
A Novel Solution for Simultaneously Finding the Shortest and Possible Paths in Complex Networks 1693

A Novel Solution for Simultaneously Finding the Shortest and

Possible Paths in Complex Networks

Wai Mar Hlaing1,2, Shi-Jian Liu2, Jeng-Shyang Pan2,3,4
1Geographic Information System, University of Computer Studies Yangon, Myanmar

2 Fujian Provincial Key Laboratory of Big Data Mining and Applications, Fujian University of Technology, China
3 College of Computer Science and Engineering, Shandong University of Science and Technology, China

4 Department of Information Management, Chaoyang University of Technology, Taiwan

wai_mar@yahoo.com, {liusj2003, jengshyangpan}@gmail.com*

*Corresponding Author: Jeng-Shyang Pan; E-mail: jengshyangpan@gmail.com

DOI: 10.3966/160792642019102006002

Abstract

A Novel graph approach named Combined Forward

and Backward Heuristic Search (CFBHS) is proposed in

this paper, which can be used to solve optimization

problems in areas such as transportation and network

routing. There are two major aspects distinct our method

from the most cited ones. Firstly, though focuses on

getting the shortest path in a graph when both source and

destination are given, this work can also find other

possible paths as outputs. Secondly, the proposed

algorithm is a high-performance one, which is achieved

by (1) reducing unnecessary nodes and edges to reach a

target optimum based on dynamically calculated heuristic

values and (2) finding the results by using the sub-

division scheme instead of computing over the whole

graph. Experiments are carried out for the complex road

network of Yangon Region. The comparisons show that

our algorithm is about 100 times faster than the bi-

directional Dijkstra’s algorithm. Besides, benefit from the

heuristic forward and backward search, the proposed

method can achieve very low time complexity, which is

similar to the A*, but A* can only produce the shortest

path. By contrast, the proposed algorithm is competent

for finding not only the shortest but also many possible

paths in complex road networks such as undirected graph

and hypergraph networks.

Keywords: Shortest path algorithm, Bi-directional

Dijkstra, Heuristic search, Distance based

methods

1 Introduction

Geographic information system has been widely

used in areas such as emergency services [1-2],

transportation systems [3], route navigation systems [4]

and life safety services [5-6]. For example, Dabhade et

al. [7] presented the network analysis about the spatial

data for finding shortest path in hospital information

systems by using the Dijkstra’s algorithm. Parmar and

Trivedi [8] combined bi-directed search and shortest

path bounding box to reduce the time complexity while

computing the shortest paths post calculating

congestion levels at different traffic junctions.

Tomaszewski [9] applied the GIS software for

rendering the data set on the map and achieved the

disaster management and mitigation. Finding the

shortest path within a few seconds is always an

encountered problem in our daily lives. Given a Graph

G, which can be created using geospatial data in

transportation network and contains node set

1 2 3
{ , , , , }

n
V v v v v= … and edge set

1 2 3
{ , , , , }

n
E e e e e= …

such that | |V n= and | |E m= . After the graph is

created, one general problem is to find the shortest path

between two pre-specified nodes: a source (s) and a

target (t). The path also contains other nodes that

belong to V. Many searching techniques can be used

for finding the route, but the efficiency is still a

problem facing until now in real-time applications.

Most of the shortest path algorithms are based on

Dijkstra’s algorithm proposed in 1959 [10]. However,

as we know, the complexity of Dijkstra’s Algorithm is
2()O n m+ if linear search is used, where n and m

means the number of vertices and edges respectively.

Various data structures such as fibonacci heap, fusion

trees and priority queues [11] were adopted by

researchers in order to improve the efficiency of the

Dijkstra’s Algorithm. Ahuja et al. [12] improved the

efficiency to (log)O m n C+ , where C is the cost of the

weightiest edge. Haung et al. [13] introduced the

algorithm that include constraints to search the

expected direction and the weighted value is flexibly

changed to adapt to different network complexity. By

introducing constraint function, it can omit lots of

useless search path and accelerate the process of

problem solving. Although the theoretical

developments with various data structures and

constraints based on Dijkstra’s algorithm have been

made, researchers are still trying to achieve better

efficiency. Another approach is to search the shortest

1694 Journal of Internet Technology Volume 20 (2019) No.6

path forward from the source and backward from the

target in bi-directional simultaneously. This kind of

algorithm works in ()O m in the worst case and it takes

in less time for path calculation, where m is the number

of edges [14-15]. It is more efficient than the previous

Dijkstra’s algorithm, because the Dijkstra based

algorithms traverses the whole graph to find the

shortest path. By contrast, partitioning techniques and

heuristic search [16] are applied to get the shortest path

with low time complexity by removing the unnecessary

data space. K-d tree is a popular data mining technique

for graph partitioning [17]. Graph partitioning

technique performs to find the best partitions, which

close to reach the goal by using good heuristics at the

pre-processing stage. However, it needs to consider the

cost of pre-processing time which dominates the

running time of the shortest-path computations [18].

The most popular heuristic search approach is the

A* algorithm [19-21]. At each iteration of its main

loop, A* needs to determine which partial paths should

be expanded. It does so based on the estimation of the

costs (total weight) of different paths travelling from

current node to the goal node. Specifically, A* selects

the path that minimizes () () ()f n g n h n= + where n is

the last node on the path, ()g n is the cost of the path

from the start node to n and ()n n is a heuristic that

estimates the cost of the cheapest path from n to the

goal. Goyal et al. [22] compared the running time

between A* and Dijkstra’s algorithm, it is proved that

the heuristic search can greatly improve the

performance in terms of time complexity comparing to

the linear search. However, A* considers all nodes in

the open lists repeatedly.

We refer to the proposed method as a Combined

Forward and Backward Heuristic Search (CFBHS)

algorithm for it works forward and backward in

sequential and it is based on the heuristic search like

the A*. However, it differs from the A* in that the

proposed method does not consider the comparison of

many adjacent nodes repeatedly and it estimated values

will be dynamically computed for heuristic search (see

Section 3.2). And main contributions of this work

includes:

‧ A dynamic tree-subdividing scheme is proposed for

a complex network other than the conventional

graph partitioning approach. This scheme is simple

and easy to find the shortest path for a large network.

‧ A new heuristic values calculation method is

adopted to avoid the pre-storing of the heuristic

values for every nodes in a graph. This method

calculates heuristic values dynamically and finds the

appropriate node for the next level.

