
Cloud-based Personal Data Protection System and Its Performance Evaluation 1721

Cloud-based Personal Data Protection System and

Its Performance Evaluation

Jung-Chun Liu, Chu-Hsing Lin, Ken-Yu Lee

Department of Computer Science, Tunghai University, Taiwan

{jcliu, chlin}@thu.edu.tw, s2013453@gmail.com*

*Corresponding Author: Chu-Hsing Lin; E-mail: Chlin@thu.edu.tw

DOI: 10.3966/160792642019102006004

Abstract

This article uses Information technology (IT) to assist

in the fulfillment of personal information protection and

reduce IT risks within an organization. Advanced IT

approaches are adopted to locate and verify personal

information. Whenever the Personal Information

Protection Act (PIPA) is violated unnoticeably by users,

the proposed system will effectively detect files with

personal information by means of cloud computing and

alert those users. This study uses Hadoop distributed

computing platform to support computation of huge

amount of data. To avoid the risk of information leakage

when duplicating personal information to worker nodes

in Hadoop cloud platform, personal information is hashed

before transmission. To detect personal information,

documents are analyzed using automata-based programming

to locate suspicious words. Every suspicious word is then

verified with the help of a personal information database.

Finally, this study analyzes the computing efficiency of

Hadoop nodes and experimentally shows how to adjust

the number of maps in each node of the Hadoop

MapReduce structure to optimize system performance.

Keywords: Automata, Cloud computing, Digital

signature, Information security, Personal

Information Protection Act

1 Introduction

Data privacy governs how the data is collected,

shared and used; however, if it is collected without

proper consent that is a violation of data privacy [1-2].

The Personal Information Protection Act (PIPA) has

already been enacted by the Taiwanese government

since 2010. However, its result is worse than expected.

People merely have limited awareness about usages of

personal information such as personal identification

number, bank account number, date of birth, and

medical data [3]. When transmitting documents, they

might not be aware of disclosing personal information

via text words or numbers, thus unwittingly violating

PIPA. According to definition of personal information

in Article 2 of PIPA [4], we first develop an automata-

based system to analyze personal information,

including personal name, address, and identification

number to effectively scan and detect personal

information in documents.

The proposed system consists of the server and

client sides. The client retrieves personal information

from documents. The retrieved personal information

will be verified via digital signatures, filed for future

reference, and uploaded to the server to perform

personal information analysis.

The proposed automata-based system can be used in

organizations to improve protection of personal

information. It supports documents in various file

formats, such as e-mail, Office document, webpage,

and text file. Also, to accelerate computation speed of

handling data of massive volumes, a cloud-based

personal data protection system implemented with a

Hadoop framework is further developed.

2 Background

2.1 Hadoop Cloud Computing

Apache Hadoop, an open-source framework,

supports distributed data processing and storage of

huge amount of information using computing nodes in

a cluster [5]. Hadoop mainly consists of a processing

component (i.e., MapReduce) and a storage component

(i.e., Hadoop Distributed File System, HDFS). It

implements the MapReduce programming model to

split files into blocks that are distributed over

computing nodes in the cluster [6-7]. Besides, it uses

HDFS, the distributed file system, to store data

processed in computing nodes, thus enabling fast and

efficient data processing [8-9].

2.2 Automata-based Programming

The automata-based programming model is a

programming paradigm in which the program or part

of it is a model of a finite state machine (FSM). It has

the following two features. First, the execution time of

the program can be clearly divided into separate

automata steps, each step consisting of a code section

1722 Journal of Internet Technology Volume 20 (2019) No.6

with a single entry-point. Second, communication

between steps is only possible through the explicitly

noted variables set, i.e., the state. Automata-based

programming is often used in lexical analysis and

syntax analyzers. It is very useful for analyzing

personal information. Based on words retrieved from

sentences, the state is changed according to state

conditions. When the final state is reached, the words

are words that match set conditions [10].

2.3 Document Retrieval

To facilitate general applications, the proposed

system contained retrieval tools for documents in

various formats as listed in Table 1. For processing

traditional documents in txt format, BufferedReader of

JAVA was called. For processing Office documents,

Apache POI [11] was used since it could provide pure

Java libraries for reading and writing files in Office

formats such as Word, PowerPoint, and Excel. We also

included jsoup that could crawl and parse tags and

texts in a webpage [12]. For analysis of users’ e-mails,

we used JavaMail API to provide a platform-

independent and protocol-independent framework to

build e-mail and messaging applications. After entering

user passwords, JavaMail API was used to read the

whole contents inside a mailbox, retrieve e-mails, and

attach files for analysis.

