
Task Scheduling and Resource Allocation Based on Ant-Colony Optimization and Deep Reinforcement Learning 1463

Task Scheduling and Resource Allocation Based on Ant-Colony

Optimization and Deep Reinforcement Learning

Ulysse Rugwiro1, Chunhua Gu2, Weichao Ding3

School of Information Science and Engineering East China University of Science and Technology, China

ulysserugwiro@live.com, chgu@ecust.edu.cn, weichaoding@126.com*

*Corresponding Author: Ulysse Rugwiro; E-mail: ulysserugwiro@live.com

DOI: 10.3966/160792642019092005013

Abstract

Cloud computing has become a significant aspect of

today’s rapidly growing technology, accessing as it does

a large number of servers, given users’ constant need to

access their data efficiently and quickly. Cloud

computing providers can flexibly place a user’s task into

an appropriate virtual machine and allocate the resource

to the tasks for proper execution. However, user tasks can

take a long time to complete the execution when the

required resources are not available on the server. To

overcome this problem, we propose a task scheduling and

resource allocation model based on Hybrid Ant Colony

Optimization and Deep Reinforcement Learning. In this

article, our goal is to minimize the overall task

completion time and improve the utilization of idle

resources. The task scheduling was performed by

constructing a Binary In-order Traversal Tree using

weighted values. We then introduced a Deep

Reinforcement Learning (DRL) algorithm to reduce

space complexity by splitting resources into state space

and action space. A state space will contain idle resources,

which are used in task allocation. Then the scheduled task

will search the resources based on Ant Colony

Optimization. When it finds an optimal resource, it will

allocate it to the task, and the server will put the allocated

resources into action space. If the VM is overloaded,

migration is performed. We simulated the proposed

algorithm using CloudSim and evaluated the performance

in terms of task completion time and resource utilization.

Our proposed work evaluation shows mitigation of the

above-described problems and illustrates the reduction of

waiting time and improvement in idle resource utilization.

Keywords: Task scheduling, Resource allocation, Ant

Colony Optimization, Deep Reinforcement

Algorithm

1 Introduction

In cloud computing, there are hundreds of thousands

of users who invoke their tasks into the cloud for

resource allocation. Task scheduling plays a significant

role in improving the performance of cloud computing.

Scheduling is responsible for optimal resource

selection for a given task, considering its parameters.

Users’ tasks are buffered in a queue manager, then the

tasks are split into queues (urgent queue and waiting

queue) based on their deadlines [1], by segregating

tasks according to their deadline; the waiting time will

be reduced, and the urgent queue will get the highest

priority for execution.

A Cloud workflow scheduling in a multi-tenant

environment [2] based on the schedule gap (i.e., a time

of an idle CPU) experiments with the idea of selecting

a better schedule position according to the schedule

gap, when a new task arrives. The conventional

workflow scheduling algorithms proposed are Easy

Backfilling, First Come First Served (FCFS) and

Minimum Completion Time (MCT). One of the other

hot topics in cloud computing is parallel computing.

Scheduling of parallel jobs presents a Shortest Job First

(SJF) Model [3]. It starts by checking the minimal

resource available in the data center, and then jobs are

scheduled based on available resources. It is performed

based on Task Placing and Resource Allocation

Algorithm (TAPRA), which uses three phases;

Stochastic workloads scheduled considering multiple

QoS constraints [4] which build around Cross Entropy

based Scheduling Scheme (CESS) which optimizes the

accumulative QoS and sojourn time of all the tasks.

CESS will assign the Probability Density Function

(PDF) array to each task and generate samples. These

samples are compared with QoS and the sojourn time

(waiting time), updating the elite sample in each

iteration if necessary. There are many more approaches

that were proposed over the last few years regarding

task scheduling and the allocation of the resources.

Figure 1 gives a high overview concept of task

scheduling and resource allocation.

Power consumption has been the focus in recent

years; it has become critical to analyze how the power

consumed by Data centers can be reduced. A Dynamic

Power Resource Allocation (DPRA) built around

Cloud Resource Requirement Module (CRRM), Cloud

Task Requirement Module (CTRS), Cloud Resource

Creation Module (CRCM), Cloud Resource Power

1464 Journal of Internet Technology Volume 20 (2019) No.5

Figure 1. Task scheduling and Resource allocation

model

Module (CRPM), and Cloud Resource Allocation

Module (CRAM) is addressed in [5]. It uses Particle

swarm optimization (PSO) algorithm to deploy VMs

into PMs with dynamic resource allocation, and

migration is performed using Cloud Resource

Migration Module (CRMM). A MapReduce Constraint

Programming based Resource Management algorithm

(MRCP-RM) technique for task scheduling and

resource allocation [6] describes how the jobs are

allocated to an optimal resource by map, shuffle and

reduce methods. It is Implemented on the strength of

Hadoop constraint programming-based resource

allocation HCP-RM, which performs match marking

and scheduling using CPLEX java API to create and

solve an Optimization Programming Language (OPL)

model. Delay aware flow scheduling (DAFS) [7]

proposes two types of scheduling disciplines; Work

Conserving (WC) and Non-Work Conserving (NWC).

WC is the process where a packet is maintained in the

queue after deadline expiration, and eventually gets

served. NWC is the process where a packet is

immediately dropped from the queue upon deadline

expiry. DAFS is used to decrease the deadline

mismatch, blocking probabilities and improving the

average throughput.

Energy efficient, VM prediction and migration

framework [8] reduces an unpredicted overload,

minimizes migration overhead and improves resource

utilization by dedicating separate resource predictor

module to each virtual machine. A resource predictor

module consists of two predictors that monitor and

collect the VM’s memory and usage traces to predict

the VM’s future CPU and memory demands. Energy

efficient hierarchical resource management [9] consists

of three phases; Global cloud server, Local ISP server

and Gateway server connected through the internet,

and the cluster head formed based on battery level. The

fuzzy rule-based scheme is applied to minimize the

delay, and a foglet selection phase is developed based

on the Technique for Order of Preference by Similarity

to Ideal Solution (TOPSIS).

1.1 Contributions

The work contribution is summarized as follows:

‧ Managing resources by scheduling the user’s tasks

with Binary In-order Traversal Tree using weighted

values of each task.