‧ A new heuristic search algorithm is proposed to

prohibit about considering the nodes in the open list

repeatedly and it also intends to find both shortest

and possible paths simultaneously.

The rest of this paper is organized as follows.

Section 2 describes Bi-directional Dijkstra’s and

Heuristic search algorithm. The newly proposed

shortest path approach (i.e., the CFBHS algorithm) will

be introduced in Section 3. Section 4 shows the

simulation results and statistical analysis. Section 5

depicts the performance comparison of algorithms

using different algorithm analysis approaches. Section

6 concludes the paper.

2 Problem Statement and Preliminaries

In this Section, as related works, two most cited path

finding algorithms, namely the Bi-directional Dijkstra’s

and the A*, are introduced.

2.1 Bi-directional Dijkstra’s Algorithm

This algorithm is fundamentally an extension of the

Dijkstra’s algorithm and it is also a popular technique

for accomplishment the shortest path. The two distinct

persons work a task in searching a path between source

and destination on the road network. Person A starts

from the source and checking the condition of Person

B. Person B also starts from destination and goes in

backward direction and looking for the current states of

Person A. At a time, Person A and B will meet at the

same point. Then they interchange the information

such as the path they have traversed and store the result

by combing them in the route database. After

traversing all nodes in the graph, the algorithm will

find the shortest path and find the minimum. Bi-

directional Dijkstra’s algorithm can reduce the time

complexity than the popular Dijkstra’s algorithm due

to the working in both directions but it still traverses all

nodes that exists in the whole graph while the proposed

algorithm works by separating the tree-structured

network into different subdivision to find the shortest

path.

2.2 Heuristic Search

Heuristic means the usage of estimated values to

reach the target in a short time. The popular heuristic

algorithm is A* algorithm. At each iteration of its main

loop, A* needs to determine which partial paths should

be expanded. It does so based on the estimation of the

costs (total weight) of different paths travelling from

current node to the goal node. Specially, A* selects the

path that minimizes

 () () ()f n g n h n= + (1)

In Equation (1), n is the last node on the path, ()g n

is the cost of the path from the start node to n and ()h n

is a heuristic value that estimates the cost of the

cheapest path from n to the goal [22]. A* avoids

expanding paths that are already expensive. It is widely

used because of its good performance and accuracy.

Heuristic search pre-stores the estimated weighted

values between two points in the plane by using

A Novel Solution for Simultaneously Finding the Shortest and Possible Paths in Complex Networks 1695

distance based methods, such as Euclidean distance

(straight-line distance method) which is popular for the

plane. Table 1 depicts the straight-line distances from

each node to node B in Figure 1. When a graph is huge,

the pre-processing time may be long due to the

calculation of the heuristic values for all nodes in the

graph.

Table 1. The straight-line distances from each node to

node b for the weighted graph in Figure 1

Node Distance Node Distance

A 366 M 241

B 0 N 234

C 160 O 380

D 242 P 10

E 161 R 193

F 176 S 253

G 77 T 329

H 151 U 80

I 226 V 199

L 244 Z 374

Figure 1. A weighted graph

To store the generated and the extended nodes, the

table OPEN is applied. The table CLOSE is used to

store the generated and selected nodes for getting the

optimum route.

Now we will find the shortest path between node A

and B for the graph as shown in Figure 1 by using the

A* heuristic search. On the working example of the

algorithm, firstly we compute the total cost ()f n of

the start node A according to Equation (1) in which the

value of ()g n always get zero at the start node. Then,

the total cost value ()f n is 366 because heuristic value

()h n is 366 between start node and goal. This node

will be added into the closed list.

Open node and close node can be seen in white box

and blue box in Figure 2. The neighbors of the node A

are added into the open list. Algorithm finds the cost of

the neighbors and compares the values of the nodes in

the open list. After computing, it selects node S in

Figure 2 and node S will be added into the closed list.

Figure 2. Choosing a node among the neighbors of

node A

During the finding the minimum between node A

and B in a graph, this will compare all nodes in open

list as shown in Figure 3. Node T and Z are already

exists in open list but it will consider to compare all

nodes in open list repeatedly. When a graph that

contains many incoming and outgoing edges for each

vertex is traversed to find the shortest path, many

comparison times will occur.

Figure 3. Choosing a node among the neighbors of

node S

Inspired from this idea, a novel algorithm that uses

both forward and backward heuristic search for finding

the paths is proposed, description details will be given

in the next Section.

3 Combined Forward and Backward

Heuristic Search Algorithm

3.1 Basic Idea

In order to demonstrate the basic idea of our method,

we will find the shortest path between the source node

A and destination node B according to the Figure 1.

Heuristic forward and backward search is applied in

this system. Our system uses two threshold values. The

first one is calculating the threshold value by using

degree based threshold calculation method. This

threshold value is used for separating a large tree into

subtrees. When the graph is dense, the threshold value

1696 Journal of Internet Technology Volume 20 (2019) No.6

may be large. The second one is to define the number

of paths or shortest results | |rs that will find from the

subtrees. The system will check the number of

neighbor nodes of all nodes at current level for a

network graph. When the number of these neighbor

nodes or incoming and outgoing edges of all nodes at

current level are greater than or equal to the threshold,

large tree is divided into the subtrees. Each subtree will

find the shortest paths until the number of paths are

equal to the | |rs . While finding the shortest path from

each subtree, the heuristic search is used. The

algorithm will find the shortest paths from A to B

(forward search) and B to A (backward search) in this

way.

Our system uses forward and backward search but

they will work separately. Dijkstra with bi-directional

[14] uses forward and backward approach in bi-

directional search and they will meet at a point and

finally give the result. However, the Dijkstra with bi-

directional needs to traverse almost the whole graph to

find the shortest path. The proposed algorithm does not

need to traverse the all nodes of the graph and it

especially computes the shortest and possible paths

depend on the adjacent nodes using heuristic search.

Finally, the proposed system will determine which one

is the shortest according to the shortest results from A

to B and from B to A.

3.2 Proposed Method

The proposed method of our system is shown in

Figure 4. During the pre-processing stage, we construct

the graph database and store the spatial data in it and

find the distance between nodes using Haversine

Distance [24] according to Equation (2), it especially

focuses for the latitude and longitude data on the

sphere.

 2 1 1 2

2 1

() () cos()cos()

()

d
haversin haversin

r

haversin

φ φ φ φ

λ λ

= − +

−

 (2)

where d is the distance between two points with

longitude
1
λ ,

2
λ and latitude

1
φ ,

2
φ , r is the radius of

the Earth.

