
Polynomial-Time Algorithms for Path Movement Problems on Trees and Unicyclic Graphs 1729

Polynomial-Time Algorithms for Path Movement Problems on

Trees and Unicyclic Graphs

Varin Chouvatut, Wattana Jindaluang

Department of Computer Science, Chiang Mai University, Thailand

{varinchouv, wjindaluang}@gmail.com*

*Corresponding Author: Wattana Jindaluang; E-mail: wjindaluang@gmail.com

DOI: 10.3966/160792642019102006005

Abstract

In the path movement problem, we are given an

undirected graph G = (V, E), a source vertex s, a

destination vertex t, and a set of movable objects, called

pebbles, which are placed on a subset of the vertices of a

graph. We want to move a subset of the pebbles along the

edges to a subset of the vertices of the graph such that

there exists a path from s to t in graph G in such a way

that all the vertices in that path are occupied by at least

one pebble. The PathMax and the PathSum problems are

the path movement problems in which we want to

minimize the maximum movements and the total

movements made by the pebbles, respectively. In [7], the

researchers proved that both the problems are NP-hard in

general graphs. In this paper, the PathMax and the

PathSum problems are considered on special classes of

graph G, that is, G is a tree and a unicyclic graph. More

precisely, this paper shows that PathMax and PathSum

problems can be easily solved in polynomial time when

the input graph is a tree or a unicyclic graph.

Keywords: Polynomial-time algorithm, Movement

problem, Tree, Unicyclic graph

1 Introduction

Motion planning is the problem in which we want to

move a set of movable objects, for example, robots,

people, sensor nodes, etc., from their initial positions to

their final positions such that the movements made by

the movable objects obey some constraint. And the

problem goal is to optimize some measurement. For

example, the two sensor nodes in a wireless sensor

network (WSN) want to communicate with each other

for cooperative communication but they have limited

communication ranges. Therefore, in this communication,

the movable sensor nodes have to move to a

communication path to relay a signal (or a message)

from the source node to the destination node. An

example of a multiple mobile relays research is [1]. In

this research, the authors proposed the low cost, low

complexity, and collision-free algorithms with the

condition relaxations of the other existing methods for

the problem of position optimization in mobile relays.

Moreover, motion planning is implemented in wireless

sensor networks in terms of mobile sensor networks,

mobile opportunistic networks, and mobile ad hoc

networks. There are many pieces of research about a

barrier coverage problem in mobile sensor networks

such as [2] where the mobile sensor nodes have to

move for minimizing the number of barrier paths in

such a way that the total moving distances made by the

mobile nodes and the number of sensor nodes are

minimized. In [3], Jia et al. proposed the theoretical

analysis and simulations for redistributing mobile

sensor nodes to guarantee that a barrier coverage

property is satisfied. In an area of opportunistic

networks, Wang et al. [4] considered the contact

duration between mobile terminals and their adjacent

nodes with respect to the node mobility and short

communication range. In the rescue situations, the

rescuers are assisted by the robots to access to

hazardous regions. In [5], Baroudi et al. provided an

approach with a simulation of a dynamic coverage

problem in situations with the constraint of

connectivity, the shortage of available robots, and a

time limitation. Finally, in a mobile ad hoc network,

Yu et al. [6] presented a broadcasting algorithm to

prevent a broadcast storm problem and increase the

broadcast reliability and network lifetimes by using a

broadcasting ratio and energy balance of nodes.

