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Abstract 

Cloud computing has become a significant aspect of 

today’s rapidly growing technology, accessing as it does 

a large number of servers, given users’ constant need to 

access their data efficiently and quickly. Cloud 

computing providers can flexibly place a user’s task into 

an appropriate virtual machine and allocate the resource 

to the tasks for proper execution. However, user tasks can 

take a long time to complete the execution when the 

required resources are not available on the server. To 

overcome this problem, we propose a task scheduling and 

resource allocation model based on Hybrid Ant Colony 

Optimization and Deep Reinforcement Learning. In this 

article, our goal is to minimize the overall task 

completion time and improve the utilization of idle 

resources. The task scheduling was performed by 

constructing a Binary In-order Traversal Tree using 

weighted values. We then introduced a Deep 

Reinforcement Learning (DRL) algorithm to reduce 

space complexity by splitting resources into state space 

and action space. A state space will contain idle resources, 

which are used in task allocation. Then the scheduled task 

will search the resources based on Ant Colony 

Optimization. When it finds an optimal resource, it will 

allocate it to the task, and the server will put the allocated 

resources into action space. If the VM is overloaded, 

migration is performed. We simulated the proposed 

algorithm using CloudSim and evaluated the performance 

in terms of task completion time and resource utilization. 

Our proposed work evaluation shows mitigation of the 

above-described problems and illustrates the reduction of 

waiting time and improvement in idle resource utilization. 

Keywords: Task scheduling, Resource allocation, Ant 

Colony Optimization, Deep Reinforcement 

Algorithm 

1 Introduction 

In cloud computing, there are hundreds of thousands 

of users who invoke their tasks into the cloud for 

resource allocation. Task scheduling plays a significant 

role in improving the performance of cloud computing. 

Scheduling is responsible for optimal resource 

selection for a given task, considering its parameters. 

Users’ tasks are buffered in a queue manager, then the 

tasks are split into queues (urgent queue and waiting 

queue) based on their deadlines [1], by segregating 

tasks according to their deadline; the waiting time will 

be reduced, and the urgent queue will get the highest 

priority for execution.  

A Cloud workflow scheduling in a multi-tenant 

environment [2] based on the schedule gap (i.e., a time 

of an idle CPU) experiments with the idea of selecting 

a better schedule position according to the schedule 

gap, when a new task arrives. The conventional 

workflow scheduling algorithms proposed are Easy 

Backfilling, First Come First Served (FCFS) and 

Minimum Completion Time (MCT). One of the other 

hot topics in cloud computing is parallel computing. 

Scheduling of parallel jobs presents a Shortest Job First 

(SJF) Model [3]. It starts by checking the minimal 

resource available in the data center, and then jobs are 

scheduled based on available resources. It is performed 

based on Task Placing and Resource Allocation 

Algorithm (TAPRA), which uses three phases; 

Stochastic workloads scheduled considering multiple 

QoS constraints [4] which build around Cross Entropy 

based Scheduling Scheme (CESS) which optimizes the 

accumulative QoS and sojourn time of all the tasks. 

CESS will assign the Probability Density Function 

(PDF) array to each task and generate samples. These 

samples are compared with QoS and the sojourn time 

(waiting time), updating the elite sample in each 

iteration if necessary. There are many more approaches 

that were proposed over the last few years regarding 

task scheduling and the allocation of the resources. 

Figure 1 gives a high overview concept of task 

scheduling and resource allocation. 

Power consumption has been the focus in recent 

years; it has become critical to analyze how the power 

consumed by Data centers can be reduced. A Dynamic 

Power Resource Allocation (DPRA) built around 

Cloud Resource Requirement Module (CRRM), Cloud 

Task Requirement Module (CTRS), Cloud Resource 

Creation Module (CRCM), Cloud Resource Power 
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Figure 1. Task scheduling and Resource allocation 

model 

Module (CRPM), and Cloud Resource Allocation 

Module (CRAM) is addressed in [5]. It uses Particle 

swarm optimization (PSO) algorithm to deploy VMs 

into PMs with dynamic resource allocation, and 

migration is performed using Cloud Resource 

Migration Module (CRMM). A MapReduce Constraint 

Programming based Resource Management algorithm 

(MRCP-RM) technique for task scheduling and 

resource allocation [6] describes how the jobs are 

allocated to an optimal resource by map, shuffle and 

reduce methods. It is Implemented on the strength of 

Hadoop constraint programming-based resource 

allocation HCP-RM, which performs match marking 

and scheduling using CPLEX java API to create and 

solve an Optimization Programming Language (OPL) 

model. Delay aware flow scheduling (DAFS) [7] 

proposes two types of scheduling disciplines; Work 

Conserving (WC) and Non-Work Conserving (NWC). 

WC is the process where a packet is maintained in the 

queue after deadline expiration, and eventually gets 

served. NWC is the process where a packet is 

immediately dropped from the queue upon deadline 

expiry. DAFS is used to decrease the deadline 

mismatch, blocking probabilities and improving the 

average throughput.  

Energy efficient, VM prediction and migration 

framework [8] reduces an unpredicted overload, 

minimizes migration overhead and improves resource 

utilization by dedicating separate resource predictor 

module to each virtual machine. A resource predictor 

module consists of two predictors that monitor and 

collect the VM’s memory and usage traces to predict 

the VM’s future CPU and memory demands. Energy 

efficient hierarchical resource management [9] consists 

of three phases; Global cloud server, Local ISP server 

and Gateway server connected through the internet, 

and the cluster head formed based on battery level. The 

fuzzy rule-based scheme is applied to minimize the 

delay, and a foglet selection phase is developed based 

on the Technique for Order of Preference by Similarity 

to Ideal Solution (TOPSIS).  

