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Abstract 

In this paper an algorithm DCO (dynamic cache 

optimization) is proposed for the static materialized 

views that lack better response performance to dynamic 

queries. Based on the optimal static materialized views, 

DCO combines cache mechanism to obtain dynamic 

materialized views with dynamic adaptability and quick 

response. Meanwhile, a novel method of allocating free 

space is presented to implement the dynamic cache, and 

thus the free space of system can be used efficiently to 

store more materialized views for improving the query 

response. Experimental results indicate the efficiency and 

feasibility of DCO, and also show that DCO can 

overcome the SPSE (space-performance saturation effect) 

of materialized views in some degree. 

Keywords: Data warehouse, Materialized view, Dynamic 

cache 

1 Introduction 

Materialized view means pre-calculating and storing 

physically a part of the query views in the data 

warehouse, which can effectively speed up the 

response of the data warehouse to the queries. Up to 

now, it has become an important method to improve 

the multi-dimensional analysis performance of the 

system [1-2]. However, the selection of materialized 

views set, always belongs to the NP-hard problem and 

has always been a hot spot in the data warehousing 

community. For this reason, the researchers have 

proposed several solutions, among which, the BPUS 

(benefit per unit space) algorithm proposed by 

Harinarayan et al. is a cubic-based greedy algorithm 

[3]; Gupta systematically elaborates on the 

materialized view selection problem and proposes a 

series of heuristic algorithms [4]; the problem of 

materialized view selection is studied as space 

transformation problem in [5]; in [6-8], the genetic 

algorithms are used to obtain optimal materialized 

views set, and some works are conducted on reducing 

the complexity of the algorithms. 

The above algorithms are all based on the 

assumption that the query distribution is predicted in 

advance. They essentially can be categorized into static 

algorithms. Due to the time varying of data warehouse, 

especially lots of ad-hoc queries in decision support 

applications, the query mode of the system becomes 

hard to predict, and the materialized views set selected 

by the static algorithm is away from its optimal solution 

gradually. This means the administrators need to 

discover the changes of query mode in time and select 

the appropriate time to re-execute the view selection 

algorithm. For a data warehouse with complex user 

requirements, this work is quite complex and time-

consuming. Therefore, some static algorithms were 

modified to run online reluctantly [9-10], then the 

materialized views set can be automatically adjusted 

periodically. This reduces the workload of the 

administrators to some extent. However, this method 

requires certain statistical data before it can be 

performed. So the materialized views set cannot make 

specific adjustments for the change of the query 

distribution or ad-hoc queries within a certain period. 

Accordingly, literature [11] proposes an innovative 

real-time adjusting algorithm named FPUS (frequency 

per unit space) on the basis of improved static 

algorithms. However, the overhead is relatively large 

for the algorithm needs to compare the overall 

materialized benefits after each query response. It is 

unsuitable for the situation of high query density 

especially. Additionally, frequent thrashing may occur 

in some views, which results in the instability of 

materialized views set and optimized query schemes 

can’t be utilized repeatably. Therefore the query costs 

are increased, and make the algorithm lose its truly 

practical value to some extent. 

In line with the dynamic cache mechanism, DCO 

(dynamic cache optimization) is presented in this paper, 

including DCO-S algorithm based on space constraints 

and DCO-SM algorithm based on constraints of space 

cost and maintenance cost. Assisted by static algorithm 

that obtains the static materialized views set, DCO, as a 
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complementary algorithm, uses dynamic cache 

mechanism to achieve an extra dynamic materialized 

views set. Then it can adapt to the changes of query 

distribution and ad-hoc queries, and can render the 

entire materialized views set with better dynamic 

adaptability. Meanwhile, due to the adoption of 

different selection mechanisms, the dynamic 

materialized views set, to some extent, can avoid the 

space-performance saturation effect (SPSE) [12] that 

the performance of algorithm no longer changes with 

the increase of materialization space. Then within a 

larger range, increasing the materialization space can 

make the materialization benefits increase continuously. 

In addition, DCO can adopt a more novel space 

allocation method to implement the cache. Referring to 

the mechanism of recycling bins in operating system, 

this method does not occupy the limited data area of 

the database, but uses the remaining hard-disk space of 

the system as the cache space. Finally, benefiting from 

the plug-in technology, DCO has excellent portability 

and compatibility and can be applied to other category 

of data warehouse. 

