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Abstract 

The rapid growth of intelligent applications makes it 

increasingly desirable to offload mobile terminals (MTs) 

traffic to data centers for smart computing. In this paper, 

we propose a distributed channel selection scheme with 

cooperative offloading, in which MTs help each other in 

each channel to offload the data for the purpose of saving 

energy. Particularly, MTs that are in the same channel 

and close to each other in a certain geographical area can 

form into cooperation cluster to perform local computing, 

then, offload the data to a cloud server in a certain 

wireless channel. In this way, the energy consumption for 

data offloading can be reduced. We adopt game theory to 

formulate the channel selection problem as a non-

cooperation game. We then prove that the formulated 

game is a potential game, and, thus, guarantee the 

existence of Nash equilibrium. A Markov approximation 

approach is then applied to design a distributed channel 

selection algorithm so that each MT can self-organize 

into stability without information exchange across the 

whole network. Analytical and numerical results show 

that the distributed algorithm is efficient in comparison to 

the centralized optimization solutions.  

Keywords: Collaborative mobile network, Mobile data 

offloading, Game theory, Nash equilibrium 

1 Introduction 

The fast-growing smartphone techniques and rapidly 

increasing volumes of mobile data traffic are 

continually enriching our experience with mobile 

applications as well as changing our daily lives. 

However, the demand for high-data rate mobile 

services will drain the batteries of devices much faster 

than before [1]. In particular, energy conservation has 

been one of the most challenging design issues for 

mobile devices [2-3]. Because of their limited physical 

size, mobile terminals (MTs) are often equipped with a 

limited supply of resources in terms of computation, 

energy, bandwidth and storage etc. As a result, 

offloading the computation tasks from mobile devices 

to cloud servers is considered as potential solution to 

conserve battery life [4-6].  

According to the diversity of the data offloading, the 

survey work [7] has classified the data offloading 

techniques into several categories, i.e., data offloading 

through small cell networks [8], mobile agent networks 

[9], or edge computing, respectively. Specifically, for 

IoT applications, such as smart cities, the smart grid, 

smart traffic lights, and smart vehicles, the data 

processing capabilities are pushed to the edge of 

network devices with the integration of EC [10]. In 

[11], the authors devise a resource-efficient. edge 

computing scheme such that an intelligent IoT device 

for support its computationally intensive task by proper 

task offloading across the local device and nearby 

helper device. A NOMA based optimization 

framework was proposed in [12] to minimize the 

energy consumption of edge devices via the clustering 

resource allocation. A joint resource allocation and 

offloading scheme is designed in [13] through solving 

a two-dimensional knapsack problem for a MEC based 

vehicular networks. 

Different mobile data offloading approaches have 

also been studied to address energy saving problems in 

previous works. The authors in [14-18] proposed 

different novel frameworks for WiFi offloading to 

decrease waiting times or promote the efficiency of 

data offloading. In order to improve the energy 

efficiency, mobile applications can be either executed 

in the mobile device or offloaded to the cloud clone for 

execution according to data sizes, deadline time and 

the channel state [19]. The task scheduler model at the 

centralized broker based on task-related or user-

defined constraints optimally offloads tasks and 

provides significant reductions in energy consumption. 

The authors in [20] developed energy-efficient 

computation offloading algorithms for cellular 
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networks. They analyzed the effects of the long tail 

problem on task offloading and used Dijkstras 

algorithm to generate the optimal decision. Moreover, 

the authors in [21-23] combined energy harvesting 

technologies with data offloading to improve the 

energy efficiency. In [24], the authors proposed a 

multiobjective dynamic programming approach to 

minimize the estimating cost while satisfying latency 

requirements with best effort. These works considered 

single-MT data offloading schemes and used 

optimization methods to improve energy efficiency. 

Many works have been proposed to improve energy 

efficiency via user cooperation in wireless networks. 

The authors in [25] proposed a novel approach for 

allowing the small cells to cooperate to optimize their 

sum-rate under transmit power constraints. The authors 

in [26] developed an algorithm to allow the MTs to 

choose coalition groups to download the content from 

the BS and either unicasts or multicasts it to the other 

MTs. [25] and [26] considered cooperation models 

based on physical interferences while not accounting 

for data offloading scenarios. In [27-28], the authors 

investigated the problems of designing content sharing 

collaborative mobile cloud (CMC) via user cooperation 

to reduce the energy consumption at the terminal side 

for the scenario where a group of users interested in 

receiving the same content from an operator. The work 

[29] has designed a job scheduler running on mobile-

cloud computing platforms to generate an optimized 

job schedule for a distributed app, rather than analyze 

the cooperation between peer nodes.  