Threshold value th is needed to divide the large tree

into subtrees. Therefore, after pre-processing, a degree-

based threshold calculation method is used to find it. If

the network database is same, it does not need to

calculate again.

The shortest and possible paths for each subtree are

calculated by working the processes within the blue

box in forward and backward search in Figure 4 and

the paths will be stored in the database. After finding

these paths in both directions, global shortest and

possible paths are calculated by using quicksort.

Figure 4. System flow

There are three main parts: first step is finding the

threshold value th and dividing a large tree into small

segments, second step calculates the heuristic values to

know the expand node for the next level and it will find

the local optimum results and final step is computing

the global shortest and possible paths.

3.2.1 Subdivision Scheme

Hypergraph network is a very complex network and

it can be divided into pieces to be mapped the jobs on

different segments as shown in Figure 5. The system

uses two threshold values th and rs as shown in Figure

4. Threshold value th is calculated using degree based

threshold calculation method for separating the tree.

Proposed method consists of four phases that are

checking the degree of vertices, separating different

subtrees, finding the paths and considering the

accuracy of the shortest paths and performance.

Threshold value th of a graph varies depend on the

degree of vertices and nature of the graph. The degree

values of the graph are used as the testing values for

the threshold parameter. Then, the proposed method

checks the number of edges of all nodes at the current

level. If the total number of edges of all nodes at the

current level is greater than or equal to the threshold

value, the tree is separated into small segments. Each

subtree finds the paths by using dynamically heuristic

method with randomly selected start and end nodes.

After the paths are finding, it chooses the threshold

A Novel Solution for Simultaneously Finding the Shortest and Possible Paths in Complex Networks 1697

value based on two factors such as the accuracy of

shortest path and performance. The system needs to

execute it only for the first time, when the network

database is same.

Figure 5. Demonstration of subdivision

In Figure 5, the tree is separated into the different

segments at level 4. Firstly, the system traverses the

paths that go from start (level 1) to the next level.

During the traversing the graph, when a new level is

reached, two inspections occur that are tracking the

path and checking the total number of edges of current

level. If a path among of these paths reaches to the

destination, this path is stored into the database and it

is removed from the tree. When the total number of

edges of all nodes is greater than or equal to the

predefined threshold value th, the tree is separated into

the different subtrees.

At the beginning of the system, user needs to define

rs value. Rs is the number of shortest path that need to

find from each subtree. Each subtree finds the shortest

paths using heuristic search until the user defined

threshold value rs is reached. When the threshold value

rs is specified as three, each subtree { |1 21}
i

st i≤ ≤

will find the three local optimum results for their

outputs.

3.2.2 Heuristic Values and Choosing the Next

Expanded Node

Our system uses heuristic values while finding the

results in route analysis phenomenon and it calculates

these values dynamically while execution is made.

Besides, the proposed system does not consider the

nodes that already visited and other subtrees while

choosing the next expanded node from current subtree.

Each subtree works separately to find the shortest

results.

Euclidean Distance [28] is used to measure the

distance between two points: current neighbor node

and target node (t). After computing the distances

between the neighbors and target, ordered linked list is

used to store the nodes according to descending order

of these distance values. Visited linked list is used to

store the result nodes while going each level to get the

shortest path.

For example, if the current node
1
n contains three

neighbors
1

{ |1 3}
i

n i≤ ≤ and the system will calculate

the heuristic values between
1

{ |1 3}
i

n i≤ ≤ and target

node (t). These nodes are stored in the ordered linked

list according to descending order of heuristic values

and the minimum heuristic value is chosen for the next

level. This minimum node is stored into the visited

linked list. Now,
13 11 12
, ,n n n will exists in the ordered

linked list. Let assume
12
n is the node that owns

minimum heuristic value, and then
12
n is chosen to go

the next level. When the neighbors of current selected

node
12
n are

11 14 15
, ,n n n and

11
n is an already visited

node. Therefore, the system does not calculate the

heuristic values of previous node
11
n again to go the

next level. By using this way,
1
n passes through the

nodes and edges to reach the target. When a subtree

gets the shortest result, the system checks the number

of current shortest results are equal to the number of

threshold value rs. If the number of results are less than

the threshold value rs, it will find the next shortest path.

For example, the first shortest result in visited linked

list is
1 12 14
, , ,, 1, .

t t
n n n n n− The system will remove

the last two nodes of the shortest result. The next node

that owns the second minimum value is chosen from

the ordered linked list and this node is added at the end

of the visited linked list. Then, the system will find the

second shortest path using heuristic search. When the

current number of results reach to the threshold value

rs, the jobs of current subtree will terminate.

Proposed system chooses a node for the next level

depend on the heuristic values of neighbor nodes while

A* considers to compare all nodes in the open list. The

system finds the local optimum results of forward and

backward search.

3.2.3 Computing the Shortest and Possible Paths

Among of the Local Optimum Results

Proposed system based on the divide and conquer

strategy. Firstly, the system divides the large tree into

many small subtrees and each subtree finds the results

according to the predefined threshold value. This will

work in forward and backward search. Finally, all local

optimum results will exist in the same database.

After finding the local optimum results of each

subtree from two directional search, the system

compares the different results by using quick sort.

Quick sort algorithm is used to sort and compare the

local optimum results because it is one of the most

popular sorting methods and the time complexity of

this algorithm is (log)O N N in average case and it

does not need the additional memory. Besides, this

algorithm’s time complexity is better than other sorting

algorithms such as bubble sort, selection sort and

insertion sort. Finally, the system produces the best

1698 Journal of Internet Technology Volume 20 (2019) No.6

suitable results as the outputs for a graph network by

using quick sort and local optimum results.

3.3 Pseudo Code of the CFBHS

This algorithm finds the shortest path and possible

paths between two points in a graph using forward

searching, backward searching and heuristic approach.

