
Interactive Teaching Aids Integrating Building Blocks and Programming Logic 1709

Interactive Teaching Aids Integrating Building Blocks and

Programming Logic

Chien-Hsing Chou1, Yu-Sheng Su2, Hui-Ju Chen1

1 Department of Electrical Engineering, Tamkang University, Taiwan
2 Department of Computer Science and Engineering, National Taiwan Ocean University, Taiwan

chchou@mail.tku.edu.tw, ntoucsiesu@mail.ntou.edu.tw, hueiru4567@gmail.com*

*Corresponding Author: Yu-Sheng Su; E-mail: ntoucsiesu@mail.ntou.edu.tw

DOI: 10.3966/160792642019102006003

Abstract

This study developed interactive teaching aids

integrating building blocks and programming logic for

children called e-Tuning. The teaching aids comprise two

systems: (1) a programming logic board and (2) an e-

book and task maps. The design concept of the

programming logic board enables children to conduct

simple programming without computers. Computer-

programming commands are converted into tangible

programming blocks easily understood by children.

Children can simply place the programming blocks on the

programming logic board to complete their programming

tasks. The e-book provides assembly methods for Lego

robots to complete different programming tasks. Children

can follow the assembling steps in the e-book to construct

the robot and use it to solve programing tasks.

Constructing robots with varied designs enhances the

enjoyment of children during the learning process. The e-

book also provides diverse story tasks and corresponding

task maps. Teachers can apply these story tasks to guide

children in using programming blocks to complete the

tasks systematically. The results of an experimental

course and field trials reveal that through games and tasks,

e-Tuning can cultivate basic programming logic, inspire

creativity, and develop logical thinking.

Keywords: Tangible user interface, Programming logic,

Building block, e-Tuning, Robot

1 Introduction

Because of advancements in technology, learning

programming languages has become crucial.

Numerous countries have begun encouraging the

teaching of programming languages to children.

Clement [1] reported that learning programming

enhanced children’s cognitive abilities for numbers,

visual materials, and memory. Fessakis et al. [2]

revealed that learning programming languages

benefited children’s abilities of logical thinking,

problem-solving, and communication. However,

common programming languages, such as C or Java,

contain complicated commands; consequently, they are

not suitable tools for children to learn programming.

Hence, several researchers have focused on this

research topic and developed different visual

programming languages as tools for children to study

programming [3-7]. Weintrop and Wilensky [3]

revealed that visual programming languages have

simple interfaces and therefore are suitable tools for

children to learn programming. Scratch is a famous

programming learning tool designed by the Resnick

research group at the MIT Media Lab [4]; it is suitable

for children aged 8-16 years, peaking at 12 years. This

programing language provides abundant graphical

programming blocks with distinct colors and labels for

various functions. Children can use the blocks to

control characters and program them to perform

actions such as talk, move, and jump. They can also

design scenes and stages in their programs.

Similarly, Hopscotch [5] is a programming language

suitable for children aged 8-12 years. Children can

adopt different graphical programming blocks to

design a complete game and animation. Compared

with Scratch, Hopscotch involves more-diverse

programming blocks. Cargo-Bot [6] is another

programming logic training app. Through this app, a

user can edit consecutive command instructions to

control a robotic arm (e.g., moving left or right and

using conditional statements) to place boxes at

assigned locations in the game. Because of the high

difficulty of the tasks, this app is more suitable for

senior students. Code.org [7] is an online learning

platform that provides programming tasks of various

difficulty levels for children to learn programming

logic. Although these visual programing tools are

simple and convenient for learning programing, the

teaching themes may be less entertaining; therefore,

children may easily become bored and lack motivation

to continue learning.

Although visual programming languages have been

commonly employed in teaching programming to

children, computers or tablets maybe not be suitable

for teaching programming to young children [8-9].

1710 Journal of Internet Technology Volume 20 (2019) No.6

Sewunet et al. [8] maintained that extended use of

computers or tablets could affect children’s eye

development. Stowell’s research [9] also indicated that

using mobile devices as learning tools may not produce

favorable learning results. Most children view mobile

devices as a platform for gaming and social networking.

Therefore, they are easily distracted by gaming apps or

video software, preventing them from concentrating on

learning. Moreover, the aforementioned programming

software packages are excessively complicated for

young children. Therefore, some researchers have

designed learning aids for enabling preschool children

to learn programming.