In theoretical computer science, motion planning is

studied and defined as a movement problem. Demaine

et al. [7] were the first group of researchers who

introduced the class of movement problem. In this

problem, we are given a simple undirected unweighted

graph G = (V, E) where V is a set of n vertices and E is

a set of m edges. In addition, we are given a set of

pebbles which are placed on the set of vertices of a

graph. The pebbles can move along the edges of the

graph. The goal of the movement problem is to move

the set of pebbles from the initial positions of the

pebbles to a set of vertices such that the pebble

movement satisfies some criteria such as the induced

subgraph on the final positions of the pebbles is a

connected graph: this problem’s name will start with

1730 Journal of Internet Technology Volume 20 (2019) No.6

Con; there is at the most one pebble occupying each

vertex and for each adjacent vertex, there is at the most

one vertex that is occupied by a pebble: this problem’s

name starts with Ind; and there exists a path from the

source vertex s to the destination vertex t and each

vertex in this path is occupied by at least one pebble:

this problem’s name starts with Path. The cost

movement measurements are carried out in many ways,

such as minimizing the maximum movement, that is,

the maximum distance moved by any pebble;

minimizing the overall movement, that is, the sum of

the distances traversed by all the pebbles; and

minimizing the number of moving pebbles, that is, the

number of pebbles that move from their initial

positions. For these three measurements, the names of

the problems will end with Max, Sum, and Num,

respectively (for more details, see [7]).

In a graph theory, a finite sequence of distinct

vertices which connected by the edges is called a

simple path. A simple path that begins and ends with

the same vertex is called a cycle. A graph is a

connected graph if there exists a path between any its

two vertices. A tree is a connected graph with no cycle.

A unicyclic graph is a connected graph that comprises

exactly one cycle.

1.1 Related Work

The class of movement problems was first defined

by Demaine et al. [7]. This paper showed that most of

them are NP-hard and also provided the approximation

algorithms for them. Later, various other versions of

the movement problems were studied and

simultaneously the approximation ratios of some

movement problems were improved through many

research papers such as [8-10], and [11].

With regard to the aspect of the easy problem, there

are many research papers that discussed the

polynomial-time algorithms for the movement

problems. In [7], Demaine et al. showed that a

PathNum problem can be solved in polynomial time on

n. The movement problem where the final positions of

the moved pebbles agree with the property that there

exists a perfect matching of the pebbles in a graph

where two pebbles are placed on two adjacent vertices

if they are far from each other by at most one hop in

the input graph and we want to minimize the maximum

movement is called a MatchMax problem. As for the

purposes of minimizing the overall movement and the

number of moved pebbles of the same property, the

movement problems are called MatchSum problem and

MatchNum problem, respectively. Demaine et al. [7]

showed that MatchMax, MatchSum, and MatchNum

can solve in polynomial time on n. Additionally, they

showed that when we fix an input graph to a tree, a

ConMax problem can be solved in polynomial time. In

2016, Bilo et al. [12] presented a new category of

movement problems and showed that a ConSum

problem and a ConNum problem on a tree can be

efficiently solved by the dynamic programming

technique. What this means is that this result combined

with the ConMax result in [7] can complete all

versions of the connectivity property when the input

graph is a tree. In addition, Bilo et al. [12] presented

efficient algorithms for solving an IndMax on a path

and an IndSum and an IndNum on a tree.

1.2 Contributions

This paper focuses on a PathMax problem and a

PathSum problem when the input graph is a tree or a

unicyclic graph. The paper shows that both a PathMax

problem and a PathSum problem can be solved in

polynomial time on both the input graphs. For the tree,

we use the maximum cardinality matching algorithm

and the minimum weighted matching algorithm as the

subroutine for the PathMax problem and the PathSum

problem, respectively. We proceed by showing that our

algorithm’s running times are dominated by the

running times of the matching algorithms which run in

the polynomial time on n. Thus, we can conclude that

our proposed algorithms are efficient algorithms for

solving a PathMax and a PathSum on a tree. For the

unicyclic graph, we prove that the number of the

simple path between two specific vertices is at most

two. So, we can find the optimum movement on each

path by calling the algorithms for the PathMax

problem and the PathSum problem on the tree as the

subroutine. Finally, we choose the best one among

them as the solution of the PathMax problem and the

PathSum problem on a unicyclic graph.

The paper is organized as follows. Section 2 gives

the notations and the terminology used in this paper.