‧ In cloud environment, the resource scarcity happens

more often. To reduce the complexity, we proposed

a hybrid resource allocation technique; a

combination of Deep Reinforcement Learning (DRL)

and Ant-Colony Optimization (ACO). The DRL is

introduced to improve the utilization of idle

resources by splitting resources into Action space

and State Space in cloud environment. DRL based

resource management minimize resource usage for

large-scale cloud environment with very huge

number of servers that obtain numerous requests

from users per day. ACO is implemented to map

tasks to appropriate virtual machines once the

condition is satisfied

‧ Resource predictor and Overload predictor will

calculate the CPU, memory and I/O usage of Virtual

Machine to minimize the resource overload on a

Physical Machine.

The rest of the paper is organized as follow: Section

II talks about previous work; Section III: describes the

problem formulation; Section IV: presents the

proposed work; Section V: Experimental analysis;

Section VI: concludes the paper.

2 Related Work

Resource scheduling in cloud has been studied in the

past few years. Previous work, Zhang and Zhou [10]

presented a Dynamic task scheduling with VM being

pre-created to maximize the task scheduling

performance and ensures that the tasks dynamically

match the concrete VMs. Taking the results of task

classifier into consideration, the proposed process

involves a matcher, which matches tasks to VMs. if the

resources are busy, the matched tasks are kept in the

waiting queue until the resource becomes idle; the

process need more time for task execution as a result

the completion delay. In [11], Tram et al. proposed

dynamic flow scheduling with uncertain flow duration

in optical data centers by introducing the Markov

decision scheduling process to estimate the flows’

termination and expected revenue. They in addition

developed a scheduling algorithm for the known and

unknown flow service time. They then introduced a

congestion factor for paired ToRs which determines

the traffic flow scheduling order but calculating

congestion factor for each pair leads to high time

consumption in the scheduling process. In [12], Zuo et

t1 t2
t3 t4 tn

S1 …Sn

PM1

Tasks (1……n)

Servers (1…n)

Physical Machines (1…n)

PM2

PMn

S2

Task Scheduling and Resource Allocation Based on Ant-Colony Optimization and Deep Reinforcement Learning 1465

al. developed a Multi-Objective Scheduling Ant

Colony Optimization (MOSACO) which main

objective was to optimize the limited resources

available in cloud environment. They considered the

task completion time, the number of deadline

violations, and the degree of resource utilization by

using Ant Colony Optimization algorithm. The process

focuses on time-first and cost-first strategies to be able

to provide the highest optimality. In [13], Zhao et al.

presented the task scheduling approach in a

heterogeneous cloud which consists of edge cloud and

remote cloud (single user and multiple users’ cases).

The investigated issue is more on the limited

computation resources available in Edge cloud which

results in QoS degradation. The solution coordinated

the heterogeneous cloud which includes the edge cloud

and the remote cloud; The traffic load needs to be

optimized due to data transmission delay in this

process. When traffic load is heavy, more resources

map to a user with shorter data transmission delay.

When traffic load is light, more resources map to a user

with longer data transmission delay; with the assistance

of remote cloud the probability of bounded task delay

can be improved by 40%.

Resource allocation in cloud environment is one of

the keys for large-scale for cloud application; it quick

because one of the hot research areas in recent years. In

[14], Bey et al. introduced a new task scheduling

strategy for resource allocation to minimize the task

execution time and maximize the resource exploitation

in a cloud environment. With this approach, an initial

solution is applied to find the clusters with minimum

completion time and the jobs are assigned sequentially

to the cluster using Min-Min algorithm, which is

suitable only for a minimum number of tasks and

resources. In [15], Liu et al., discussed an issue of the

uncertainty of the task runtime because the tasks real-

time execution might not be the same as their given or

evaluated time. To overcome this problem, they

introduced a Path Cut (PC) algorithm to map all

scientific workflow tasks to a VM instance by

determining the critical path and the task duplication

used to replicate tasks in-order to eliminate the

deviation caused by uncertain task runtime.

Additionally, the least resource appending algorithm is

used to remap the tasks and add a new virtual machine

in the process. The critical path leads to a greater time

consumption due to the high completion time of tasks

in Path Cut algorithm.

In order to lower the power consumption and in the

process improve the coefficient of resource utilization

of current cloud computing systems. In [16], Xu et al.

presented a resource pre-allocation strategy to

minimize the power consumption by using Resource

Allocation based on Probabilistic Matching (RA-PM)

and Resource Allocation based on Improved Simulated

Annealing (RA-ISA). Cubic exponential smoothing

method predicts the future workloads and pre-allocates

the appropriate resources. However, the gap between

the prediction and actual workloads leads to resource

wastage in the allocation process. They also presented

a Task scheduling and resource allocation strategy

based on the idea of Pareto based Fruit Fly

Optimization Algorithm (PFOA). The PFOA have two

search procedures; first is the smell-based search stage

which consists of a critical path-based search operator,

a re-assigning operator and a random search operator

which are adopted to explore the promising region.

Second is the Vision-based search stage, a non-

dominated sorting technique is employed to sort the

temporary population, and the top N individuals

survive. It has a computational complexity to generate

operators to task scheduling and resource allocation

process based on PFOA.

3 Problem Description

Resource allocation and task scheduling are the key

challenges in cloud computing that constrain the

energy of underlying distributed hardware in cloud

data centers. Several researchers have concentrated on

scheduling and resource allocation by developing

various approaches/techniques in cloud environment.

In [3], the SJF scheduling policy was proposed, which

processed with several iterations. In this process, the

Minimum Available Resources was estimated by using

the total amount of available computing energy in a

cloud data center. In the SJF scheduling, the shortest

jobs have a high level of priority so that jobs are

assigned to resources in advance. Therefore, the

longest jobs would be waiting a long time for the

completion of task. In [2], the CWSA was proposed for

multi-tenant task. The tasks were submitted to service

queue and sorted according to the deadline priority.

The scheduler was involved to schedule the workflows

based on three policies.

‧ Scheduling policy 1: Scheduling was done by the

FCFS algorithm with respect to the arrival of tasks.

