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Abstract 

In the path movement problem, we are given an 

undirected graph G = (V, E), a source vertex s, a 

destination vertex t, and a set of movable objects, called 

pebbles, which are placed on a subset of the vertices of a 

graph. We want to move a subset of the pebbles along the 

edges to a subset of the vertices of the graph such that 

there exists a path from s to t in graph G in such a way 

that all the vertices in that path are occupied by at least 

one pebble. The PathMax and the PathSum problems are 

the path movement problems in which we want to 

minimize the maximum movements and the total 

movements made by the pebbles, respectively. In [7], the 

researchers proved that both the problems are NP-hard in 

general graphs. In this paper, the PathMax and the 

PathSum problems are considered on special classes of 

graph G, that is, G is a tree and a unicyclic graph. More 

precisely, this paper shows that PathMax and PathSum 

problems can be easily solved in polynomial time when 

the input graph is a tree or a unicyclic graph.  

Keywords: Polynomial-time algorithm, Movement 

problem, Tree, Unicyclic graph 

1 Introduction 

Motion planning is the problem in which we want to 

move a set of movable objects, for example, robots, 

people, sensor nodes, etc., from their initial positions to 

their final positions such that the movements made by 

the movable objects obey some constraint. And the 

problem goal is to optimize some measurement. For 

example, the two sensor nodes in a wireless sensor 

network (WSN) want to communicate with each other 

for cooperative communication but they have limited 

communication ranges. Therefore, in this communication, 

the movable sensor nodes have to move to a 

communication path to relay a signal (or a message) 

from the source node to the destination node. An 

example of a multiple mobile relays research is [1]. In 

this research, the authors proposed the low cost, low 

complexity, and collision-free algorithms with the 

condition relaxations of the other existing methods for 

the problem of position optimization in mobile relays. 

Moreover, motion planning is implemented in wireless 

sensor networks in terms of mobile sensor networks, 

mobile opportunistic networks, and mobile ad hoc 

networks. There are many pieces of research about a 

barrier coverage problem in mobile sensor networks 

such as [2] where the mobile sensor nodes have to 

move for minimizing the number of barrier paths in 

such a way that the total moving distances made by the 

mobile nodes and the number of sensor nodes are 

minimized. In [3], Jia et al. proposed the theoretical 

analysis and simulations for redistributing mobile 

sensor nodes to guarantee that a barrier coverage 

property is satisfied. In an area of opportunistic 

networks, Wang et al. [4] considered the contact 

duration between mobile terminals and their adjacent 

nodes with respect to the node mobility and short 

communication range. In the rescue situations, the 

rescuers are assisted by the robots to access to 

hazardous regions. In [5], Baroudi et al. provided an 

approach with a simulation of a dynamic coverage 

problem in situations with the constraint of 

connectivity, the shortage of available robots, and a 

time limitation. Finally, in a mobile ad hoc network, 

Yu et al. [6] presented a broadcasting algorithm to 

prevent a broadcast storm problem and increase the 

broadcast reliability and network lifetimes by using a 

broadcasting ratio and energy balance of nodes. 

In theoretical computer science, motion planning is 

studied and defined as a movement problem. Demaine 

et al. [7] were the first group of researchers who 

introduced the class of movement problem. In this 

problem, we are given a simple undirected unweighted 

graph G = (V, E) where V is a set of n vertices and E is 

a set of m edges. In addition, we are given a set of 

pebbles which are placed on the set of vertices of a 

graph. The pebbles can move along the edges of the 

graph. The goal of the movement problem is to move 

the set of pebbles from the initial positions of the 

pebbles to a set of vertices such that the pebble 

movement satisfies some criteria such as the induced 

subgraph on the final positions of the pebbles is a 

connected graph: this problem’s name will start with 
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Con; there is at the most one pebble occupying each 

vertex and for each adjacent vertex, there is at the most 

one vertex that is occupied by a pebble: this problem’s 

name starts with Ind; and there exists a path from the 

source vertex s to the destination vertex t and each 

vertex in this path is occupied by at least one pebble: 

this problem’s name starts with Path. The cost 

movement measurements are carried out in many ways, 

such as minimizing the maximum movement, that is, 

the maximum distance moved by any pebble; 

minimizing the overall movement, that is, the sum of 

the distances traversed by all the pebbles; and 

minimizing the number of moving pebbles, that is, the 

number of pebbles that move from their initial 

positions. For these three measurements, the names of 

the problems will end with Max, Sum, and Num, 

respectively (for more details, see [7]). 