The polynomial-time algorithm for a PathMax problem

on a tree is shown in section 3. Section 4 presents the

polynomial-time algorithm for a PathSum problem on

a tree. The polynomial-time algorithms for the

PathMax problem and the PathSum problem on the

unicyclic graph are presented in section 5. Finally, the

conclusion is provided in section 6.

2 Notations and Terminology

The basic notations and terminology used by this

paper are defined in this section. In this paper, we are

given a simple undirected unweighted graph G = (V, E).

It is composed of a collection V of n vertices and a

collection E of m edges. In addition, we are given two

distinguished notations, source vertex s and sink vertex

t. We assume that vertex s and vertex t are in the same

connected component. In addition, there is a set of k

pebbles, Peb = {p1, p2, …, pk}, with movable items that

can move along the edges of the graph, that is, they can

move from vertex u to vertex v, where (u, v) ∈ E.

Finally, we are given a mapping function, φ : Peb → V,

that maps each pebble to its initial position. The goal

of the movement problem is to find a mapping function

Polynomial-Time Algorithms for Path Movement Problems on Trees and Unicyclic Graphs 1731

δ : Peb → V which assigns each pebble to its final

position. When pebble p is mapped to vertex v by

function φ or function δ, we say that pebble p occupies

vertex v and vertex v is occupied by pebble p. An

occupied vertex v is a vertex that is occupied by at least

one pebble. Otherwise, we call vertex v an unoccupied

vertex. The occupied number of vertex v is the number

of pebbles that occupies vertex v. Regarding more

definitions, we define a finite sequence of vertices P =

{v1, v2, …, vj}, where (vi, vi+1) ∈ E; 1 ≤ i < j is a path in

graph G. The path from vertex v1 ∈ V to vertex vj ∈ V

is called the v1-vj path. The length of the v1-vj path P,

denoted by lP(v1, vj), is the number of its composed

edges. The movement cost of pebble p is the length of

its traverse path P which starts from the initial position

of p to the final position of it, that is, lP(φ(p), δ(p)). The

maximum movement cost, denoted by c_max(δ), is the

maximum movement cost made by the moved pebbles,

that is, c_max(δ) = maxp ∈ Peb { lP(φ(p), δ(p))}. The

total movement cost, denoted by c_total(δ), is the sum

of the movement costs made by all the moved pebbles,

that is, c_total(δ) = ∑p ∈ Peb { lP(φ(p), δ(p))}. The s–t

path movement problem is a movement problem for

which we want to find a mapping function δ such that

there exists an s–t path in an induced subgraph on the

final positions of the pebbles. The PathMax problem is

an s–t path movement problem such that the maximum

movement cost is minimized, that is, we want to

minimize the c_max(δ) cost. The PathSum problem is

an s–t path movement problem such that the total

movement cost is minimized, that is, we want to

minimize the c_total(δ) cost.

We note that function φ does not have to be an

injective surjective function. This means that the

problem definition allows more than one pebble to be

initialized at each vertex and that there exist

unoccupied vertices in an initialization. But for the

sake of simplicity, in this paper, we assume that each

vertex in graph G is occupied by at the most one

pebble in an initialization. In addition, function δ also

does not have to be an injective surjective function. To

eliminate the non-injective property of function δ, we

will prove a very useful lemma in the next section.

3 PathMax Problem on Tree

In this section, we will present a polynomial-time

algorithm for solving the PathMax on a tree.

The solution optδ which minimizes c_max(δ) is said

to be optimal. Let the cost of this solution be equal to

OPT, that is, c_max(optδ) = OPT. We will eliminate

the non-injective property of function δ which states

that we can move more than one pebble to the same

vertex in a solution by proving Lemma 1.

Lemma 1: If there exists an optimal solution optδ1 that

allows more than one pebble to occupy one vertex,

then there exists another optimal solution optδ2 such

that no more than one pebble occupies the same vertex,

and c_max(optδ2) ≤ c_max(optδ1).

Proof: We will prove this lemma by a construction.

