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Abstract 

Fifth-generation radio access networks have been 

proposed as a cloud architecture to provide a common 

connected resource pool management. In this regard, 

efficiently and effectively managing radio resources and 

allocating perspectives on the rapidly changing traffic 

load is a challenge. Admission control mechanism is a 

key factor influencing the system performance with 

limited resource pools and call-blocking probability 

constraints. In this paper, a precise mathematical 

programming model of centralized management is 

formulated for the resource scheduling problem. 

Operators can manage resources according to the 

algorithms designed by Markov decision process (MDP) 

and Lagrangian relaxation (LR) method for various 

traffic types. They can create different business levels for 

resource priorities. The system revenue enhanced under 

call-blocking constraints and quality of service 

constraints. The management mechanism is flexible and 

scalable for pursuing the required objectives. 

Keywords: 5G, Admission control, MDP, QoS, 

Lagrangian relaxation 

1 Introduction 

The fifth-generation (5G) mobile communication 

system is scheduled to be launched in 2020. Several 

research projects have focused on wireless services that 

can provide high capacity (10 to 1000 × the data 

volume per area of 4G), high data rate (10 to 100 × that 

of 4G), massive device connectivity (10 to 100 × that 

of long-term evolution (LTE)), high energy efficiency 

(10 to 100 × extended battery life) [1], and low end-to-

end delay (5 × reduced with 4G LTE) [2]. In 5G, a 

traditional base station (BS) is divided into two parts—

the remote radio heads and the baseband units 

(BBUs)—which are installed in the fronthaul and 

backhaul of the cellular architecture, respectively. In 

the backhaul with a cloud radio access network (C-

RAN) [3-4], efficiently managing radio resources and 

allocating perspectives on the rapidly changing traffic 

load are challenges [1].  

The cellular architecture is illustrated in Figure 1. 

The scalability and flexibility issues of core network 

radio resource management are current major 5G 

research topics. This work aims to address the issues to 

observe a near-optimal solution. BBUs are collected in 

a centralized pool that dynamically allocates signal 

processing requirement to be handled by a cluster of 

servers. Such centralized BBU management at the 

backhaul permits the implementation of efficient radio 

resource management algorithms, which possess 

several advantages over traditional cellular 

architectures, such as increased resource utilization 

efficiency, low energy consumption, and light 

interference [5-6]. Accordingly, this study addresses 

resource allocation and admission control to achieve 

this goal.  
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Figure 1. System architecture for HetNets 

The factors influencing C-RAN operations include 

(1) the rapidly increasing data traffic, (2) the limited 

budget of the resource pool, and (3) call-blocking 

probability. As a network operator, one of the 

challenges is call admission control (CAC). This study 
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optimizes individual scenarios, from an operator’s 

perspective, by using the CAC mechanism with 

dynamic traffic load to maximize the system revenue. 

While addressing the dynamic traffic load, the 

decisions of CAC are linked with each other. Our goal 

is to determine the best CAC policy from the 

perspectives of budget, capacity, and call-blocking 

constraints. From the viewpoint of telecommunication 

service provider, the proposed algorithms rely on 

optimal decisions under the resource demands arriving 

time, satisfying the quality of service (QoS) metrics 

(e.g., call-blocking probability). Based on the varying 

traffic, the estimation of traffic load must also be 

considered.  

A call admission controller of the system is designed 

accordingly. This system is responsible for making 

decisions on admitting or rejecting the task processing 

requests into 5G C-RAN. The Markov decision process 

(MDP)-based and Lagrangian relaxation (LR)-based 

approaches are effective methods to deal with the 

dynamic traffic trace and long-term-averaged 

performance estimation and evaluation to determine 

the optimal decision policy. The MDP-based and LR-

based solution approaches are embedded into the 

controller, and the near-optimal decision policy is 

jointly determined for the resource admission control 

mechanism to improve the resource pool utilization. 

The major contributions of this study are as follows: 

‧ A precise mathematical programming model of 

centralized management is formulated for the task 

scheduling problem. The system revenue is 

enhanced under call-blocking constraints for 

evaluating a call admission problem. 

‧ The problem with call-blocking constraints is 

modeled using the MDP-based and LR–based 

approach to obtain a near-optimal policy for long-

term evaluation. This study aims to solve the trade-

off between the revenue and call-blocking 

requirements in scheduling problems. 

‧ The proposed task scheduling strategies blocking 

feasible check (BFC) and Lagrangian Relaxation & 

MDP learning procedure (LRMLP) methods task 

arrival and departure patterns are evaluated at 

different decision intervals. The LRMLP is used in 

combination with a near-optimal elastic admission 

control mechanism to solve the complex 

optimization problem. The experimental results 

reveal that the LRMLP is the optimal process in the 

cases of diverse decision intervals. 

‧ The computational experiment results indicated that 

the proposed scheduling methods are used as a 

reference for network operations. We addressed the 

CAC problem under rapidly increasing data traffics 

emulated as 5G services (eMBB and mMTC), a 

limited resource pool, and a high call-blocking 

probability to obtain near-optimal policies. 

The remainder of this paper is organized as follows. 