‧ Scheduling policy 2: Scheduling was performed by

EASY backfilling by considering the deadline of

tasks.

‧ Scheduling policy 3: Scheduling was done by the

MCT method, which was based on minimum

completion time of tasks.

With the FCFS, incoming tasks were sorted by the

scheduler in the arriving order of tasks. Based on this

order, if the required resources are available to execute

the first task, that is immediately processed. Otherwise,

the tasks wait until the resource become available for

tasks that leads to increased waiting time for allocating

the tasks based on resources. In [19], the utility

prediction aware VM consolidation model was applied

periodically to adapt and optimise the VM placement

according to the workload. This work aims to migrate

the overloaded VMs to other PMs. If at least one

1466 Journal of Internet Technology Volume 20 (2019) No.5

resource i.e., CPU or memory exceeds total capacity,

PMs will be considered as overloaded. Therefore, the

number of VM migration is high in this process.

To overcome the above-mentioned problems, we

have proposed task scheduling and resource allocation

in cloud environment. The user submits a set of

independent tasks to the cloud server,
1 2 3

{ , , ,T T T T=

..., }.
n
T

n
T is the ‘nth’ independent task of the user.

The data centre is used to execute the tasks, which

maintain the different servers. Each server in the data

centre has different efficiencies for executing the task.

Then, the resource allocation strategy indicates the

amount of computing resource allocated to each task.

We denote the set of VMs by
1 2

{ , ,VM VM VM=

3
, ..., }.

n
VM VM We formulate the addressed task

scheduling and resource allocation process in our work

as follows

Minimize
C
T

If
i
T m

D D< then put into short Q

If
i
T m

D D< then put into log Q

Maximize
U

VM (1)

The objective of Eq (1) is to minimise the task

completion time (
C
T). The tasks are assigned into short

queues when the deadline of the task (
i
T

D) is less than

the deadline median value (
m

D); additionally, the tasks

are assigned to a long queue when the deadline of tasks

is greater than the deadline median value. The idle VM

resource utilisation (
U

VM) is maximised by splitting

the resources into action space and state space.

4 Proposed Work

To address some of the challenges in the existing

works, we proposed task scheduling and resource

allocation based on the hybrid ACO and DRL

algorithm. This hybrid algorithm is designed to

maximize the idle VM resource utilization and

minimize the task completion time. Figure 2 implies

the overall architecture of the proposed work, which

includes various phases such as task queuing, task

scheduling and resource allocation, overloaded

prediction, and VM migration. Initially, the user tasks

are submitted in the global queue. By considering the

deadline, tasks are divided into long queue and short

queue. Further, queued tasks are scheduled by using

the Binary In-order Traversal Tree based on the

weighted values of task.

Figure 2. Detailed task scheduling and resource allocation

Task Scheduling and Resource Allocation Based on Ant-Colony Optimization and Deep Reinforcement Learning 1467

Resources are categorized into action space and state

space to improve the utilization of resource. Action

space is comprised of allocated physical machines and

state space is comprised of idle physical machines in

which tasks are to be allocated. Each VM has a

resource predictor and overload predictor that simply

shows the intensives (CPU, memory, and I/O) of

resources. Further, the scheduled tasks are requested

for the required resources, it searches the resource

based on ACO, and when it finds optimal VM, it

allocates it. The overloaded predictors of all PMs in the

state space are connected with the VMA manager,

which monitors and manages the resource allocation

process. By using the overloaded predictor, overloaded

resources are easily predicted so the number of VM

migration is reduced. Then, the overloaded VM in one

PM migrates to another PM and then the idle PMs are

switched to sleep mode to save power. The entire

proposed work is elaborated in the following

subsections.

4.1 Task Queuing using Median Deadline

All the incoming tasks at time are submitted to

global queue (QG), and then they are divided into short

queue and long queue with respect to its deadline.

Deadline of tasks are represented as

1 2 3

, , , ...,

n
T T T T T

D d d d d= with certain time limit period

by which tasks are divided into two queues. Further,

the deadline median value (
m

D) of overall task is

determined for task queuing. A short queue (Q
S) is

comprised of tasks whose deadline is lower than the

deadline median value whereas long queue (QL) is

comprised of tasks whose deadline is higher than the

deadline median value. With these queues, the tasks

are scheduled by using the Binary In-order Traversal

tree.

Pseudocode for Task Queuing

Input: Tasks (1…..n)

Output: SQ and LQ

1. Begin

2. GQ ← Tasks
1 2 3

{ , , , ..., }.
n

T T T T T= .

3. Task deadline →
2 3

{ , , ..., }
n

T T T T
D d d d=

4. Calculate deadline median value Dm

5. If (DTi < Dm)

 {Put the task in short Q}

 Else

 {Put the task in long Q}

6. End if

7. End

The Pseudocode defines the steps of task queuing.

The deadline of each task is compared with the median

value. As the goal is to minimize the waiting time,

smaller deadline tasks are placed in the short queue,

which gets high priority. Tasks with longer deadlines

are placed in the long queue.

4.2 Task Scheduling Using Binary In-order

Traversal Tree

We schedule tasks with Binary In-order Traversal

Tree by calculating weighting values for each task. To

calculate the weighted value, we consider the

following parameters of each task; task length (l),

tardiness (t), makespan (m) and slack time (s).

Task scheduling by tree provide a perfect schedule

with a guaranteed quality by constructing binary search

tree. First, we look into the requested user tasks, then

process it from the tree for execution.

Definition 1. Each node (A) in a tree (T) has a key

(Key (A)). The set of nodes rather than the root node

have a parent P (A). The elements for tree T may have

a left child node (Left (A)) and/or a right child node

(Right (A)).

The pattern is that for any node A, for all set of

nodes B in the left subtree of A, Key(B) ≤ Key(A). For

all nodes B in the right subtree of A Key(B) ≥ Key (A)

Tasks from the short queue SQ = {T1, T2,…Tn} are

moved towards the scheduler for scheduling. Each task

consists of its corresponding task length; represented as,

1 2 3
, , , ..., .

n
L L L L L=

Makespan value (i.e. completion time of task)

represented as,
1 2 3
, , , ..., .

n
M m m m m= Tardiness

value, defined as arrival time between tasks (i.e.,

delay). Specifically, it can be defined as the difference

between a late job’s due data and its completion time.