A device-level information centric networking 

architecture is proposed in [30] to perform intelligent 

content distribution operations according to necessary 

context information for MTs. In [31], the authors 

proposed D2D big data platform to encourage wireless 

device-to-device communications, thereby carrying out 

offloading intelligence for operators efficiently. For 

offloading vehicular communication traffic in the 

cellular networks, a software-defined network (SDN) 

with the mobile edge computing (MEC) architecture is 

proposed in [32] to uses each vehicle’s context and set 

up a V2V path between the two vehicles for 

notification. The above works mainly focus on large 

scale content delivery probability, but not account for 

the energy-efficient computation offloading.  

A peer-Assisted computation offloading framework 

is proposed in [33] to enable a client experiencing poor 

service quality to choose a neighbor as the offloading 

proxy helper. Through WiFi interface, the node can 

offload computation tasks to the helper, then, further 

transmits the task to the cloud server through cellular 

links. However, the scheme leverages peers with better 

service quality for computation offloading, thus, ignore 

the fairness issues. Thus, it may not be a stable solution 

in a decentralized setting. Also, the work does not 

consider the wireless channel selection problem, thus, 

cannot capture the bandwidth characteristics for peer-

assisted computation offloading.  

The game theoretic models have often been used to 

study non-cooperative behaviors for mobile offloading. 

In [34], the authors consider a market game model 

where MNOs lease APs that are already deployed by 

residential users for the offloading purpose. The work 

[35] studies a non-cooperative game model where the 

uses share the limited computing resources, and a 

generalized Nash equilibrium solution is obtained. The 

computation offloading strategy of multiple users via 

multiple wireless Aps is investigated in [36], where the 

authors design a distributed computation offloading 

algorithm to help mobile users choose proper 

offloading strategies by introducing the definition of a 

potential game. In [37], the authors study the 

computation offloading strategy in a multi-channel 

wireless interference environment, in which the users 

will cause interference with each other in the same 

channel to perform the independent data offloading 

task. Although the potential structural properties are 

considered in [36-37], those works do not consider the 

cooperation between peers. In this paper, we will 

formulate the channel selection process with the peer-

assisted offloading as a potential game, and a Markov 

approximation approach is also introduced to design 

the distributed channel selection algorithm. 

The main contribution of this paper is to propose a 

peer-assisted computation offloading scheme with the 

distributed channel selection in order to minimize an 

MT’s energy consumption cost. The round robin 

scheme is used to guarantee the fairness among the 

MTs in each channel. More specifically, each MT in 

this context chooses a channel in up-links to form a 

coalition according to the offloading data size and the 

distance to other MTs. We formulate the channel 

selection problem as a potential game and design a 

distributed channel selection algorithm by using a 

Markov approximation approach, to design a 

distributed channel selection algorithm for MTs to 

achieve the Nash equilibrium of the game. MTs can 

self-organize into stable groups and only require the 

information exchanges of MTs in the same channel. 

Our contributions in this paper are summarized as 

follows: 

•We propose a cooperative data offloading model, 

with jointly considering the distributed channel 

selection. The proposed scheme enables mobile 

devices to help each other in proximity to perform 

the computing task and offload the data in a certain 

channel. Our formulation can capture the essentials 

of the cooperative users’ offloading data sizes and 

also account for the state of up-links between each 

other user. 

• We then formulate the channel selection problem as 

a pure strategy game and prove that the formulated 

game is a potential game and thus has a pure Nash 

equilibrium. 

• Using Markov chain principles, we propose a 
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distributive channel selection algorithm for the 

model in this paper. In each channel, MTs can self-

organize into a stable group to promote energy 

efficiency.  

The remainder of this paper is organized as follows. 

In Section 2, we present the system model and 

formulate it as a distributed channel selection game. In 

Section 3, we demonstrate that the proposed pure 

strategy game is a potential game and thus can achieve 

Nash equilibrium. In Section 4, we propose a 

distributed channel selection algorithm based on local 

energy consumption observations that can converge to 

the Nash equilibrium. Section 5 presents the numerical 

results in terms of the efficiency of the algorithm and 

an energy consumption comparison between the 

centralized solution and the distributed algorithm. The 

theoretical and numerical results show that the 

algorithm that we introduced is efficient and feasible in 

a collaborative mobile network context. Part of this 

work has been presented in [38]. 

2 System Model and Problem Formulation 

2.1 System Model 

We consider a set of MTs {1,..., }N=N  

geographically close to each other that desire to offload 

their computation intensive data to servers in the cloud 

via base stations (BSs). Let {1,..., }M=M denote the 

set of wireless channels. 
1 2

{ , , ..., }
n

a a a=a  is the channel 

selection vector of the MTs. Define Θ is the strategy 

space of a . 

Each MT will attempt to access individual channels 

to offload an amount 
i

S  of data directly through long-

links to the base station. This will lead to a high 

transmit power when the data size is too large. 

Moreover, the distance between the BS and the MT is 

often up to several kilometers. In this paper, we study 

the collaborative data offloading with channel selection 

for mobile edge computing. In the proposed scheme, 

MTs choose a channel according to the distributed 

channel selection algorithm; then, the MTs in the same 

channel perform data offloading in a cooperative way. 