In recent years, tangible user interface (TUI) has

emerged as a new type of user interface, connecting the

digital and physical worlds [10-13]. TUIs are

employed to improve existing learning tasks. With

TUIs, children can interact with the learning tasks by

selecting and positioning physical objects. TUIs

employ physical actions to assist learning tasks, and

tangible objects provide diverse opportunities for

thinking about the world. This learning strategy is

effective and conducive to children’s learning. Merrill

et al. applied technology and methodology from

wireless sensor networks [14] to develop Siftables,

which are compact devices with sensing, graphical

display, and wireless communication capabilities.

Users can physically manipulate and assemble

Siftables as a group to interact with digital information

and media. Farr et al. [15] applied a construction toy

(Topobo) to promote social interaction in autistic

children. Girouard et al. [16] developed Smart Blocks,

which are augmented mathematical devices enabling

users to explore the concepts of volume and surface

area of three-dimensional objects. Their interface

supports physical manipulation to explore spatial

relationships and provides continuous feedback.

Many researchers have recently employed robots to

develop an appropriate programming teaching aid for

children. Cubetto [17] is a programming learning aid

for preschool children. Children use tangible action

blocks (such as blocks instructing a robot to move left

or right) to control the movement of a two-wheeled

robot. Martinez et al. [18] experimented with a school

intervention to teach fundamental programming logic

concepts to 3-11-year-old students with a robot-

programming platform. The experimental results

showed that all students could intuitively learn

sequences, conditional statements, loops, and

parameters. By adopting the design concepts of

previous research, this study designed interactive

programming teaching aids called e-Tuning for

children. As shown in Figure 1, e-Tuning contains a

tangible graphical programming interface, a Lego robot,

an e-book, and a story task map. The robot control

program was converted into tangible programming

blocks. In the proposed system, children are not

required to use computers or tablets. Instead, through

TUI, they can complete the robot control program by

arranging programming blocks on a programming

logic board. Compared with other researches [17-18]

our programming blocks also include light, sound, and

button sensors that enable children to learn the concept

of conditional statements in programming.

Figure 1. Proposed e-Tuning system

To increase children’s learning motivation, e-Tuning

provides numerous programming blocks and story

tasks as teaching content. Our e-book (a story task

question bank) includes programming learning

materials of different difficulty levels. Teachers can

use strategies of storytelling and task completion to

attract children to cultivate basic programming logic.

Furthermore, e-Tuning allows children to construct

robots for completing different story tasks by

assembling Lego bricks. The results of the field test

reveal that children enjoy using their own robots to

complete story tasks. This practice further enhances

children’s learning motivation.

2 E-Tuning

This study designed a set of interactive

programming teaching aids for children called e-

Tuning. Figure 2 shows a flowchart of the e-Tuning

process. Our e-Tuning adopts a tangible programming

logic board and game-based learning to teach students

programming logic. To control the robot’s movement,

children must only place programming blocks on the

programming board and press the green button to

execute their program. The story task bank includes

several story tasks with difficulty levels ranging from

easy to difficult. Children can choose a story task from

the e-book suitable to their abilities. To help children

study programming logic, various restrictions are

implemented in corresponding story tasks. If children

successfully complete a story task, they can select a

new story task from the task bank. Alternatively, they

can repeatedly adjust their programming blocks until

they achieve the goal of the story task.

Interactive Teaching Aids Integrating Building Blocks and Programming Logic 1711

Figure 2. Flowchart of e-Tuning

3 Construction of Task Robot

Research indicates that building with Lego bricks

increases children’s spatial cognition [19]. To help

students understand the structures of gears and robots,

we teach children to use Lego bricks to build task

robots. First, children choose a story task from the

story task bank in the e-book and assemble the robot

for the story task. The assembling steps for the task

robot are also provided by the e-book. Figure 3(a)

shows a step to assemble the task robot. In each

assembling step, the brick types and their numbers are

listed, and the assembly result is also provided.

Following the assembling steps, children build their

own robots to complete this story task. Figure 3(b)

shows a type of robot gripper used in the study.

(a) Example of a brick

assembling step

(b) Robot gripper

Figure 3. A type of robot gripper used in the study

To control the robot’s movement using the

programming logic board, we designed a new control

core, rather than using the Lego Mindstorms NXT

controller [20]. Figure 4(a) shows the control core. The

control core uses an Arduino UNO and an NXShield as

its embedded system responsible for I/O control and

communication. The embedded system handles three

functions: (a) communication with the programming

logic board through a Bluetooth module; (b) power to

the motor; and (c) detection of the states of button,

light, and sound sensors. Figure 4(b) shows the NXT

motor and three sensors applied in this study.