It can be represented as,
1 2 3
, , , ..., .

n
T t t t t= The

slack time is the amount of time that the task can be

delayed without missing its deadline and the order of

tasks according to non-decreasing slack-time. It can be

expressed as,
1 2 3
, , , ..., ;

n
S s s s s= The weighted value

calculated using task length, makespan, tardiness and

slack time represented as,

 Weight of task,
2 2 2

i i i i

i i i i i i

l t m s
w

l m l t l s

Σ
=

Σ Σ Σ

 (2)

Where w - Weight of task; li – task length of ith task;

mi - makespan of ith task, ti - tardiness of ith task; si –

slack time of ith task. However, the task scheduling

algorithm places restrictions on the execution order of

the operations before scheduling. We alleviate this

problem by representing all the weighted values in a

tree. Weight of each task is placed in the nodes of a

Binary In-Order Traversal Tree. The process of Binary

in-order Trees has the first incoming weighted value

placed in the Root node. Afterwards, the upcoming

tasks have their weighted values compared to the root

node. If the task’s weighted value is greater than the

root value, it is placed on the right node of the root. If

the task’s weighted value is less than the root value, it

is placed on the left node of the root. Then the tasks are

1468 Journal of Internet Technology Volume 20 (2019) No.5

scheduled by In-order traversal, where a task in the left

node is first scheduled, then the root node, and finally

the right node is scheduled, i.e., Left Node-Root Node-

Right node. Assume weighted values of tasks in the

short queue are TW = {9,2,7,3,5,4,1,8,6}. These

weighted values of the tasks are scheduled by using

Binary In-order Traversal Tree as Figure 3.

Figure 3. Task scheduling using Binary In-order

Traversal Tree (BIT)

Figure.3 Shows the scheduling process of the

incoming weighted value w=6 with the task placed in

the root node. Then w=4 is compared with the root

value and set to the left of the root node, because the

value is less than the root weighted value. Next w=8 is

compared with the root value and set to the right of the

root node because the value is greater than the root

value.

The process is repeated, until all the weighted values

of tasks are placed in the binary tree. In Binary In-

order traversal, nodes are scheduled in the order of

Left-Node; Root-Node; Right-Node. Finally, the

scheduled tasks are in the order of TW = {1, 2, 3, 4, 5,

6, 7, 8, 9}. The process can be represented by the

following pseudocode.

Pseudocode for Task Scheduling

Input: SQ and LQ

Output: Scheduled task

1. Begin

2. SQ = {T1, T2,…Tn}

3. Get L, M, T, S

4. calculate Task’s weighted values eqn. (2)

5.
1 2

, , ...,

n
W W W W
T T T T=

6. Assign

1

W
T = root node

7. If ()
i jW W

T T>

 {Place in left node}

 Else

 {Place in right node}

8. Schedule Left node- Root node – Right node

9. End

4.3 Hybrid Resource Allocation

Resource allocation plays a significant role in

assigning the tasks to virtual machines. This is also a

challenging task, because of the assignment of each

task to a VM with the available resources on the

physical machine. Our proposed Hybrid Ant Colony

Optimization with DRL Algorithm method improves

the utilization of idle resources for efficient resource

allocation. Among the various search algorithms, DRL

and ACO are very similar. The ACO algorithm

employs a colony of agents (ants) to the optimization

problem and each ant lays some quantity of pheromone

on the paths they have taken. Similar to ACO, DRL

algorithms employ agents (RL agents) to learn about

the optimal policy that will increase the overall reward

in the long run. The optimal policy is improved

according to the state/action values. Moreover, both

ACO and DRL algorithms have exploitation and

exploration trade-off due to the searching nature.

A DRL is primarily designed to generate best long-

term decisions by learning from the varying

environment; like a pattern of user’s request. It is

suitable for training enormous user requests with fast

convergence speed. The major reasons for DRL in

resource management are; the efficiency of task

execution; Secondly, learning from a particular user

tasks instead of FIFO order step gives higher efficiency

and lastly, it eliminates divergence and remarkably low

runtime and energy cost.

The Automatic decision-making approaches like

reinforcement learning (RL) were introduced to solve

the resource allocation issue actively in the cloud

computing environment. Adopting an ACO, loss of

each action during the training procedure and in

addition to obtain the optimal policy, it is essential to

identify the actions, reward functions and states.

However, a complete cloud resource allocation

framework displays high dimensions in state and action

spaces, which prevents the use of traditional RL

techniques.

Firstly, the resources are divided into action space

and state space. The action space consists of the virtual

machines already allocated to the tasks. State space

comprises of unallocated VMs, and these idle

resources will be allocated to the scheduled tasks later.

Each virtual machine’s utilization is calculated by

using their corresponding CPU intensive, Memory

intensive and I/O intensive utilizations.

 /

i i i

CPU M I O

U VM VM VM
VM U U U= + + (3)

Where,

VMU – Virtual machine utilization

i

CPU

VM
U - CPU utilization of ith virtual machine

i

M

VM
U - Memory utilization of ith virtual machine

/

i

I O

VM
U - I/O utilization of ith virtual machine

In-order Traversal

Left sub tree of BIT

Root node BIT

Right sub tree of BIT

Visit node 1 (left node)-2

(root node)-3 (right node)

Task Scheduling and Resource Allocation Based on Ant-Colony Optimization and Deep Reinforcement Learning 1469

If the virtual machines in the state space are fully

allocated, it transferred to the action space which is

shown in Figure 4.

Figure 4. Resource allocation

4.3.1 The Use of Deep Reinforcement Learning

for Resource Management

State space. In DRL, the CPU, Memory and I/O

intensives of each virtual machine are taken into

consideration to split the resources into state and action

space.

We denote task T’s arrival time ,
t
T

t
T S as the union

of the server cluster state at task T’s arrival time T
t

C
S

and the task T’s state
T
S , i.e.,

T T
t t

C T
S S S= ∪ . The

entire server can be equally divided into K groups,

G1…. Gk. We define the state of servers in group
K

G

at time t as t

k
g . We also define the utilization

requirement of resource type R of task T by
TR

U , and

the utilization level of server m at time t as
t

mR
U .