When the system starts, MainFunction (Algorithm 1)

will work. This algorithm will create two objects with

parameterized values (startnode, targetnode, flag

variable) of CFBHS java class for two directional

search (forward and backward) and these objects will

call the CFBHS java class. Flag variable is used to

check whether two directional search is finished. When

the value of flag variable is equal to two, forward and

backward search is finished. Firstly, calculate function

(Algorithm 2) of the CFBHS java class will work. This

function calls the divideLargeTree function (Algorithm

3) to divide the large tree into the small number of

trees. Algorithm 3 checks whether the total number of

edges | |E of all nodes at the current level are greater

than or equal to the predefined threshold value. | |E is

equal to the total number of adjacent nodes of all nodes

in current level. Level 1 is checked in Algorithm 3 and

the total number of edges for other levels of tree are

checked using Algorithm 3 and Algorithm 4. The

details of work about subdivision can be seen in (3.4)

of this section. After dividing the tree by using

Algorithm 3, this algorithm will call the CFBHS

function (Algorithm 5). Algorithm 5 works based on

the heuristic search and it uses the Euclidean Distance

to find the distance between two points, current

neighbor node and target and removes the unnecessary

nodes and edges while going to the destination. It will

work to find the local optimum results on each subtree

that give from algorithm 3. Algorithm 5 finds the

number of results from the subtrees according to the

predefined threshold value rs. If the number of

threshold value | |rs is equal to m, each subtree will

find m local optima. When a local optimum result is

get at Algorithm 5, printPath (Algorithm 6) subroutine

will work and it will increase the number of results.

Finally, when the forward and backward direction have

executed for finding the local optimum results in a

graph, the calculate subroutine (Algorithm 2) will call

printGPath (Algorithm 7) subroutine and it will find

the best suitable shortest and possible results using

quick sort algorithm and local optimum results.

Algorithm 1. MainFunction

1. Create the two objects to call CFBHS class

2. firstobj (startnode, targetnode, flag)

//forwardsearch

3. secondobj (targetnode, startnode, flag)

//backwardsearch

Algorithm 2. calculate

Input: start node, target node, flag

1. call divide Large Tree (startnode, threshold)

function

2. if (flag == 2) then

3. call the printGPath function

4. end if

Algorithm 3. divideLargeTree

Input: startnode, threshold, Graph

Output: subtrees

1. j ← 0

2. adjacentLinkedlist ← adjacentNodes(startnode) //

level1

3. i ←size(adjacentLinkedlist)

4. k ←i

5. while (i>0) do

6. check the neighbor nodes

7. if the current neighbor node is equal to the target

node, store this traversed path into the local

optimum database

8. remove this traversed path from tree

9. i←i-1

10. end while

11. if (k >= threshold) then

12. separate the tree into subtree

13. call the CFBHS (traversedpath) function to find

the local optimum results from each subtree

14. else

15. work step 16 to check the number of adjacent

nodes of all nodes that exist at current level // level

2 and other levels

16. while (k>0) do

17. j← j+ CheckNumofAdjNodes

 (adjacentLinkedlist(k))

18. do from step 6 to 8

19. k ←k -1

20. end while

21. end if

22. if (j>= threshold) then

23. do step 12 and 13

24. else

25. k←j

26. j ←0

27. do step 15

28. end if

Algorithm 4. CheckNumofAdjNodes

Input: A node that want to find adjacent nodes

Output: number of adjacent nodes of current input

node

1. adjacentLinkedList ← adjacentNodes(node)

2. i ← size(adjacentLinkedlist)

3. return i

A Novel Solution for Simultaneously Finding the Shortest and Possible Paths in Complex Networks 1699

Algorithm 5. CFBHS (Combined Forward and

Backward Heuristic Search)

Input: Graph, start node, target node, traversed path

(visited linked list), flag, rs

Output: local optimum paths

1. get the last node from the traversed path in visited

linked list of current subtree

2. find the adjacent nodes of the current node

3. insert the adjacent nodes of the current node to the

 Linkedlist named as adjacentnodes

4. check each node in adjacentnodes

5. if a node in adjacentnodes contain in visited linked

list

 then

6. remove this node from adjacentnodes

7. else

8. compute the distance between the nodes in

adjacentnodes linked list and target node by using

Euclidean distance

9. end if

10. store the nodes in the ordered linked list according

 to descending order using heuristic distance values

11. choose minimum node from ordered linked list

12. add this choice node into the visited linked list

13. if current choice node is equal to target node then

14. call the printPath function

15. else

16. call the CFBHS function recursively

17. end if

18. if (current result number > number of predefined

 result named as rs)) then

19. terminate the job of current subtree

20. else

21. remove the last two nodes (target node and a node

 before target) from the visited linked list

22. choose the second minimum node from ordered

 linked list

23. add this node at the end of the visited linked list

24. call the CFBHS function recursively

25. end if

Algorithm 6. printPath

Input: Graph, visited Linked list

1. Calculate the total distance of a route that gives

from the visited linked list

2. Store the local optimum result into the database

3. Increment the current number of result

Algorithm 7. printGPath

Input: local optimum paths

Output: shortest and possible paths

1. Use the Quick-Sort function to get the shortest and

possible paths

3.4 Working Example

This section will demonstrate the working of our

algorithm, we will find the shortest path between node

s and o according to the Figure 6. Let assume two

threshold values th and rs are 12 and 2. At the working

example, the system will check the number of edges

| |E of all nodes for a level. If the | |E is greater than

or equal to the threshold value th, the system will

divide the tree. At level 1, the number of edges for

node s are 3 and at level 2, there are three nodes (d, c,

b). The number of edges of d, c and b are 3, 3, 4. So,

the total number of edges at level 2 are 10. At level 3,

there are five nodes (h, g, c, e, f) and the total number

of edges are greater than the threshold value th.

Therefore, the tree is divided into the subtrees at level

3. We get the six subtrees for the undirected graph in

Figure 6. These are (s, d, h), (s, d, g), (s, c, g), (s, b, c),

(s, b, f) and (s, b, e). Each subtree finds the shortest

path using heuristic search until the threshold value rs

is reached. For example, the subtree (s, d, h) finds the

neighbors of h. Among of the neighbors(d, g, k, l, m), d

is the already visited node. So, the subtree (s, d, h)

calculates the distance between the neighbor nodes of h

and target node o except node d. Instead of using the

coordinate values, we use the spatial data (latitude and

longitude values) for finding the distance values

between two nodes. k is the nearest node according to

the heuristic value and k is chosen for the next level.

We use the spatial data of Yangon, Myanmar in

Google Map. In this way, the subtree (s, d, h) gets the

shortest result s, d, h, k, o. Each subtree will find the

two shortest paths. This work will occur in forward and

backward search. Finally, the system will find the

shortest and possible paths by using the local optimum

results and quick sort algorithm.

Figure 6. Undirected graph

4 Experimental Results

In order to evaluate the proposed method,

experiments are carried out based on data of Yangon

city in Myanmar. Yangon region is composed of 33

townships and Yangon downtown is the main

transportation townships among of the townships in

Yangon. Latha, Lanmadaw, Pabedan, Kyauktada,

1700 Journal of Internet Technology Volume 20 (2019) No.6

Botahtaung and Pazundaung townships exist in

Yangon downtown area.