1.1 Contributions 

The work contribution is summarized as follows: 

‧ Managing resources by scheduling the user’s tasks 

with Binary In-order Traversal Tree using weighted 

values of each task. 

‧ In cloud environment, the resource scarcity happens 

more often. To reduce the complexity, we proposed 

a hybrid resource allocation technique; a 

combination of Deep Reinforcement Learning (DRL) 

and Ant-Colony Optimization (ACO). The DRL is 

introduced to improve the utilization of idle 

resources by splitting resources into Action space 

and State Space in cloud environment. DRL based 

resource management minimize resource usage for 

large-scale cloud environment with very huge 

number of servers that obtain numerous requests 

from users per day. ACO is implemented to map 

tasks to appropriate virtual machines once the 

condition is satisfied 

‧ Resource predictor and Overload predictor will 

calculate the CPU, memory and I/O usage of Virtual 

Machine to minimize the resource overload on a 

Physical Machine. 

The rest of the paper is organized as follow: Section 

II talks about previous work; Section III: describes the 

problem formulation; Section IV: presents the 

proposed work; Section V: Experimental analysis; 

Section VI: concludes the paper. 

2 Related Work 

Resource scheduling in cloud has been studied in the 

past few years. Previous work, Zhang and Zhou [10] 

presented a Dynamic task scheduling with VM being 

pre-created to maximize the task scheduling 

performance and ensures that the tasks dynamically 

match the concrete VMs. Taking the results of task 

classifier into consideration, the proposed process 

involves a matcher, which matches tasks to VMs. if the 

resources are busy, the matched tasks are kept in the 

waiting queue until the resource becomes idle; the 

process need more time for task execution as a result 

the completion delay. In [11], Tram et al. proposed 

dynamic flow scheduling with uncertain flow duration 

in optical data centers by introducing the Markov 

decision scheduling process to estimate the flows’ 

termination and expected revenue. They in addition 

developed a scheduling algorithm for the known and 

unknown flow service time. They then introduced a 

congestion factor for paired ToRs which determines 

the traffic flow scheduling order but calculating 

congestion factor for each pair leads to high time 

consumption in the scheduling process. In [12], Zuo et 

t1 t2 
t3 t4 tn 
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al. developed a Multi-Objective Scheduling Ant 

Colony Optimization (MOSACO) which main 

objective was to optimize the limited resources 

available in cloud environment. They considered the 

task completion time, the number of deadline 

violations, and the degree of resource utilization by 

using Ant Colony Optimization algorithm. The process 

focuses on time-first and cost-first strategies to be able 

to provide the highest optimality. In [13], Zhao et al. 

presented the task scheduling approach in a 

heterogeneous cloud which consists of edge cloud and 

remote cloud (single user and multiple users’ cases). 

The investigated issue is more on the limited 

computation resources available in Edge cloud which 

results in QoS degradation. The solution coordinated 

the heterogeneous cloud which includes the edge cloud 

and the remote cloud; The traffic load needs to be 

optimized due to data transmission delay in this 

process. When traffic load is heavy, more resources 

map to a user with shorter data transmission delay. 

When traffic load is light, more resources map to a user 

with longer data transmission delay; with the assistance 

of remote cloud the probability of bounded task delay 

can be improved by 40%. 

Resource allocation in cloud environment is one of 

the keys for large-scale for cloud application; it quick 

because one of the hot research areas in recent years. In 

[14], Bey et al. introduced a new task scheduling 

strategy for resource allocation to minimize the task 

execution time and maximize the resource exploitation 

in a cloud environment. With this approach, an initial 

solution is applied to find the clusters with minimum 

completion time and the jobs are assigned sequentially 

to the cluster using Min-Min algorithm, which is 

suitable only for a minimum number of tasks and 

resources. In [15], Liu et al., discussed an issue of the 

uncertainty of the task runtime because the tasks real-

time execution might not be the same as their given or 

evaluated time. To overcome this problem, they 

introduced a Path Cut (PC) algorithm to map all 

scientific workflow tasks to a VM instance by 

determining the critical path and the task duplication 

used to replicate tasks in-order to eliminate the 

deviation caused by uncertain task runtime. 

Additionally, the least resource appending algorithm is 

used to remap the tasks and add a new virtual machine 

in the process. The critical path leads to a greater time 

consumption due to the high completion time of tasks 

in Path Cut algorithm.  

In order to lower the power consumption and in the 

process improve the coefficient of resource utilization 

of current cloud computing systems. In [16], Xu et al. 

presented a resource pre-allocation strategy to 

minimize the power consumption by using Resource 

Allocation based on Probabilistic Matching (RA-PM) 

and Resource Allocation based on Improved Simulated 

Annealing (RA-ISA). Cubic exponential smoothing 

method predicts the future workloads and pre-allocates 

the appropriate resources. However, the gap between 

the prediction and actual workloads leads to resource 

wastage in the allocation process. They also presented 

a Task scheduling and resource allocation strategy 

based on the idea of Pareto based Fruit Fly 

Optimization Algorithm (PFOA). The PFOA have two 

search procedures; first is the smell-based search stage 

which consists of a critical path-based search operator, 

a re-assigning operator and a random search operator 

which are adopted to explore the promising region. 

