluating the response time of packets 

from the IPERF server, the packets are generated from 

the IPERF client via the installed firewalls. The client-

side network connectivity starts from the 3BB (ISP) 

using VDSL technology, which has a bandwidth of 

30/5 Mbps (Download/Upload stream), connecting to 

the Internet. The server site network starts at the 

Internet to UNINET (ISP), and the endpoint 

connection is at Mahasarakham University, Thailand, 

and the IPERF server is installed here. Firewalls are 

tested by the most popular protocols [30], i.e., TCP and 

UDP. The criteria for testing TCP against firewalls: the 

window size = 16, 32, and 64 KB respectively, the 

interval time = 1 sec, and the concurrent = 1 

connection. In UDP testing, the bandwidth size used to 

test firewalls is 100 Mbps. The number of rule sets are 

100, 500, 1,000, 2,000, 3,000, 4,000, 5,000, 10,000, 

20,000, 30,000 respectively.   

 

Figure 15. IPack vs IPSets testbed on the real network 

7 Firewall Performance Evaluation 

Both firewall performances are evaluated by two 

approaches: the processing speed and memory usage. 

The processing speed is divided into two parts: the 

speed for building data structures and speed for 

matching rules. First, the time to build IPack data 

structures using Algorithm 4 and Algorithm 5 takes 

O(n2), which is similar to IPSets using Algorithm 2. 

Second, the matching time of both techniques is equal 

to O(1) because IPSets uses hash tables and IPack 

applies array structures for accessing the data. In the 

case of memory consumption, if hash tables of IPSets 

are not enough to store the data, the hash table size will 

be increased by 2n. Thus, the space complexity is O(2n). 

However, IPack is slightly different for allocating the 

memory because it uses the array as the data structures. 

For example, in the worst case (Figure 12), IPack 

allocates 2 * n (Number of rules) * 9 (Number of RTLs) 

+ 65,536 (1D of DP) + 256 * n * 9 (1D of DIP, SIP 

and Pro) = 65,536 + 2,322 * n; therefore, the space 

complexity of IPack is O(n). 

The firewalls’ TCP throughputs running on the real-

world network are shown in Figure 16 and Figure 17. 

Figure 16 shows throughputs of the packet transfers 

between IPSets and IPack by different TCP window 

sizes. The number of firewall rules is evaluated with 
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both firewalls running from 100 to 30,000. Observed 

by the overall, throughputs of both firewalls are similar. 

For example, the throughputs are around 275, 482 and 

659 KB/sec by the windows sizes as 16, 32, 64 KB 

respectively. In Figure 17, throughputs are measured 

by the amount of data received and sent at the bit rate. 

Both firewalls can be processed consistently without 

depending on the number of firewall rules. The 

throughputs of windows sizes are 16, 32, 64 KB 

around 2.2, 3.7 and 5.35 Mbps respectively. According 

to the UDP transfers, they have tested in the same way 

as TCP, measuring packet-level and bit-rate traffic at a 

data transfer rate of 100 Mbps. The results are still 

constant about 11 KB/sec at packet-level transfers 

(Figure 18) and 97 Mbps/sec at bit-rate transfers 

(Figure 19). 

 

Figure 16. Packet transfers of IPSets and IPack (TCP)  

 

Figure 17. Binary transfers of IPSets and IPack (TCP) 

 

Figure 18. Packet transfers of IPSets and IPack (UDP) 

 

Figure 19. Binary transfers of IPSets and IPack (UDP) 

8 Conclusion 

This paper designs and develops the firewall with 

O(1) worst case access time, called IPack. It can 

resolve the drawbacks of IPSets such as the rule 

management, rule conflicts, and the IP classes. 

Especially, it consumes memory usage less than IPSets. 

IPack is also tested on the real-world network, the 

results show that it can operate on the high-speed 

networks as IPSets. The algorithm applied with IPSets 

is the perfect hashing, and it works on IPTables. 

However, IPack uses the path selection diagram (PSD), 

sparse matrix and packing algorithm, and operates on 

Netfilter. IPSets handles with packet verification 

(Matching rules against packets) only for the packet 

decisions (accept or deny) to be processed by IPTables. 

Unlike IPack, which is designed to fully support 

firewall operations, excluding NAT (Network Address 

Translation) and the packet filtering. The final 

conclusions between IPSets and IPack are shown in 

Table 3. 

Table 3. Summaries of IPSets vs IPack performance 

Description of 
Firewall Feature 

IPSets IPack 

Time complexity for building structures O(n2) O(n2) 

Time complexity for rule verifying O(1) O(1) 

Space complexity O(2n) O(n) 

IP class supports (A, B, C and D) B, C, D All 

Basic operations of firewalls Matching All 

Rule anomaly detection and correction No Yes 

Rule definition Manual Auto 

Admin skills for handling firewalls Expert Normal 

Note. basic operations: matching, decision and forwarding.  
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