In a graph theory, a finite sequence of distinct 

vertices which connected by the edges is called a 

simple path. A simple path that begins and ends with 

the same vertex is called a cycle. A graph is a 

connected graph if there exists a path between any its 

two vertices. A tree is a connected graph with no cycle. 

A unicyclic graph is a connected graph that comprises 

exactly one cycle. 

1.1 Related Work 

The class of movement problems was first defined 

by Demaine et al. [7]. This paper showed that most of 

them are NP-hard and also provided the approximation 

algorithms for them. Later, various other versions of 

the movement problems were studied and 

simultaneously the approximation ratios of some 

movement problems were improved through many 

research papers such as [8-10], and [11].  

With regard to the aspect of the easy problem, there 

are many research papers that discussed the 

polynomial-time algorithms for the movement 

problems. In [7], Demaine et al. showed that a 

PathNum problem can be solved in polynomial time on 

n. The movement problem where the final positions of 

the moved pebbles agree with the property that there 

exists a perfect matching of the pebbles in a graph 

where two pebbles are placed on two adjacent vertices 

if they are far from each other by at most one hop in 

the input graph and we want to minimize the maximum 

movement is called a MatchMax problem. As for the 

purposes of minimizing the overall movement and the 

number of moved pebbles of the same property, the 

movement problems are called MatchSum problem and 

MatchNum problem, respectively. Demaine et al. [7] 

showed that MatchMax, MatchSum, and MatchNum 

can solve in polynomial time on n. Additionally, they 

showed that when we fix an input graph to a tree, a 

ConMax problem can be solved in polynomial time. In 

2016, Bilo et al. [12] presented a new category of 

movement problems and showed that a ConSum 

problem and a ConNum problem on a tree can be 

efficiently solved by the dynamic programming 

technique. What this means is that this result combined 

with the ConMax result in [7] can complete all 

versions of the connectivity property when the input 

graph is a tree. In addition, Bilo et al. [12] presented 

efficient algorithms for solving an IndMax on a path 

and an IndSum and an IndNum on a tree. 

1.2 Contributions 

This paper focuses on a PathMax problem and a 

PathSum problem when the input graph is a tree or a 

unicyclic graph. The paper shows that both a PathMax 

problem and a PathSum problem can be solved in 

polynomial time on both the input graphs. For the tree, 

we use the maximum cardinality matching algorithm 

and the minimum weighted matching algorithm as the 

subroutine for the PathMax problem and the PathSum 

problem, respectively. We proceed by showing that our 

algorithm’s running times are dominated by the 

running times of the matching algorithms which run in 

the polynomial time on n. Thus, we can conclude that 

our proposed algorithms are efficient algorithms for 

solving a PathMax and a PathSum on a tree. For the 

unicyclic graph, we prove that the number of the 

simple path between two specific vertices is at most 

two. So, we can find the optimum movement on each 

path by calling the algorithms for the PathMax 

problem and the PathSum problem on the tree as the 

subroutine. Finally, we choose the best one among 

them as the solution of the PathMax problem and the 

PathSum problem on a unicyclic graph. 

The paper is organized as follows. Section 2 gives 

the notations and the terminology used in this paper. 

The polynomial-time algorithm for a PathMax problem 

on a tree is shown in section 3. Section 4 presents the 

polynomial-time algorithm for a PathSum problem on 

a tree. The polynomial-time algorithms for the 

PathMax problem and the PathSum problem on the 

unicyclic graph are presented in section 5. Finally, the 

conclusion is provided in section 6.  

2 Notations and Terminology 

The basic notations and terminology used by this 

paper are defined in this section. In this paper, we are 

given a simple undirected unweighted graph G = (V, E). 

It is composed of a collection V of n vertices and a 

collection E of m edges. In addition, we are given two 

distinguished notations, source vertex s and sink vertex 

t. We assume that vertex s and vertex t are in the same 

connected component. In addition, there is a set of k 

pebbles, Peb = {p1, p2, …, pk}, with movable items that 

can move along the edges of the graph, that is, they can 

move from vertex u to vertex v, where (u, v) ∈ E. 