Second is the Vision-based search stage, a non-

dominated sorting technique is employed to sort the 

temporary population, and the top N individuals 

survive. It has a computational complexity to generate 

operators to task scheduling and resource allocation 

process based on PFOA. 

3 Problem Description 

Resource allocation and task scheduling are the key 

challenges in cloud computing that constrain the 

energy of underlying distributed hardware in cloud 

data centers. Several researchers have concentrated on 

scheduling and resource allocation by developing 

various approaches/techniques in cloud environment. 

In [3], the SJF scheduling policy was proposed, which 

processed with several iterations. In this process, the 

Minimum Available Resources was estimated by using 

the total amount of available computing energy in a 

cloud data center. In the SJF scheduling, the shortest 

jobs have a high level of priority so that jobs are 

assigned to resources in advance. Therefore, the 

longest jobs would be waiting a long time for the 

completion of task. In [2], the CWSA was proposed for 

multi-tenant task. The tasks were submitted to service 

queue and sorted according to the deadline priority. 

The scheduler was involved to schedule the workflows 

based on three policies.  

‧ Scheduling policy 1: Scheduling was done by the 

FCFS algorithm with respect to the arrival of tasks.  

‧ Scheduling policy 2: Scheduling was performed by 

EASY backfilling by considering the deadline of 

tasks. 

‧ Scheduling policy 3: Scheduling was done by the 

MCT method, which was based on minimum 

completion time of tasks. 

With the FCFS, incoming tasks were sorted by the 

scheduler in the arriving order of tasks. Based on this 

order, if the required resources are available to execute 

the first task, that is immediately processed. Otherwise, 

the tasks wait until the resource become available for 

tasks that leads to increased waiting time for allocating 

the tasks based on resources. In [19], the utility 

prediction aware VM consolidation model was applied 

periodically to adapt and optimise the VM placement 

according to the workload. This work aims to migrate 

the overloaded VMs to other PMs. If at least one 
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resource i.e., CPU or memory exceeds total capacity, 

PMs will be considered as overloaded. Therefore, the 

number of VM migration is high in this process. 

To overcome the above-mentioned problems, we 

have proposed task scheduling and resource allocation 

in cloud environment. The user submits a set of 

independent tasks to the cloud server, 
1 2 3

{ , , ,T T T T=  

..., }.
n
T  

n
T  is the ‘nth’ independent task of the user. 

The data centre is used to execute the tasks, which 

maintain the different servers. Each server in the data 

centre has different efficiencies for executing the task. 

Then, the resource allocation strategy indicates the 

amount of computing resource allocated to each task.  

We denote the set of VMs by 
1 2

{ , ,VM VM VM=  

3
, ..., }.

n
VM VM  We formulate the addressed task 

scheduling and resource allocation process in our work 

as follows 

Minimize 
C
T  

If 
i
T m

D D<  then put into short Q  

If 
i
T m

D D<  then put into log Q  

Maximize 
U

VM   (1) 

The objective of Eq (1) is to minimise the task 

completion time (
C
T ). The tasks are assigned into short 

queues when the deadline of the task (
i
T

D ) is less than 

the deadline median value (
m

D ); additionally, the tasks 

are assigned to a long queue when the deadline of tasks 

is greater than the deadline median value. The idle VM 

resource utilisation (
U

VM ) is maximised by splitting 

the resources into action space and state space. 

4 Proposed Work 

To address some of the challenges in the existing 

works, we proposed task scheduling and resource 

allocation based on the hybrid ACO and DRL 

algorithm. This hybrid algorithm is designed to 

maximize the idle VM resource utilization and 

minimize the task completion time. Figure 2 implies 

the overall architecture of the proposed work, which 

includes various phases such as task queuing, task 

scheduling and resource allocation, overloaded 

prediction, and VM migration. Initially, the user tasks 

are submitted in the global queue. By considering the 

deadline, tasks are divided into long queue and short 

queue. Further, queued tasks are scheduled by using 

the Binary In-order Traversal Tree based on the 

weighted values of task. 

 

Figure 2. Detailed task scheduling and resource allocation 
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Resources are categorized into action space and state 

space to improve the utilization of resource. Action 

space is comprised of allocated physical machines and 

state space is comprised of idle physical machines in 

which tasks are to be allocated. Each VM has a 

resource predictor and overload predictor that simply 

shows the intensives (CPU, memory, and I/O) of 

resources. Further, the scheduled tasks are requested 

for the required resources, it searches the resource 

based on ACO, and when it finds optimal VM, it 

allocates it. The overloaded predictors of all PMs in the 

state space are connected with the VMA manager, 

which monitors and manages the resource allocation 

process. By using the overloaded predictor, overloaded 

resources are easily predicted so the number of VM 

migration is reduced. Then, the overloaded VM in one 

PM migrates to another PM and then the idle PMs are 

switched to sleep mode to save power. The entire 

proposed work is elaborated in the following 

subsections. 

4.1 Task Queuing using Median Deadline 

All the incoming tasks at time are submitted to 

global queue ( QG ), and then they are divided into short 

queue and long queue with respect to its deadline. 