2 DCO Algorithm 

2.1 Problem Description 

In this paper the materialized view set selected by 

static algorithm is referred as the static materialized set, 

represented by Ms. The materialized view set 

determined by DCO is called the dynamic materialized 

set, represented by MD. The query cost definition based 

on the materialized view set is given as follows.  

Definition 1. If the frequency of each query 
i
q  in user 

query set Q is 
i
q
f , the query cost of obtaining 

i
q  from 

the materialized view set M is ( )
i
q

C M . The query cost 

for the entire user query set Q is ( , )C Q M =  

* ( ).
i i i
q Q q qf C M
∈

Σ  

a. If materialized view set M only includes 
S

M , 

M=
S

M , then 

 ( , ) ( , ) * ( )
i i i

S q Q q qC Q M C Q M f C M
∈

= = Σ  (1) 

b. If materialized view set M includes 
S

M  and 
D

M , 

M=
S

M ∪
D

M , then  

 
( , ) ( , )

* ( ) * ( )
i D i i i D i i

S D

q M q q D q Q M q q S

C Q M C Q M M

f C M f C M
∈ ∈ −

= ∪

= Σ + Σ
 (2) 

Due to the contribution of MD, a part of the query set 

can be responded by matching directly the materialized 

views in MD instead of obtaining originally from Ms. 

The query cost of the entire user query set Q will bring 

the following changes:  

 

( , ) ( , )

* ( ) * ( )

* ( ) * ( )

*( ( ), ( ))

i D i i i D i i

i D i i i D i i

i D i i i

S S D

q M q q S q Q M q q S

q M q q D q Q M q q S

q M q q S q D

C C Q M C Q M M

f C M f C M

f C M f C M

f C M C M

∈ ∈ −

∈ ∈ −

∈

Δ = − ∪

= Σ + Σ

−Σ −Σ

= Σ

 (3) 

Definition 2. If the query cost of 
i
q  obtained from Ms 

is ( )
i
q SC M , its query cost turns into ( )

i
q D

C M  with the 

help of the dynamic materialized views . Because of 

the cache optimization mechanism, the benefits 

produced by materialized 
i
q  are ( ) ( ).

i i i
q q S q DC C M C M= −  

If the frequency of each 
i
q  in user query set Q is 

i
q
f , 

then the benefit of the entire query set from the 

materialized set 
D

M  is  

( , , ) * ( ( ) ( ))
i D i i i

i D i

S D q M q q S q D

q M q

B Q M M f C M C M

f

∈

∈

= Σ −

= Σ
 (4) 

Existing benefit models of disk cache come from 

memory cache, which do not consider the cost 

( )
i
q D

C M  of retriving 
i
q  from disk. In contrast, the 

model in this paper is strict, and has taken full account 

of I/O costs and view retrieval costs for disk. 

Meanwhile, the assumptions that any query is only 

relevant to one materialized view in [2, 9] are not 

adopted in this model, so the model objectively reflects 

the correlation between the query cost and its view size 

and the entire materialized view set size. 

Definition 3. Given a static materialized set Ms and 

user query set Q, the dynamic cache optimization is to 

select a materialized set MD under certain constraints 

and make the benefit ( , , )
S D

B Q M M  maximal. 

Finding the maximum value of ( , , )
S D

B Q M M  is 

often constrained by some conditions such as space 

and maintenance costs. For this reason, we will discuss 

them separately in the following. 

2.2 DCO-S Algorithm based on Space 

Constraint 

First, DCO-S algorithm is proposed to obtain the 

optimal materialized set MD under the cache space 

constraint. The direct materialized view of a query is 

defined in order to describle the algorithm. 

Definition 4. If a query has a direct corresponding 

view in the materialized set (including MD and Ms ), it 

can be obtained without cutting, slicing, drilling down 

and rolling up from the current views, then this view is 

a direct materialized view (direct_view (
i
q )) of this 

query.  
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Algorithm 1. DCO-S Algorithm 

Input: ,
S x

M q                       /*
x

q  is a query belonging to Q */ 

Output: 
D

M  

1. if   direct_view (
x

q )
D S

M M∈ ∪  then return 

2. For each 
i D
q M∈   

3.       ( ) * ( ) /
i

i i i q
q fq B q sΦ =       /* 

i
q
s  is the size of query result  */ 

4.       Sortby ( , )
i
q SignAΦ       /*  storing id, Φ and 

i
q
s  of 

i
q  into the array SignA, and sorting by Φ*/ 

5.      
i

D D q
S S s= +        /* 

D
S  is the total sizes of all views in the cache. The initial value is 0.*/ 

6. end for 

7. free cache DS S S= −      /* 
cache

S  is the total size of the cache space, freeS  is the remaining space in the current cache */ 