Finally, we are given a mapping function, φ : Peb → V, 

that maps each pebble to its initial position. The goal 

of the movement problem is to find a mapping function 
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δ : Peb → V which assigns each pebble to its final 

position. When pebble p is mapped to vertex v by 

function φ or function δ, we say that pebble p occupies 

vertex v and vertex v is occupied by pebble p. An 

occupied vertex v is a vertex that is occupied by at least 

one pebble. Otherwise, we call vertex v an unoccupied 

vertex. The occupied number of vertex v is the number 

of pebbles that occupies vertex v. Regarding more 

definitions, we define a finite sequence of vertices P = 

{v1, v2, …, vj}, where (vi, vi+1) ∈ E; 1 ≤ i < j is a path in 

graph G. The path from vertex v1 ∈ V to vertex vj ∈ V 

is called the v1-vj path. The length of the v1-vj path P, 

denoted by lP(v1, vj), is the number of its composed 

edges. The movement cost of pebble p is the length of 

its traverse path P which starts from the initial position 

of p to the final position of it, that is, lP(φ(p), δ(p)). The 

maximum movement cost, denoted by c_max(δ), is the 

maximum movement cost made by the moved pebbles, 

that is, c_max(δ) = maxp ∈ Peb { lP(φ(p), δ(p))}. The 

total movement cost, denoted by c_total(δ), is the sum 

of the movement costs made by all the moved pebbles, 

that is, c_total(δ) = ∑p ∈ Peb { lP(φ(p), δ(p))}. The s–t 

path movement problem is a movement problem for 

which we want to find a mapping function δ such that 

there exists an s–t path in an induced subgraph on the 

final positions of the pebbles. The PathMax problem is 

an s–t path movement problem such that the maximum 

movement cost is minimized, that is, we want to 

minimize the c_max(δ) cost. The PathSum problem is 

an s–t path movement problem such that the total 

movement cost is minimized, that is, we want to 

minimize the c_total(δ) cost. 

We note that function φ does not have to be an 

injective surjective function. This means that the 

problem definition allows more than one pebble to be 

initialized at each vertex and that there exist 

unoccupied vertices in an initialization. But for the 

sake of simplicity, in this paper, we assume that each 

vertex in graph G is occupied by at the most one 

pebble in an initialization. In addition, function δ also 

does not have to be an injective surjective function. To 

eliminate the non-injective property of function δ, we 

will prove a very useful lemma in the next section. 

3 PathMax Problem on Tree 

In this section, we will present a polynomial-time 

algorithm for solving the PathMax on a tree. 

The solution optδ which minimizes c_max(δ ) is said 

to be optimal. Let the cost of this solution be equal to 

OPT, that is, c_max(optδ ) = OPT. We will eliminate 

the non-injective property of function δ which states 

that we can move more than one pebble to the same 

vertex in a solution by proving Lemma 1. 

Lemma 1: If there exists an optimal solution optδ1 that 

allows more than one pebble to occupy one vertex, 

then there exists another optimal solution optδ2 such 

that no more than one pebble occupies the same vertex, 

and c_max(optδ2) ≤ c_max(optδ1).  

Proof: We will prove this lemma by a construction. 

We will construct the optimal solution optδ2 from the 

optimal solution optδ1, as follows. Let δ1 and δ2 be the 

mapping functions of the pebbles to their final 

positions in the optimal solution optδ1
 and the optimal 

solution optδ2, respectively. For each vertex v where 

δ1(p) = v and its occupied number is equal to one, we 

then assign δ2(p) = v, too. We see that in this part, 

c_max(optδ2) = c_max(optδ1). Consider vertex u which 

has an occupied number more than one. We assume 

that its occupied number is equal to two. Thus, a 

mapping function δ1 maps two distinct pebbles to 

vertex u, that is, δ1(p1) = u = δ1(p2) and p1 ≠ p2. In the 

optimal solution optδ2, we can choose an arbitrary 

pebble, say, pebble p1, to move to vertex u. Since 

pebble p2 is also moved to vertex u in the optimal 

solution optδ1, there exists a path P = {φ(p2), v1, v2, …, 

u} in the graph. In the optimal solution optδ2, we will 

move pebble p2 back to its initial position, that is, δ2(p2) 

= φ(p2). We can see that the movement cost of pebble 

p2 in the optimal solution optδ2 did not increase. For 

every other vertex w which has an occupied number 

more than one, we can modify its final position as we 

do with vertex u. This is because in an initialization, 

we assume that each vertex is occupied by at the most 

one pebble. Thus, this method terminates in the final. 

In addition, we can conclude that there still exists an s–

t path on an induced subgraph of occupied vertices in 

the optimal solution optδ2. Moreover, its cost does not 

increase, that is, c_max(optδ2) ≤ c_max(optδ1).  