There are three major parts in this section: first part

is testing the different components with different

thresholds, second part is the time complexity

evaluation between different algorithms and different

data scalars and final part is the statistical analysis of

both undirected and hypergraph network. A* and Bi-

directional Dijkstra are the best ones in terms of

response time in order to find the shortest path, the

journal articles from [25-27]. The time complexity

between Bi-directional Dijkstra [14], A*[22, 28] and

the proposed CFBHS algorithm are compared with

Yangon downtown data. Actually, although there

exists about 300 bus stops in Yangon downtown area,

only the main bus stops are considered, and we can

easily inspect and analyze the results using graph

structure. Besides, the time complexity of CFBHS

algorithm are analysed with different data scalars. In

this case, we will use the dataset of Yangon city.

4.1 Testing the Different Components Using

Different Thresholds

Yangon downtown map in Figure 7(a) is constructed

into a simulation graph is shown in Figure 7(b), which

contains 41 nodes. Firstly, the system calculates the

threshold value th by using the degree values of the

graph as the testing parameters.

(a) Google map of Yangon downtown area

(b) Graph structure for Yangon downtown area

Figure 7. Building from map data into graph data

4.1.1 Testing Yangon Downtown Area with

Different Thresholds

The degree of the vertices in graph for Yangon

downtown area are one, two, three and four. Degree

one is removed for threshold because the vertex that

owns the degree “one” cannot split into the subtrees.

And then, we tested different threshold values such as

two, three and four. According to the experiments,

although all threshold values can find the shortest path,

threshold value two is the best because it’s execution

time is the fastest as shown in Figure 8(a) and Figure

8(b). The number of subtrees and performance is

directly proportional as shown in Figure 8 because the

performance of the proposed system will be faster

when the number of subtrees is lesser.

(a) Number of subtrees for randomly chose nodes and

different thresholds

(b) Processing time for different thresholds

Figure 8. Testing different threshold values

A Novel Solution for Simultaneously Finding the Shortest and Possible Paths in Complex Networks 1701

4.1.2 Testing Yangon Region with Different

Thresholds

The degree of vertices of public bus transportation

network graph of Yangon region are from degree 1 to

degree 11. After testing this by using different

threshold values from 2 to 11, the system found the

threshold value 4 is the best to divide the tree. When

the threshold value 2 and 3 are used as the testing

values, at sometimes the system can produce only the

second shortest path as described in Figure 9.

Figure 9. Yangon bus data with different thresholds

By comparing two different components by giving

the specified thresholds, at sometimes, Yangon region

graph cannot get the optimized shortest path by giving

the threshold value two and three because it contains

large degree vertices and graph’s data is large. So, the

most suitable threshold value for a graph varies depend

on the degree of vertices and nature of the graph.

Degree based threshold calculation method can give

the best threshold value for different components.

4.2 Time Complexity Evaluation

The system can produce the shortest and many

possible paths simultaneously. The first shortest path

(red colour) and second shortest path (green colour)

can be viewed on the graph for Yangon downtown area

as shown in Figure 10(a) and other possible paths can

be viewed in text mode in Figure 10(b). Figure 11

compared the time complexity between the proposed

CFBHS algorithm and other popular shortest path

algorithms such as A* and Bi-directional Dijkstra’s

algorithm. Yangon downtown data is used for this

experiment. The proposed algorithm defines the

number of results | |rs that need to find from the

subtrees using different parameter values such as one

and ten as shown in Figure 11. According to the

experimental results, the proposed algorithm can find

the shortest and possible paths with very low time

complexity. In addition, we can see that the number of

paths are increasing when the number of predefined

result value | |rs is large as shown in Figure 12.

(a) Two shortest path

(b) Shortest and possible paths

Figure 10. Finding the shortest and possible paths for Yangon downtown area using threshold value two and | |rs

value five

1702 Journal of Internet Technology Volume 20 (2019) No.6

Figure 11. The time complexity of three algorithms for

Yangon downtown area

Figure 12. Number of paths according to rs for

Yangon downtown area

The next one is to compare about the time

complexity of the proposed method depends on the

amount of data. Yangon city contains large amount of

data about bus-lines as shown in Figure 13. The

numbers of nodes in Yangon city is about 6000 and

contain many connections between them. We use

keyhole markup language (kml) file to load the spatial

data on the map. Yellow icon is used to show the nodes

(bus stops) and red line is constructed as the

connections (edges) between the nodes according to

the bus-line. After executing the proposed system to

find the minimum on large amount of data, we get the

results in java editor console and then we can trace the

result on google earth. In this test, CFBHS algorithm

finds the one shortest path for one subtree and

threshold value th is used as four. There were no

significant differences about the time complexity

between small and large data as shown in Figure 14.

Figure 13. Yangon city

Figure 14. The time complexity of CFBHS for Yangon

downtown area and Yangon city

CFBHS algorithm performs to find both shortest and

possible paths at the same time in a network. Finding

the one shortest path from each subtree is enough to

get the optimal path for the complex network but

finding the perfect possible ways are suitable by

calculating the results more than one. If the threshold

value | |rs is equal to m, each subtree will find a local

optimum result that differ about the local optima of

other 1m − at each time. One by one, the subtrees

work their jobs in sequentially. Therefore, when the

number of jobs as well as the number of shortest

results that will find from the system increase, time

complexity increases a little. The variances of time

complexity can be seen in Figure 15. CFBHS

algorithm accomplishes to meet the two objectives

with a very low time complexity.

Figure 15. The time complexity of CFBHS depended

on the number of results of the subtrees in 10 runs

A Novel Solution for Simultaneously Finding the Shortest and Possible Paths in Complex Networks 1703

4.3 Statistical Analysis of Both Undirected

and Hypergraph Network

A hypergraph is a complex network and it is

composed of many vertices and edges as the ordinary

graph but an edge in this graph can join any number of

vertices. For example, a hypergraph contains the set of

vertices
1 2 3 4 5 6 7

{ , , , , , , }V v v v v v v v= and
1 2 3 4

{ , , , }E e e e e=

in which
1 2 3 4

{ , , , }e e e e is the same as
1 2 3 2 3

{{ , , },{ , },v v v v v

3 5 6 3 5 6
{ , , },{ , , }}.v v v v v v It can be constructed into

ordinary graph [23] and each vertex can have many

edges. Formally, a hypergraph H is a pair (,)H X E=

where X is a set of elements called nodes or vertices,

and E is a set of non-empty subsets of X called hyper

edges or edges. Yangon bus network is a complex

hypergraph network. It is constituted with 61 bus lines,

it contains large number nodes, and edges. The graph

network in Figure 16 is constructed for four bus lines,

which contains 442 nodes. Moreover, a node may own

many incoming edges and outgoing edges. This section

describes the comparison results between different

algorithms and data size according to the statistical

analysis.