In Section 2, we present the literature review related to 

the current ideas and mechanisms for the emerging 5G 

technologies. Section 3 gives the problem description 

of CAC and the mathematical formulation. The 

proposed solution contains LRMLP, BFC, first come 

first served (FCFS), and LR, which is developed to 

find a near-optimal decision in Section 4. Various 

computational experiments and the corresponding 

results are discussed and validated in Section 5. Finally, 

the conclusion and future work are described in 

Section 6. 

2 Related Work 

From the viewpoint of system architecture, a major 

concern of wireless communication networks is to 

separate the traditional BS into a digital access 

processing unit and a simplified radio head. The digital 

access processing unit adopts the virtualization 

technology of cloud computing centralized 

management in a resource pool. The challenges and 

research problems are discovered by considering the 

resource pool management (including BBUs and 

servers in C-RAN). 

From the viewpoint of network operator, a cloud 

computing service supports share-based services in a 

pay-as-you-go manner. It provides a flexible and lower 

capital expenditure architecture to operators; however, 

resource management is a major concern with complex 

on-demand traffic. If the resource allocation 

mechanism is not appropriately designed, the 

paradigms of the networks potentially increase the 

operating expenditure and yield dissatisfactory QoS 

metrics, such as call-blocking probability. The 

objective of this study is to maximize revenue while 

minimizing operational cost. The achievement of near-

optimal power consumption efficiency and 

effectiveness is subjected to the system capacity and 

QoS constraints [7]. Table 1 compares our research 

with related studies in terms of (1) resource scheduling, 

(2) user information, and (3) traffic load. The current 

study focuses on resource scheduling in cases of 

different scenarios as well as an optimization-based 

approach is used to near-optimally solve the scheduling 

problem to maximize the system revenue.  

In our system framework, a centralized architecture, 

such as 5G C-RAN, is considered for the resource 

allocation to develop call admission policies within 

limited resource pool. We addressed the call admission 

control problem under rapidly increasing data traffics 

emulated as 5G services (e.g., enhanced mobile 

broadband (eMBB) and massive machine-type 

communications (mMTC)), a limited resource pool, 

and a high call-blocking probability to obtain near-

optimal policies through the combination approach 

with MDP and LR approaches. A call admission and 

scheduling mechanism with incomplete information  
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Table 1. Resource Scheduling Comparisons with Existing Work  

Classification Feature Strategy Related Studies The type of our work 

Resource 

scheduling 

Static versus 

dynamic priority 
Preemptive versus nonpreemptive [8-10, 16, 20-21] 

Dynamic and 

nonpreemptive 

Comparison with related studies 

‧ The existing FCFS handles the resource scheduling with static priority and nonpreemptive that differ from our approach. 

Even though MDP can optimally solve the scheduling problem, this work considers both call admission and scheduling 

mechanisms. 

‧ According to the characteristic of 5G C-RAN, the FCFS emulates real-time resource scheduling method with static priority. 

Although MDP approach considers dynamic priority, this method cannot optimally solve the call-blocking problem. This is 

also the main reason to propose LRMLP method to near-optimally address the problem. 

Task information 
Symmetric versus 

asymmetric 

EDF versus 

FCFS 
[11-13, 16] Asymmetric and FCFS 

Comparison with related studies 

An asymmetric and FCFS scheduling mechanism is concerned in our model. The task information, such as the finish time of 

processing task and the release time of new coming task, are unknown for scheduling events. 

The FCFS do not require any information. The MDP approach relies on the partial data, such as arrival time and finish time. 

However, the proposed algorithms dynamically accept or reject a task with incomplete information through a mathematical 

model. 

Traffic load 
Uniform versus 

bursty 
Historical data versus distribution [17-19, 22-23] Poisson arrival process 

Comparison with related studies 

‧ Most of the existing work and our word adopt various traffic load to reflect the real environment. However, our work 

simulates varying distribution parameters, such as arrival and service rates, to compare various scenarios. 

‧ For statistical analysis, the Poisson arrival process is simulated as a task arrival pattern as well as the inter arrival time is 

exponential distributed for the varying traffic load. This differs from the existing work [18-19] to simulate with historical 

data. 

 

and the resource scheduling strategy is nonpreemptive. 

The Poisson arrival process is simulated as a task 

arrival pattern with varying traffic load. The proposed 

algorithms dynamically accept or reject a task with 

incomplete information through a mathematical model. 

An asymmetric and FCFS scheduling mechanism is 

concerned in batch control process. The task 

information, such as the finish time or the release time 

of new task are all unknown for scheduling events. The 

average arrival and departure rates of each type of 

tasks are given in computational experiments for a long 

term evaluation. 

2.1 Resource Allocation and Scheduling 

Resource allocation and scheduling algorithms are 

found in many research areas, such as transportation 

management, operations research, and computer 

science in real-time operating systems [8]. Scheduling 

methods, including pre-emptive and non-pre-emptive 

methods, have been developed in CPU resource 

processing control mechanisms. Static scheduling 

methods operate on a fixed set of procedures [9]. 

Moreover, both fixed and dynamic priority scheduling 

methods have the priority tagged with the process that 

the scheduler assigns as first priority depending on 

instantiations [10]. 