8. ( )
x

q x
S sizeof q=  is the size of 

x
q  waiting to store into the cache */ 

9. pre_evit={∅}             /* Pre-deleted view set */ 

10. count=0 

11. while 
x

q freeS S>  do       /* Not enough free space to store this view */ 

12.        count++ 

13.       [ ].
j

q signA count id=   

14.        pre_evit=pre_evit ∪{
j

q }      /* sorted by Φ, the view is set to be pre-deleted one by one until the free  

                                                                space is large enough */ 

15.       [ ].free freeS S SignA count s= +  

16. end while 

17. ( ) * ( ) /
i x

i q x q
q f B q sΦ =  

18. ( _ ) max({ ( ) | })
i j evit

pre evit q q preΦ = Φ ∈    /* Get a view of the pre-deleted set with the largest Φ value */ 

19. if ( ) ( )
evit x

pre qΦ <Φ  then    /*Ensure that 
x

q  is optimal*/ 

20.        Del pre_evit from 
D

M  

21.        Insert 
x

q  into 
D

M  

22. Return. 

 

The differences between DCO-S and the algorithm 

in literature [13] include not only the model, but also 

the method, which guarantee the optimality of the 

DCO-S. Under the constraints of the cache space, 

optimizing the materialization benefits of 
D

M  can be 

expressed by the following: 

 ( * ( ))
i D i i
q M q q

Max f B M
∈

Σ  (5) 

 
i D i
q M q caches S
∈

Σ ≤  (6) 

The problem defined by formula (5) and formula (6) 

belongs to NP-complete backpack problem. There is 

no effective algorithm for this type of problem, but if 

the size of the cache 
cache
s  is large enough compared to 

the size of a single view 
i
q
s , 

cache
s   can almost be filled 

up by the small 
i
q
s . In this way, formula (6) can be 

modified to 

 
i D i
q M q caches S
∈

Σ =  (7) 

For the problems defined by equations (5) and (7), it 

can be proved that the algorithm DCO-S can obtain the 

optimal solution. 

Lemma 1. The materialized set obtained by the DCO-

S is the optimal solution to the problem defined by 

formula (5) and (7). 

Proof. Omitted for the length limitation of paper. 

For the calculation of the real-time frequency 
i
q
f , 

the literatures [13-14] learn from the LRU-K 

mechanism [15]. The calculation considers the latest K 

references to this query (generally 1≤K≤5), avoiding 

the shortcomings of using a single reference for recent 

estimates. This is a relatively good way to express 

instant frequency, but it ignores the long-term 

distribution of queries. In literature [14] the sum of 

query times is added to consider the long-term 

cumulative value. However, if the queries do not occur 

during the accumulation period, the cumulative value 

is cleared to zero. This processing method appears a bit 

rough and can cause frequency change sharply. For this 

reason, this paper improves the method and proposes 

an algorithm AIF (attenuator of instantaneous 

frequency), which uses the attenuation factor to 

gradually reduce the cumulative value to zero. That is, 

if the query does not occur during a shorter period, 
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then the cumulative number of its query is 

decremented by a certain attenuation coefficient. 

Accordingly frequency values is avoided to change 

sharply that cause large thashing of the materialized set. 

The algorithm is as follows: 

 

Algorithm 2. AIF Algorithm 

Input: 
x

q   

Output: 
x

q
f  

1. while any query 
x

q  occur do 

2.     query_count_sum++     /* The sum of  query times */ 

3.      
x

q ⋅ ref_count++          /* Accumulate the query times of 
x

q  */ 

4.      _

x
q ref flag⋅  = USED 

5.      
x

q .ts [ref_count%K]=query_count_sum  

/* Time stamp: record the time when 
j

q  occurs. Here, the total number of the query occurrence is used as 

time stamp.*/ 

/* Assume that the array starts at 1, K represents the number of recent references */ 

6.      if  , _
x

q ref count  > K then 

7.               _

x
q
f ref count=  * K /(query_count_sum) - 

x
q ⋅ ts[(ref_count+K)%K])  