Therefore, the system state t
T

S of the DRL based

cloud service allocation tier can be represented using

TR
U and T

t

mR
U as follows,

1

[,] [, ..., ,]T T T T
t t t t

C T k T
S S S g g S= = (4)

1

11 1| | | || | | |[, ..., , ..., , , ..., ,]T T T
t t t

D M D T T D T
U U U U U d= (5)

Where dT is the (estimated) task duration. The state

space consists of all possible states of VM and it has a

high dimension.

Action space. The action space of the DRL for cloud

resource allocation is defined as the allocated virtual

machines. The action space for a cluster with N servers

is defined as follows,

 { | {1, 2, ... | |}}A a a N= ∈ (6)

Figure 4. shows the resource allocation process in

state space using ACO with DRL.

As we will see in Figure 5, It can be observed that

the action space is significantly reduced (to the same

size as the total number of servers by using continuous

DRL based decision system.

Reward. In our process, the reward specifies the range

of the idle resources and allocated resources. There are

two assumptions involved in the reward function.

\

Figure 5. Transition of VM using DRL

‧ If the resources of the virtual machine such as CPU,

memory, I/O are partially or fully allocated to the

task for performing their process, that VM is placed

in the action space. Here, the virtual machines are

allocated to the task based on their requirement.

‧ If the resources of a virtual machine are unused by

the tasks, that virtual machine is placed in the state

space. In our process, the virtual machines in the

state space are mainly preferred for allocating the

tasks.

Transition. In resource allocation, the VM transfer

from the state space to action space and vice versa is

referred to as transition. If a virtual machine in the state

space turns out to be busy, it is transferred to the action

space. When a virtual machine in the action space

becomes idle, it is transferred to the state space.

Busv

VM AS→ (7)

Idle

VM SS→ (8)

Here, AS refers to action space and SS refers to state

space. Figure 5 illustrates the transition of the VM in

cloud.

4.3.2 The Use of ACO for Resource Allocation

The Deep Reinforcement Learning algorithm is used

to mitigate the resource complexity. As scheduled

tasks are placed into state space, resources are

allocated to the required tasks based on ACO with

DRL. Ant Colony Optimization algorithm is a random

probability model that searches for an optimal path. It

is inspired by how ants discover an appropriate path to

locate food. Ants will release a certain quantity of

pheromones, and gradually the pheromone

concentration on the shortest path becomes higher and

attracts more ants, leading to the discovery of the best

route. In our system, we have proposed an improved

ACO algorithm which is based on scout characteristics,

and it solves the problem of resource complexity. The

Idle VM Allocated VM

State Space Action Space

1470 Journal of Internet Technology Volume 20 (2019) No.5

main idea of the improved ACO algorithm is

partitioning the artificial ants into two groups: scout

ants and common ants. The common ant performs

according to the searching process of the basic ACO

algorithm. The scout ants have some difference from

common ants; they calculate each resource capacity of

the current optimal solution and search around the

optimal solution according to the resource capacity. In

basic ACO, tasks randomly choose the resources at

each step of the solution construction and select the

following resource to be visited according to the

probabilistic decision rule. However, the scout ants’

distinct characteristic, whereby they differ from

common ants, is that they search around the optimal

solution. At the same time, they will directly visit the

following resource in optimal solution. When ant k

states in resource i, the probability of moving to the

neighbor j of resource i is given by,

()

() { , }
()k

t

a

ijk k

ij ta

ijj N

t
P t j N

t

τ

τ
∈

= ∈
Σ

 (9)

Where t

k
N are the adjacent nodes of node i. α is a

factor used to amplify the impact of pheromone

concentration. If α is too large, it will overpower the

impact of the pheromone, leading the algorithm to

converge onto a sub-optimal path. When the ant is in

the (t+1) th iteration, pheromone concentration of each

path becomes,

1

(1) (1) ()
k
n

k

ij ij ij

k

t tτ β τ τ
=

+ = − × + Δ∑ (10)

Where
k
n is the number of ants and β is the

pheromone evaporation parameter. Based on ACO, the

resources are allocated to tasks in three steps:

‧ Understanding user demands

‧ Initialization of parameters

‧ Allocation of resources

The allocation by ACO can be illustrated by Figure

6 To perform the user's request, the task is initialized

with CPU, Memory and I/O intensive requirements.

Tasks must be allocated to resources which satisfy

their needs; i.e. T (CPU, memory, I/O) → R. Tasks

search for the optimal resource for execution. Each

virtual machine has a resource predictor, which is used

to search for resources for the tasks.

The initialized tasks search for the best solution Sbest

and update the pheromone. If the tasks reach the

optimal solution, they again search the resources

around the optimal solution based on resource capacity.

Finally, the tasks are allocated to suitable resources

based on improved ACO. Otherwise, it again computes

the Sbest. Here, we consider Alpha=1 which is the

pheromone constant, and Beta = 1, which is the

heuristic constant. Finally, the allocated tasks shift into

the action space.

Figure 6. Flow chart for resource allocation

Pseudocode for ACO

Input: Scheduled Tasks T = (T1…Tn)

Output: T1→R1

1. Begin

2. Compute State space (Equation 4)

2. Get T={T1,T2,…Tn}

3. Initialize T→ (CPU, Mem, I/O)

4. Compute Sbest

5. Update pheromone

6. If

 {T = Tmax}

 Get optimal solution

7. Search the solution around optimal solution

 Else

 Go to step 4

8. End if

9. End

To fulfil our objectives such as high-power

consumption and less execution time, we propose a

DRL framework which solves the overall resource

allocation and power management problems in cloud

computing systems. As earlier discussed, the proposed

DRL framework comprises two spaces: state space and

action space. State space is for VM resource allocation

to the servers and action space for VM management of

all servers. Besides reducing the search time, we

propose an ACO that enhances scalability and also

reduces the dimensions of state and action space. To

reduce the action space, we adopt a continuous-time

and DRL technique, in which each decision is made

Solution

Initialize CPU, Mem, I/O Requirement

Scheduled tasks

Start

Optimal Solution

Update

pheromone

Best solution

Stop

If Best Solution== ?