Earliest deadline first (EDF), which is a dynamic 

scheduling algorithm with complete task information, 

was proposed in [11] and adopted in [12]. It is used in 

real-time operating systems to allocate computing 

resources in CPUs in a priority queue. The queue is 

implemented for searching the tasks with the shortest 

deadline within the finished or released tasks in an 

operating system. Cho et al. combined priority and 

EDF scheduling to schedule both real-time and normal 

tasks [12]. Song et al. considered the characteristics of 

a task graph and virtual machines (VMs) of a cloud 

computing environment. The proposed task insertion 

method assigns the inserted task according to the 

deadline [13]. This study assigns various tasks 

according to the MDP model to maximize profit. 

In the case of pre-emptive uniprocessors, EDF is an 

optimal scheduling algorithm that collects the tasks and 

completes them before deadline [11]. In the case of 

multiprocessor systems, a proportionally fair scheduling 

algorithm is a compromise-based scheduling algorithm. 

The main idea is to maximize resource utilization 

between the competing interests while maintaining a 

load balance. This can be done by assigning a weight 

priority for each flow that is inversely proportional to 

its anticipated resource consumption [14-15]. Ding et 

al. proposed the Linux scheduling policy with a 

priority queue, instead of FCFS queue, for kernel-

based VM to improve system performance [16]. This 

study considers a call admission problem with call-

blocking probability. A decentralized architecture of 
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the resource management system for a datacenter is 

considered to develop policies and reallocate decisions 

to reduce data transfer overhead and network device 

load [20]. A fixed priority scheduling is based on a pre-

emption threshold to be adopted for multicore 

processor scheduling [21]. 

Task acceptance or rejection is determined by the 

MDP model, where high priority tasks might not be 

always accepted. The priority of this study is 

dynamically determined by the system status. Our 

approach has considered an asymmetric and FCFS 

scheduling mechanism with incomplete environment 

information, such as the time of task finished and the 

time of new task released. The resource scheduling 

strategy is non-pre-emptive and FCFS emulated of 

real-time dynamic traffics in computational 

experiments. 

2.2 Problems of Traffic Load Variant 

From a network operator perspective, one of the 

challenges to provide on-demand services is caused by 

time-varying and periodically changing demands. 

Facing on the on-demand access, a cloud provider 

should consider an adjustable resource scheduling 

mechanism to satisfy the QoS and minimize the 

operating costs even though the traffic load is varying 

among peak hours and off-peak hours [17]. An 

accurate forecast of resource requirement is difficult 

because they are stochastic. Historical data are 

measured for an estimation of usage data to determine 

the load distribution and evaluate the performance of 

the proposed algorithm.  

A centralized methodology has been previously 

proposed to precisely predict the probability 

distribution of requirements for multiple intervals [18-

19]. The aforementioned computer science and 

datacenter concepts are also applicable to the wireless 

communication field. C-RAN enables the baseband 

resources with centralized management that a pooling 

system was proposed on a general-purpose processor 

for LTE and WiMAX [22]. Prathibha et al. proposed a 

non-dominated sorting particle swarm optimization 

method to schedule workflow applications and 

optimize energy consumption on a cloud environment 

[23]. This study focuses on the scheduling method with 

an optimization-based approach to near-optimally 

solve the scheduling problem. In this study, a 

centralized architecture of the resource management 

system for a datacenter is considered to develop call 

admission policies to maximize system revenue. 

Poisson arrival process is simulated as task arrival 

pattern. Task acceptance or rejection is determined by 

the proposed algorithms and the performance metrics 

are evaluated in some computational experiments.  

2.3 Research Method  

A cloud admission problem was modeled as MDP 

and solved using dynamic programming (DP) in [24]. 

The MDP framework is broadly used for solving 

problems analytically and numerically. However, it is 

not applicable to high-dimensional problems. A 

phenomenon is often determined to be a reference to 

make decisions from a low-dimensional to a high-

dimensional problem [25]. In [26], the theoretic control 

techniques for solving admission control and resource 

allocation problems in a virtual environment were 

transformed as a cloud framework to model a linear 

programming problem to obtain an optimal solution. 

DP and MDP were proposed to obtain admission 

policies in [27]. In [28], a mobile cloud computing 

hotspot with a cloudlet was analyzed using MDP for 

dynamic resource sharing among mobile users.  

3 Mathematical Formulation 

In 5G C-RAN, BBUs are emulated as tasks (a subset 

of a job) to form VMs, which are deployed on physical 

machines. A limited number of VMs can be served 

simultaneously due to capacity constraints [29-30]. 

Thus, operators need an admission mechanism that 

relies on a feasible resource assignment to address the 

maximum system revenue with the limited resource 

problem. Admission control policies are defined 

according to various requirements, such as system 

utilization, task call-blocking probabilities, and user 

expectations in 5G C-RAN. Figure 2 shows an 

illustration of call admission control concept that the 

request arrival in the beginning of the admission 

control process. The inter arrival and departure time 

follows exponential distribution, where the transition 

rate is changed depending on the action taken.  