The proposed scheme consists of the following steps as 

shown in Figure 1 and Figure 2: 

• Step 1: A header will be chosen randomly from the 

MTs in the same channel, and the other MTs transfer 

data to the header via short links(e.g., WiFi or 

Bluetooth). 

• Step 2: The header executes a data offloading task to 

transmit all the data collected from other users in the 

same channel to the BS through a long link. 

• Step 3: Every MT in the same channel acts as the 

header in turn. To guarantee fairness, we assume 

that each header works for a same time duration. 

Return to Step 1. 

Servers in Cloud

BS

MT1
(header)

MT2

MT3
MT2

Collaboratin

g

Channel 1

Data offloading

MT5
(header)

MT6
MT7

MT8

Channel 2  

Figure 1. System Model. MTs assist each other to 

offload computation-intensive data to the cloud server 

via the BS. MTs in the same channel worked as 

headers in turn. The servers in the clouds complete the 

offloaded tasks and return the results 

1

1
S ′

1 2
2

S ′

Offloading

1
S

2
S

Offloading

Local computing Local computing  

Figure 2. MT1 forward some date via short link to the 

neighbor/header node then the header performs some 

simple computation locally then offloads the data to 

the server.  

Our scheme can be implemented periodically to 

enable MTs to form stable coalitions, then, perform 

collaborative offloading. Thus, the three steps can 

repeat periodically in practice. And, the role of each 

node can be decided by the protocol of the MAC layer, 

or be scheduled by the BS. The proposed scheme can 

reduce unnecessary energy consumption caused by 

long-link transmissions and hence can improve the 

energy efficiency. The main notations of the paper are 

summarized in Table 1. 

Table 1. Notation table 

Symbol Definition 

i
a  The channel selection strategy of MT i 

ni
P  The transmission power from MT n to i 

l

n
P  The transmission power of offloading for MT n 

n
D  The transmission distance from MT n to BS 

n
D

α  The pass loss for the transmission of 
n

D  

ni
d  The transmission distance from MT n to MT i 

ni
d

α  The pass loss for the transmission of 
ni

d  

i
S  The amount of offloading data for MT i 

n
S ′  

The amount of data of MT n for assisted-

computing 

offloadingE  The energy consumption of offloading for MT n 

co
E  

The energy consumption of cooperative 

transmission for MT n 
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We denote the energy consumption of MT n in the 

offloading phase through a long link as offloadingE , 

which can be expressed as  

 { }
l

n
offloading i i nl

i N n

P
E S I a a

R
∈

= ⋅ =∑   (1) 

where l

n
P  is the long link transmission power of MT n, 

l

n
R  is the long link transmission rate, and I{·} is an 

indicator function such that {·} = 1 if the event {·} is 

true and {·} = 0 otherwise. According to Shannon’s 

theorem, we have 

 
2 2

R log (1 )
l

l n n

n l

P D
W

α

σ

= +   (2) 

where 
l

W is the channel bandwidth of the long 

transmission link, 
n

D is the long distance from MT n to 

the BS, 2
σ  is the Gaussian noise power, and α  is the 

path loss factor. In the cooperation phase, each MT can 

be a cooperative member for transferring its own data 

to the header. Therefore, for MT n, the energy 

consumed in the cooperation phase can be represented 

as 

 
,

{ }n

co ni i ns

i N i n ni

S
E P I a a

R
∈ ≠

′

= ⋅ =∑ ,  (3) 

in which we denote the transmission power from MT n 

to MT i( i i n∈ ≠N， ) as 
ni
P . s

ni
R  is the short link 

transmission data rate from MT n to MT i. Similarly, 

for the short link, we have the following expression 

based on 
Shannon’s theorem: 

 s

2 2
R log (1 )ni ni

n s

P d
W

α

σ

= + ,  (4) 

where
s

W  is the channel bandwidth of the short 

transmission link and 
ni

d  is the distance between MT n 

and MT i. In this context, we consider the total energy 

consumed by the MT in all cases. Taking the sum of 

the energy consumed in both the offloading and 

cooperative phases as MT n’s utility function, we can 

obtain 

 n offloading coE E E= +   

 

,

{ }

{ }

l

n

i i nl

i N n

n

ni i ns

i N i n i

P
S I a a

R

S
P I a a

R

∈

∈ ≠

= ⋅ =

′
+ ⋅ =

∑

∑

  

 

1
2(2 )

{ }

l

n

l

R

w

n

i i nl

i N n

D
S I a a

R

α

σ

−

∈

= ⋅ =∑   

 

1
2

,

(2 )
{ }

l

n

s

R

W

ni

n i ns

i N i n ni

d
S I a a

R

α

σ

−

∈ ≠

′+ ⋅ =∑   (5) 

2.2 Problem Formulation 

In this coalition framework, each user will choose a 

proper channel to minimize its own energy 

consumption. Therefore, the objective function of MT 

n is 

 
1 2

{ , ,..., }
Min ,

n

n
a a a

E n∈N .  (6) 

Function (6) is a joint optimization problem, in 

which each MT’s objective function is associated with 

other MTs’ strategies. Different channel selection 

strategies a of the MTs can lead to different energy 

consumptions 
n

E of MT n. To the best of our 

knowledge, problem (6) is very challenging to solve. 