Table 1. Types of documents and retrieval methods

Type of Document Retrieval Method

Traditional documents BufferedReader

Office documents POI

Web page jsoup

E-mail JavaMail

3 Experimental Design

As shown in Figure 1, the proposed Hadoop system

consists of client and server sides as described in detail

below:

Figure 1. Architecture of the Cloud-based Personal

Data Protection System using the Hadoop platform

3.1 Client

The client is in charge of retrieving documents

classified into four types as listed in Table 1. The

system automatically retrieves documents stored in the

client. Besides, when users are transmitting data via

webpages, the system will analyze contents of the

transmitted data and warn users before transmitting

sensitive personal information, thus greatly enhancing

privacy of users. The system also offers protection for

users’ e-mail box. With permission from users, it can

read and retrieve documents including e-mails and

attached files in the mailbox. The retrieved document

is certificated via digital signatures. After finding

personal data on the server side to ascertain its source

client, the retrieved personal data are filed for future

reference. The document certificated by the digital

signature will be uploaded to the main server on the

server side to perform personal information analysis

[13].

3.2 Server

The server side consists of the main server, database,

and Hadoop. The main server is in charge of receiving

documents and communicating with clients. The

database comprises personal information database and

backup database. The personal information database is

used to verify if personal information filtered by the

algorithms matches with any personal information

inside the organization. Files containing personal

information are stored in the backup database with

records of their user names. Hadoop is in charge of

executing main algorithms. Since the initial stage of

operation of the proposed system involves massive

amounts of documents, cloud computing technology is

introduced into the system to speed up the overall

system performance. However, Hadoop has a

drawback in that it duplicates data to every node, i.e.,

matched personal information accessed from the

personal information database is copied to nodes, thus

increasing the risk of personal information leakage. To

solve this problem, personal information is hashed

before transmission as a means to enhance privacy

preservation for cloud data storage [14-15].

3.3 Hadoop

Apache Hadoop, an open-source distributed cloud

computing system, can quickly analyze huge amounts

of data. It consists of a master node and multiple

worker nodes [6, 16]. The number of nodes can be

dynamically increased or decreased. The Hadoop

system can process huge amounts of data in parallel by

using large quantity of nodes. It offers very powerful

operation performance. The Hadoop cloud architecture

stores duplications of files in nodes. Hence, it occupies

a lot of storage space and causes latency of network

transmission. Different from GPU that can handle

simple operations, Hadoop can execute complex codes

Cloud-based Personal Data Protection System and Its Performance Evaluation 1723

such as read and write access to database. However,

since database is independent of Hadoop nodes,

operations of database will be very time-consuming. It

is critical to effectively reduce amounts of queries to

database in Hadoop. The proposed system uses

automata-based programming to analyze sentences to

effectively reduce amounts of queries to database.

3.4 Algorithm

The proposed algorithm adopts automata-based

programming to check and analyze words associated

with personal names, addresses, and identification

numbers that consist of data in non-fixed, part-fixed,

and fixed formats, respectively.

3.4.1 Data in Non-fixed Format

For data in non-fixed formats, names in personal

information database are arranged for analysis. The

automata-based program used for name search

compares words in sentences to find if a word matches

with any stored Chinese last name in the personal

information database. When a matched word is located,

it sends the word next to the detected last name to the

database. All similar names in personal information

database are hashed and then transmitted to computing

nodes which acquire one word at a time through the

document, hash it, and then compare it with the

received hashed word of similar names. The flow chart

of the automata-based program used for name search is

shown in Figure 2.

Figure 2. Flow chart of the automata-based program

used for name search

3.4.2 Data in Part-fixed Format

For data in part-fixed formats, the fixed format part

of them can be used for analysis. For example, an

address typically consists of words “county”, “city”,

“area”, “street”, and ends with the word “number” in a

Chinese address. The flow chart of the automata-based

program used for address search is shown in Figure 3.

Figure 3. Flow chart of the automata-based program

used for address search

3.4.3 Data in Fixed Format

Analysis of data in fixed format is relatively easy. It

can be performed by analyzing words to see if contents

of the expected fixed format are matched. For example,

the personal identification number used in Taiwan

consists of one English alphabet followed by 9 decimal

numbers which always start with number 1 or 2. The

flow chart of the automata-based program used for

personal identification number search is depicted in

Figure 4.