(a) Control core

(b) NXT motor and sensors

Figure 4.

4 Tangible Programming Interface

A tangible programming interface is an easily

comprehensible and user-friendly system that enable

preschool children to learn programming. However,

using a computer to learn programming remains

unsuitable for younger children. Manches and Price

[21] indicated that tangible learning interfaces (i.e.,

noncomputer) benefit children’s memory and

comprehension of graphs and colors. Therefore, this

study integrated the concept of blocks in the graphical

programming interface. The programming interface

comprised three components: programming blocks, a

programming logic board, and a digital logic board app.

Additional details are presented in the following

sections.

4.1 Programing Blocks

To control the robot, we converted complex

programing codes into tangible programming blocks.

As shown in Figure 5, the left part is the programming

code for controlling the robot to move forward;

however, this study designed a tangible program block

to represent the programming code. Children can

control the robot to move forward by placing this

programming block on the programming logic board.

1712 Journal of Internet Technology Volume 20 (2019) No.6

Figure 5. Converting complex programming code into

a tangible programming block

To control the robot’s movement, this study

designed ten types of programming blocks. Table 1

presents the correspondence between the programming

blocks and robot movements, usages, and purposes.

The blocks are classified into shapes and colors to

enable children to distinguish them easily. For example,

programming blocks for “forward” and “backward” are

purple and green, respectively, and are both circular.

Programming blocks for “turn right” and “turn left” are

yellow and white, respectively, and are both octagonal.

Programming blocks representing Lego sensors are all

black and pentagonal. They are applied to detect the

states of light, sound, and press action. Programming

blocks for “open gripper” and “close gripper” are in the

same category as the Lego sensors and displayed as

black and pentagonal. These two blocks control the

robot grasping objects. The program block

“subroutine” is brown and square; it represents a

subroutine function used to execute three programming

blocks on the extensive board.

4.2 Programming Logic Board

In contrast to the conventional programming

teaching method, in which each learner uses a

computer, the programming logic board (Figure 6)

designed in this study does not require computers.

Moreover, it enables children to experience the fun of

learning programming together through discussion.

This board includes nine bullet-shaped grooves for

placing programming blocks. It also includes an

auxiliary line indicating the program execution

sequence. After children place programming blocks,

they can press the green button to execute the program.

The activation of the LED light under a certain groove

signifies that the program is currently executing that

groove. When the program reaches an empty groove,

the LED light under the groove begins to flash, and the

program execution stops.

Table 1. Ten types of programming blocks

Programming

Block
Robot Movements and Usages

Forward

Backward

Turn Right

Turn Left

Open Gripper

Close Gripper

Light Sensor

Button Sensor

Sound Sensor

Subroutine

Figure 6. Programming logic board

Interactive Teaching Aids Integrating Building Blocks and Programming Logic 1713

In addition to the programming logic board, this

study designed a subroutine extension board (Figure 7).

The concept of the subroutine extension board is the

same as that of a subroutine in programming. When the

program is executed to a “subroutine” programming

block on the programming logic board, the program

calls the subroutine function and then executes

programming blocks on the extension board before

returning to the programming logic board to continue

executing the next programming block.

Figure 7. Subroutine extension board

4.3 Digital Logic Board App

We also developed an app called digital logic board.

The app operates on tablets and performs the same

functions as the aforementioned programming logic

board. Figure 8 shows the appearance of digital logic

board. This app contains includes 21 bullet-shaped

grooves for placing programming blocks, and five

bullet-shaped grooves for subroutine functions. The

app lets children place more programming blocks than

the programming logic board when they want to deal

with a difficult story task.

Figure 8. Digital logic board

5 E-book and Story Tasks

We designed several story tasks with difficulty

levels ranging from easy to difficult in the e-book.

Children can choose a story task suitable to their ability

from the task bank to practice. An example of a story

task in the proposed e-book is illustrated in Figure 9.

To help children understand programming logic,

various restrictions are implemented in some story

tasks. For example, the number of programming blocks

that may be limited for use, tangible objects (block

trees) may be added or sensor use may be required.