Deadline of tasks are represented as 

1 2 3

, , , ...,

n
T T T T T

D d d d d=  with certain time limit period 

by which tasks are divided into two queues. Further, 

the deadline median value (
m

D ) of overall task is 

determined for task queuing. A short queue ( Q
S ) is 

comprised of tasks whose deadline is lower than the 

deadline median value whereas long queue ( QL ) is 

comprised of tasks whose deadline is higher than the 

deadline median value. With these queues, the tasks 

are scheduled by using the Binary In-order Traversal 

tree. 

 

Pseudocode for Task Queuing 

Input: Tasks (1…..n) 

Output: SQ and LQ 

1. Begin 

2. GQ ← Tasks 
1 2 3

{ , , , ..., }.
n

T T T T T= . 

3. Task deadline →
2 3

{ , , ..., }
n

T T T T
D d d d=  

4. Calculate deadline median value Dm 

5. If (DTi < Dm) 

      {Put the task in short Q} 

    Else 

      {Put the task in long Q} 

6. End if 

7. End 

 

The Pseudocode defines the steps of task queuing. 

The deadline of each task is compared with the median 

value. As the goal is to minimize the waiting time, 

smaller deadline tasks are placed in the short queue, 

which gets high priority. Tasks with longer deadlines 

are placed in the long queue. 

4.2 Task Scheduling Using Binary In-order 

Traversal Tree 
 

We schedule tasks with Binary In-order Traversal 

Tree by calculating weighting values for each task. To 

calculate the weighted value, we consider the 

following parameters of each task; task length (l), 

tardiness (t), makespan (m) and slack time (s).  

Task scheduling by tree provide a perfect schedule 

with a guaranteed quality by constructing binary search 

tree. First, we look into the requested user tasks, then 

process it from the tree for execution.  

Definition 1. Each node (A) in a tree (T) has a key 

(Key (A)). The set of nodes rather than the root node 

have a parent P (A). The elements for tree T may have 

a left child node (Left (A)) and/or a right child node 

(Right (A)).  

The pattern is that for any node A, for all set of 

nodes B in the left subtree of A, Key(B) ≤ Key(A). For 

all nodes B in the right subtree of A Key(B) ≥ Key (A) 

Tasks from the short queue SQ = {T1, T2,…Tn} are 

moved towards the scheduler for scheduling. Each task 

consists of its corresponding task length; represented as, 

1 2 3
, , , ..., .

n
L L L L L=  

Makespan value (i.e. completion time of task) 

represented as, 
1 2 3
, , , ..., .

n
M m m m m=  Tardiness 

value, defined as arrival time between tasks (i.e., 

delay). Specifically, it can be defined as the difference 

between a late job’s due data and its completion time.  

It can be represented as, 
1 2 3
, , , ..., .

n
T t t t t=  The 

slack time is the amount of time that the task can be 

delayed without missing its deadline and the order of 

tasks according to non-decreasing slack-time. It can be 

expressed as, 
1 2 3
, , , ..., ;

n
S s s s s=  The weighted value 

calculated using task length, makespan, tardiness and 

slack time represented as, 

 Weight of task, 
2 2 2

i i i i

i i i i i i

l t m s
w

l m l t l s

Σ
=

Σ Σ Σ

 (2) 

Where w - Weight of task; li – task length of ith task; 

mi - makespan of ith task, ti - tardiness of ith task; si –

slack time of ith task. However, the task scheduling 

algorithm places restrictions on the execution order of 

the operations before scheduling. We alleviate this 

problem by representing all the weighted values in a 

tree. Weight of each task is placed in the nodes of a 

Binary In-Order Traversal Tree. The process of Binary 

in-order Trees has the first incoming weighted value 

placed in the Root node. Afterwards, the upcoming 

tasks have their weighted values compared to the root 

node. If the task’s weighted value is greater than the 

root value, it is placed on the right node of the root. If 

the task’s weighted value is less than the root value, it 

is placed on the left node of the root. Then the tasks are 
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scheduled by In-order traversal, where a task in the left 

node is first scheduled, then the root node, and finally 

the right node is scheduled, i.e., Left Node-Root Node-

Right node. Assume weighted values of tasks in the 

short queue are TW = {9,2,7,3,5,4,1,8,6}. These 

weighted values of the tasks are scheduled by using 

Binary In-order Traversal Tree as Figure 3. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. Task scheduling using Binary In-order 

Traversal Tree (BIT) 

Figure.3 Shows the scheduling process of the 

incoming weighted value w=6 with the task placed in 

the root node. Then w=4 is compared with the root 

value and set to the left of the root node, because the 

value is less than the root weighted value. Next w=8 is 

compared with the root value and set to the right of the 

root node because the value is greater than the root 

value.  

The process is repeated, until all the weighted values 

of tasks are placed in the binary tree. In Binary In-

order traversal, nodes are scheduled in the order of 

Left-Node; Root-Node; Right-Node. Finally, the 

scheduled tasks are in the order of TW = {1, 2, 3, 4, 5, 

6, 7, 8, 9}. The process can be represented by the 

following pseudocode. 