Therefore, we now consider the distributed channel 

selection problem among MTs via a game theory 

approach. Let 
n−

a = 
1 2 -1 1

{ , , ..., , ..., }
n n N

a a a a a
+

，  be the set of 

channels selected by all the other MTs except MT n.  

Now, we can formulate the channel selection 

problem among MTs as a non-cooperative game where 

the utility function of MT n is given by the negative 

energy consumption function of MT n: 

 

1
2

1
2

,

U ( , )

(2 )
{ }

(2 )
{ }

l

n

l

s

ni

s

n n n n

R

w

n

i i nl

i N n

R

w

ni

n i nl

i N i n n

a a E

D
S I a a

R

d
S I a a

R

α

α

σ

σ

−

−

∈

−

∈ ≠

= −

= − ⋅ =

′− ⋅ =

∑

∑

 (8) 

The solution concept of such a channel selection 

non-cooperative game is Nash equilibrium defined in 

the following.  

Definition 1. For the proposed channel selection game, 

the strategy profile * * * *

1 2
{ , ,..., }

N
a a a=a  is called Nash 

equilibrium if and only if,  
 

 * *( ) ( , ),
i i i i i

U U a a a
−

≥ ∀ ∈Μa , (9) 

which means that, for each player i, *

i
a is the est 

response strategy to other players’ strategies *

i−
a . In 

other words, under the condition of Nash Equilibrium, 

any player in the game cannot change their own 

strategy unilaterally to improve their utility. 

 * *argmax ( , ),
n

n n n

a

a U a n
−

∈Μ

= ∀ ∈Νa  (10) 
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In what follows, this paper attempts to find the Nash 

equilibrium *

a  of the formulated game in a distributed 

way, by using the potential properties of the proposed 

game. The main notations are listed in Table 1. 

3 The Potential Property of The Proposed 

Game 

Based on the previously described channel access 

game, we now study the existence of the Nash 

Equilibrium of the game. Here, we resort to a useful 

tool of potential games [39]. Toward this end, we first 

show that for the above utility function (8), we can 

formulate a potential function that enables the game to 

converge to a pure strategy Nash equilibrium solution.  

In game theory, a game is said to be a potential 

game if the incentive of all players to change their 

strategy can be expressed using a single global 

function called the potential function. The potential 

function models the information associated with the 

improvement paths of a game instead of the exact 

utility of the game. 

Definition 2. A game is called a potential game if it 

admits a potential function Φ( )a such that for every 

n∈Ν ,  

 
n -n

sgn( ( , ) ( , ))

sgn(Φ( , ) Φ(a , )).

n n n n n n

n n

U a U a

a

− −

−

′ −

′= −

a a

a a

 (11) 

 

1 0

sgn( ) 0 0

-1 0

x

x x

x

>⎧
⎪

= =⎨
⎪ <⎩

  

A nice property of the potential game is that it 

always admits a Nash equilibrium, and any strategy 

profile that maximizes the potential function Φ( )a  is a 

Nash equilibrium [35]. For the proposed game, we can 

show that it is a potential game with the following 

potential function: 

 

2

1

2

2

( ) { , }

{ , }

n i i i j

i j i

n n ij i j

i j i

G D S S I a a

G S D d I a a

α

α α

≠

≠

Φ = − ⋅

′− ⋅

∑∑

∑∑

a

 (12) 

in which we introduce 
2

G ,
2

G  as the notation for the 

constant term because l

n
R , s

ni
R , 

l
W , 

s
W are set to 

constant values in this context, where 

 

1
2

1

(2 )

l

n

l

R

w

l

n

G
R

σ

−

= ,  

 

1
2

2

(2 )
.

s

ni

l

R

w

s

ns

G
R

σ

−

=   

Theorem 1. The proposed channel selection game is a 

potential game with the potential function Φ(a) in (12) 

satisfying,  

 
( , ) ( , )

2 ( ( , ) ( , )).

n n n n

n n n n n n n n

a a a a

S D U a a U a a
α

− −

− −

′Φ −Φ

′ ′= −
 (13) 

Proof. See appendix A. 

A detailed proof of theorem 1 is given in appendices. 

As a result, we can get that the proposed channel 

selection game is a potential game with the potential 

function (12) and hence has a Nash equilibrium. 

4 Algorithm Design 

In this section, we design a distributed channel 

selection algorithm based on the property of a potential 

game. 