 

Figure 2. An example of CAC concept 

This study uses MDP as a basic and analytical 

model to propose a dynamic admission control 

algorithm for the optimal task admission policy. Figure 

3 shows a state transition rate diagram for reliability 

behavior. Poisson process is adopted for using the 

independent rates of task arrival and departure. The 

varying types of traffic are emulated as three types of 

5G service, namely eMBB, mMTC, and uRLLC 

(Ultra-reliable and Low-latency Communications). We 
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classify the tasks into two types of them—Types I 

(mMTC) and II (eMBB)—which represent emulated 

BBU computing requirements. The tasks are packed 

into a limited resource pool by the admission control 

policies. The types of tasks are characterized by the 

mean arrival rate λi and mean service rate μi. An 

appropriate admission control mechanism is proposed 

to observe the maximum system revenue subject to 

constraints. 
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Figure 3. State transition rate diagram 

However, some tasks are dropped when the traffic 

load higher than the limited resources. The aggregate 

BBU requirement load is occasionally higher than what 

a C-RAN can handle. If the traffic load cannot fit into 

the machine, the reject decision is made, as shown in 

Figure 4, where the state transition loops into itself.  

 

Figure 4. Station transition loop 

Various revenue margins, resource requirements of 

tasks, and the system call-blocking rates are jointly 

considered. This work considers the problem to 

determine admission or rejection, the system revenue, 

and respect the requirements. It results in a trade-off 

between revenue and call-blocking requirements. We 

aim to observe the near-optimal decision policy to get 

the maximum system revenue under the call-blocking 

probability constraints. 

Following assumptions are made for a system 

modeling:  

‧ The system includes one pool with capacity C. 

‧ Two types of tasks (Type I and Type II) are 

considered. 

‧ The arrival and service rates of the tasks follow 

exponential distribution. 

‧ Each state is denoted by (x,y), where x represents the 

number of tasks in service for Type I and y 

represents those for Type II. 

‧ State transition is changed one at a time. 

The set of actions decision k is defined in Table 2. 

Elements of an MDP problem are formulated by a pool 

with capacity C and the types of tasks are given and the 

state space, reward, transition rates, and actions are 

derived. Furthermore, call-blocking probability 

constraints are converted into a mathematical 

programming problem. How to design the optimal 

admission control policy is a goal to satisfy these 

constraints. The description of a verbal problem are 

listed in Table 3. The notations adopted in this paper 

are summarized in Table 4 and Table 5. To analyze the 

long-term behavior of the network, we evaluate the 

limiting distribution of this controlled continuous-time 

MDP. The objective function (Primal) is determined by 

the maximum expected reward. A set of decision 

variables is used to control the actions of each state to 

change the arrival rate to derive the stationary 

distribution vector of system states for a long-term 

evaluation. 

Table 2. Decision set of actions 

Decision (k) Action 

1 Grant All 

2 Grant Type I 

3 Grant Type II 

4 Reject all tasks 

Table 3. Scope and problem definition 

Model: The BBU allocation strategy one at a time 

Given parameters 

Type I tasks arrival rate 

Type II tasks arrival rate  

Call blocking probability for Type I 

tasks 

Call blocking probability for Type II 

tasks 

The reward rate for each state 

Constraints 
Server capacity  

Call blocking probability 

Objective To maximize the system revenue 

To determine 

Call admission policy to determine 

which types of tasks are accepted in 

each time. 

Solution Approach 
MDP and LR with call blocking 

constraints for the BBU allocation 

Table 4. Given parameters 

Notation Description 

S 
The index set of states for a system which is 

{1,2,3,…,s} 

N 
The index set of types for tasks which is 

{1,2,3,…,n} 

λn 

Mean arrival rate of tasks for Type n 

(Exponential distribution) (number of tasks / 

hour) 
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Table 4. Given parameters (continue) 

μn 

Mean service rate of tasks for Type n

(Exponential distribution) (number of tasks / 

hour) 

qi 
The reward rate which is the revenue per unit 

time (amount of profit / hour) of state i∈S 

n
B

P  
The requirement of call blocking probability of 

tasks for Type n 

Bn The set of states that tasks of Type n are blocked 

i
β  The set of Lagrangian multipliers for state i∈S 

n
α  Lagrangian multipliers of Type n∈N 

Table 5. Decision variables 

Notation Description 

πi The steady-state probability of state i for i∈S. 

aij The transition rate from state i to state j for i,j∈S. 

 

Objective function:  

 max
i i

i S

Z qπ

∈

= ∑     (Primal) 

Subject to:  

The summation of steady-state probability for all 

states equals one. Hence, constraint (1) requires that 

the sum of the steady-state probabilities to equal 1. 

 1
i

i S

π

∈

=∑  (1) 

The constraint is illustrated as a balance equation to 

be adopted by birth-death processes of the M/M/1 

queueing system. The balance of flows equation 

describes transition in and out of the state, as shown in 

(2). 

 
, ,

ij i ji j

i j j S i j j S

a aπ π

≠ ∈ ≠ ∈

=∑ ∑   i S∀ ∈  (2) 

Each steady-state probability is greater and equal to 

zero. 