We will construct the optimal solution optδ2 from the

optimal solution optδ1, as follows. Let δ1 and δ2 be the

mapping functions of the pebbles to their final

positions in the optimal solution optδ1
 and the optimal

solution optδ2, respectively. For each vertex v where

δ1(p) = v and its occupied number is equal to one, we

then assign δ2(p) = v, too. We see that in this part,

c_max(optδ2) = c_max(optδ1). Consider vertex u which

has an occupied number more than one. We assume

that its occupied number is equal to two. Thus, a

mapping function δ1 maps two distinct pebbles to

vertex u, that is, δ1(p1) = u = δ1(p2) and p1 ≠ p2. In the

optimal solution optδ2, we can choose an arbitrary

pebble, say, pebble p1, to move to vertex u. Since

pebble p2 is also moved to vertex u in the optimal

solution optδ1, there exists a path P = {φ(p2), v1, v2, …,

u} in the graph. In the optimal solution optδ2, we will

move pebble p2 back to its initial position, that is, δ2(p2)

= φ(p2). We can see that the movement cost of pebble

p2 in the optimal solution optδ2 did not increase. For

every other vertex w which has an occupied number

more than one, we can modify its final position as we

do with vertex u. This is because in an initialization,

we assume that each vertex is occupied by at the most

one pebble. Thus, this method terminates in the final.

In addition, we can conclude that there still exists an s–

t path on an induced subgraph of occupied vertices in

the optimal solution optδ2. Moreover, its cost does not

increase, that is, c_max(optδ2) ≤ c_max(optδ1).

From Lemma 1, we see that we need to move

exactly one pebble to each unoccupied vertex in the s–t

path. This is the reason why we can use the matching

for our proposed algorithm. For more details of our

proposed algorithm, let us define more definitions. A

bipartite graph B = (X + Y, F) is a graph that is

composed of a set of vertices U = {X ∪ Y} and a set of

edges F where X and Y are disjoint sets, and if (u, v) ∈

F, then u ∈ X, v ∈ Y. The matching M is a subset of

edges such that each vertex is incident with at most one

edge in M. If one edge in a matching is incident to

vertex v, then we call vertex v is matched. Otherwise,

vertex v is called unmatched. The matching M’ is a

maximal matching if no other edges can be added to

M’, and if the added M’ is no longer matching. The

maximum matching M* is a maximal matching with

the maximum size. For a bipartite graph B = (X + Y, F),

an X-saturating matching is a matching in which all the

vertices v ∈ X are matched.

We reduce the PathMax problem to a problem of

finding an X-saturating matching in the bipartite graph

B = (X + Y, F). For a given input tree T = (V, E), we

find an s–t path on it. From the definition of the tree T,

1732 Journal of Internet Technology Volume 20 (2019) No.6

we see that there exists exactly one path. Recall that

OPT is the cost of the optimal solution optδ, that is,

c_max(optδ) = OPT. Initially, we guess an OPT value.

We can do this because we know that this value ranges

between 0 and n. Thus, we can perform the binary

search to find them quickly. We construct a bipartite

graph B = (X + Y, F), where X is a set of unoccupied

vertices in the s–t path on an input tree; Y is a set of the

initial positions of all the pebbles, that is, Y = {v ∈ V

|φ(p) = v for all p ∈ Peb}; and there exists an edge

between two vertices if and only if there is a path P

between these two vertices on tree T with length at the

most OPT, that is, (u, v) ∈ F: u ∈ X, v ∈ Y if and only

if lP(u, v) ≤ OPT.

From the above-mentioned bipartite graph B

construction and the fact that the path from any two

vertices in a tree is unique, we have an observation, as

follows.

Observation 2: The bipartite graph B cannot have

multiple edges.

For the correctness of the algorithm, we will prove

the following theorem.

Theorem 3: A PathMax has an optimal solution optδ

where c_max(optδ) = OPT if and only if the bipartite

graph B = (X + Y, F) has an X-saturating matching M.

Proof: Going forward, we will assume that the

PathMax problem has an optimal solution optδ where

c_max(optδ) = OPT and we will prove that the

bipartite graph B has an X-saturating matching M.