Figure 4. Flow chart of the automata-based program

used for matching identification number

4 Experimental Design

In this study, first, we investigated the efficiency of

the automata-based system implemented on a single

PC, and second, based on the automata-based system

framework, we introduced the Hadoop platform and

performed performance comparison of the proposed

Hadoop system by comparing its execution time with

that of a standalone PC. Specifications of hardware and

software of the experimental environment are listed

below.

1724 Journal of Internet Technology Volume 20 (2019) No.6

Hadoop system.

Master node: G860 CPU with 8G RAM.

Worker nodes: three physical computers, each with

Core i7-4790 CPU and 8G RAM, in each one of them,

three virtual machines (VMs) are created, each with

one Core and 2G RAM to form 9 worker nodes.

Single PC.

A physical computer with Core i7-4790 CPU and

8G RAM is used, in which one VM with 1 Core and

2G RAM are created.

Personal information database.

The database contains 2,200 real personal

information data such as name, personal identification

number, address, telephone number, and student

identification number.

4.1 Experiment 1

In this experiment, the execution time of the

automata-based system implemented on a single PC to

process various amounts of data is first investigated.

The experimental data used consist of one-year

national news in Taiwan. Each piece of news is

duplicated 100 copies before it is stored in the database.

Furthermore, the execution time of the proposed

Hadoop system is compared to that of the single PC.

Execution times for Hadoop systems (with 1 to 9

worker nodes) and single PC are listed in Table 2 and

plotted in Figure 5. The data consisted of various

pieces of news, ranging from 100,000 to 1,000,000

pieces.

Table 2. Execution times (in seconds) for processing various in pieces of news using Hadoop systems with various

worker nodes or the single PC system

Data size

(pieces)

1_node

(sec)

2_node

(sec)

3_node

(sec)

4_node

(sec)

5_node

(sec)

6_node

(sec)

7_node

(sec)

8_node

(sec)

9_node

(sec)

Single PC

(sec)

1 M 23946 16622 10032 9530 8119 8041 7428 6641 6477 13846

800K 18862 11222 8986 7460 6914 6627 5998 5173 5074 10774

600K 14102 9023 7305 5405 5128 4348 4078 3936 3759 8001

400K 9134 4903 4167 3938 3314 3075 2831 2721 2439 5053

200 K 4259 3119 1976 1800 1461 1326 1319 1264 1148 2212

100 K 2170 1390 1378 802 774 716 686 657 588 1118

Figure 5. Execution times (in seconds) for processing various pieces of news using Hadoop systems (with various

worker nodes) or the single PC system

As shown in Table 2 and Figure 5, the execution

time of the automata-based system grows linearly as

the data size increases. For the single PC system, it

takes 18.6 minutes (1,118 seconds) to process data of

100K pieces and 230.8 minutes (13,846 seconds) to

process data of 1M pieces. For the proposed Hadoop

system, it takes 9.8 minutes (588 seconds) to process

data of 100K pieces and 108.0 minutes (6,477 seconds)

to process data of 1M pieces.

Speedup ratios of Hadoop systems (with 1 to 9

worker nodes) over the single PC system are listed in

Table 3 and plotted in Figure 6. Experimental results

revealed that the performance of the Hadoop system

was worse than the single PC system when worker

nodes used were small (less than 3). However, the

performance of the Hadoop system was better than the

single PC system when its worker nodes were more

than 3. When data size was increased, longer time was

needed for data transmission in the Hadoop cloud

system. Hence, to increase the performance of the

Hadoop system, larger amounts of worker nodes

should be used.

Cloud-based Personal Data Protection System and Its Performance Evaluation 1725

Table 3. Speedup ratios of Hadoop systems with various worker nodes over the single PC system

Data size

(pieces)
1_node 2_node 3_node 4_node 5_node 6_node 7_node 8_node 9_node

1 M 0.58 0.83 1.38 1.45 1.71 1.72 1.86 2.08 2.14

800K 0.57 0.96 1.20 1.44 1.56 1.63 1.80 2.08 2.12

600K 0.57 0.89 1.10 1.48 1.56 1.84 1.96 2.03 2.13

400K 0.55 1.03 1.21 1.28 1.52 1.64 1.78 1.86 2.07

200 K 0.52 0.71 1.12 1.23 1.51 1.67 1.68 1.75 1.93

100 K 0.52 0.80 0.81 1.39 1.44 1.56 1.63 1.70 1.90

Figure 6. Speedup ratios for processing various amounts of data (in pieces) by Hadoop systems with various

worker nodes over the single PC system

4.2 Experiment 2

In this experiment, we investigated the performance

of the Hadoop system by varying the number of maps

used in each node in MapReduce architecture [7].