No

Yes

Task Scheduling and Resource Allocation Based on Ant-Colony Optimization and Deep Reinforcement Learning 1471

with the arrival time of a new VM request.

The above Pseudocodes give the details about

resource allocation using ACO with DRL. The overall

algorithm for resource allocation is summarized as

follows,

Algorithm for Resource Allocation

Input: scheduled tasks

Output: Resource allocated tasks

1. Begin

2. By using DRL, resources are divided into state

space and action space

3. Define state space from (Equation 4)

4. Compute reward function

5. Scheduled task entered into state space .// Ant

 Colony Optimization for resource allocation

7. Initialize the requirement of tasks (CPU, Mem, I/O)

8. Compute the best solution Sbest

9. Update pheromone

10. Get optimal resource if maximum iteration

reached

11. Put allocated virtual machines into Action space

12. Update the Action space

13. End

4.4 VM Migration

When a virtual machine is overloaded, it is migrated

to another physical machine in the host. In the

proposed method, each VM and PM is designed with

predictors.

Resource predictor. A separate resource predictor

module is dedicated to each VM in the physical

machine. The resource predictor module for VM x

consists of three primary jobs which monitor and

collect the VM’s CPU, Memory and I/O usage, to

predict the VM’s future CPU, Memory and I/O

demands. The resource predictor also provides

information about available resources in the VM for

future resource allocation.

Overload predictor. Each physical machine in the

host has an overload predictor. Let us assume that it is

located on PM y. It fetches the predicted CPU,

Memory and I/O demands for all VMs which are

hosted on that PM, and calculates the PM’s predicted

aggregate CPU, Memory and I/O demands, y

CPUU ,
y

men
U and

/

y

I OU respectively, as follows,

 ; ()

y x

CPU x V x y menU P
θ∈ =

= Σ (11)

; ()

y x

men x V x y CPUU P
θ∈ =

= Σ (12)

 / ; () /

y x

I O x V x y I OU P
θ∈ =

= Σ (13)

Where ()x yθ = denotes that VM x is hosted on PM

y. The module compares the predicted value to the

PM’s supported value. The supported value of PMs for

CPU, Memory and I/O demands is calculated as

follows,

1

n
y x

CPU CPU

x

S S

=

=∑ (14)

1

n

y x

men men

x

S S

=

=∑ (15)

/ /

1

n
y x

I O I O

x

S S

=

=∑ (16)

If y y

CPU CPU
U S> or y y

men men
U S> or, then the overload

predictor notifies the virtual machine allocation

manager that PM y is expected to have an overload in

the coming periods. The overload predictor also

forwards the predicted CPU, Memory and I/O demands,
x

CPU
P , x

men
P and

/

x

I O
P for VM x hosted on PM j. This

prediction is used to decide which VM(s) to keep,

which VM(s) to migrate as well as where the migrated

VM(s) should be moved.

VM allocation manager. The physical machines’

overload predictors are managed by the VM allocation

manager. Thus, the VM allocation manager knows the

information about the available resources on the PMs.

The VM allocation Manager considers a PM as

overloaded if the prediction resource level of the PM is

greater than its actual support level. Then the

overloaded VMs are migrated to the underutilized

physical machine.

5 Experimental Evaluation

In this section, a set of experiments are provided to

evaluate our proposed work. We will compare our

proposed work with existing methods. We have

proposed ACO with DRL for resource allocation to

improve the idle resource utilization and reduce the

completion time. This section is divided into three sub-

sections: simulation setup, performance metrics, and

comparative analysis.

5.1 Simulation Setup

To implement the proposed work, we used a

Pentium IV processor, 2GB RAM and 60 GB hard disk.

The performance of the proposed work was evaluated

using a Cloudsim 3 toolkit.

Simulation requirements are listed out in Table 1.

1472 Journal of Internet Technology Volume 20 (2019) No.5

Table 1. Simulation set up requirement

Requirements Specification Value / Ranges

No. of data centers 10
Data centers

No. of hosts 2-6

Task length 1000-20000
Cloudlet (Task)

No. of tasks 50-500

Memory (RAM) 128-2048

MIPS 500-2000

Bandwidth 500-1000

Virtual Machines

(VMs)

No. of VM 100-200

Table 1 shows the required parameters for

performing our proposed work. The requirements of

the system setup can be changed based on the users’

need. In our process, we have considered the above-

mentioned requirements for the system implementation.

The quantity of the requirements does not degrade the

performance of the system.

5.2 Performance Metrics

This section defines each performance metric. The

performance of the proposed work is evaluated with

the following metrics.

Execution time. Execution time is defined as the time

taken for scheduling the tasks and allocating resources

to the task. Execution time is a significant parameter; it

should be low to achieve better performance of the

model.

0

n

E s R

t

T T T

=

= +∑ (17)

Resource utilization. Resource utilization is defined

as the total usage of the resources such as CPU,

Memory and I/O to execute the task. Here, utilization

of each virtual machine is calculated by using their

corresponding CPU intensive, Memory intensive and

I/O intensive utilization.

 /

1

i i i

n

CPU Mem I O

U VM VM VM

i

VM U U U

=

= + +∑ (18)

Power consumption. Power consumption is defined as

power consumed by the usage of CPU, Memory and

I/O. To achieve efficient performance, we must reduce

the power consumption of the system.

 /

1

M

n

CPU men I O

P vm vm vm

vm

P P P P

=

= + +∑ (19)

5.3 Comparative Analysis

This section briefly describes the performance of the

proposed approach with reference to existing

approaches. To check the performance of our proposed

approach, we first compared our proposed task

scheduling and resource allocation (hybrid ACO and

DRL) with Cloud Workflow Scheduling Algorithm

(CWSA) [2], Dynamic Power Saving Resource

Allocation (DPRA) [5] , and Heuristic approach [17].

Table 2 provide the keys focused when we are

evaluating these existing frameworks in a cloud

computing environment. Generally, execution time,

power consumption and resource utilization can be

improved for better performance.