Figure 16. Simulated graph using SocNetV for

hypergraph Yangon bus network that contains 442

nodes

The time complexity of the proposed CFBHS

algorithm is compared with A* and Bi-directional

Dijkstra by using the Yangon downtown city’s data.

Figure 17 shows the average time complexity of

proposed algorithm is better than A* although the

threshold value is changed. Figure 18(a) shows the

total time complexity of these algorithms using

different execution times. If we calculate only one

shortest result for one subtree in CFBHS algorithm,

time complexity is better than the other algorithms

according to the statistical analysis. This comparison

also calculates ten shortest results for proposed

algorithm. In this case, our algorithm may be little

delay to get the results than the A* algorithm because

each subtrees works their jobs according to sequential

processing, but we cannot miss the second shortest and

third shortest paths. Besides, our algorithm can give

both shortest and possible paths as outputs

simultaneously, while A* can produce only the shortest

path. The experiment describes our algorithm’s time

complexity is better than Bi-directional Dijkstra’s

algorithm for both two conditions that are rs value one

and ten in Figure 18(a). Figure 18(b) shows the

comparison of time complexity depend on the data size.

Data set is used from Yangon bus system. It is a very

complex hypergraph network. According to the

experimental results, the time complexity of the

proposed algorithm is slightly different although the

data size is large as described in Figure 18(b).

Figure 17. Average time complexity between CFBHS

with different thresholds and A*

(a) Time complexity of proposed CFBHS, A* and Bi-

Directional Dijkstra’s algorithm depends on execution

times

(b) Time complexity analysis for different data size

using CFBHS algorithm.

Figure 18. Statistical analysis of both undirected graph

and complex hypergraph

1704 Journal of Internet Technology Volume 20 (2019) No.6

5 Time Complexity Analysis

To analyze the performance of proposed algorithm,

asymptotic analysis is used. Asymptotic analysis is

measuring the efficiency of algorithms that does not

need to consider on the machine specific factors such

as operating system, processors and hardware. It

measures the amount of time that will take for an

algorithm at running a function with the length of the

input. This section describes three parts. The first two

parts are describing the time complexity analysis in

detail for proposed algorithm and A*. The final part is

the comparison of performance between these two

algorithms using the Yangon downtown data.

5.1 Detail Performance Analysis for CFBHS

The proposed algorithm is analyzed by four main

factors that are forward search, backward search,

number of subtrees and the comparison time for

choosing a node to go the next level. After analysis, the

total time complexity of CFBHS is, where n is the total

number of vertices of a graph, k is the number of

subtrees or threshold value th and m is subtracting one

from the maximum degree. If the maximum number of

degrees about the nodes of a graph is four, at most only

three nodes are needed to compare for the next level.

Therefore, at each step, the maximum comparison

times occur m times.

If the shortest path length is n, the algorithm

compares mn times for going the next level about this

path. However, it does not need to consider the

comparison case at 1n − step if the end node exits at

step n because when the end node is found, comparison

does not occur, and the algorithm will choose the end

node. Besides, when the tree is divided at level 2, the

total number of nodes that need to compare will reduce

for one-step and the comparison nodes will get from n

into 1n − . Therefore, the total comparison nodes of

one subtree are n k− . Then, ()m n k− will take as the

comparison time for one subtree. If the total number of

subtree is k, then it will take ()km n k− . After

computing this by two directional searches in forward

and backward, the complexity is 2 ()km n k− . Finally,

we use the quicksort algorithm to find the best paths.

Although the complexity of quicksort is (log)O n n for

average case, we will consider as the worst case.

Therefore, the complexity of quicksort is 2()O n , in

which is the number of paths that need to sort. The

total time complexity for algorithm is resulted by using

the algorithm analysis approach. It can be denoted by

using asymptotic notation BigO for the worst case.

Then, the time complexity of proposed algorithm for

worst case is ()O kmn .

5.2 Detail Performance Analysis for A*

A* is the popular one among of the shortest path

algorithms to find the shortest path in a short time. The

time complexity of A* [29] is considered using ()dO b

where, b is the branching factor and d is the depth.

Otherwise, the total time complexity of A* is
1

1

d

i

i

T

−

=

∑ ,

where T is the time complexity for each step and d is

the depth of path. Time complexity may vary depend

on the shortest path length. Figure 19 finds the shortest

path between vertex ‘A’ and vertex ‘L’ using A*. We

will consider the worst case for this phenomenon. This

algorithm works three steps to find the path between

vertex A and vertex L.

Figure 19. Shortest path finding between node A and

node L

For step 1, the time complexity is T(1) = 3, because

three nodes such as node B, node C and node D are

compared. And then node B is chosen to expand for the

next level.

For step 2, the time complexity is T(2) = 5, because

node C, node D, node E, node F and node G are

considered to choose the node for the next level.

For step 3, the time complexity is T(3) = 7, because

node C, D, F, G, H, I, J are compared for the next step.

Now, the total comparison time for algorithm is
1

1

(1) (2) (3) 3 5 7 15.
d

i

i

T T T T

−

=

= + + = + + =∑

If the graph is very large, this way is not easy to

calculate the execution time. So, it uses d
b to compute

the time complexity of the path. For example, Figure

19 expands three nodes for each vertex in general, then

we can specify b is three and d is four for that case

because d is the depth of the shortest path. Then, the

total complexity is 81.

5.3 Performance Comparison between

CFBHS and A*

The efficiency of these two algorithms are compared

by using the data of Yangon downtown area in Section

4.1.1. This graph contains 41 vertices and m is three

because the maximum degree of vertices is four. The

A Novel Solution for Simultaneously Finding the Shortest and Possible Paths in Complex Networks 1705

degree of vertices are one, two, three and four.

Therefore, threshold value two, three or four can be

used for the threshold parameter k according to the

degree-based threshold calculation method. The

execution times of these algorithms are computed by

using detail time complexity analysis. The time

complexity of the proposed algorithm is described in

Table 2.