From Lemma 1, we see that we need to move 

exactly one pebble to each unoccupied vertex in the s–t 

path. This is the reason why we can use the matching 

for our proposed algorithm. For more details of our 

proposed algorithm, let us define more definitions. A 

bipartite graph B = (X + Y, F) is a graph that is 

composed of a set of vertices U = {X ∪ Y} and a set of 

edges F where X and Y are disjoint sets, and if (u, v) ∈ 

F, then u ∈ X, v ∈ Y. The matching M is a subset of 

edges such that each vertex is incident with at most one 

edge in M. If one edge in a matching is incident to 

vertex v, then we call vertex v is matched. Otherwise, 

vertex v is called unmatched. The matching M’ is a 

maximal matching if no other edges can be added to 

M’, and if the added M’ is no longer matching. The 

maximum matching M* is a maximal matching with 

the maximum size. For a bipartite graph B = (X + Y, F), 

an X-saturating matching is a matching in which all the 

vertices v ∈ X are matched. 

We reduce the PathMax problem to a problem of 

finding an X-saturating matching in the bipartite graph 

B = (X + Y, F). For a given input tree T = (V, E), we 

find an s–t path on it. From the definition of the tree T, 
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we see that there exists exactly one path. Recall that 

OPT is the cost of the optimal solution optδ, that is, 

c_max(optδ ) = OPT. Initially, we guess an OPT value. 

We can do this because we know that this value ranges 

between 0 and n. Thus, we can perform the binary 

search to find them quickly. We construct a bipartite 

graph B = (X + Y, F), where X is a set of unoccupied 

vertices in the s–t path on an input tree; Y is a set of the 

initial positions of all the pebbles, that is, Y = {v ∈ V 

|φ(p) = v for all p ∈ Peb}; and there exists an edge 

between two vertices if and only if there is a path P 

between these two vertices on tree T with length at the 

most OPT, that is, (u, v) ∈ F: u ∈ X, v ∈ Y if and only 

if lP(u, v) ≤ OPT.  

From the above-mentioned bipartite graph B 

construction and the fact that the path from any two 

vertices in a tree is unique, we have an observation, as 

follows. 

Observation 2: The bipartite graph B cannot have 

multiple edges. 

For the correctness of the algorithm, we will prove 

the following theorem.  

Theorem 3: A PathMax has an optimal solution optδ 

where c_max(optδ ) = OPT if and only if the bipartite 

graph B = (X + Y, F) has an X-saturating matching M.  

Proof: Going forward, we will assume that the 

PathMax problem has an optimal solution optδ where 

c_max(optδ ) = OPT and we will prove that the 

bipartite graph B has an X-saturating matching M. 

Since the PathMax has the optimal solution optδ, each 

unoccupied vertex in an s–t path on a tree T has at least 

one pebble moved to it with a movement cost by at 

most OPT. Moreover, these pebbles are all distinct. For 

a subset W ⊆ X, we define a neighbor set of W, denoted 

by N(W), which is a set of vertices in set Y that is 

incident with a vertex in set W. From the bipartite 

graph B construction, we see that each vertex xi ∈ X 

has at least one degree. Thus, for every subset W ⊆ X, 

we can see that |W| ≤ |N(W)|. We can conclude that the 

bipartite graph B has an X-saturating matching M by 

using Hall’s theorem. 

Now, we will assume that the bipartite graph B has 

an X-saturating matching M and we will prove that the 

PathMax problem has an optimal solution optδ where 

c_max(optδ ) = OPT. Since graph B has an X-saturating 

matching, each vertex xi ∈ X has vertex yi ∈ Y, where 

(xi, yi) ∈ M. We will construct an optimal solution optδ 

by moving pebble p, where φ(p) = yi, to vertex xi, that 

is, assign δ(p) = xi. Because (xi, yi) ∈ F, lP(xi, yi) ≤ OPT. 

Moreover, since M is an X-saturating matching, all 

vertices in set X will have assigned pebbles. We can 

conclude that the PathMax problem has an optimal 

solution optδ where c_max(optδ ) = OPT.   

Next, we will prove the running time of our 

proposed algorithm. 

Theorem 4: A PathMax on a tree can be solved in 

O(k2 √ n) time. 