 0
i

π ≥   i S∀ ∈  (3) 

The call-blocking probability does not exceed the 

bound for each type of task. 

 n

n

B

j

j B

pπ

∈

≤∑   ,j S n N∀ ∈ ∈  (4) 

4 Solution Approach  

4.1 Model Analysis 

The solution processes are followed to the processes 

of Markov decision process, Lagrangian relaxation 

methods, and FCFS iteratively changed actions or 

decisions. Two task scheduling methods, namely the 

BFC, LRMLP methods, are used on the task arrival 

and departure pattern to determine the level of 

superiority of the proposed MDP-based and LR-based 

obtaining primal feasible solutions, respectively. FCFS 

is an initial solution process to be a baseline for the 

performance comparison with BFC and LRMLP.  

First is the feasibility analysis of the constraint 

region which comprises two parts: (a) global balance 

equation (2) with probabilities (1), (3), and (b) 

constraints of call blocking probabilities (4). If (4) can 

be directly ignored from the primal problem, which 

means that the remaining constraints and the global 

balance equation can be related as a standard MDP 

optimization problem. It is expressed as a Bellman 

equation and solved by using the value iteration and 

policy improvement algorithm, as illustrated in Figure 

5 [31]. The algorithm is started from value iteration 

process to determine the value of qi according to the 

given policy. Value iteration computes the optimal 

value of each state by iteratively improving the 

estimate of qi. While value-iteration algorithm keeps 

improving the qi values at each iteration, the iteration 

with the same policy will continually process. Once the 

value-function converges for next policy improvement 

input, it will run the policy improvement module to re-

define the new policy. Value iteration and policy 

improvement processes are repeatedly exchanged to 

improve the value-function estimate until the optimal 

policy is converged. 

Value Iteration

Policy 

Improvement

• For each state i

• Find the k* with the 

maximization of qi
• k* become a new policy 

dik for next value iteration 

input

• Initial qi=0

• For a given policy dik
• Calculate qi
• For all relative i

 

Figure 5. Value iteration and policy improvement 

algorithm for MDP 

4.2 MDP-based Solution Approach 

BFC is proposed to a MDP-based solution approach 

for statistical evaluation. The solution flowchart of 

BFC is shown in Figure 6. In BFC, the process is 

followed in the constraints (1)-(3) to iteratively 

calculate the probability of each state in each sub-

problem with MDP method. The sum of arrival rate for 

a task type is checked feasible for constraint (4) and 

correspondingly changed one state at a time to 

approach a feasible solution and to evaluate the 
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objective revenue. The solutions are derived within the 

number of iterations to reach a feasible solution. 

Feasible 

Check

Feasible solution 

determined

Yes
No

Start

Value Iteration & Policy 

Improvement  without 

call blocking probability 

constraint Calculate the maximum 

arrangement factor of 

each state j

Calculation of stationary 

distribution i
π

Change decision of the 

state j

End

For each state         

change decision

,
n

j B∈

When a state j in traffic n is 

in call-blocking constraint, 

set state j in set 
n

B

MDP

BFC

Find the 

maximum

 

Figure 6. Flowchart of BFC 

4.3 Lagrangian Relaxation-based Solution 

Approach 

4.3.1 LR Method 

The Lagrangian relaxation (LR) method was 

proposed to solve large-scale mathematical 

programming problems [32]. It has become a solution 

procedure, as shown in Figure 7 for overcoming 

mathematical programming problems, including 

optimization problems, such as integer programming 

problems or nonlinear programming problems in many 

practical situations. The key idea is to relax 

complicated constraints into the objective function and 

to extend feasible solution regions to simplify the 

primal problem. The primal problem is transformed 

into an LR problem associated with Lagrangian 

multipliers.  

Lagrangian Relaxation Problem

(Find minimum)

LB-Dual Problem 

(Find maximum)

Subproblem 1 

(SUB1)

Adjust

Multiplier

Relax 

Constraints

Subproblem n 

(SUBn)

Decomposition

Primal Problem

 (Find minimum)

Optimal Solutions 

(SUB1)

Optimal Solutions  

(SUBn)

5

1

2

3

Optimal solving by each 

subproblem individually 4

Updated LR 

iteratively

LRMLP-

Obtaining Primal Feasible 

Solution (Updated iteratively)

6

 

Figure 7. Concept of Lagrangian relaxation method 

According to analysis of primal problem, Constraint 

(4) is relaxed into the objective function to reformulate 

to ZLR. The reformulated problem (LR) is also viewed 

as a new standard MDP problem in each subproblem 

by decision variable decomposition. Other non-relaxed 

constraints are the same listed in (Primal) problem. 

Therefore, 
i
q  is updated by 

,

( )ij ij i

i j j S

a r β
≠ ∈

−∑  into the 

objective function of LR problem whereas the 

Lagrangian multipliers iteratively updated by solving 

Lagrangian dual problems (Dual). The primal objective 

function 
,

ii ij ij

i j j S

r a r

≠ ∈

+ ∑ of 
i
q  is relaxed with call-

blocking probability constraints. The loop reward, rii, is 

always zero, so equation 
,

i ii ij ij

i j j S

q r a r

≠ ∈

= + ∑  is modified 

as 
,

( ).ij ij i

i j j S

a r β
≠ ∈

−∑  The solutions determined by the 

LR problem are the other lower bounds of primal 

feasible solutions through solving LR and dual 

problem. 