 

Pseudocode for Task Scheduling 

Input: SQ and LQ 

Output: Scheduled task 

1. Begin 

2. SQ = {T1, T2,…Tn} 

3. Get L, M, T, S 

4. calculate Task’s weighted values eqn. (2) 

5. 
1 2

, , ...,

n
W W W W
T T T T=  

6. Assign  

        
1

W
T = root node 

7. If ( )
i jW W

T T>  

          {Place in left node} 

      Else  

           {Place in right node} 

8. Schedule Left node- Root node – Right node 

9. End 

4.3 Hybrid Resource Allocation 

Resource allocation plays a significant role in 

assigning the tasks to virtual machines. This is also a 

challenging task, because of the assignment of each 

task to a VM with the available resources on the 

physical machine. Our proposed Hybrid Ant Colony 

Optimization with DRL Algorithm method improves 

the utilization of idle resources for efficient resource 

allocation. Among the various search algorithms, DRL 

and ACO are very similar. The ACO algorithm 

employs a colony of agents (ants) to the optimization 

problem and each ant lays some quantity of pheromone 

on the paths they have taken. Similar to ACO, DRL 

algorithms employ agents (RL agents) to learn about 

the optimal policy that will increase the overall reward 

in the long run. The optimal policy is improved 

according to the state/action values. Moreover, both 

ACO and DRL algorithms have exploitation and 

exploration trade-off due to the searching nature.  

A DRL is primarily designed to generate best long-

term decisions by learning from the varying 

environment; like a pattern of user’s request. It is 

suitable for training enormous user requests with fast 

convergence speed. The major reasons for DRL in 

resource management are; the efficiency of task 

execution; Secondly, learning from a particular user 

tasks instead of FIFO order step gives higher efficiency 

and lastly, it eliminates divergence and remarkably low 

runtime and energy cost. 

The Automatic decision-making approaches like 

reinforcement learning (RL) were introduced to solve 

the resource allocation issue actively in the cloud 

computing environment. Adopting an ACO, loss of 

each action during the training procedure and in 

addition to obtain the optimal policy, it is essential to 

identify the actions, reward functions and states. 

However, a complete cloud resource allocation 

framework displays high dimensions in state and action 

spaces, which prevents the use of traditional RL 

techniques. 

Firstly, the resources are divided into action space 

and state space. The action space consists of the virtual 

machines already allocated to the tasks. State space 

comprises of unallocated VMs, and these idle 

resources will be allocated to the scheduled tasks later. 

Each virtual machine’s utilization is calculated by 

using their corresponding CPU intensive, Memory 

intensive and I/O intensive utilizations. 

 /

i i i

CPU M I O

U VM VM VM
VM U U U= + +  (3) 

Where, 

VMU – Virtual machine utilization 

i

CPU

VM
U - CPU utilization of ith virtual machine 

i

M

VM
U - Memory utilization of ith virtual machine 

/

i

I O

VM
U - I/O utilization of ith virtual machine 

In-order Traversal 

Left sub tree of BIT 

Root node BIT 

Right sub tree of BIT 

Visit node 1 (left node)-2 

(root node)-3 (right node) 



Task Scheduling and Resource Allocation Based on Ant-Colony Optimization and Deep Reinforcement Learning 1469 

 

If the virtual machines in the state space are fully 

allocated, it transferred to the action space which is 

shown in Figure 4. 

 

Figure 4. Resource allocation 

4.3.1 The Use of Deep Reinforcement Learning 

for Resource Management 

State space. In DRL, the CPU, Memory and I/O 

intensives of each virtual machine are taken into 

consideration to split the resources into state and action 

space.  

We denote task T’s arrival time ,
t
T

t
T S  as the union 

of the server cluster state at task T’s arrival time T
t

C
S  

and the task T’s state 
T
S , i.e.,  

T T
t t

C T
S S S= ∪ . The 

entire server can be equally divided into K groups, 

G1…. Gk. We define the state of servers in group 
K

G  

at time t as t

k
g . We also define the utilization 

requirement of resource type R of task T by 
TR

U , and 

the utilization level of server m at time t as 
t

mR
U . 

Therefore, the system state t
T

S  of the DRL based 

cloud service allocation tier can be represented using 

TR
U  and T

t

mR
U  as follows, 

 
1

[ , ] [ , ..., , ]T T T T
t t t t

C T k T
S S S g g S= =  (4) 

 
1

11 1| | | || | | |[ , ..., , ..., , , ..., , ]T T T
t t t

D M D T T D T
U U U U U d=  (5) 

Where dT is the (estimated) task duration. The state 

space consists of all possible states of VM and it has a 

high dimension. 

Action space. The action space of the DRL for cloud 

resource allocation is defined as the allocated virtual 

machines. The action space for a cluster with N servers 

is defined as follows, 

 { | {1, 2, ... | |}}A a a N= ∈  (6) 

Figure 4. shows the resource allocation process in 

state space using ACO with DRL. 

As we will see in Figure 5, It can be observed that 

the action space is significantly reduced (to the same 

size as the total number of servers by using continuous 

DRL based decision system.  

Reward. In our process, the reward specifies the range 

of the idle resources and allocated resources. There are 

two assumptions involved in the reward function.  
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Figure 5. Transition of VM using DRL 

‧ If the resources of the virtual machine such as CPU, 

memory, I/O are partially or fully allocated to the 

task for performing their process, that VM is placed 

in the action space. Here, the virtual machines are 

allocated to the task based on their requirement.  

‧ If the resources of a virtual machine are unused by 

the tasks, that virtual machine is placed in the state 

space. In our process, the virtual machines in the 

state space are mainly preferred for allocating the 

tasks.  