The various types and difficulty levels of the story

tasks enable children set and reach desired learning

goals. As shown in Figure 9, children are asked to use

the “turn left” programming block only once in this

story task. This story task was not designed to have a

standard answer. Story tasks may have several answers.

Children can use a subroutine to achieve the restriction

of this task, or they can separate this task into two

subtasks to complete it. In brief, if children achieve the

goals, they are considered to have successfully

completed the tasks. We observed that when children

repeatedly adjust their programming blocks until they

achieve the goal of story task, they usually find a

superior solution.

Figure 9. Example of a story task in the proposed e-

book

We designed four task maps for the aforementioned

story tasks; these maps have different difficulty levels,

with the easiest map comprising 3 × 3 cells and the

most challenging map comprising 5 × 5 cells. Each

story task corresponds to an exclusive task map. In

addition to difficulty levels, the four task maps involve

various missions. In the basic map, children only learn

how to control the robot’s movement. In the

elementary map, story tasks are solved using sensors or

tangible objects. In the intermediate map, the

subroutine concept is introduced, and sensors are

included to solve the story tasks. In the advanced map,

story tasks are solved using the subroutine concept,

sensors, tangible objects, or digital logic board app.

Table 2 summarizes details of these maps.

1714 Journal of Internet Technology Volume 20 (2019) No.6

Table 2. Details of Four Task Maps

Task Map
Map

Size
Subroutine

Sensor

s

Tangible

Objects

Digital Logic

Board App

Basic Map 3×3

Elementary Map 4×4 v v

Intermediate

Map
5×5 v v

Advanced Map 5×5 v v v v

Figure 10(a) and Figure 10(b) shows the basic and

elementary maps for story tasks, respectively. The

basic map (Figure 10(a)) comprises nine cells; the low

number of cells in the map renders it suitable for

children to practice elementary programming.

According to the story task, children try to move their

robot to a different cell by placing programming blocks

on programming logic board. In addition to teaching

children programming logic, this map teaches children

about nature; for instance, a desert is hot, and bears

live in mountain caves. Figure 10(b) presents the

elementary map. With a low number of cells, this map

is designed to help children to learn the concept of

sensors while they execute their programs. Lego

sensors are added to the task for this map. An example

of a story task is as follows: “It is nightfall. The robot

wants to find the cat in the grass, but it is too dark. The

robot needs the help of a flashlight.” In this example,

for the robot to navigate the grass, children first set the

Lego light sensor on their robot. They then must use

the “light sensor” programming block while they

execute their programs. When the robot arrives at the

grass cell, children shine the flashlight on light the

sensor to enable the robot to continue moving.

(a) Basic task map (b) Elementary task map

Figure 10.

Figure 11 shows the intermediate task map. The

difficulty level of this map is higher than that of the

basic or elementary maps. The goals of the story tasks

are more difficult to achieve, therefore the subroutine

concept is applied in this map. Furthermore, more

programming blocks must be used. The map contains

marine organisms and four numbered stars. The stars

indicate task instructions that guide children to move

the robot to certain cells and presses button sensors to

execute the following tasks. Moreover, the inclusion of

different types of fish on the map helps children learn

about marine organisms. This map is suitable for story

tasks requiring the use of sensors.

Figure 11. Intermediate task map

Figure 12 depicts the advanced task map. This map

contains more features than the maps of other difficulty

levels. Because more restrictions are imposed in the

story tasks, children must apply more steps or a

subroutine to achieve goals. For example, a story task

must be completed without the robot passing through

certain cells. Moreover, this map allows children to use

the digital logic board app; therefore, more

programming blocks can be placed simultaneously.

Figure 12. Advanced task map

The following examples demonstrate story tasks at

the elementary level (including sensors and tangible

objects) and advanced level (including subroutine and

limited programing blocks) and their corresponding

task maps.

Interactive Teaching Aids Integrating Building Blocks and Programming Logic 1715

5.1 Example 1: Elementary-Level Task (with

Sensor and a Tangible Object)

‧ Story plot and task: It is late in the evening, and the

robot (indicated by the blue dot in Figure 13(a))

must go home. The robot must collect some plants

on the way home. However, because of the darkness,

the robot needs a flashlight when walking through

the grass to find the way home.

‧ Task description: The blue dot indicates the robot’s

initial position. The robot must cut down a tree in

the woods (i.e., the gripper must be used to grasp a

tiny tree) and then go home. When the robot wants

to pass through any grass cell, a light sensor and

flashlight must be used.