Table 2. Performance analysis of CFBHS

k m n
Checked nodes

()n k−
Execution time

2 3 41 39 476

3 3 41 38 702

4 3 41 37 920

A* algorithm works the total time complexity
40

1

i

i

T

=

∑

for Yangon downtown data. Then, the total complexity

is 1680. Therefore, the performance of proposed

algorithm is better than the A* according to the time

complexity analysis. The comparison of these two

algorithms is considering for the worst case. In real

time, the performance of these two algorithms is very

fast than other classical algorithms according to the

experiments and they do not need many execution

times to get the shortest result.

6 Conclusion

In this paper, a novel algorithm named CFBHS is

proposed for finding both shortest and possible paths.

It uses forward and backward heuristic searches. Most

of the shortest path algorithms use the whole graph for

searching the minimum result but our algorithm

divides a complex network into the small subtrees for

finding the results and it works each subtree separately.

Therefore, our method is more efficient. Besides,

different from other methods such as A* and Bi-

directional Dijkstra, which can only find one path, our

algorithm can provide not only the shortest path but

also the possible ones at the same time.

The comparisons between CFBHS algorithm, A*

and Bi-directional Dijkstra algorithm show that our

proposed algorithm outperforms others in terms of time

complexity. The time consumption of the proposed

method varies slightly for graph scales ascending from

a collection of over 400 nodes to 6000 nodes.

According to the statistical analysis and experiments, it

can produce the shortest path and possible paths with

reasonable time complexity for both large and small

data. In further work, parallel processing and novel

algorithms [30-31] will be adopted in our CFBHS

algorithm for forward and backward searching and

improve the efficiency of each subtree’s work.

Acknowledgements

This work is supported by the Scientific Research

Project of Fujian University of Technology (GY-

Z160130, GY-Z160138, GY-Z160066), the Natural

Science Foundation of Fujian Province (2017J05098,

2017H0003, 2018Y3001), Project of Fujian Education

Department Funds (JK2017029, JZ160461), Project of

Fujian Provincial Education Bureau (JAT160328,

JA15325) and Project of Science and Technology

Development Center, Ministry of Education

(2017A13025).

The authors also gratefully acknowledge the helpful

comments and suggestions of the reviewers, which

have improved the presentation.

References

[1] V. Bhanumurthy, V. M. Bothale, B. Kumar, N. Urkude, R.

Shukla, Route Analysis for Decesion Support System in

Emergency Management through GIS Technologies,

International Journal of Advanced Engineering and Global

Technology, Vol. 3, No. 2, pp. 345-350, February, 2015.

[2] A. Gunes, J. Kovel, Using GIS in Emergency Management

Operations, Journal of Urban Planning and Development,

Vol. 126, No. 3, pp. 136-149, September, 2000.

[3] H. A. Rakha, I. EL-Shawarby, M. Arafeh, F. Dion,

Estimating Path Travel-Time Reliability, 2006 IEEE

Intelligent Transportation Systems Conference, Toronto,

Canada, 2006, pp. 236-241.

[4] W. Wen, S. W. Hsu, A Route Navigation System with a New

Revised Shortest Path Routing Algorithm and Its

Performance Evaluation, WIT Transactions on The Built

Environment, Vol. 77, pp. 733-743, January, 2005.

[5] K. A. Korkmaz, Emergency Management for Infrastructure

and Transportation Systems in the US, 2017 Baltic Geodetic

Congress, Gdansk, Poland, 2017, pp. 179-183.

[6] E. Higgins, M. Taylor, H. Francis, M. Jones, D. Appleton,

The Evolution of Geographical Information Systems for Fire

Prevention Support, Fire Safety Journal, Vol. 69, pp. 117-

125, October, 2014.

[7] A. Dabhade, K. V Kale, Y. Gedam, Network Analysis for

Finding Shortest Path in Hospital Information System,

International Journal of Advanced Research in Computer

Science and Software Engineering, Vol. 5, No. 7, pp. 618-623,

July, 2015.

[8] R. S. Parmar, B. Trivedi, Shortest Route– Domain Dependent,

Vectored Approach to Create Highly Optimized Network for

Road Traffic, International Journal of Traffic and

Transportation Engineering, Vol. 5, No. 1, pp. 1-9, May,

2016.

[9] E. Lepuschitz, Geographic Information Systems in Mountain

Risk and Disaster Management, Applied Geography, Vol. 63,

pp. 212-219, September, 2015.

[10] E. W. Dijkstra, A Note on Two Problems in Connexion with

Graphs, Numerische Mathematik, Vol. 1, No. 1, pp. 269-271,

1706 Journal of Internet Technology Volume 20 (2019) No.6

June, 1959.

[11] B. V. Cherkassky, A. V. Goldberg, C. Silverstein, Buckets,

Heaps, Lists, and Monotone Priority Queues, SIAM Journal

on Computing, Vol. 28, No. 4, pp. 1326-1346, January, 1999.

[12] R. K. Ahuja, K. Mehlhorn, J. Orlin, R. E. Tarjan, Faster

Algorithms for the Shortest Path Problem, Journal of the

ACM, Vol. 37, No. 2, pp. 213-223, April, 1990.

[13] Y. Huang, Q. Yi, M. Shi, An Improved Dijkstra Shortest Path

Algorithm, 2nd International Conference on Computer

Science and Electronics Engineering, Paris, France, 2013, pp.

226-229.

[14] M. Dramski, Bi-directional Search in Route Planning in

Navigation, Scientific Journals of the Maritime University of

Szczecin, Vol. 39, No. 111, pp. 57-62, April, 2014.

[15] M. A. Qureshi, F. B. Hassan, S. Safdar, R. Akbar, A O(|E|)

Time Shortest Path Algorithm for Non-negative Weighted

Undirected Graphs, International Journal of Computer

Science and Information Security, Vol. 6, No. 1, pp. 40-46,

October, 2009.

[16] H. Wang, J. Zhou, G. Zheng, Y. Liang, HAS: Hierarchical A-

Star Algorithm for Big Map Navigation in Special Areas,

Proceedings– 2014 International Conference on Digital

Home, ICDH 2014, Guangzhou, China, 2014, pp. 222-225.

[17] I. Witten, E. Frank, M. Hall, M. A. Hall, Data Mining:

Practical Machine Learning Tools and Techniques (Third

Edition), Morgan Kaufmann, 2011.