Transition. In resource allocation, the VM transfer 

from the state space to action space and vice versa is 

referred to as transition. If a virtual machine in the state 

space turns out to be busy, it is transferred to the action 

space. When a virtual machine in the action space 

becomes idle, it is transferred to the state space. 

 
Busv

VM AS→  (7) 

 
Idle

VM SS→  (8) 

Here, AS refers to action space and SS refers to state 

space. Figure 5 illustrates the transition of the VM in 

cloud.  

4.3.2 The Use of ACO for Resource Allocation  

The Deep Reinforcement Learning algorithm is used 

to mitigate the resource complexity. As scheduled 

tasks are placed into state space, resources are 

allocated to the required tasks based on ACO with 

DRL. Ant Colony Optimization algorithm is a random 

probability model that searches for an optimal path. It 

is inspired by how ants discover an appropriate path to 

locate food. Ants will release a certain quantity of 

pheromones, and gradually the pheromone 

concentration on the shortest path becomes higher and 

attracts more ants, leading to the discovery of the best 

route. In our system, we have proposed an improved 

ACO algorithm which is based on scout characteristics, 

and it solves the problem of resource complexity. The 

Idle VM Allocated VM 

State Space Action Space 
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main idea of the improved ACO algorithm is 

partitioning the artificial ants into two groups: scout 

ants and common ants. The common ant performs 

according to the searching process of the basic ACO 

algorithm. The scout ants have some difference from 

common ants; they calculate each resource capacity of 

the current optimal solution and search around the 

optimal solution according to the resource capacity. In 

basic ACO, tasks randomly choose the resources at 

each step of the solution construction and select the 

following resource to be visited according to the 

probabilistic decision rule. However, the scout ants’ 

distinct characteristic, whereby they differ from 

common ants, is that they search around the optimal 

solution. At the same time, they will directly visit the 

following resource in optimal solution. When ant k 

states in resource i, the probability of moving to the 

neighbor j of resource i is given by,  

 
( )

( ) { , }
( )k

t

a

ijk k

ij ta

ijj N

t
P t j N

t

τ

τ
∈

= ∈
Σ
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Where t

k
N  are the adjacent nodes of node i. α is a 

factor used to amplify the impact of pheromone 

concentration. If α is too large, it will overpower the 

impact of the pheromone, leading the algorithm to 

converge onto a sub-optimal path. When the ant is in 

the (t+1) th iteration, pheromone concentration of each 

path becomes, 
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Where 
k
n  is the number of ants and β is the 

pheromone evaporation parameter. Based on ACO, the 

resources are allocated to tasks in three steps: 

‧ Understanding user demands 

‧ Initialization of parameters 

‧ Allocation of resources 

The allocation by ACO can be illustrated by Figure 

6 To perform the user's request, the task is initialized 

with CPU, Memory and I/O intensive requirements. 

Tasks must be allocated to resources which satisfy 

their needs; i.e. T (CPU, memory, I/O) → R. Tasks 

search for the optimal resource for execution. Each 

virtual machine has a resource predictor, which is used 

to search for resources for the tasks. 

The initialized tasks search for the best solution Sbest 

and update the pheromone. If the tasks reach the 

optimal solution, they again search the resources 

around the optimal solution based on resource capacity. 

Finally, the tasks are allocated to suitable resources 

based on improved ACO. Otherwise, it again computes 

the Sbest. Here, we consider Alpha=1 which is the 

pheromone constant, and Beta = 1, which is the 

heuristic constant. Finally, the allocated tasks shift into 

the action space. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6. Flow chart for resource allocation 

Pseudocode for ACO  

Input: Scheduled Tasks T = (T1…Tn) 

Output: T1→R1 

1. Begin 

2. Compute State space (Equation 4) 

2. Get T={T1,T2,…Tn} 

3. Initialize T→ (CPU, Mem, I/O) 

4. Compute Sbest 

5. Update pheromone 

6. If 

        {T = Tmax} 

        Get optimal solution 

7. Search the solution around optimal solution 

   Else 

      Go to step 4 

8. End if 

9. End 

 

To fulfil our objectives such as high-power 

consumption and less execution time, we propose a 

DRL framework which solves the overall resource 

allocation and power management problems in cloud 

computing systems. As earlier discussed, the proposed 

DRL framework comprises two spaces: state space and 

action space. State space is for VM resource allocation 

to the servers and action space for VM management of 

all servers. Besides reducing the search time, we 

propose an ACO that enhances scalability and also 

reduces the dimensions of state and action space. To 

reduce the action space, we adopt a continuous-time 

and DRL technique, in which each decision is made 

Solution 

Initialize CPU, Mem, I/O Requirement

Scheduled tasks 

Start 

 

Optimal Solution 

Update 

pheromone 

Best solution

Stop 

If Best Solution== ? 

 

No 

Yes 
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with the arrival time of a new VM request.  

The above Pseudocodes give the details about 

resource allocation using ACO with DRL. The overall 

algorithm for resource allocation is summarized as 

follows, 

 

Algorithm for Resource Allocation 

Input: scheduled tasks 

Output: Resource allocated tasks 

1. Begin 

2. By using DRL, resources are divided into state 

space and action space 

3. Define state space from (Equation 4) 

4. Compute reward function  

5. Scheduled task entered into state space .// Ant  

 Colony Optimization for resource allocation 

7. Initialize the requirement of tasks (CPU, Mem, I/O)

8. Compute the best solution Sbest 

9. Update pheromone 

10. Get optimal resource if maximum iteration 

reached 

11. Put allocated virtual machines into Action space  

12. Update the Action space 

13. End 

 

4.4 VM Migration 

When a virtual machine is overloaded, it is migrated 

to another physical machine in the host. In the 

proposed method, each VM and PM is designed with 

predictors. 