8.      else 

9.            
x

q
f  =ref_count/(query_count_sum-

x
q ,ts [1]) 

10.    If query_count_sum%Time=0 then   /* Time is a shorter statistical period */ 

11.         For all 
j

q Q∈  do 

12.               If _

j
q ref flag⋅ = UNUESD then   /* 

j
q  does not occur in this period */ 

13.                     If  _

j
q ref count⋅ > K then  /*ξ is an attenuation factor*/ 

14.                          
j

q .ref_count=
j

q .ref_count%K+K*(
j

q .ref_count/K/ξ); 

15.                     else 
j

q ref_count=0 

16.               
j

q .ref_flag=UNUESD 

17. end while 

18. Return. 

 

In the end of this section, the cache replacement 

measurement will be discussed.  

 
1

1

( )
( ) * *( ( ) ( )) / .

i i i i

i

i q q q S q D x

x

B q
q f f C M C M s

s
Φ = = −   

In fact, the implementation of the entire algorithm is 

mainly based on the calculation and comparison of the 

measurement Φ (
i
q ). This is the common feature of all 

cache algorithms. The difference lies in the definition 

of specific measurement. Compared to WATCHMAN 

[13], Dynamat [16], and other algorithms that are 

simply migrated from the memory mechanism and 

ignore the I/O cost ( )
i
q D

C M of reading the 

materialized views from the hard disk, DCO’s model is 

strict and it doesn’t ignore the I/O cost ( )
i
q D

C M . 

Because ( )
i
q D

C M  may not be much different from 

( )
i
q SC M , it cannot be ignored. Otherwise, it will cause 

a large deviation, which will affect the choice of the 

optimal materializated view set. 

2.3 DCO-SM Algorithm 

In practice, materialized view selection is often 

constrained by the size of space and the cost of view 

maintenance simultaneously. View selection under 

multiple constraints is a complex issue. For this reason, 

this problem is simplified in light of the algorithm 

presented in this paper. It is classified in the following 

situations: (1) The maintenance window of the 

materialized view is large, and both Ms and MD can be 

synchronously updated and maintained. The 

maintenance cost does not become constraints, only the 

space constraints are taken into account; (2) The view 

maintenance window is medium. When Ms is 

maintained, MD can be partially maintained. In this 

case, the problem is transformed into a dynamic 

materialized view selection problem under the 

maintenance cost constraints. Similar studies can be 

carried out referring to space constraints; (3) The view 

maintenance window is small, only Ms can be 

maintained. For situation (3) is universal and practical, 

this paper discusses it in detail and proposes a DCO-

SM algorithm that takes multiple constraints into 
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consideration. The algorithm is based on a strategy: 

synchronous updates are not adopted for MD. Once 

views in MD are required to be updated, they are simply 

eliminated from the cache. This approach makes the 

algorithm simple and practical. 

 

Algorithm 3. DCO-SM algorithm 

Input: 
S

M , 
x

q   

Output: 
D

M  

1. if  direct_view (
x

q )
D S

M M∈ ∪ then  return 

2. For each 
i D
q M∈  

3.      ( ) (1 )* ( ) /
i i i

i q u i q
q f f B q sΦ = −       /*Adopt the measurement different from that of algorithm 1*/ 

4.      Sortby ( , )
i
q SignAΦ      /*In non-decreasing order of Φ */ 

5.      
i

D D q
S S S= +  

6. end for 

7. free cache DS S S= −  

8. ( )
x

q x
s sizeof q=  

9. pre_evit={∅} 

10. count=0 

11. while 
x

q freeS S>  do 

12.         count++ 

13.         [ ].
j

q signA count id=  

14.         pre_evit=pre_evit∪{
x

q freeS S> } 

15.         [ ].free freeS S SignA count s= +   

16. end while       

17. ( ) *(1 )* /
x x x x

x q u q q
q f f B sΦ = −    /*The update of the measurement of 

x
q  for eliminate impact is considered  

                                                               when calculating*/ 

18. ( _ ) max({ ( ) | _ })
j j

pre evit q q pre evitΦ = Φ ∈ /*Get the view with the max value of Φ  in pre-deleted set*/ 

19. if  Φ (pre_evit)< ( )
x

qΦ  then 

20.       Del pre_evit from 
D

M  

21.       Insert 
x

q  into 
D

M  

22. Return. 

 