Since the PathMax has the optimal solution optδ, each

unoccupied vertex in an s–t path on a tree T has at least

one pebble moved to it with a movement cost by at

most OPT. Moreover, these pebbles are all distinct. For

a subset W ⊆ X, we define a neighbor set of W, denoted

by N(W), which is a set of vertices in set Y that is

incident with a vertex in set W. From the bipartite

graph B construction, we see that each vertex xi ∈ X

has at least one degree. Thus, for every subset W ⊆ X,

we can see that |W| ≤ |N(W)|. We can conclude that the

bipartite graph B has an X-saturating matching M by

using Hall’s theorem.

Now, we will assume that the bipartite graph B has

an X-saturating matching M and we will prove that the

PathMax problem has an optimal solution optδ where

c_max(optδ) = OPT. Since graph B has an X-saturating

matching, each vertex xi ∈ X has vertex yi ∈ Y, where

(xi, yi) ∈ M. We will construct an optimal solution optδ

by moving pebble p, where φ(p) = yi, to vertex xi, that

is, assign δ(p) = xi. Because (xi, yi) ∈ F, lP(xi, yi) ≤ OPT.

Moreover, since M is an X-saturating matching, all

vertices in set X will have assigned pebbles. We can

conclude that the PathMax problem has an optimal

solution optδ where c_max(optδ) = OPT.

Next, we will prove the running time of our

proposed algorithm.

Theorem 4: A PathMax on a tree can be solved in

O(k2 √ n) time.

Proof: The running time of our proposed algorithm is

dominated by the X-saturating matching algorithm. The

best running time for computing the maximum

matching in a bipartite graph with flow technique is the

Hopcroft–Karp algorithm which runs in O(m√ n) time

for a graph with n vertices and m edges [13]. We know

that the total number of pebbles, which is k, is at least

the length of an s–t path on the tree, that is, k ≥ lP(s, t).

From the bipartite graph B = (X + Y, F) construction,

we see that |X| ≤ k = |Y|. Thus, there is a maximum of k2

edges on the graph B. This means that our proposed

algorithm can solve a PathMax on tree in O(k2 √ n)

time, as claimed.

4 PathSum Problem on Tree

We begin this section by an example of a PathSum

problem on a tree.

Figure 1. An example of a PathSum problem on a tree

From Figure 1, in an initialization, the occupied

vertices are designated by the circles with bold lines,

the vertices s, v1, v5, v10, v13 and t. They occupied by

the pebbles which label inside them. These vertices are

also the initial positions of the pebbles p1, p2, p3, p4, p5

and p6 too, that is, φ(p1) = s, φ(p2) = v1, φ(p3) = v5, φ(p4)

= v10, φ(p5) = v13 and φ(p6) = t, respectively. A possible

optimal solution of this problem is assigning the

pebbles p1, p2, p3, p4, p5 and p6 to the final positions s,

v2, v3, v9, v13 and t, that is, δ(p1) = s, δ(p2) = v2, δ(p3) =

v3, δ(p4) = v9, δ(p5) = v13 and δ(p6) = t, respectively.

The movement costs of the pebbles p1, p2, p3, p4, p5 and

p6 are 0, 1, 2, 1, 0 and 0. Thus a total movement cost,

c_total(δ), is 0 + 1 + 2 + 1 + 0 + 0 = 4. We also note

that a maximum movement cost, c_max(δ), is max{0, 1,

2, 1, 0, 0} = 2.

Next, we will show that a function δ for a PathSum

problem is an injective function by proving Lemma 5.

Lemma 5: In any optimal solution optδ of the PathSum

problem, there is exactly one pebble mapped to each

vertex in the s-t path.

Proof: We will prove this lemma by a contradiction.