There were 9 worker nodes and 400,000 pieces of

news stored in the database. Execution times of

Hadoop systems with various total numbers of maps (9

to 90 maps) in nodes are listed in Table 4 and shown in

Figure 7.

Table 4. Execution times (in seconds) of the Hadoop system with various total numbers of maps used in nodes

9

maps

(sec)

18

maps

(sec)

27

maps

(sec)

36

maps

(sec)

45

maps

(sec)

54

maps

(sec)

63

maps

(sec)

72

maps

(sec)

81

maps

(sec)

90

maps

(sec)

2439 2046 1836 1784 1759 1753 1714 1839 1818 1821

Figure 7. Execution times of Hadoop system with various total numbers of maps

Experimental results showed that the number of

maps used in a node could be tuned to improve

Hadoop system performance. The number of maps can

be increased to improve performance. However, when

the number of used maps became too large, it caused

the database to queue up when the system detected

1726 Journal of Internet Technology Volume 20 (2019) No.6

suspected personal information and queried the

personal information database. According to

experimental results, the optimal number of maps was

determined by the speedup ratio (SR) in Equation (1):

Execut time of 9 maps

SR
Execut time of varied maps

= (1)

As shown in Table 5, the system performance was

optimal when the total number of maps used in the 9

worker nodes was 63 (i.e., 7 maps per worker node),

with a speedup percentage of 142%.

Table 5. Speedup ratios of performance with various total number of maps used over 9 maps

9

maps

(sec)

18

maps

(sec)

27

maps

(sec)

36

maps

(sec)

45

maps

(sec)

54

maps

(sec)

63

maps

(sec)

72

maps

(sec)

81

maps

(sec)

90

maps

(sec)

1.00 1.19 1.33 1.37 1.39 1.39 1.42 1.33 1.34 1.34

4.3 Discussion

With the aim to fulfill PIPA enacted in Taiwan since

2010, we have implemented an automata-based

personal data protection system and investigated its

efficiency. The experimental results show that the

automata-based system implemented on a single PC

can process data with a size less than 100K pieces

within 18.6 minutes. However, since the execution

time of the automata-based system grows linearly as

the data size increases, the proposed Hadoop system is

preferred to handle files of large volumes. In addition,

performance of the proposed Hadoop system can be

further enhanced by using a larger number of worker

nodes and by choosing appropriate numbers of maps

used in each worker node.

5 Conclusion

In this study, we first developed a personal data

protection system using automata-based programming

to analyze sentences and detect contents involving

personal information. The implemented system

consists of both client and server sides. On the client

side, it can read documents in various formats and

retrieve files transmitted via web pages and e-mails.

The retrieved document is certificated by digital

signatures and sent to the main server which adopts

automata-based algorithm to analyze documents. When

personal information is detected, it marks the location

of found personal information and alerts users of

personal information violations, thus greatly reducing

the risk of personal information violation. In addition,

the Hadoop cloud framework was further applied in the

automata-based system to facilitate handling massive

amounts of documents and accelerate the overall

system performance. Experimental results showed that

the proposed Hadoop system effectively accelerated

execution time when larger number of worker nodes

were used. In addition, the number of maps used in

each worker node could be tuned to optimize system

performance. In the future, to further enhance the

performance of the cloud-based personal data

protection system, we plan to use more physical

machines and expand worker nodes in the Hadoop

cloud system. In addition, we also research on

combining machine learning approaches with our

system structure to develop the personal data

protection system.

Acknowledgments

This research was partly supported by Ministry of

Science and Technology, Taiwan, under grant number:

MOST 107-2221-E-029-005-MY3.

References

[1] D. Wang, Y. Wu, W. Zhao, L. Fu, A Model of Privacy

Preserving in Dynamic Set-valued Data Re-publication,

Journal of Internet Technology, Vol. 20, No. 1, pp. 147-156,

January, 2019.

[2] H. Long, L. Zhang, J. Wang, S. Zhang, An Incentive

Mechanism with Privacy Protection and Quality Evaluation in

Mobile Crowd Computing, International Journal of Ad Hoc

and Ubiquitous Computing, Vol. 30, No. 3, pp.187-198,

January, 2019, DOI: 10.1504/IJAHUC.2019.10019942.