Table 2. Demerits of previous algorithms

Previous Algorithms Limitations

Cloud Workflow Scheduling

Algorithm (CWSA) [2]

It takes more time to allocate

the resources

Lengthier process

Dynamic Power Saving

Resource Allocation

(DPRA) [5]

Power utilization rate is high

Execution time is high

Heuristic Approach [17]

High complexity due to the

integration of two

optimization algorithms

Smaller utilization tasks have

to wait for longer time

Execution time. Execution time is one of the key

parameters to evaluate performance of the system. The

execution time not only depends on scheduling and

resource allocation method, but also on the number of

incoming tasks at the time. In our work, tasks were

scheduled and processed within the deadline.

Execution time of our proposed work is compared with

CWSA [2] and the Heuristic approach [17] processes

in Table 3.

Table 3. Execution time comparison of the proposed

approach with previous approaches

Average execution time

Num of task CWSA
Heuristic

Approach

Proposed

method

100 100 90 80

200 150 100 90

300 160 110 100

400 170 130 120

500 190 150 135

600 200 170 150

700 220 190 170

800 230 220 190

900 240 240 220

1000 250 250 230

The plot below represents the execution time against

the number of tasks, because the execution time of a

task increases linearly when the number of tasks is

increased.

Task Scheduling and Resource Allocation Based on Ant-Colony Optimization and Deep Reinforcement Learning 1473

Figure 7 shows the changes in tasks’ execution time

corresponding to the number of tasks. In the proposed

method, tasks are scheduled based on task length,

tardiness and makespan, which reduces the waiting

time of short deadline tasks that leads to reduction in

execution time, which is significantly better than in

previous work. The task execution time varies based on

the deadline of the tasks. The tasks in the long queue

consume more time for execution when compared to

tasks in the short queue. When the execution time is

reduced, it linearly reduces the time taken for

completing the task. In this way, our system shows

lesser completion time compared to other previous

work.

Figure 7. Comparison on average execution time

Resource utilization. Each task has different resource

utilization levels based on their requirements to

complete the task. The use of resources increases when

the tasks take up and make use of the idle resources.

We compare the proposed model to CWSA [2] and

ACOPSO [18]. The resource Utilization of the

proposed approach, the CWSA [2] and ACOPSO [18]

approaches are provided in Table 4.

Table 4. Resource utilization comparison with the

proposed approach with previous approaches

Resource Utilization
Average

Arrival time ACOPSO CWSA
Proposed

method

1 85% 85% 85%

2 80% 80% 80%

3 78% 78% 78%

4 74% 74% 74%

5 71% 71% 71%

6 67% 67% 67%

7 64% 64% 64%

8 60% 60% 60%

The graphical representation of the resource

utilization can be represented below.

Figure 8 Depicts the percentage of resource

utilization of CWSA and the proposed work. The graph

clearly shows the rate of utilized resources by

considering the time taken from the arrival of task to

the next task. The rate of resource utilization changes

during the time between the arrival of each task.

Figure 8. Comparison on resource utilization

As displayed above, the proposed method exhibits

better resource utilization than CWSA and ACOPSO

methods, since CWRA uses three scheduling policies

for task scheduling, namely Easy Backing, FCFS and

MCT. These policies take high waiting time to allocate

resources for scheduled tasks. In the case of the

proposed method, resource use is up to 10% better than

the existing methods, since we used a larger number of

ants (agents) to search for the best solution. This is due

to the DRL process, which divides the resources into

state space and action space to improve idle resource

utilization. Based on the results from ACO and DRL,

we have obtained this result and agents are used

according to the available resources. In our system, the

tasks initially utilize the resources in the state space

where the resources are idle, which improves the

utilization of idle resources.

Power consumption. Energy consumption is one of

the significant parameters in the evaluation, which

increases the performance of a physical machine.

Figure 9 shows the power consumption of physical

machines investigated when the number of the virtual

machines varies from 0-500. Each physical machine in

the host consumes power by the usage of CPU,

Memory and I/O. We compared the power

consumption of the proposed method to DPRA. The

results show that the proposed method has lower power

consumption, more specifically a 10% reduction in

consumption of power compared with the existing

methods.

1474 Journal of Internet Technology Volume 20 (2019) No.5

Figure 9. Comparison on power utilization

6 Conclusion

Cloud computing has come to be widely recognized

as an essential computing model, with the involvement

of vast numbers of users. Due to the large number of

user requests, scheduling and resource allocation are

performed mainly for task organization and execution

in an efficient manner. Our proposed work is designed

in such a way as to improve resource utilization and

reduce execution time. In this paper, we initiated task

queuing based on the task deadline, and tasks are

scheduled using Binary In - order Traversal Tree based

on a weighted value for each task. We then perform the

resource allocation by hybrid Ant Colony Optimization

and Deep Reinforcement Learning algorithm. The

resource utilization is improved by splitting them into

state space and action space by DRL, and the resources

are allocated based on ACO. The overall allocation

process is managed by VM allocation manager which

also performs VM migration to reduce power

consumption. Finally, performance evaluation

indicates that our proposed work is efficient for task

scheduling and resource allocation, with improved

resource utilization and reduced execution time.

In the future work, we plan further investigation on

the following area:

‧ VM migration can be further enhanced by using VM

consolidation process.

‧ Introducing real time data to implement the

proposed task scheduling and resource allocation

process.

‧ Implement the resource provisioning in future for

efficient resource allocation

References

[1] R. Karthikeyan, P. Chitra, Novel Power Reduction

Framework for Enhancing Cloud Computing by Integrated

GSNN Scheduling Method, Cluster Computing, Vol. 21, No.

1, pp. 755-766, March, 2018.

[2] B. P. Rimal, M. Maier, Workflow Scheduling in Multi-Tenant

Cloud Computing Environments, IEEE Transactions on

Parallel and Distributed Systems, Vol. 28, No. 1, pp. 290-304,

January, 2017.

[3] L. Shi, Z. Zhang, T. Robertazzi, Energy-aware Scheduling of

Embarrassingly Parallel Jobs and Resource Allocation in

Cloud, IEEE Transactions on Parallel and Distributed

Systems, Vol. 28, No. 6, pp. 1607-1620, June, 2017.

[4] Y. Chen, L. Wang, X. Chen, R. Ranjan, A. Y. Zomaya, Y.