4.1 Distributed Channel Selection Algorithm 

Design Principles 

Next, we consider the problem that the MTs 

collectively determine the optimal channel selection 

profile such that the potential function is maximized, 

i.e.,  

 Max ( )Φ
a

a  (14) 

Problem (14) is a combinatorial optimization 

problem of finding the optimal channel selection 

profile over the discrete strategy space. Such a problem 

is very challenging, especially when the strategy space 

size is large. 

We then consider approaching the potential 

maximization solution approximately. Then, we 

formulate problem (14) into the following equivalent 

problem: 

 
0

Max ( )

s.t. 1

a

a
q

a

a

a

q

q

≥

∈Θ

=

∑

∑

Φ a

  (15) 

where 
a
q is the probability that the channel selection 

profile a  is adopted. Obviously, the optimal solution to 

problem (15) is to choose the optimal channel selection 

profiles with probability one. It is known from [34] 

that problem (15) can be approximated by the 

following convex optimization problem: 

 
0

1
Φ( ) ln

1

a

a a a
q

a

q q q

q

θ≥

−

=

∑ ∑

∑

a a

a

Max a

s.t.

  (16) 

We see that, when θ →∞ , problem (16) becomes 

exactly the same as problem (15). Specifically, when 

θ →∞ , the optimal solutions that maximize the 

potential function Φ(a) will be selected with 
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probability one. A nice property of such an 

approximation in (16) is that we can obtain a closed 

form solution, which facilitates the later distributed 

algorithm design. 

Proposition 1. By using the KKT condition [32], we 

can derive the optimal solution to problem (15) as, 

 *

ˆ

exp( Φ( ))

ˆexp( Φ( ))
a
q

θ

θ
=

∑
a

a

a

. (17) 

Proof. See appendix B. 

Next, we design a distributed channel selection 

algorithm, such that the dynamic channel selection of 

the MTs forms a Markov chain (with the system state 

is the channel selection profile a ). As long as the 

Markov chain converges to the stationary distribution 

as given in (17), we can approach the Nash equilibrium 

channel selection profile that maximizes the potential 

function by setting a sufficiently large parameter θ . 

4.2 Channel Selection Markov Chain Design  

According to (19), we have that 

 
( , ) 2 ( , )

( , ) 2 ( , )

n n n n n n n

n n n n n n n

a S D U a

a S D U a

α

α

− −

− −

′ ′ ′Φ −

′= Φ −

a a

a a

 (18) 

Equation (18) implies that an increase (or decrease) 

of the potential function ( )Φ a  equals a weighted 

decrease (or increase) of each MT’s utility. Based on 

this equation, we propose a distributed channel 

selection algorithm that only requires information 

exchange in each MT’s current channel state.  

As shown in Algorithm 1, the proposed algorithm 

works in a distributed manner such that when the MT 

transits to a new channel, it will measure its estimation 

utility ˆ

n
U  and update its channel selection according to 

a timer value that follows an exponential distribution 

with a rate of 
n

τ . Because the probability density 

function of the exponential distribution is continuous, 

the probability that more than one MT will generate the 

same timer value and update their channels 

simultaneously equals zero. As a result, one MT will 

perform the channel selection update at a time, and the 

direct transitions between two system states 
n
a′  and 

n
a are feasible if these two system states differ by one 

and only one MTs channel selection.  

Because MT n will randomly chosen a new channel 

n
a′  and adhere to this channel with probability 

exp( 2 ( , ))

exp( 2 ( , )) exp( 2 ( , ))

n n n n n

n n n n n n n n n n

S D U a a

S D U a a S D U a a

α

α α

θ

θ θ

−

− −

′−

′− + −
(19)  

The probability of transition from state ( , )
n n
a a

−

 to 

( , )
n n
a a

−

′  is  

1
×

M
 

exp( 2 ( , ))

exp( 2 ( , )) exp( 2 ( , ))

n n n n n

n n n n n n n n n n

S D U a a

S D U a a S D U a a

α

α α

θ

θ θ

−

− −

′−

′− + −
 (20) 

Because each MT n performs its channel selection 

update, according to the countdown timer mechanism 

with a rate of 
n

τ , the transition rate from state a  to 

state ′a  is given as 
,

n

a a
q

τ

′

= ×

M
 

exp( 2 ( , ))

exp( 2 ( , )) exp( 2 ( , ))

n n n n n

n n n n n n n n n n

S D U a a

S D U a a S D U a a

α

α α

θ

θ θ

−

− −

′ ′−

′− + −
(21)  

otherwise, we have 
,

0
a a
q

′

= .  