‧ Solution: As indicated in Figure 13(a), the robot is

located at the blank cell. The grippers are employed

to collect the tiny tangible tree. The robot then turns

right, walks straight, and reaches the grass. The

“light sensor” programming block makes the robot

stop at the grass cell before executing the next move.

Children must apply the flashlight to shine the

sensor to pass through the grass cell. The next

moves are to walk straight, turn left, and then walk

straight to reach home (illustrated by the house

symbol). This story task has other solutions; Figure

13(b) provides a solution as a reference.

(a) Simulated route of a robot for Example 1

(b) corresponding programming blocks applied to

complete this story task

Figure 13.

5.2 Example 2: Advanced-Level Task (with

Subroutine)

‧ Story plot and task: The robot in the purple hat

intends to return to the robot headquarters (indicated

by “Start” in Figure 14(a)). As instructed by the

robot’s supervisor, the robot must clean the road on

the way back. The robot must return with three bags

of waste to be allowed in. Please help the robot.

(a) Simulated route of a robot for Example 2

(b) corresponding programming blocks applied to

complete this story task

Figure 14.

‧ Task description: The restrictions of this task are

that the “turn left” programming block may be used

only once, and on the way to the “Start” cell, the

robot must pass through three cells with waste

illustrations.

‧ Solution: As shown in Figure 14(a), the robot is

located at the cell showing a robot wearing a purple

hat. Because three bags of waste must be collected

and a “turn left” programming block may be used

only once, a subroutine must be employed to

complete this task. Programming blocks “turn left,”

“forward,” and “backward” can be used in the

subroutine. The robot must first execute a subroutine

1716 Journal of Internet Technology Volume 20 (2019) No.6

to enter the bag cell then turn right and proceed

forward across two cells to reach the cell showing a

mountain cave. Subsequently, the robot must use the

subroutine again to enter another bag cell, and return

to the mountain cave. The robot must then turn right,

move forward, execute the subroutine again, and

proceed backward to reach the “Start” position.

Because the subroutine concept is difficult, children

may use the digital logic board app to place multiple

programming blocks to solve the task, as

demonstrated in Figure 15. Other solutions are

available for completing the task; Figure 14(b) and

Figure 15 provide two of them as references.

Figure 15. Corresponding programming blocks for

solving Example 2 using the digital logic board app

6 Experimental Course and Field Trials

To test whether e-Tuning benefits teaching children

programming logic, this study designed a 3-day

experimental course. Figure 16 shows photos of the

programming logic training course. We examined

whether participants’ concepts regarding programming

logic had improved after the 3-day course. The

participants were six children aged 5-10 years that

were divided into three groups. The first and second

groups comprised one fourth-grader and one second-

grader each, whereas the third group comprised one

first-grader and one student in the second year of

preschool. The teaching plan is detailed in Appendix A.

First, students were taught to construct their own task

robots with Lego bricks. The concept of the

programming logic board and its usage methods were

introduced to the students. By playing games, the

students learned how to control their robots with the

programming logic board and practiced the beginning

task on the basic task map.

After the students had familiarized themselves with

how to control the robot’s movement, the advanced

tasks with sensors (light or sound sensor) were added,

and the students were taught how to use the sensors

and their functions. For example, the robot lost in the

grass requires light to find the correct route. In this

instance, the students must apply the flashlight to shine

the light sensor to enable the robot to execute the

following program. By contrast, if children must repeat

a subtask several times, such as moving forward and

grasping, the teacher can guide students to adopt a

subroutine function for this subtask.

(a) Constructing their own

task robots

(b) First group

(c) Second group (d) Third group

Figure 16. Programming logic training course

During the training course, each group completed

tasks on four task maps of various difficulty levels.

Because the course entailed conducting the tasks in

teams, students were more willing perform the tasks

themselves, ask teachers questions, and discuss with

one another during their learning process. The solved

story tasks were never repeated. Each group solved 11-

13 story tasks. The details of solving tasks are recorded

in Appendix B. Tables 3-4 briefly presents the average

times for the three groups. Groups 1 and 2 comprised

two older children (8 and 10 years); group 3 comprised

two younger children (5 and 7 years). After the 3-day

training course, we made the following observations:

(1) Students enjoyed using the robot they

constructed to perform tasks. Therefore, allowing

students to construct their own robots can increase

their learning motivation. Moreover, during the

building process, the students learned the function of

gears and a robot’s structural design.