Suppose, for the sake of contradiction, that there exists

an optimal solution optδ that allows two pebbles p1 and

p2 to be mapped to a vertex v where v is a vertex on an

s-t path. Consider another solution optδ’ that moves

Polynomial-Time Algorithms for Path Movement Problems on Trees and Unicyclic Graphs 1733

pebble p1 to its initial position. We see that

c_total(optδ’) = c_total(optδ) − lP(φ(p1), δ(p1)) <

c_total(optδ), and that there still exists an s–t path in

the induced subgraph in the final positions of the

pebbles. Thus, this contradicts the assumption that optδ

is the optimal solution.

To solve a PathSum problem on a tree, we will

construct a bipartite graph B = (X + Y, F) with weight

function W: F → N, where N is a natural number, as

follows. Given a tree T = (V, E), we construct a

bipartite graph B = (X + Y, F), where X is a set of

unoccupied vertices in an s–t path on tree T; and Y is a

set of the initial positions of all the pebbles, that is, Y =

{v ∈ V |φ(p) = v for all p ∈ Peb}; there exists an edge

between two vertices x ∈ X and y ∈ Y if and only if

there is a path P between vertex x and vertex y on tree

T and the weight of the edge (x, y) ∈ F is equal to the

length of the path P from vertex x to vertex y on tree T,

that is, W((x, y)) = lP(x, y). To solve a PathSum on a

tree, we find the minimum weighted matching

saturated X on the bipartite graph B. In particular, we

want the matching M that saturated X, with the sum of

the weights of all the edges in the matching M

minimized, that is, minimized ∑(u, v)∈M{W((u, v))}.

For the correctness of the algorithm, we will use an

analogous reason as we used in the proof of Theorem 3.

Thus, we can obviously conclude Theorem 6.

Theorem 6: A PathSum has an optimal solution optδ

with cost c_total(optδ) if and only if a bipartite graph B

= (X + Y, F) has an X-saturating matching M with

minimum weight equal to c_total(optδ).

Next, we will prove the running time of our

proposed algorithm.

Theorem 7: A PathSum on a tree can be solved in

O(n2 log n + nk2) time.

Proof: The proof is from the fact that the minimum

weighted matching in a bipartite graph can be solved in

O(n2log n + nm) time by the Hungarian algorithm with

the Dijkstra algorithm and Fibonacci heap [14] and an

analogous reason as we used in the proof of Theorem 4.

Recall that there is at the most k2 edges on a bipartite

graph B. Thus, our proposed algorithm can solve a

PathSum on a tree in O(n2log n + nm) = O(n2 log n +

nk2) time, as claimed.

5 PathMax and PathSum Problems on

Unicyclic Graph

The example of a PathMax and a PathSum problem

on a uniclyclic graph are shown in Figure 2.

Figure 2. The examples of PathMax and PathSum

problems on a unicyclic graph

From Figure 2, a possible optimal solution of this

example is assigning the pebbles p1, p2, p3, p4, p5, p6, p7,

p8 and p9 to the vertices s, v5, v8, v1, v9, v7, v6, v4 and t,

respectively. The movement costs of these pebbles are

0, 0, 1, 1, 1, 1, 1, 1, 0. Thus, a maximum movement

cost, c_max(δ), of a PathMax problem is 1 and a total

cost, c_total(δ), is 0 + 0 + 1 + 1 + 1 + 1 + 1 + 1 + 0 = 6.

We note that another solution that move pebble p1, p2,

p3, p4, p5, p6, p7, p8 and p9 to the vertices s, v5, v7, v9, v1,

v8, v6, v4 and t give a total movement cost 6 but give a

maximum movement cost 2. Thus, this solution is an

optimal solution to a PathSum problem but it is not an

optimal solution of a PathMax problem in Figure 2.

Next, we will present an algorithm for the PathMax

and the PathSum problems on a unicyclic graph by

state the next lemma.

Lemma 8: The maximum possible number of simple

paths from vertex s to vertex t on a unicyclic graph G

is two.

A proof detail of this lemma is omitted because it

follows from a definition of a unicyclic graph.