[18] R. H. Möhring, H. Schilling, B. Schütz, D. Wagner, T.

Willhalm, Partitioning Graphs to Speedup Dijkstra’s

Algorithm, Experimental and Efficient Algorithms, 4th

InternationalWorkshop, WEA 2005, Santorini Island, Greece,

2005, pp. 1-12.

[19] I. Chabini, S. Lan, Adaptations of the A* Algorithm for the

Computation of Fastest Paths in Deterministic Discrete-Time

Dynamic Networks, IEEE Transactions on Intelligent

Transportation Systems, Vol. 3, No. 1, pp. 60-74, March,

2002.

[20] J. L. Bander, C. C. White, A Heuristic Search Algorithm for

Path Determination with Learning, IEEE Transactions on

Systems, Man, and Cybernetics Part A: Systems and Humans,

Vol. 28, No. 1, pp. 131-134, January, 1998.

[21] X. Liu, D. Gong, A Comparative Study of A-Star Algorithms

for Search and Rescue in Perfect Maze, 2011 International

Conference on Electric Information and Control Engineering,

ICEICE 2011 - Proceedings, Wuhan, China, 2011, pp. 24-27.

[22] A. Goyal, P. Mogha, R. Luthra, N. Sangwan, Path Finding:

A* or Dijkstra’s? International Journal in IT and

Engineering, Vol. 2, No. 1, January, 2014.

[23] C. Guo, Y. Zhen, G. C. Jia, X. W. Zhou, Multilayer Satellite

Network Routing Based on Hypergraph Theory, International

Conference on Cyberspace Technology (CCT 2013), Beijing,

China, 2013, pp. 312-315.

[24] L. Ganesh, B. P. Vijaya Kumar, Indoor Wireless Localization

using Haversine Formula, International Advanced Research

Journal in Science, Engineering and Technology, Vol. 2, No.

7, pp. 59-63, July, 2015.

[25] S. Ergün, T. A. Ğ. An, Z. Alparslan, A Study on Performance

Evaluation of Some Routing Algorithms Modeled by Game

Theory Approach, Afyon Kocatepe University Journal of

Science and Engineering, Vol. 16, pp. 170-176, May, 2016.

[26] S. K. Sharma, B. L. Pal, Shortest Path Searching for Road

Network using A* Algorithm, International Journal of

Computer Science and Mobile Computing, Vol. 4, No. 7, pp.

513-522, July, 2015.

[27] M. Karova, I. Penev, N. Kalcheva, Comparative Analysis of

Algorithms to Search for the Shortest Path in A Maze, 2016

IEEE International Black Sea Conference on Communications

and Networking, BlackSeaCom 2016, Varna, Bulgaria, 2016,

pp. 1-4.

[28] B. Siregar, E. B. Nababan, J. A. Rumahorbo, U. Andayani, F.

Fahmi, Nearby Search Indekos Based Android Using A Star

(A∗) Algorithm, Journal of Physics: Conference Series, Vol.

978, No. 1, pp. 1-6, March, 2018.

[29] L. Santoso, A. Setiawan, A. Prajogo, Performance Analysis

of Dijkstra, A* and Ant Algorithm for Finding Optimal Path

Case Study: Surabaya City Map, MICEEI 2010, Makassar,

Indonesia, 2010, pp. 27-10-2010-28-10-2010.

[30] J. S. Pan, L. P. Kong, T. W. Sung, P. W. Tsai, V. Snasel, a-

Fraction First Strategy for Hirarchical Wireless Sensor

Neteorks, Journal of Internet Technology, Vol. 19, pp. 1717-

1726, June, 2018.

[31] J. S. Pan, C. Y. Lee, A. Sghaier, M. Zeghid, J. Xie, Novel

Systolization of Subquadratic Space Complexity Multipliers

Based on Toeplitz Matrix-Vector Product Approach, IEEE

Transactions on Very Large Scale Integration Systems, Vol.

27, pp. 1614-1622, July, 2019.

Biographies

Wai Mar Hlaing received the B.C.Sc

and M.C.Sc degree in Computer

Science from the University of

Computer Studies, Yangon in 2005

and 2009. After the graduation of her

M.S. degree, she worked as a teacher

in Computer University of Dawei during 2009-2011.

She is working as an assistant lecturer at the Institute

of Technical Innovation and Promotion (Hlaing),

Myanmar from 2012 until now. She is a Ph.D. student

in the University of Computer Studies, Yangon,

Myanmar, and a visiting scholar in Fujian University

of Technology, Fuzhou, China. Her research interests

include geographical information system and spatial

database.

Shi-Jian Liu received the B.S. degree

in mathematics from Xiangtan

University, Xiangtan, China, in 2006,

the M.S. degree in computer science

from Changsha University of Science

and Technology, Changsha, China, in

2010, and the Ph.D. degree in computer science from

Central South University, Changsha, China, in 2015.

He is currently an Associate Professor in the School of

A Novel Solution for Simultaneously Finding the Shortest and Possible Paths in Complex Networks 1707

Information Science and Engineering, Fujian

University of Technology, Fuzhou, China. His research

interests include Petri nets, mesh/biomedical image

processing, and information security.

Jeng-Shyang Pan received the B.S.

degree in Electronic Engineering from

the National Taiwan University of

Science and Technology in 1986, the

M. S. degree in Communication

Engineering from the National Chiao

Tung University, Taiwan in 1988, and the Ph.D. degree

in Electrical Engineering from the University of

Edinburgh, U.K. in 1996. Currently, he is a Dean for

College of Information Science and Engineering,

Fujian Universityof Technology and a director of

Innovative Information Industry Research Center,

Harbin Institute of Technology Shenzhen Graduate

School, China. He jointed the editorial board of LNCS

Transactions on Data Hiding and Multimedia Security,

Journal of Computers, Journal of Information Hiding

and Multimedia Signal Processing etc. His current

research interests include soft computing, information

security and signal processing.

1708 Journal of Internet Technology Volume 20 (2019) No.6

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (Adobe RGB \0501998\051)
 /CalCMYKProfile (Japan Color 2001 Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHT <FEFF005b683964da300c9ad86a94002851fa8840002b89d27dda0029300d005d0020005b683964da300c8f3851fa0033003000300064002851fa88400029300d005d00204f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks true
 /AddPageInfo false
 /AddRegMarks false
 /BleedOffset [
 8.503940
 8.503940
 8.503940
 8.503940
]
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MarksOffset 9.354330
 /MarksWeight 0.141730
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed true
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