(2) Although each group was assigned different

story tasks, we found that students engaged in

intergroup discussions, helping one another and

shortening the time they spent on solving story tasks.

(3) Table 2 and Appendix B show that groups 1 and

2 (older children) solved story tasks faster than group 3

(younger children) on the basic and elementary task

Interactive Teaching Aids Integrating Building Blocks and Programming Logic 1717

maps. However, after younger students familiarized

themselves with the programming logic board, they

could perform as well as the older children.

(4) During 3 days of practice, the time required by

each group to solve story tasks decreased.

(5) After solving many story tasks, the students

gained a clearer understanding of command-by-

command execution in computer programs and of the

actions executed by the robot.

Table 3. Average spending time of three groups for

solving story task (Basic and Elementary Maps and

Intermediate Map)

Basic and Elementary Maps Intermediate Map

of Tasks
Average

Time
of Tasks

Average

Time

Group 1 4 266 4 549

Group 2 4 247 5 396

Group 3 4 387 4 516

Table 4. Average spending time of three groups for

solving story task (Advanced Map)

Advanced Map

of Tasks # of Tasks

Group 1 3 723

Group 2 4 447

Group 3 3 627

To further test e-Tuning, field trials were performed

with 29 children aged 5-12 years (Figure 17). This was

the first time to use e-Tuning for all these children. We

introduced the concept of the programming logic board

and its usage methods and let them practice the

beginning task on the basic map. After the children

familiarized themselves with how to control robot’s

movement, a programming test “maze” was performed.

The children are asked to control the robot to pass the

maze. Appendix C details the test results. For

comparison, the same programming test was performed

by the students who participated in the 3-day course of

programming logic training. Table 5 presents the

average and fail times of two groups solving the maze

test. Students who participated in the programming

course required less time to solve the test without fail.

This comparison verifies the benefit of our system and

programming logic training course.

Figure 17. Field trials of e-Tuning

Table 5. Average spending time and fail times of two

groups for solving maze test

Average Spending

Time (s)

Average Fail

Frequency

Children without

Participated in

Programming Course

326 2.2

Children with

Participated in

Programming Course

202 0

7 Conclusions

This study developed interactive teaching aids

integrating building blocks and programming logic for

children. Instead of computers, the proposed e-Tuning

adopts a tangible programming logic board and game-

based learning to teach students programming logic

and train their logical thinking abilities while increasing

learning motivation. Computer-programming commands

are converted into tangible programming blocks easily

understood by children. Children can simply place the

programming blocks on the programming logic board

to complete their programming tasks. To increase

children’s learning motivation, e-Tuning provides

numerous programming blocks and story tasks as

teaching content. Teachers can use strategies of

storytelling and task completion to attract children to

cultivate basic programming logic. The results of an

experimental course and field trials reveal that through

games and tasks, e-Tuning can cultivate basic

programming logic, inspire creativity, and develop

logical thinking.

Acknowledgements

This study was supported by the Ministry of Science

and Technology (MOST), Taiwan, R.O.C., under

MOST 108-2511-H-019-002, MOST 108-2511-H-019-

003, MOST 107-2511-H-008-007, MOST 107-2511-

H-019-003, and MOST 107-2221-E-032-042.

References

[1] D. H. Clements, Young Children and Technology, Early

Childhood Science, Mathematics, and Technology Education,

Washington, DC, 1999, pp. 92-105.

[2] G. Fessakis, E. Gouli, E. Mavroudi, Problem Solving by 5-6

Years Old Kindergarten Children in a Computer

Programming Environment: A Case Study, Computers &

Education, No. 63, pp. 87-97, April, 2013.

[3] D. Weintrop, U. Wilensky, To Block or Not to Block, That is

the Question: Students’ Perceptions of Blocks-based

Programming, Interaction Design and Children of the 14th

International Conference, Boston, MA, 2015, pp. 199-208.

1718 Journal of Internet Technology Volume 20 (2019) No.6

[4] M. Resnick, J. Maloney, A. Monroy-Hernández, N. Rusk, E.

Eastmond, K. Brennan, A. Millner, E. Rosenbaum, J. Silver,

B. Silverman, Y. Kafai, Scratch: Programming for All,

Association for Computing Machinery, Vol. 52, No. 11, pp.