There is no essential difference between Algorithm 

3 and Algorithm 1. However, Algorithm 3 considers 

the benefits’ decrease of dynamic materialized views 

due to updating  the materialized view. the changed 

benefit model is ( ) * (1 )* ( ) / .
x i i

i q u i q
q f f B q sΦ = −  That 

is, an (1 )
i
u
f−  item is added and 

i
u
f  is the update 

frequency of query 
i
q . The measurement in Algorithm 

1 is ( ) * ( ) / .
i i

i q i x
q f B q sΦ =  Its premise is not to 

consider the materialized view update or to assume that 

the system has strong update and maintenance 

capabilities. When update cost of the materialized view 

is large and must be considered, it will lead to a large 

deviation in the calculation of the measurement. 

For the optimization of the algorithm, it can be 

similarly expressed by the following optimal solution: 

 ( *(1 )* ( ))
i D i i
q M q u i

Max f f B q
∈

Σ −  (8) 

 
i D i
q M q caches S
∈

Σ =  (9) 

According to the problems defined by formula (8) 

and formula (9), we can prove that the DCO-SM can 

obtain the optimal solution. The lemma is as follows: 

Lemma 2. The materialized set obtained by DCO-SM 

algorithm is the optimal solution to the problem 

defined by formula (8) and formula (9).  

Proof. Omitted for the length limitation of paper. 

2.4 Implementation of Dynamic Cache 

Mechanism 

 In order to implement the cache mechanism better, 

DCO proposes a more novel approach to space 

allocation, which learns from the implementation 

mechanism of the recycle bin in the operating system. 

Fully using the system’s remaining hard disk space as 

the cache space can avoid occupying the limited space 

of the database, and also avoid conflicting with other 
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data in the database.This plug-in implementation 

technology can form a loose combination between the 

data warehouse and the dynamic cache. So that it will 

not limited to a specific data warehouse, and has a high 

portability and compatibility. 

When the system’s remaining space is limited, DCO 

must periodically detect the available space of the 

system, or intercept the alarm of other applications 

lacking space. Then it can dynamically adjust the 

available free space so that the free space of the system 

can be fully utilized and meanwhile other applications 

of the system are not interfered. When the available 

space is reduced and some of the views need to be 

eliminated, DCO can re-select MD under the new 

constraint space; or the simple elimination algorithm 

can be used to eliminate some views according to Ф of 

the views until space requirements are satisfied.. The 

specific elimination algorithm is as follows: 
 

Algorithm 4. Simple elimination algorithm 

1. ΔS=
cache cache

S S ′−   /*
cache

S ′  is the size of cache space after shrinking */ 

2. 0
evit

S =  

3. while 
evit

S S< Δ  do 

4.         count++ 

5.         [ ].
j

q SignA count id=  

6.         pre_evit=pre_evit∪{
j

q } 

7.         
evit evit

S S= +SignA [count].s 

8. end while          

9. Del pre_evit from 
D

M  

10. Return 

 

On the contrary, if the remaining space of the system 

becomes larger, the dynamic cache space can be 

expanded in an appropriate manner, so that more views 

can be materialized and the query response 

performance of the system can be improved. 

3 Experimental Design 

3.1 Experimental Design 

In order to verify the effectiveness of the dynamic 

cache optimization algorithm, a series of performance 

comparisons were made in the experiments between 

DCO and static algorithms. As a selection algorithm of 

static materialized views set, PBS (pick by size) [12] is 

currently the fastest and most widely used one. Despite 

the advantage of selecting the optimal materialized 

views set, the latest static algorithms, such as the 

genetic algorithm [7-8], have the disadvantage of the 

high time complexity. Therefore, the static materialized 

views set Ms in the experiments was selected by PBS, 

and the dynamic materialized views set MD was 

dynamically selected by DCO-S (update problem was 

not considered). That meant the actual comparison was 

between DCO-S+PBS and PBS. 

The experimental hardware platform was Dell 

PowerEdge 6600 (Dual Xeon CPU 1.5G, RAM 4G), 

and the database platform was Oracle 8. The 

experimental data set was a data warehouse 

corresponding to a pharmaceutical sale company 

transaction database [17]. There were 4 dimension 

tables and 1 fact table. The size of fact table records 

was 1.6M. The K value of the AIF used for frequency 

estimation was 3, the attenuation factor was 2. The 

average response time of the queries was used to 

measure the system response performance of different 

materialized views set to the queries. In the 

experiments, the system’s remaining space was 53G, 

which made the actual space constraints nonexistent. In 

order to test the effectiveness of the algorithm, two 

methods of changing the size of the cache space were 

adopted in this experiment. 