From Lemma 8, we propose an algorithm for a

PathMax (PathSum) problem on a unicyclic graph, as

follows. Find the two s–t paths P1 and P2 in the input

unicyclic graph G. Then, run a tree algorithm which is

presented in section 3 (section 4) on path P1 and path

P2. Finally, the best of them, that is, the X-saturating

matching (with minimum weight), is chosen as the

solution of the PathMax (PathSum) problem on the

unicyclic graph G.

Because we run the algorithm for a PathMax or a

PathSum on a tree two times, we can conclude about

the algorithm running time on a unicyclic graph as

follows.

Theorem 9: There is an O(k2√ n) algorithm and an

O(n2 log n + nk2) algorithm for solving a PathMax and

a PathSum on a unicyclic graph, respectively.

Proof: Since the two s-t paths P1 and P2 are the trees.

From Theorem 4, we see that running a PathMax

algorithm on the s-t paths P1 and P2 give O(k2√ n) and

O(k2√ n) time. Thus, a total running time is O(k2√ n +

k2√ n)= O(k2√ n), as claimed. In the case of a PathSum

1734 Journal of Internet Technology Volume 20 (2019) No.6

algorithm. From Theorem 7, we see that running a

PathSum algorithm on the s-t paths P1 and P2 provide

the same bounds, that is, O(n2 log n + nk2) time. So, a

total running time is O(n2 log n + nk2+ n2 log n + nk2)

= O(n2 log n + nk2), as claimed.

6 Conclusion

In this paper, we considered a PathMax problem and

a PathSum problem on a tree and a unicyclic graph.

PathMax problem and PathSum problem are the path

movement problems whose maximum movements

made by pebbles and total movements made by

pebbles that we wanted to minimize, respectively.

When we consider general graphs, the researchers in

[13] proved that both the problems are NP-hard. In this

paper, we show that PathMax problems and PathSum

problems can be solved in O(k2√ n) time and O(n2 log

n + nk2) time when the input graph is a tree. For a

unicyclic graph, we proved that there are at most two

simple s–t paths on the graph. Thus, we can use the

algorithm for a tree as a subroutine when we want to

solve PathMax problems and PathSum problems on a

unicyclic graph. Since we call the subroutine two times,

one for each simple path, the running time values of

PathMax algorithms and PathSum algorithms for a

unicyclic graph are the same as those of their

algorithms on a tree, which are O(k2√ n) and O(n2 log n

+ nk2).

Acknowledgments

The authors would like to thank Assistant Professor

Dr. Jittat Fakcharoenphol for the most valuable initial

concept to solve this problem. The second author also a

member of the Theory of Computation Group, Chiang

Mai University and would like to thank this group for

facility supports. Furthermore, the authors would like

to thank the unknown reviewers for the insightful

suggestions and supports.

References

[1] N. Xie, Y. Liang, J. Chen, Position Optimisation for Multiple

Mobile Relays by Utilising One-bit Feedback Information,

IET Communications, Vol. 12, No. 18, pp. 2266-2273,

November, 2018.

[2] T. G. Nguyen, C. So-In, N. G. Nguyen, Barrier Coverage

Deployment Algorithms for Mobile Sensor Networks,

Journal of Internet Technology, Vol. 18, No. 7, pp. 1689-

1699, December, 2017.

[3] J. Jia, X. Wu, J. Chen, X. Wang, An Autonomous

Redeployment Algorithm for Line Barrier Coverage of

Mobile Sensor Networks, International Journal of Ad Hoc

and Ubiquitous Computing, Vol. 16, No. 1, pp. 58-69,

January, 2014.

[4] F. Wang, Z. Wang, Z. Yang, S. Chen, Contact Duration

Aware Cache Refreshing for Mobile Opportunistic Networks,

IET Networks, Vol. 5, No. 4, pp. 93-103, July, 2016.

[5] U. Baroudi, G. Sallam, M. Al-Shaboti, M. Younis, Self-

deployed Wireless Actor Networks with Maximal Task

Satisfaction, IET Communications, Vol. 11, No. 18, pp. 2713-

2720, December, 2017.