Proof: The running time of our proposed algorithm is 

dominated by the X-saturating matching algorithm. The 

best running time for computing the maximum 

matching in a bipartite graph with flow technique is the 

Hopcroft–Karp algorithm which runs in O(m√ n) time 

for a graph with n vertices and m edges [13]. We know 

that the total number of pebbles, which is k, is at least 

the length of an s–t path on the tree, that is, k ≥ lP(s, t). 

From the bipartite graph B = (X + Y, F) construction, 

we see that |X| ≤ k = |Y|. Thus, there is a maximum of k2 

edges on the graph B. This means that our proposed 

algorithm can solve a PathMax on tree in O(k2 √ n) 

time, as claimed.  

4 PathSum Problem on Tree 

We begin this section by an example of a PathSum 

problem on a tree. 

 

Figure 1. An example of a PathSum problem on a tree 

From Figure 1, in an initialization, the occupied 

vertices are designated by the circles with bold lines, 

the vertices s, v1, v5, v10, v13 and t. They occupied by 

the pebbles which label inside them. These vertices are 

also the initial positions of the pebbles p1, p2, p3, p4, p5 

and p6 too, that is, φ(p1) = s, φ(p2) = v1, φ(p3) = v5, φ(p4) 

= v10, φ(p5) = v13 and φ(p6) = t, respectively. A possible 

optimal solution of this problem is assigning the 

pebbles p1, p2, p3, p4, p5 and p6 to the final positions s, 

v2, v3, v9, v13 and t, that is, δ(p1) = s, δ(p2) = v2, δ(p3) = 

v3, δ(p4) = v9, δ(p5) = v13 and δ(p6) = t, respectively. 

The movement costs of the pebbles p1, p2, p3, p4, p5 and 

p6 are 0, 1, 2, 1, 0 and 0. Thus a total movement cost, 

c_total(δ), is 0 + 1 + 2 + 1 + 0 + 0 = 4. We also note 

that a maximum movement cost, c_max(δ), is max{0, 1, 

2, 1, 0, 0} = 2. 

Next, we will show that a function δ for a PathSum 

problem is an injective function by proving Lemma 5. 

Lemma 5: In any optimal solution optδ of the PathSum 

problem, there is exactly one pebble mapped to each 

vertex in the s-t path.  

Proof: We will prove this lemma by a contradiction. 

Suppose, for the sake of contradiction, that there exists 

an optimal solution optδ that allows two pebbles p1 and 

p2 to be mapped to a vertex v where v is a vertex on an 

s-t path. Consider another solution optδ’ that moves 
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pebble p1 to its initial position. We see that 

c_total(optδ’) = c_total(optδ) − lP(φ(p1), δ(p1)) < 

c_total(optδ), and that there still exists an s–t path in 

the induced subgraph in the final positions of the 

pebbles. Thus, this contradicts the assumption that optδ 

is the optimal solution.  

To solve a PathSum problem on a tree, we will 

construct a bipartite graph B = (X + Y, F) with weight 

function W: F → N, where N is a natural number, as 

follows. Given a tree T = (V, E), we construct a 

bipartite graph B = (X + Y, F), where X is a set of 

unoccupied vertices in an s–t path on tree T; and Y is a 

set of the initial positions of all the pebbles, that is, Y = 

{v ∈ V |φ(p) = v for all p ∈ Peb}; there exists an edge 

between two vertices x ∈ X and y ∈ Y if and only if 

there is a path P between vertex x and vertex y on tree 

T and the weight of the edge (x, y) ∈ F is equal to the 

length of the path P from vertex x to vertex y on tree T, 

that is, W((x, y)) = lP(x, y). To solve a PathSum on a 

tree, we find the minimum weighted matching 

saturated X on the bipartite graph B. In particular, we 

want the matching M that saturated X, with the sum of 

the weights of all the edges in the matching M 

minimized, that is, minimized ∑(u, v)∈M{W((u, v))}. 

For the correctness of the algorithm, we will use an 

analogous reason as we used in the proof of Theorem 3. 

Thus, we can obviously conclude Theorem 6. 

Theorem 6: A PathSum has an optimal solution optδ 

with cost c_total(optδ) if and only if a bipartite graph B 

= (X + Y, F) has an X-saturating matching M with 

minimum weight equal to c_total(optδ). 

Next, we will prove the running time of our 

proposed algorithm. 

Theorem 7: A PathSum on a tree can be solved in 

O(n2 log n + nk2) time. 