The process of the algorithm is summarized in 

Algorithm 1. We then show in the following theorem 

that the channel selection Markov chain is time 

reversible, which means that the stochastic behavior of 

the reverse Markov chain remains the same when 

tracing the Markov chain backward. A nice property of 

a time reversible  

 

Algorithm 1. Distributed Channel Selection Algorithm

Initialization: 

1. Set the approximation parameter θ  and the rate 
n

τ

2. Choose a channel 
n
a randomly for each MT n ∈N.

End Initialization 

3. For each MT n ∈ N in parallel: 

4. loop 

5. Generate a timer value following an exponential  

 Distribution with mean equal to 
1
.

n
τ

 

6. Count down until the timer expires. 

7. if the timer expires then 

8. Measure the estimation energy consumption 

utility ˆ ( , )
n n n

U a a
−

on the chosen channel an. 

9. choose a new channel 
n
a′ randomly. 

10. Measure the estimated energy consumption utility 

 ˆ ( , )
n n n

U a a
−

′ on the new chosen channel 
n
a′  

11. Stay in the new channel 
n
a′ with probability  

ˆexp( 2 ( , ))

ˆ ˆexp( 2 ( , )) exp( 2 ( , ))

n n n n n

n n n n n n n n n n

S D U a a

S D U a a S D U a a

α

α α

θ

θ θ

−

− −

′−

′ ′ ′− + −

 

 or switch back to the original channel 
n
a with 

probability  
ˆexp( 2 ( , ))

ˆ ˆexp( 2 ( , )) exp( 2 ( , ))

n n n n n

n n n n n n n n n n

S D U a a

S D U a a S D U a a

α

α α

θ

θ θ

−

− −

′ ′−

′ ′ ′− + −

12. end if 

13. end loop 
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Markov chain is that it always admits a unique 

stationary distribution, independent of the initial 

system state. This implies that, given any initial 

channel selection, the algorithm can drive the system to 

converge to the stationary distribution given in (17). 

The system state of the channel selection Markov 

chain is defined as the channel selection profile a ∈ Θ 

of all MTs. Because it is possible to transfer from any 

state to another state in a finite number of transition 

steps, the spectrum access Markov chain is irreducible 

and has a stationary distribution. We show in the 

appendices that the Markov chain is time reversible by 

proving that the distribution in (17) satisfies the 

following detailed balance equation: 

 * *

, ,a a a a a a
q q q q

′ ′ ′

× = ×  (22) 

Theorem 2. The distributed channel selection 

algorithm induces a time-reversible Markov chain with 

the unique stationary distribution given in (17). 

Proof. See appendix C. 

Remark: According to steps 8-11 of Algorithm 1, 

MTs just needs to know the cooperative utility in the 

currently channel, then, select another channel with a 

certain probability. Thus, the MTs do not need to know 

the channel situation of all mobile devices. The 

algorithm makes the MTs that are close to each other 

select the same channel. According to Step 3 of the 

cooperative offloading, every MT in the same channel 

acts as the header in turn and works for a same time 

duration, this can be guaranteed by the MAC layer 

protocol. Thus, the algorithm is robust to the dynamic 

offloading tasks. Indeed, the Algorithm enable the MTs 

that are close to each other to work in the same channel 

and reach to a stable state finally. For the dynamic 

network, the algorithm will enable the MTs to search 

the MTs who are close to each other, but cannot, 

maintain a stable state. Thus, in practice, the MAC 

layer detection of the devices can exclude the highly 

mobile nodes from the cooperative offloading and the 

Algorithm.  

4.3 Performance Analysis 

According to Theorem 2, we can obtain the Nash 

equilibrium *

a that maximizes the potential function 

( )Φ a  of the channel selection game by setting the 

parameter θ →∞ . However, in practice, we can only 

implement a finite value of θ . Let ( )Φ = Φ∑
a

a be the 

expected potential value obtained by Algorithm 1, and 

let * Max ( )Φ = Φ
a

a  be the maximum potential value.  

We then show in Theorem 3 that, when a 

sufficiently large θ  is adopted, the performance gap 

between Φ and *

Φ is very small. This implies that we 

can achieve the Nash equilibrium by setting a 

sufficiently large θ . 

Theorem 3. For the channel selection game that we 

formulate, we have that 

 *

0 Φ Φ ln≤ − ≤ Θ  (23) 

where |Θ| denotes the number of feasible channel 

selection profiles of all MTs. 

Proof.  

According to (15) and (16), and we can have that 

 
0 0

1
Max ( ) Φ( )- ln

a a

a a a a
q q

a

q q q q
θ≥ ≥

≤∑ ∑ ∑
a a

Φ a Max a . (24)  

This is because 

 
1 1

0 - ln - ln
a a

a

q q
θ θ∈Θ

≤ ≤ Θ∑ .  

Since *

a
q  is the optimal solution to (15) and 

*

,
Max ( )

a

a
q

qΦ = Φ
a

a , according to (24), we have that 

 

* * * *

1

*

1
Φ Φ( )- ln

1
Φ( ) ln

1
Φ ln

a a

a a

a

a

q q q

q

θ

θ

θ

∈Θ ∈Θ

∈Θ

≤

≤ + Θ

≤ + Θ

∑ ∑

∑

a

a  (25) 

which completes the proof. 