[6] Y. Yu, L. Li, K. Liu, Y. Deng, X. Su, Broadcasting Algorithm

Based on Successful Broadcasting Ratio and Energy Balance

of Nodes in Mobile Ad Hoc Networks, International Journal

of Internet Protocol Technology, Vol. 11, No. 1, pp. 1-11,

January, 2018.

[7] E. D. Demaine, M. Hajiaghayi, H. Mahini, A. S. Sayedi-

roshkhar, S. Oveisharan, M. Zadimoghaddam, Minimizing

Movement, ACM Transaction on Algorithms, Vol. 5, No. 3,

pp. 30:1-30:30, July, 2009.

[8] P. Berman, E. D. Demaine, M. Zadimoghaddam, O(1)-

Approximations for Maximum Movement Problems,

Proceedings of the 14th International Workshop on

Approximation Algorithms for Combinatorial Optimization

Problems and of the 15th International Workshop on

Randomization and Computation, Princeton, NJ, 2011, pp.

62-74.

[9] E. D. Demaine, M. Hajiaghayi, D. Marx, Minimizing

Movement: Fixed-Parameter Tractability, ACM Transactions

on Algorithms, Vol. 11, No. 2, pp. 14: 1-14: 29, November,

2014.

[10] N. Anri, M. Fazli, M. Ghodsi, M. Safari, Euclidean Movement

Minimization, Journal of Combinatorial Optimization, Vol. 32,

No. 2, pp. 354-367, February, 2015.

[11] W. Jindaluang, J. Chawachat, V. Chouvatut, J. Fakcharoenphol,

S. Kantabutra, An Improved Approximation Algorithm for

the s-t Path Movement Problem, Chiang Mai Journal of

Science, Vol. 44, No. 1, pp. 279-286, January, 2017.

[12] D. Bilo, L. Guala, S. Leucci, G. Proietti, Exact and

Approximate Algorithms for Movement Problems on (Special

Classes of) Graphs, Theoretical Computer Science, Vol. 652,

pp. 86-101, November, 2016.

[13] J. E. Hopcroft, R. M. Karp, An n5/2 Algorithms for General

Graph Matching Problems, SIAM Journal on Computing, Vol.

2, No. 4, pp. 225- 231, December, 1973.

[14] M. L. Fredman, R. E. Tarjan, Fibonacci Heaps and Their Uses

in Improved Network Optimization Algorithms, Journal of

the ACM, Vol. 34, No. 3, pp. 596-615, July, 1987.

Biographies

Varin Chouvatut graduated with B.

Eng. (Honours) and M. Eng. in

Computer Engineering and got her

Ph.D. in Electrical and Computer

Engineering from King Mongkut’s

University of Technology Thonburi

since 2011. Recently, she is an

assistant professor at Chiang Mai University. Her

research interests include computer vision, image

processing, computer graphics, and data science.

Polynomial-Time Algorithms for Path Movement Problems on Trees and Unicyclic Graphs 1735

Wattana Jindaluang received a

doctoral degree in Computer

Engineering from Faculty of

Engineering, Kasetsart University,

Thailand. Presently, she is a lecturer

in the Department of Computer

Science, Faculty of Science, Chiang Mai University,

Thailand. Her research interests are about Design and

Analysis of Algorithms and Graph Algorithms and

their applications.

1736 Journal of Internet Technology Volume 20 (2019) No.6

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (Adobe RGB \0501998\051)
 /CalCMYKProfile (Japan Color 2001 Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHT <FEFF005b683964da300c9ad86a94002851fa8840002b89d27dda0029300d005d0020005b683964da300c8f3851fa0033003000300064002851fa88400029300d005d00204f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks true
 /AddPageInfo false
 /AddRegMarks false
 /BleedOffset [
 8.503940
 8.503940
 8.503940
 8.503940
]
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MarksOffset 9.354330
 /MarksWeight 0.141730
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed true
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