[3] Y. Liu, Y. Zhou, Y. Tian, M. Liu, Y. Zheng, Secure and

Lightweight Remote Medical System, Journal of Internet

Technology, Vol. 20, No. 1, pp. 177-185, January, 2019.

[4] National Development Council, Personal Information

Protection Act, https://law.moj.gov.tw/ENG/LawClass/Law

ParaDeatil.aspx?pcode=I0050021&bp=6.

[5] Apache Software Foundation, Apache Hadoop, http://hadoop.

apache.org.

[6] J. Dean, S. Ghemawat, MapReduce: Simplified Data

Processing on Large Clusters, Google Inc., 2004.

[7] S. Perera, T. Gunarathne, Hadoop MapReduce Cookbook,

Packt Publishing, 2013.

[8] J. Shafer, S. Rixner, A. L. Cox, The Hadoop Distributed

Filesystem: Balancing Portability and Performance, 2010

IEEE International Symposium on Performance Analysis of

Systems & Software, White Plains, NY, USA, 2010, pp. 122-

133.

[9] K. Shvachko, H. Kuang, S. Radia, R. Chansler, The Hadoop

Cloud-based Personal Data Protection System and Its Performance Evaluation 1727

Distributed File System, 2010 IEEE 26th Symposium on Mass

Storage Systems and Technologies, Lake Tahoe, Nevada,

USA, 2010, pp. 1-10.

[10] F. Yu, T. Bultan, M. Cova, O. H. Ibarra, Symbolic String

Verification: An Automata-based Approach, The 15th

International Workshop on Model Checking Software, Los

Angeles, CA, USA, 2008, pp. 306-324.

[11] Apache Software Foundation, Apache POI, https://poi.

apache.org.

[12] J. Hedley, Jsoup: Java HTML Parse, https://jsoup.org.

[13] Y. Song, Z. Liao, Y. Liang, A Trusted Authentication Model

for Remote Users under Cloud Architecture, International

Journal of Internet Protocol Technology, Vol. 11, No. 2, pp.

110-117, June, 2018.

[14] Y. Wang, Privacy-Preserving Data Storage in Cloud Using

Array BP-XOR Codes, IEEE Transactions on Cloud

Computing, Vol. 3, No. 4, pp. 425-435, October-December,

2015.

[15] M. Al-Ruithe, E. Benkhelifa, Y. Jararweh, C. Ghedira,

Addressing Data Governance in Cloud Storage: Survey,

Techniques and Trends, Journal of Internet Technology, Vol.

19, No. 6, pp. 1763-1775, November, 2018.

[16] Apache Software Foundation, Apache Hadoop YARN,

http://hadoop.apache.org/docs/current/hadoop-yarn/hadoop-

yarn-site/YARN.html

Biographies

Jung-Chun Liu received his M.S.

and Ph.D. degrees from the

Department of Electrical and

Computer Engineering at the

University of Texas at Austin, in 1996

and 2004, respectively. He is currently

an associate professor in the

Department of Computer Science at Tunghai

University, Taiwan. His research interests include

cloud computing, embedded systems, big data, network

security, and artificial intelligence.

Chu-Hsing Lin received his Ph.D.

degree in computer science from

National Tsinghua University, Taiwan,

in 1991. He is currently a professor at

the Department of Computer Science,

Tunghai University. Professor Lin has

ever been the director of computer

center, chairman of the department, and the library

director. His current research interests include

information security, cryptography, machine learning,

and data science.

Ken-Yu Lee received his B.S. and

M.S. degrees in computer science

from Tunghai University, Taiwan, in

2014 and 2017, respectively. He was

awarded the Gold Penguin Award by

the Ministry of Economy, Taiwan. His

two papers won the first prize and the

best paper awards in the IEEE ICASI 2017

international conference. His current research interests

include machine learning, mobile application and Web

service.

1728 Journal of Internet Technology Volume 20 (2019) No.6

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (Adobe RGB \0501998\051)
 /CalCMYKProfile (Japan Color 2001 Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHT <FEFF005b683964da300c9ad86a94002851fa8840002b89d27dda0029300d005d0020005b683964da300c8f3851fa0033003000300064002851fa88400029300d005d00204f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks true
 /AddPageInfo false
 /AddRegMarks false
 /BleedOffset [
 8.503940
 8.503940
 8.503940
 8.503940
]
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MarksOffset 9.354330
 /MarksWeight 0.141730
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed true
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