Objective functions: 

 
,

max [ ( )]LR i ij ij i

i S i j j S

Z a rπ β
∈ ≠ ∈

= −∑ ∑   (LR) 

Subject to:  

Constraints (1), (2), (3), and (5). 

 
i n

n N

β α
∈

=∑ ,
,

0,

n n

n

i B

i B

α ∈⎧
⎨

∉⎩
 (5) 

The LR problem can be divided into several 

independent subproblems through decomposition 

methods associated with their own decision variables 

and constraints. Some heuristic approaches or other 

well-known algorithms are designed or adopted to 

solve each subproblem to determine the optimal 

solution, which is referred to as a suboptimal solution. 

The set of suboptimal solutions combined with the 

multipliers is a bound of primal solution. If the set of 

suboptimal solutions is satisfied with the relaxed 

constraints, the solutions are referred to as feasible 

solutions. The key to solve the primal problem is 

determined by the optimal feasible solutions. Therefore, 

the objective values of the primal problem are 

iteratively updated after feasible verifications are 

obtained. The solution processes are similarly followed 

to the processes of MDP-based solution approach 

iteratively changed actions or decisions after the 

observation of objective values or rewards. 

4.3.2 Lagrangian Dual Problem 

If a minimization problem is considered, solutions to 

the LR and dual problems are lower bounds (LB) for 

the primal problem. The lower bounds are iteratively 

improved by adjusting the set of multipliers. The 

formulation of dual problem is listed as follows. By 

applying the LR method and subgradient method to 



1568 Journal of Internet Technology Volume 20 (2019) No.5 

 

solve the subproblems, we observe a theoretically LB 

from the primal feasible solution and identify some 

information about the primal feasible solution that is 

iterated when solving the dual problem. The feasible 

region of a mathematical programming problem 

defined by the solutions must be satisfied by all 

constraints. The gap between the LB and feasible 

solutions is calculated within whole processes and 

iteratively repeated until the termination conditions are 

satisfied. To accelerate the convergence of the 

minimization gap, the subgradient optimization method 

is sufficiently efficient to adjust the multipliers in each 

iteration [32]. 

Objective functions: 

 
,

min [ ( )]D i ij ij i

i S i j j S

Z a rπ β
∈ ≠ ∈

= −∑ ∑   (Dual) 

Subject to 0
n

α ≥  

4.3.3 LRMLP 

In this paper, a LRMLP heuristic is proposed for 

obtaining primal feasible solutions. The solution 

flowchart of LRMLP is shown in Figure 8. The left-

hand side process is the same as Figure 6, which is 

followed by constraints (1)–(3) to iteratively calculate 

the probability of each state in each sub-problem with 

MDP method. The right-hand side process is the sum 

of arrival rate of one task type for feasible checking. 

Correspondingly changed the decision variables are 

based on a new criterion evaluated by the values of 

multiplier 
i n

n N

β α
∈

=∑ in dual problem. For each 

iteration, the value of 
i

β is used to evaluate the 

importance index of the state i that the actions are 

changed properly. The sum of 
n

α can be also used as 

an index to interpret the importance of type n related to 

state i.  
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Figure 8. Flowchart of LRMLP 

If there is a feasible solution to the primal problem, 

the solution is marked. The best solution in the 

distinguished algorithm is to be determined and 

compare the performance with existing methods. From 

the viewpoint of a telecommunications service 

provider, the proposed algorithms to determine a set of 

optimal decision variables based on the arrival time 

and QoS metrics. 

5 Computational Experiments 

5.1 Performance Evaluation 

The experiment environment is initialized with two 

types of tasks—Types I (mMTC) and II (eMBB)—

which represent emulated BBU request computing 

requirements respectively. An experiment program is 

self-implemented in Python on a Windows system. 

Several experimental cases are conducted for objective 

revenue evaluation. The given amounts of traffic loads 

of tasks and arrival time intervals are generated by 

exponential distribution with parameters λi and μi, 

respectively. Table 6 shows the attributes of the 

parameters used in the experiments. The experiments 

evaluation is used to improve the policy and observe 

high objective revenue from the viewpoint of system 

operators. 

Table 6. Given parameters for experiments 

Given parameter Value 

Number of task types 2 

Resource pool capacity (unit) 10 

Resource requests of Type I task (unit) 1 

Resource requests of Type II task (unit) 5 

Reward rate of Types for tasks 100~800 

Number of actions 4 

Mean arrival rate of tasks for Type n (λ
n
) 1~50 

Mean service rate of tasks for Type n (μ
n
) 1~50 

Requirement of call blocking probability of tasks 0.2~0.4 

 

The state space based on the experiment setting is 

illustrated in Figure 9, where the transition rate aij is 

selected by decisions. If task traffic requirements are 

higher than the system capacity, the reject decision is 

made. Consequently, the state transition loops into 

itself. The total number of states for the two-type 

scenario is 18 for the designed experimental cases. 

 

Figure 9. State space and possible transitions 
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5.2 Experimental Cases 

5.2.1 Statistical Evaluation 

Five experimental cases were evaluated in this paper. 