We next discuss the efficiency achieved by the 

distributed channel selection algorithm when θ is 

sufficiently large (i.e., θ →∞ ). Let ( )V a be the total 

energy consumption of all the MTs under a strategy 

profile a, i.e., 
1

( ) ( )N

n n
V U

=

=∑a a  We denote a� as the 

centralized optimal profile that minimizes the energy 

consumption and *

a as the convergent Nash 

equilibrium by the distributed channel selection 

algorithm. Notice that the centralized optimization can 

be solved by maximizing ( )V a . We then define the 

efficiency ratio of the Nash equilibrium under the 

centralized optimal solution as 

 
1

* *

1

( )( )

( ) ( )

N

n n

N

n n

UV

V U
η

=

=

= =

∑
∑

aa

a a

�
�

, (26) 

which is always not greater than 1. A larger η implies 

that the distributed algorithm is more efficient 

compared to the 
centralized optimal solution. 

5 Numerical Results 

The performance evaluations of the proposed 

distributed channel selection algorithm are illustrated 

in this section. We first consider a wireless network 

with M = 4 channels in the BS and N = 10 cooperative 

MTs. As shown in Figure 3, these MTs are scattered 
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across a square area of 250 m, which is a suitable 

distance for D2D communication. The offloading data 

size of each MT is set to 6, 1.5, 3, 1, 1, 2, 4, 1, 3, and 8 

MB. We set 5
l

W MHz=  and 6
6 10

l

n
R bps= × for long 

links and 1
s

W MHz=  and 5
2 10

s

ni
R bps= ×  for short 

links. The white Gaussian noise power is -100 dBm. 

 

Figure 3. A square area with a length of 250 m with 10 

scattered MTs  

We show in Figure 4 that when the parameter θ  is 

sufficiently large (we set 6
10θ = in the simulation), the 

algorithm can converge to the optimal potential 

function value *

Φ . It also verifies the existence of the 

Nash equilibrium of the distributed channel selection 

algorithm. The gap between the expected potential 

value and the optimal potential value becomes very 

small when the iteration goes to approximately 250 

steps.  

 

Figure 4. Convergence of potential value Φ  when 
6

10θ =  

 

Figure 5 demonstrates the convergence of the MT’s 

energy consumption with increasing iterations. At the 

beginning, each MT chooses a channel randomly; thus, 

the energy consumption is high. As the iteration 

increases, MTs with the distributed algorithm gradually 

self organize into stable groups and form different 

cooperation clusters. As shown in figure 2, MTs that 

are close to each other tend to select the same channel 

to form a coalition. As shown in the Figure, more steps 

are required for convergence as the number of channels 

increases. However, the number of iterations will not 

increase significantly. For instance, the iteration 

increases from 180 to 395 when the number of 

channels increases from 3 to 8. Therefore, the number 

of iterations to convergence is acceptable, and the 

proposed distributed algorithm is efficient.  

 

Figure 5. Energy consumption with iteration 

To evaluate the performance of the proposed 

algorithm, we also compare the total energy 

consumption in this wireless network to a centralized 

optimization, which can be computed as 
1

N

n n
E

=∑
a

Min . 

We should notice that the centralized optimization 

solution requires complete network information such 

as the geo-locations, the transmission power and the set 

of feasible channels of all MTs. However, the proposed 

distributed channel selection algorithm only requires 

each MT to measure its own energy consumption 

based on its current channel. 

Table 1 shows the iterations when the number of 

channels changes. As shown in the table, more steps 

are required for convergence as the number of channels 

increases. However, the number of iterations will not 

increase significantly. For instance, the iteration 

increases from 180 to 395 when the number of 

channels increases from 3 to 8. Therefore, the number 

of iterations to convergence is acceptable, and the 

proposed distributed algorithm is efficient.  
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We investigate the influence of the number of 

channels on energy consumption. Figure 6 shows that 

the energy consumption of MT4 decreases as the 

number of channels increases. We show in Figure 6 

that, with an increase in channels, the MT can achieve 

lower energy consumption. For instance, MT4 sees a 

reduction of 5 Joules of energy consumption when the 

number of channels increases from 3 to 5. This is 

because, with increasing channel bandwidth, fewer 

MTs compete for bandwidth in one channel, and each 

MT can cooperate with closer MTs.  

 

Figure 6. Energy consumption of MT4 with different 

number of channels 

In Figure 7, the system’s total energy consumption 

decreases when the number of channels increases. 

Moreover, the shrinking gap between the centralized 

algorithm and the distributed algorithm demonstrates 

the high efficiency of the proposed algorithm. When 

the number of channels increases to 7 or 8, the 

system’s total energy consumption remains unchanged.  