Zhou, S. Hu, Stochastic Workload Scheduling for

Uncoordinated Datacenter Clouds with Multiple QoS

Constraints, IEEE Transactions on Cloud Computing, June,

2016. DOI: 10.1109/TCC.2016.2586048.

[5] L.-D. Chou, H.-F. Chen, F.-H. Tseng, H.-C. Chao, Y.-J.

Chang, DPRA: Dynamic Power-Saving Resource Allocation

for Cloud Data Center Using Particle Swarm Optimization,

IEEE Systems Journal, Vol. 12, No. 2, pp. 1554-1565, June,

2018.

[6] N. Lim, S. Majumdar, P. Ashwood-Smith, MRCP-RM: A

Technique for Resource Allocation and Scheduling of

MapReduce Jobs with Deadlines, IEEE Transactions on

Parallel and Distributed Systems, Vol. 28, No. 5, pp. 1375-

1389, May, 2017.

[7] M. Khabbaz, K. Shaban, C. Assi, Delay-Aware Flow

Scheduling in Low Latency Enterprise Datacenter Networks:

Modelling and Performance Analysis, IEEE Transactions on

Communications, Vol. 65, No. 5, pp. 2078-2090, May, 2017.

[8] M. Dabbagh, B. Hamdaoui, M. Guizaniy, A. Rayesz, An

Energy-Efficient VM Prediction and Migration Framework

for Overcommitted Clouds, IEEE Transactions on Cloud

Computing, Vol. 6, No. 4, pp. 955-966, October-December,

2018.

[9] A. Ahmad, A. Paul, M. Khan, S. Jabbar, M. M. U. Rathore, N.

Chilamkurti, N. Min-Allah, Energy Efficient Hierarchical

Resource Management for Mobile Cloud Computing, IEEE

Transactions on Sustainable Computing , Vol. 2, No. 2, pp.

100-112, April-June, 2017.

[10] P. Zhang, M. Zhou, Dynamic Cloud Task Scheduling Based

on a Two-Stage Strategy, IEEE Transactions on Automation

Science and Engineering, Vol. 15, No. 2, pp. 772-783, April,

2018.

[11] T. Truong-Huu, M. Gurusamy, S. T. Girisankar, Dynamic

Flow Scheduling with Uncertain Flow Duration in Optical

Data Centers, IEEE access, Vol. 5, pp. 11200-11214, June,

2017.

[12] L. Zuo, L. Shu, S. Dong, Y. Chen, L. Yan, A Multi-objective

Hybrid Cloud Resource Scheduling Method Based on

Deadline and Cost Constraints, IEEE access, Vol. 5, pp.

22067-22080, December, 2016.

[13] T. Zhao, S. Zhou, X. Guo, Z. Niu, Tasks Scheduling and

Resource Allocation in Heterogeneous Cloud for Delay-

bounded Mobile Edge Computing, 2017 IEEE International

Conference on Communications (ICC), Paris, France, 2017,

pp. 1-7.

[14] K. B. Bey, F. Benhammadi, F. Sebbak, M. Mataoui, New

Tasks Scheduling Strategy for Resources Allocation in Cloud

Task Scheduling and Resource Allocation Based on Ant-Colony Optimization and Deep Reinforcement Learning 1475

Computing Environment, 2015 6th International Conference

on Modeling, Simulation, and Applied Optimization

(ICMSAO), Istanbul, Turkey, 2015, pp. 1-5.

[15] S. Liu, K. Ren, K. Deng, J. Song, A Dynamic Resource

Allocation and Task Scheduling Strategy with Uncertain Task

Runtime on IaaS clouds, 2016 Sixth International Conference

on Information Science and Technology (ICIST), Dalian,

China, 2016, pp. 174-180.

[16] X. Xu, L. Cao, X. Wang, Resource Pre-allocation Algorithms

for Low-energy Task Scheduling of Cloud computing,

Journal of Systems Engineering and Electronics, Vol. 27, No.

2, pp. 457- 469, July, 2016.

[17] M. B. Gawali, S. K. Shinde, Task Scheduling and Resource

Allocation in Cloud Computing Using a Heuristic Approach,

Springer Journal of Cloud Computing: Advances, Systems

and Applications, Vol. 7, No. 4, pp. 1-16, February, 2018.

[18] D. Kumar, B. Kavitha, M. Padmavathy, B. Harshini, E.

PReethi, P. Varalakshmi, Optimized Particle Swarm

Optimization Based Deadline Constrained Task Scheduling in

Hybrid Cloud, ICTACT Journal on Soft Computing, Vol. 6,

No. 2, pp. 1117-1122, January, 2016.

[19] F. Farahnakian, T. Pahikkala, P. Liljeberg, J. Plosila, N. T.

Hieu, H. Tenhunen, Energy Aware VM Consolidation in

Cloud Data Centers Using Utilization Prediction Model,

IEEE Transactions on Cloud Computing, Vol. 7, No. 2, pp.

381-388, October, 2016.

Biographies

Ulysse Rugwiro is a Ph.D. candidate

in Computer Science and Application

at East China University of Science

and Technology. He received his MSc

degree from ECUST, China. He is

working as a researcher in the field of

Green Cloud Computing.

Chunhua Gu born in 1970, he is

Professor and Ph.D. supervisor in the

School of Information Science and

Engineering, East China University of

Science and Technology. Senior

member of China Computer

Federation. His main research interests include cloud

computing and internet of things.

Weichao Ding born in 1989, he is

Ph.D. candidate in the School of

Information Science and Engineering,

East China University of Science and

Technology. His main research

interests include cloud computing and

high-performance computing.

1476 Journal of Internet Technology Volume 20 (2019) No.5

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (Adobe RGB \0501998\051)
 /CalCMYKProfile (Japan Color 2001 Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHT <FEFF005b683964da300c9ad86a94002851fa8840002b89d27dda0029300d005d0020005b683964da300c8f3851fa0033003000300064002851fa88400029300d005d00204f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks true
 /AddPageInfo false
 /AddRegMarks false
 /BleedOffset [
 8.503940
 8.503940
 8.503940
 8.503940
]
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MarksOffset 9.354330
 /MarksWeight 0.141730
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed true
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