Case A. Control the arrival rate of task type I to 

evaluate the objective revenue for solving process with 

the call blocking constraints with LRMLP method. The 

arrival rate of another task type is fixed. In this 

experimental case, a 3D graph was evaluated to 

determine how the objective revenue was affected by 

λ1 with fixed λ2 from 1 and 50, as shown in Figure 10. 

The experiment results were as follows: The revenue 

increases when λ1 is greater than 10 as well as the 

condition λ2 is fixed. However, the higher arrival rate 

of type II tasks results in the higher revenue, implying 

that the higher arrival rate of type II tasks selected by 

actions of LRMLP to increase the objective values. 

The objective revenue has an increasing trend with a 

higher arrival rate for Type II tasks with fixed arrival 

rate of Type I. This means that Type II tasks have 

higher opportunity to be served to observe higher 

objective values. The objective values showed a 

significantly increasing trend, implying that decisions 

were made by choosing type II tasks with high values. 

 

Figure 10. Evaluation of total revenue with type I and 

type II arrival rate 

The physical meaning of the experimental results 

revealed that the low arrival rate of Type II tasks leads 

to a lack of opportunity for serving these tasks, and 

therefore, the system decides to serve Type I tasks. A 

high arrival rate of Type I tasks increases the objective 

revenue. The saturation of the objective revenue is 

reached at a stage when no more resources can be 

contained by Type I tasks. However, high arrival rates 

of Type II tasks resulted in monotonic revenue 

increases. The increased arrival rate of Type II tasks 

with limited server capacity caused insufficient space 

to be allocated to Type II tasks. As a result, the 

objective curve was flat. 

Case B. In this case, the control variable is changed to 

the reward per Type I task. The main purpose is to 

exam the sensitivity of the reward and arrival rates 

effect on the system revenue. Figure 11 shows the 

evaluation results for the λ1 = 3.5 curve at reward 100. 

Other settings are the same as Case A. The inset of 

Figure 11 indicate three points. The λ1 = 50 curve has 

the deepest increasing rate with λ1 being greater than 

the other curves., the intersection of the curves on the 

graph marks the point where the reward is equal to 60 

to compare the other two cases with λ1 equal to 3.5 and 

5.4, respectively. By contrast, the increasing rate of the 

objective value for the λ1 = 5.4 is greater than that for 

the λ1 = 3.5 curve when the reward per Type I task is 

larger than 60. The objective revenue increases when 

the average reward per task increases. The objective 

revenue is in inverse proportion to the arrival rate of 

Type I tasks. However, the objective revenue is in 

directly proportional to the arrival rate. Accordingly, 

the policy is to set the low reward per Type I task when 

the arrival rate is low. Oppositely, the high reward per 

Type I task is set when the arrival rate is high. 

 

Figure 11. The Reward of Type I Effect on the 

Objective Revenue 

5.2.2 Batch Process 

Case C. Two previous cases determined the decision 

variables through LRMLP and BFC statistical 

evaluation for a long period of time. The following 

cases used a real-time evaluation considering call 

blocking constraints with task selection strategies 

(BFC, LB, LRMLP, and FCFS) in a decision time 

period. A sequence of arrival and departure patterns of 

tasks were set in a short-term evaluation. The task 

selection strategies are evaluated and compared within 

a decision period. The order of task arrival and 

departure patterns are used for a short-term evaluation. 

In Figure 12(a) and Figure 12(b) display the 

experimental results based on the system state (x,y). 

The results can be determined from the previous 

observations of the performance. The state transition 

changes from (x,y) to (x',y') with tasks arriving and 

simultaneously being implemented into systems one at 

a time. However, in the batch control process, the 

system state is transiently changed from (x',y') to (x'',y'') 

because some tasks departure in the decision 

processing interval, which is called the two decision 

intervals implementation. The cases are all established 

using the configurations for the analysis of the trade-
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off between the task arrival rate, decision intervals, and 

the task selection strategies. 
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Figure 12. Decision interval and batch process 

Two stages were set to determine the effects on the 

objective revenue and evaluation intervals for batch 

decisions. Overall, stage 1 evaluated the interval range 

t from 1 to 5 in which the objective revenues are 

increasing, as shown in Figure 13. The larger numbers 

of arrival tasks were buffered (aggregated) and served 

with higher revenue when the assignment interval 

increased. However, stage II set the decision intervals 

from 6 to 50 time slots. Overflow might have occurred 

to buffer such a large set of tasks owing to the limited 

capacity and the system utilization is decreased by the 

larger numbers of departure tasks in long decision 

intervals, and therefore, the objective revenue 

decreased. The curve of LRMLP was the highest 

primal feasible solution to take advantage of the server 

utilization without overflow under a given set of 

parameters. The curves of LRMLP and lower bound 

(LB) are closed in many cases which means the 

optimal solutions were determined. However, the 

decreasing trend of objective value was shown that 

overflow have occurred in large number of arrival 

tasks were buffered when the decision interval 

increased. 