 

Figure 7. System’s total energy consumption and 

iterations with different number of channels 

 

 

In Figure 8, we analyze the performance by varying 

the number of MTs. It is clear that the system’s total 

energy consumption increases with increasing number 

of MTs under all schemes. In addition, we observe that 

data offloading using cooperation can provide 55% 

energy savingscompared to offloading not using 

cooperation. 

This is because the MTs can reduce unnecessary 

long-link transmissions using cooperation. Moreover, 

the proposed distributed algorithm achieves about the 

85% energy efficiency, compared with the centralized 

optimization solution for all cases where the number of 

MTs varies from 10 to 50. With additional MTs in the 

network, the distributed algorithm can also achieve a 

good efficiency. 

 

Figure 8. The comparison of the system total energy 

consumption between the distributed channel selection 

algorithm and the centralized optimization 

Figure 9 presents the system’s total energy 

consumption with different offloading data sizes in the 

system. Our scheme can be implemented periodically 

to enable MTs to perform collaborative offloading. We 

implement the experiment by simultaneously 

increasing all the MTs’ offloading size such that the 

system’s total offloading data size varies from 20 MB 

to 100 MB for a period. We consider here to use such 

small data, since the typical IOT data often has a small 

size. For example, the typical M2M data monthly plans 

can be 1MB, 5MB, 10MB to 1 Gb for the operators T-

mobile, Vodafon or Verizon [40]. With increasing total 

data size, the performance gap between the distributed 

channel selection algorithm and the centralized 

optimization becomes increasingly smaller, and when 

the data size is 100 MB, the efficiency gap between the 

distributed algorithm and the centralized optimization 

can be reduced to less than 8%. 
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Figure 9. The system’s total energy consumption with 

different offloading data sizes 

Finally, we investigate the impact of the coverage of 

the network on the performance. We conduct 

experiments by varying the distance from 100 m×100 

m to 250 m×250 m. As shown in Table 2, as the MTs 

become closer to each other, the energy consumption 

of the short links is reduced; therefore, the efficiency 

of the proposed algorithm is better than the 250m × 

250m case. For example, the efficiency in the 250 

m×250 m case is 87.4%; however, it increases to 

92.1% when the experiment is implemented using 100 

m×100 m. This shows that the proposed algorithm 

achieves a good efficiency in shorter range 

communication. 

Table 2. Energy consumption comparison and efficiency 

 

Energy 

consumption (J) 

with distributed 

algorithm 

Energy 

consumption (J) 

with centralized 

solution 

Efficiency 

100m 91.4 84.2 92.1% 

150m 243.0 218.5 89.9% 

200m 387.6 342.6 88.4% 

250m 507.1 443.1 87.4% 

 

6 Conclusion 

In this paper, we proposed the distributed wireless 

channel selection scheme with peer-assisted data 

offloading in each channel. The proposed scheme 

enables mobile devices to help each other in proximity 

to perform the computing task and offload the data. 

And, the distributed channel selection problem among 

the MTs is formulated as a potential game which has 

been proved that has a unique Nash equilibrium. Using 

the Markov chain principle, a distributed channel 

selection algorithm was designed to achieve the Nash 

equilibrium. The results show that MTs form coalitions 

according to both their offloading data sizes and the 

distance to other peers. This means that an MT prefers 

to cooperate with users who are closer to him and have 

less data. Moreover, we have compared the energy 

efficiency ratio to the centralized optimal solution. 

Numerical results have demonstrated that the proposed 

distributed algorithm is efficient compared to the 

centralized solution. 
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Appendices 

A. Proof of Theorem 1 

Proof. Suppose that MT n unilaterally changes its 

strategy 
n
a to 

n
a′  n such that the strategy profile 

changes from a  to ′a . We have that 

- -

( , ) - ( , )
n n n n
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 (27) 

While 
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so we can obtain that 
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 (29) 

which completes the proof. 

B. Proof of Proposition 1  

Proof. According to the KKT condition (22) and 

Lagrange Multipliers, we can obtain 
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 (30) 

and 

 ( 1) 0
a

a

qλ

∈Θ

− =∑  (31) 

From (32), we can obtain 

 exp( (Φ( ) ) 1)
a
q θ λ= + −a , (32) 

Applying (34) to (32), we have 

 expΦ( ) exp(1 )λθ

∈Θ

= −∑
a

a  (33) 

Applying (35) to (33), we finally obtain (17). 

C. Proof of Theorem 2 

Proof. Define Δ
a
 as the set of the feasible state space 

of a   

To obtain (22), we consider the following two cases: 

(1) If a′∉Δ
a
we have

, ,a a a a
q q

′ ′

= , and equation (26) 

holds. 

(2) If a′∈Δ
a
, according to (17) and (21), we have 
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 (34) 

and similarly, 
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 (35) 

As a result, we finally obtain (22). The channel 

selection Markov chain is hence time-reversible and 

has the unique stationary distribution, as given in (17). 
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