60-67, November, 2009.

[5] Hopscotch, https://www.gethopscotch.com/.

[6] Cargo-bot, https://itunes.apple.com/tw/app/cargobot/id51969

0804?mt=8.

[7] Code.org, https://code.org/.

[8] S. A. Sewunet, K. K. Aredo, M. Gedefew, Uncorrected

Refractive Error and Associated Factors among Primary

School Children in Debre Markos District, Northwest

Ethiopia, BMC Ophthalmology, No.14, pp. 95, July, 2014.

[9] J. R. Stowell, Use of Clickers vs. Mobile Devices for

Classroom Polling, Computers & Education, Vol. 82, pp.

329-334, March, 2015.

[10] B. Schneider, J. Wallace, P. Blikstein, R. Pea, Preparing for

Future Learning with a Tangible User Interface: The Case of

Neuroscience, IEEE Trans. on Learning Technologies, Vol. 6,

No. 2, pp. 117-128, April-June, 2013.

[11] D. Xu, Tangible User Interface for Children: An Overview,

Department of Computing, University of Central Lancashire,

Preston, UK, 2005.

[12] O. Shaer, E. Hornecker, Tangible User Interfaces: Past,

Present, and Future Directions, Foundations and Trends in

Human-Computer Interaction, Vol. 3 No.1-2, pp.1-137,

March, 2010.

[13] M. S. Markova, S. Wilson, S. Stumpf, Tangible User

Interfaces for Learning, International Journal of Technology

Enhanced Learning, Vol. 4, No. 3/4, pp. 139-155, January,

2012.

[14] D. Merrill, J. Kalanithi, P. Maes, Siftables: Towards Sensor

Network User Interfaces, Tangible and Embedded Interaction

of the 1st International Conference, Baton Rouge, Louisiana,

2007, pp. 75-78.

[15] W. Farr, N. Yuill, H. Raffle, Social Benefits of a Tangible

User Interface for Children with Autistic Spectrum

Conditions, Autism, Vol. 14, No. 3, pp. 237-252, May, 2010.

[16] A. Girouard, E. T. Solovey, L. M. Hirshfield, S. Ecott, O.

Shaer, R. J. K. Jacob, Smart Blocks: A Tangible

Mathematical Manipulative, Tangible and Embedded

Interaction of 1st International Conference, Baton Rouge,

Louisiana, 2007, pp. 183-186.

[17] Cubetto, http://makezine.com/2013/12/04/teachingprogram-

ming-to-children/.

[18] C. Martinez, M. J. Gomez, L. Benotti, A Comparison of

Preschool and Elementary School Children Learning

Computer Science Concepts through a Multilanguage Robot

Programming Platform, Innovation and Technology in

Computer Science Education of ACM Conference, Vilnius,

Lithuania, 2015, pp. 159-164.

[19] A. James, Learning in Three Dimensions: Using Lego Serious

Play for Creative and Critical Reflection across Time and

Space, in: P. Lake & P. Layne (Eds.), Global Innovation of

Learning and Teaching: Transgressing Boundaries, Springer,

New York, 2014, pp. 275-294.

[20] Mindstorms NXT, http://www.class roomantics.com/2014/

10/29/great-deal-on-lego-mindstor ms-nxt/lego-nxt-education-

9797-inside-box/.

[21] A. Manches, S. Price, Designing Learning Representations

around Physical Manipulation: Hands and Objects, Interaction

Design and Children of the 10th International Conference,

Ann Arbor, USA, 2011, pp. 81-89.

Biographies

Chien-Hsing Chou received the B.S.

and M.S. degrees from the

Department of Electrical Engineering,

Tamkang University, Taiwan, in 1997

and 1999, respectively, and the Ph.D.

degree at the Department of Electrical

Engineering from Tamkang University,

Taiwan, in 2003. He is currently an assistant professor

of electrical engineering at Tamkang University,

Taiwan. His research interests include machine

learning, interactive learning, image analysis and

recognition, human computer interaction.

Yu-Sheng Su received the Ph.D.

degree from Department of Computer

Science and Information Engineering,

National Central University, Taiwan,

in 2010. He is currently an assistant

professor of computer science and

engineering at National Taiwan Ocean University,

Taiwan. His interests include social media mining,

AIoT, cloud computing, and computational thinking.