3.2 Experimental Steps and Results 

The experimental steps are as follows: First, the 

space constraint was set to 100M. And the static 

materialized views set Ms was determined by using the 

PBS. Then the simulated query generator generated 

5,000 random queries using 6 query templates, and the 

average query response time were calculated. Second, 

DCO-S algorithm was invoked, the constraint space 

was set to 20M, and the average response time to 

different template query sets under Ms and MD were 

calculated. The results are shown in Figure 1, where T1 

represents that template 1 was used to generated 

queries 
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Figure 1. Comparsion of query response time (1) 

Figure 1 shows that due to the help of MD abtained 

by DCO-S, the query response performance of the 

system has been greatly improved. At the same time, 

the response performance to the queries generated by 

different templates appears to be relatively balanced. 

On the contrary, when the materialized views are only 

consisted of Ms (the static materialized views), the 

response performance appears great volatile. This is 

because the dynamic adjustment strategy of DCO-S 

enables the entire materialized views set to have a good 

adaptability. However, these changes or improvements 

cannot exclude the help of the increased cache space 

(even if this increased space utilizes the remaining 

space of the system). For this reason, the following 

experiment was conducted: MD was deleted, DCO-S 

was suspended, and the space constraint was offset to 

120M; Ms was reselected by the PBS, then its response 

time to each query set was re-calculated. The 

experimental results are also expressed in Figure 1. 

From the results, the performance improvement does 

not have too much difference from the PBS+DCO-S. 

That is said, when the total available space is 120M, 

there is slight difference in query performance between 

PBS+DCO-S and PBS, except for PBS+DCO-S having 

the greater advantage in balancing the different queries 

and tracking the ad-hoc queries.  

However, when the space constraint was changed to 

300M, the cache space remained to be 20M and the 

above three groups of experimental steps were repeated 

in the same order. The results are shown in Figure 2. It 

can be seen that PBS (300)+DCO-S (20) has a 

considerable increase compared to PBS (320) or PBS 

(300); while PBS (320) has few changes compared to 

PBS (300). By analyzing the space-performance curve 

of a static materialized views, it is not difficult to 

explain: When the space is small, the slope of the curve 

is steeper, and the space change can cause a large 

change in performance (by contrast, the advantages of 

DCO are not obvious); when the space is large enough, 

the curve is in the saturation region where the increase 

of static materialization space can not lead to the 

improvement of query performance. At this time, DCO 

appears the great advantage because it is not affected 

by the space-performance saturation effect in a certain 

range. 

 

Figure 2. Comparsion of query response time (2) 

It can be seen that the materialized views set 

optimized by DCO has a good dynamic adaptability to 

different query sets, and that whether the static 

materialized view reaches saturation or not, it can still 

improve the query performance. When the static 

materialized view is in the saturation region, the 

performance advantage of DCO can be better reflected 

compared to the same space increase. 

In addition, although FPUS and PMVS can also 

improve the dynamic performance of the materialized 

views set, practically it is very difficult for them to 

adjust the materialized views set online Different from 

the real-time online adjustment performed by DCO, 

PMVS can only lead to the periodic dynamic 

adjustment of the static materialized views set. While 

FPUS can theoretically adjust materialized views set 

online, it must traverse the entire view after each query 

occurs. which results in a large overhead and is 

infeasible for large data sets. 

4 Conclusion 

As data warehouse is time-varying, the query 

response performance of the static materialized view 

set decreases, especially for ad-hoc queries. Therefore, 

this paper proposes a dynamic cache optimization 

algorithm as a supplementary of the static materialized 

view selection algorithm. The algorithm can provide 

effective support for dynamic queries and ad-hoc 

queries. At the same time, experiments have revealed 

that due to the combination of the cache mechanism, 

this algorithm can effectively overcome SPSE of the 

static materialized view set to some extent, making it 

possible to improve the system’s query response 

performance by increasing the materialization space. 

By changing the size of the cache, the subsequent 

experiments discovered that the dynamic materialized 

views set also had a saturation effect. How to solve this 

problem would be the next work.  
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