Resource predictor. A separate resource predictor 

module is dedicated to each VM in the physical 

machine. The resource predictor module for VM x 

consists of three primary jobs which monitor and 

collect the VM’s CPU, Memory and I/O usage, to 

predict the VM’s future CPU, Memory and I/O 

demands. The resource predictor also provides 

information about available resources in the VM for 

future resource allocation. 

Overload predictor. Each physical machine in the 

host has an overload predictor. Let us assume that it is 

located on PM y. It fetches the predicted CPU, 

Memory and I/O demands for all VMs which are 

hosted on that PM, and calculates the PM’s predicted 

aggregate CPU, Memory and I/O demands, y

CPUU , 
y

men
U  and 

/

y

I OU  respectively, as follows,  

 ; ( )

y x

CPU x V x y menU P
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= Σ   (11) 
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Where ( )x yθ =  denotes that VM x is hosted on PM 

y. The module compares the predicted value to the 

PM’s supported value. The supported value of PMs for 

CPU, Memory and I/O demands is calculated as 

follows, 
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If y y

CPU CPU
U S>  or y y

men men
U S>  or, then the overload 

predictor notifies the virtual machine allocation 

manager that PM y is expected to have an overload in 

the coming periods. The overload predictor also 

forwards the predicted CPU, Memory and I/O demands, 
x

CPU
P , x

men
P  and 

/

x

I O
P  for VM x hosted on PM j. This 

prediction is used to decide which VM(s) to keep, 

which VM(s) to migrate as well as where the migrated 

VM(s) should be moved. 

VM allocation manager. The physical machines’ 

overload predictors are managed by the VM allocation 

manager. Thus, the VM allocation manager knows the 

information about the available resources on the PMs. 

The VM allocation Manager considers a PM as 

overloaded if the prediction resource level of the PM is 

greater than its actual support level. Then the 

overloaded VMs are migrated to the underutilized 

physical machine. 

5 Experimental Evaluation 

In this section, a set of experiments are provided to 

evaluate our proposed work. We will compare our 

proposed work with existing methods. We have 

proposed ACO with DRL for resource allocation to 

improve the idle resource utilization and reduce the 

completion time. This section is divided into three sub-

sections: simulation setup, performance metrics, and 

comparative analysis. 

5.1 Simulation Setup 

To implement the proposed work, we used a 

Pentium IV processor, 2GB RAM and 60 GB hard disk. 

The performance of the proposed work was evaluated 

using a Cloudsim 3 toolkit.  

Simulation requirements are listed out in Table 1. 
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Table 1. Simulation set up requirement 

Requirements Specification Value / Ranges

No. of data centers 10 
Data centers 

No. of hosts 2-6 

Task length 1000-20000 
Cloudlet (Task) 

No. of tasks 50-500 

Memory (RAM) 128-2048 

MIPS 500-2000 

Bandwidth 500-1000 

Virtual Machines 

(VMs) 

No. of VM 100-200 

 

Table 1 shows the required parameters for 

performing our proposed work. The requirements of 

the system setup can be changed based on the users’ 

need. In our process, we have considered the above-

mentioned requirements for the system implementation. 

The quantity of the requirements does not degrade the 

performance of the system. 

5.2 Performance Metrics 

This section defines each performance metric. The 

performance of the proposed work is evaluated with 

the following metrics. 

Execution time. Execution time is defined as the time 

taken for scheduling the tasks and allocating resources 

to the task. Execution time is a significant parameter; it 

should be low to achieve better performance of the 

model. 

 
0

n

E s R

t

T T T

=

= +∑   (17) 

Resource utilization. Resource utilization is defined 

as the total usage of the resources such as CPU, 

Memory and I/O to execute the task. Here, utilization 

of each virtual machine is calculated by using their 

corresponding CPU intensive, Memory intensive and 

I/O intensive utilization. 

 /

1

i i i

n

CPU Mem I O

U VM VM VM

i

VM U U U
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Power consumption. Power consumption is defined as 

power consumed by the usage of CPU, Memory and 

I/O. To achieve efficient performance, we must reduce 

the power consumption of the system. 
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5.3 Comparative Analysis 

This section briefly describes the performance of the 

proposed approach with reference to existing 

approaches. To check the performance of our proposed 

approach, we first compared our proposed task 

scheduling and resource allocation (hybrid ACO and 

DRL) with Cloud Workflow Scheduling Algorithm 

(CWSA) [2], Dynamic Power Saving Resource 

Allocation (DPRA) [5] , and Heuristic approach [17]. 

Table 2 provide the keys focused when we are 

evaluating these existing frameworks in a cloud 

computing environment. Generally, execution time, 

power consumption and resource utilization can be 

improved for better performance. 