 

Figure 13. Evaluation of objective value when scaling 

decision interval 

The previous case is used for a real-time evaluation 

with two task selection strategies in a variant decision 

time period. A special case is the decision interval 

approaching to zero, as shown in Figure 12(a) with the 

task arrival one at a time. The larger numbers of arrival 

tasks were buffered (aggregated) results in higher 

opportunity served with high revenue when the 

assignment interval is increased. Therefore, the 

objective revenue is decreased owing to the system 

utilization was decreased with the larger numbers of 

departure tasks in longer decision intervals. Owing to 

the best solutions of LRMLP in previous case, the 

following case is shown as ignoring the decision 

intervals for processing. The implementing decisions 

were made immediately by a table lookup method 

corresponding to the system states without the system 

state (x″, y″). The experimental results revealed the 

strategies offer more benefits than the cases of the 

decision intervals for processing in Figure 14. The 

solutions of LRMLP can be reused for operators to 

determine the maximum revenue and achieve 

flexibility by leveraging the previous solutions without 

processing time delay in variant decision intervals. 

 

Figure 14. Evaluation of objective value when scaling 

decision interval with/ without processing time 

Case D. The additional results of BFC were compared 

by controlling the arrival rate of Type I tasks, as shown 

in Figure 15. BFC is considered as a simple heuristic to 

determine a feasible solution with less processing time 

for real time network operations. For 5G applications, 

the delay is sensitive for variant decision intervals. In 

this case, the four types of curves had decision 

intervals t = 1, t = 2, t = 4, and t = 7, respectively. The 

main reason for the curve fluctuation was the random 

distribution of varying arrival rates for each period in 

which the number of arrival tasks varied in a short 

period. The effect of the controlled decision periods is 

clear when the average arrival rates of Type I tasks are 

provided. The objective revenue increased when the 

arrival rate also increased for t = 1 and t = 2 when the 

Type I task arrival rate increased from 0 to 12; 

however, the objective value decreased when the Type 

I task arrival rate increased from 14 to 50. Furthermore, 
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for t = 4 and t = 7, the objective revenue decreased 

when the arrival rate increased. Therefore, the 

relatively long decision interval led the system to 

accept Type II tasks to achieve a relatively high 

objective value, and therefore, Type I tasks had less 

opportunity to be processed. The expected values of 

Type I tasks increased to occupy a relatively large 

amount of resources, and therefore, the objective 

revenue decreased when the arrival rate of Type I tasks 

increased. Furthermore, the curve with decision 

interval t = 4 had the highest objective values. 

However, the length of decision intervals was not 

always long enough to produce high objective values. 

This resulted in a trade-off between the task arrival rate 

and the decision intervals. 

 

Figure 15. Evaluation of decision interval with various 

type I arrival rates 

Case E. Figure 16 shows the curves of the objective 

revenue improvement ratio (denotes as IR), which is 

defined as percentage difference between the objective 

revenue. The ratio observed by LRMLP and BFC 

solutions is calculated using the equation 

100%
LRMLP BFC

BFC

V V
IR

V

−

= × , where VLRMLP is the 

objective value obtained by the LRMLP algorithm and 

VBFC is the objective value obtained by the BFC 

algorithm. The decision interval approaches zero and 

decisions are made with the tasks arriving individually. 

Figure 16 displays the improvement ratio evaluation 

for diverse arrival rates of Type I tasks. The vertical 

axis of Figure 16 represents the IR value that the zero 

of the vertical axis indicates the baseline of VBFC. The 

objective revenue improvement ratio is positive, which 

indicates that VLRMLP is greater than VBFC at various 

decision intervals. It is possible that VLRMLP was smaller 

than VBFC. Then, the objective revenue improvement 

ratio was negative. According to our finding, the 

performance observed by LRMLP might worse than 

BFC method when the decision interval is long. It also 

shows the proposed method is limited to the reasonable 

decision period. 

 

Figure 16. Improvement ratio evaluation with type I 

task arrival rate 

In extreme case of type I task arrival rate increased 

(arrival rate = 400-500), a large decision interval (e.g., 

t = 7) was established, and the tasks were queued in 

starting from the beginning to the end of observation 

interval. The IR value resulted negative, the physical 

meaning was that the lower system utilization owing to 

the longer processing time for implementing decisions 

and a larger number of dropped tasks in queue. The 

objective values of LRMLP were lower than BFC in 

the extremely long decision interval cases. This 

computational experiment validated and resulted in a 

trade-off between the task arrival rate and the decision 

intervals. 

6 Conclusion 

We study the factors influencing C-RAN operations, 

including rapidly increasing data traffics emulated as 

5G service types (eMBB and mMTC), a limited 

resource pool, and a high call-blocking probability to 

obtain near-optimal policies through the MDP-based 

and LR-based approaches. Some scenarios are 

evaluated for the performance metrics with dynamic 

traffic loads to maximize the system revenue. The 

proposed resource scheduling strategies BFC and 

LRMLP methods are used in combination with a near-

optimal elastic admission control mechanism to solve 

the complex optimization problem. The experimental 

results revealed strategies (BFC and LRMLP) and 

trends that offer services. The finding supports 

operators to determine the maximum revenue and 

achieves flexibility in the cases of different decision 

intervals. Network operation, resource allocation, and 

task scheduling are embedded in a management 

controller, which will be considered in the next stage 

of the system covered in future work. 
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