Hui-Ju Chen received the B.S.

degrees from Department of

Biomedical Engineering, I-Shou

University, Taiwan, in 2014 and the

M.S. degrees from the Department of

Electrical Engineering, Tamkang

University, Taiwan, in 2016. She is currently in the

Ph.D. program of electrical engineering at Tamkang

University, Taiwan. Her research include human

computer interaction, interactive learning and

mechanism design.

Interactive Teaching Aids Integrating Building Blocks and Programming Logic 1719

Appendix A

Table A1. Teaching plan for programming logic

training.

Course

Name

Interactive experimental course on programming

logic training

Teaching

Theme(s)
Programming logic training

Sources of

Teaching

Material

Self-compiled

Teaching

Aids

Lego Mindstorms NXT, Lego bricks,

programming logic board, e-book, digital

logic board app, iPad, task maps

Teaching

Objects
Six children aged 5-10 years

Teaching

Duration
7 hours per day for 3 days

Teaching

Objectives

Instead of computers, this course adopts a

tangible programming logic board and game-

based learning to teach students programming

logic and train their logical thinking abilities

while increasing learning motivation.

Course

Content

Teaching theme 1:

Teach students to use Lego bricks to

assemble task robots. Help students

understand the structures of gears and

robots.

Teaching theme 2:

Teach students to control the robot’s

movement by placing programming blocks

on the programming logic board. Students

practice with various story tasks on the

corresponding task maps.

Teaching theme 3:

Add sensors to robots. Teach students the

function of sensors. Help the students use

the corresponding programming blocks for

sensors to complete the story tasks.

Teaching theme 4:

Teach students the concept of subroutines.

Guild students use programming blocks to

create subroutines to complete the

corresponding story task.

Assessmen

t Method

Divide students into three groups (each with

two students), and instruct them to complete

multiple story tasks. The assessment method is

outlined as follows:

1. Allow students to solve different story tasks

(with or without sensors; with or without

subroutines) using the programming logic

board, e-book, digital logic board app, and

their robots. Record the time required for

solving each story task.

2. Observe students’ performance during the

learning and task-solving processes.

Appendix B

Table B1. Spending Time for Basic and Elementary

Maps.

 Task ID
With

Sensor

Spending

Time(s)

Average

Time(s)

1 485

2 V 265

3 218
Group 1

4 96

266

1 V 405

2 203

3 213
Group 2

4 166

247

1 720

2 V 404

3 207
Group 3

4 215

387

Table B2. Spending Time for Intermediate Map

 Task ID
With

Sensor

Spending

Time(s)

Average

Time(s)

1 V 535

2 V 611

3 425
Group 1

4 626

549

1 405

2 V 548

3 V 311

4 407

Group 2

5 V 317

396

1 555

2 V 541

3 456
Group 3

4 510

516

Table B3. Spending Time for Advanced Map

 Task ID
With

Sensor

Spending

Time(s)

Average

Time(s)

1 V 845

2 V 705 Group 1

3 V 620

723

1 V 420

2 V 452

3 V 440
Group 2

4 477

447

1 V 747

2 666 Group 3

3 V 468

627

1720 Journal of Internet Technology Volume 20 (2019) No.6

Appendix C

Table C1. Spending time and fail times of 29 children

for solving maze test.

Children ID Age (5-12)
Spending

Time(s)
Fail Frequency

1 8 366 4

2 5 468 3

3 7 349 3

4 6 397 3

5 5 455 5

6 5 303 1

7 8 340 3

8 5 530 0

9 7 364 4

10 5 390 2

11 6 579 4

12 6 474 2

13 10 210 1

14 9 330 5

15 9 440 2

16 12 224 0

17 10 322 2

18 10 244 2

19 12 158 0

20 10 185 1

21 10 270 2

22 11 211 2

23 11 185 2

24 10 233 2

25 10 276 2

26 10 313 2

27 12 213 1

28 11 326 2

29 9 300 2

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (Adobe RGB \0501998\051)
 /CalCMYKProfile (Japan Color 2001 Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHT <FEFF005b683964da300c9ad86a94002851fa8840002b89d27dda0029300d005d0020005b683964da300c8f3851fa0033003000300064002851fa88400029300d005d00204f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks true
 /AddPageInfo false
 /AddRegMarks false
 /BleedOffset [
 8.503940
 8.503940
 8.503940
 8.503940
]
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MarksOffset 9.354330
 /MarksWeight 0.141730
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed true
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