Table 2. Demerits of previous algorithms 
 

Previous Algorithms Limitations 

Cloud Workflow Scheduling 

Algorithm (CWSA) [2] 

It takes more time to allocate 

the resources  

Lengthier process 

Dynamic Power Saving 

Resource Allocation  

(DPRA) [5] 

Power utilization rate is high

Execution time is high 

Heuristic Approach [17] 

High complexity due to the 

integration of two 

optimization algorithms 

Smaller utilization tasks have 

to wait for longer time 

 

Execution time. Execution time is one of the key 

parameters to evaluate performance of the system. The 

execution time not only depends on scheduling and 

resource allocation method, but also on the number of 

incoming tasks at the time. In our work, tasks were 

scheduled and processed within the deadline. 

Execution time of our proposed work is compared with 

CWSA [2] and the Heuristic approach [17] processes 

in Table 3. 

Table 3. Execution time comparison of the proposed 

approach with previous approaches 

Average execution time 

Num of task CWSA 
Heuristic 

Approach 

Proposed 

method 

100 100 90 80 

200 150 100 90 

300 160 110 100 

400 170 130 120 

500 190 150 135 

600 200 170 150 

700 220 190 170 

800 230 220 190 

900 240 240 220 

1000 250 250 230 

 

The plot below represents the execution time against 

the number of tasks, because the execution time of a 

task increases linearly when the number of tasks is 

increased. 
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Figure 7 shows the changes in tasks’ execution time 

corresponding to the number of tasks. In the proposed 

method, tasks are scheduled based on task length, 

tardiness and makespan, which reduces the waiting 

time of short deadline tasks that leads to reduction in 

execution time, which is significantly better than in 

previous work. The task execution time varies based on 

the deadline of the tasks. The tasks in the long queue 

consume more time for execution when compared to 

tasks in the short queue. When the execution time is 

reduced, it linearly reduces the time taken for 

completing the task. In this way, our system shows 

lesser completion time compared to other previous 

work.  

 

Figure 7. Comparison on average execution time 

Resource utilization. Each task has different resource 

utilization levels based on their requirements to 

complete the task. The use of resources increases when 

the tasks take up and make use of the idle resources. 

We compare the proposed model to CWSA [2] and 

ACOPSO [18]. The resource Utilization of the 

proposed approach, the CWSA [2] and ACOPSO [18] 

approaches are provided in Table 4. 

Table 4. Resource utilization comparison with the 

proposed approach with previous approaches 

Resource Utilization 
Average 

Arrival time ACOPSO CWSA 
Proposed 

method 

1 85% 85% 85% 

2 80% 80% 80% 

3 78% 78% 78% 

4 74% 74% 74% 

5 71% 71% 71% 

6 67% 67% 67% 

7 64% 64% 64% 

8 60% 60% 60% 

 

The graphical representation of the resource 

utilization can be represented below. 

 

 

Figure 8 Depicts the percentage of resource 

utilization of CWSA and the proposed work. The graph 

clearly shows the rate of utilized resources by 

considering the time taken from the arrival of task to 

the next task. The rate of resource utilization changes 

during the time between the arrival of each task. 

 

Figure 8. Comparison on resource utilization 

As displayed above, the proposed method exhibits 

better resource utilization than CWSA and ACOPSO 

methods, since CWRA uses three scheduling policies 

for task scheduling, namely Easy Backing, FCFS and 

MCT. These policies take high waiting time to allocate 

resources for scheduled tasks. In the case of the 

proposed method, resource use is up to 10% better than 

the existing methods, since we used a larger number of 

ants (agents) to search for the best solution. This is due 

to the DRL process, which divides the resources into 

state space and action space to improve idle resource 

utilization. Based on the results from ACO and DRL, 

we have obtained this result and agents are used 

according to the available resources. In our system, the 

tasks initially utilize the resources in the state space 

where the resources are idle, which improves the 

utilization of idle resources. 

Power consumption. Energy consumption is one of 

the significant parameters in the evaluation, which 

increases the performance of a physical machine. 

Figure 9 shows the power consumption of physical 

machines investigated when the number of the virtual 

machines varies from 0-500. Each physical machine in 

the host consumes power by the usage of CPU, 

Memory and I/O. We compared the power 

consumption of the proposed method to DPRA. The 

results show that the proposed method has lower power 

consumption, more specifically a 10% reduction in 

consumption of power compared with the existing 

methods. 
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Figure 9. Comparison on power utilization 

6 Conclusion 

Cloud computing has come to be widely recognized 

as an essential computing model, with the involvement 

of vast numbers of users. Due to the large number of 

user requests, scheduling and resource allocation are 

performed mainly for task organization and execution 

in an efficient manner. Our proposed work is designed 

in such a way as to improve resource utilization and 

reduce execution time. In this paper, we initiated task 

queuing based on the task deadline, and tasks are 

scheduled using Binary In - order Traversal Tree based 

on a weighted value for each task. We then perform the 

resource allocation by hybrid Ant Colony Optimization 

and Deep Reinforcement Learning algorithm. The 

resource utilization is improved by splitting them into 

state space and action space by DRL, and the resources 

are allocated based on ACO. The overall allocation 

process is managed by VM allocation manager which 

also performs VM migration to reduce power 

consumption. Finally, performance evaluation 

indicates that our proposed work is efficient for task 

scheduling and resource allocation, with improved 

resource utilization and reduced execution time.  

In the future work, we plan further investigation on 

the following area: 

‧ VM migration can be further enhanced by using VM 

consolidation process. 

‧ Introducing real time data to implement the 

proposed task scheduling and resource allocation 

process. 

‧ Implement the resource provisioning in future for 

efficient resource allocation 
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