Proof: The proof is from the fact that the minimum 

weighted matching in a bipartite graph can be solved in 

O(n2log n + nm) time by the Hungarian algorithm with 

the Dijkstra algorithm and Fibonacci heap [14] and an 

analogous reason as we used in the proof of Theorem 4. 

Recall that there is at the most k2 edges on a bipartite 

graph B. Thus, our proposed algorithm can solve a 

PathSum on a tree in O(n2log n + nm) = O(n2 log n + 

nk2) time, as claimed.  

5 PathMax and PathSum Problems on 

Unicyclic Graph 

The example of a PathMax and a PathSum problem 

on a uniclyclic graph are shown in Figure 2. 

 

Figure 2. The examples of PathMax and PathSum 

problems on a unicyclic graph 

From Figure 2, a possible optimal solution of this 

example is assigning the pebbles p1, p2, p3, p4, p5, p6, p7, 

p8 and p9 to the vertices s, v5, v8, v1, v9, v7, v6, v4 and t, 

respectively. The movement costs of these pebbles are 

0, 0, 1, 1, 1, 1, 1, 1, 0. Thus, a maximum movement 

cost, c_max(δ), of a PathMax problem is 1 and a total 

cost, c_total(δ), is 0 + 0 + 1 + 1 + 1 + 1 + 1 + 1 + 0 = 6. 

We note that another solution that move pebble p1, p2, 

p3, p4, p5, p6, p7, p8 and p9 to the vertices s, v5, v7, v9, v1, 

v8, v6, v4 and t give a total movement cost 6 but give a 

maximum movement cost 2. Thus, this solution is an 

optimal solution to a PathSum problem but it is not an 

optimal solution of a PathMax problem in Figure 2.  

Next, we will present an algorithm for the PathMax 

and the PathSum problems on a unicyclic graph by 

state the next lemma. 

Lemma 8: The maximum possible number of simple 

paths from vertex s to vertex t on a unicyclic graph G 

is two.  

A proof detail of this lemma is omitted because it 

follows from a definition of a unicyclic graph.  

From Lemma 8, we propose an algorithm for a 

PathMax (PathSum) problem on a unicyclic graph, as 

follows. Find the two s–t paths P1 and P2 in the input 

unicyclic graph G. Then, run a tree algorithm which is 

presented in section 3 (section 4) on path P1 and path 

P2. Finally, the best of them, that is, the X-saturating 

matching (with minimum weight), is chosen as the 

solution of the PathMax (PathSum) problem on the 

unicyclic graph G. 

Because we run the algorithm for a PathMax or a 

PathSum on a tree two times, we can conclude about 

the algorithm running time on a unicyclic graph as 

follows. 

Theorem 9: There is an O(k2√ n) algorithm and an 

O(n2 log n + nk2) algorithm for solving a PathMax and 

a PathSum on a unicyclic graph, respectively. 

Proof: Since the two s-t paths P1 and P2 are the trees. 

From Theorem 4, we see that running a PathMax 

algorithm on the s-t paths P1 and P2 give O(k2√ n) and 

O(k2√ n) time. Thus, a total running time is O(k2√ n + 

k2√ n)= O(k2√ n), as claimed. In the case of a PathSum 
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algorithm. From Theorem 7, we see that running a 

PathSum algorithm on the s-t paths P1 and P2 provide 

the same bounds, that is, O(n2 log n + nk2) time. So, a 

total running time is O(n2 log n + nk2+ n2 log n + nk2) 

= O(n2 log n + nk2), as claimed.  

6 Conclusion 

In this paper, we considered a PathMax problem and 

a PathSum problem on a tree and a unicyclic graph. 

PathMax problem and PathSum problem are the path 

movement problems whose maximum movements 

made by pebbles and total movements made by 

pebbles that we wanted to minimize, respectively. 

When we consider general graphs, the researchers in 

[13] proved that both the problems are NP-hard. In this 

paper, we show that PathMax problems and PathSum 

problems can be solved in O(k2√ n) time and O(n2 log 

n + nk2) time when the input graph is a tree. For a 

unicyclic graph, we proved that there are at most two 

simple s–t paths on the graph. Thus, we can use the 

algorithm for a tree as a subroutine when we want to 

solve PathMax problems and PathSum problems on a 

unicyclic graph. Since we call the subroutine two times, 

one for each simple path, the running time values of 

PathMax algorithms and PathSum algorithms for a 

unicyclic graph are the same as those of their 

algorithms on a tree, which are O(k2√ n) and O(n2 log n 

+ nk2). 
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