
Dynamic Optimization Algorithm of Static Materialized Views 1453

Dynamic Optimization Algorithm of Static Materialized Views

Baili Zhang1,2,3, Yuhang Wu1, Linmu Wang1, Jie Wang1, Jianhua Lu1,3

1 School of Computer Science and Engineering, Southeast University, China
2 Key Laboratory of Computer Network and Information Integration of Ministry of Education,

Southeast University, China
3 Research Center for Judicial Big Data, China

zhangbl@seu.edu.cn, 15895923029@163.com, {657440248, 291210056}@qq.com, lujianhua@seu.edu.cn*

*Corresponding Author: Yuhang Wu; E-mail: 15895923029@163.com

DOI: 10.3966/160792642019092005012

Abstract

In this paper an algorithm DCO (dynamic cache

optimization) is proposed for the static materialized

views that lack better response performance to dynamic

queries. Based on the optimal static materialized views,

DCO combines cache mechanism to obtain dynamic

materialized views with dynamic adaptability and quick

response. Meanwhile, a novel method of allocating free

space is presented to implement the dynamic cache, and

thus the free space of system can be used efficiently to

store more materialized views for improving the query

response. Experimental results indicate the efficiency and

feasibility of DCO, and also show that DCO can

overcome the SPSE (space-performance saturation effect)

of materialized views in some degree.

Keywords: Data warehouse, Materialized view, Dynamic

cache

1 Introduction

Materialized view means pre-calculating and storing

physically a part of the query views in the data

warehouse, which can effectively speed up the

response of the data warehouse to the queries. Up to

now, it has become an important method to improve

the multi-dimensional analysis performance of the

system [1-2]. However, the selection of materialized

views set, always belongs to the NP-hard problem and

has always been a hot spot in the data warehousing

community. For this reason, the researchers have

proposed several solutions, among which, the BPUS

(benefit per unit space) algorithm proposed by

Harinarayan et al. is a cubic-based greedy algorithm

[3]; Gupta systematically elaborates on the

materialized view selection problem and proposes a

series of heuristic algorithms [4]; the problem of

materialized view selection is studied as space

transformation problem in [5]; in [6-8], the genetic

algorithms are used to obtain optimal materialized

views set, and some works are conducted on reducing

the complexity of the algorithms.

The above algorithms are all based on the

assumption that the query distribution is predicted in

advance. They essentially can be categorized into static

algorithms. Due to the time varying of data warehouse,

especially lots of ad-hoc queries in decision support

applications, the query mode of the system becomes

hard to predict, and the materialized views set selected

by the static algorithm is away from its optimal solution

gradually. This means the administrators need to

discover the changes of query mode in time and select

the appropriate time to re-execute the view selection

algorithm. For a data warehouse with complex user

requirements, this work is quite complex and time-

consuming. Therefore, some static algorithms were

modified to run online reluctantly [9-10], then the

materialized views set can be automatically adjusted

periodically. This reduces the workload of the

administrators to some extent. However, this method

requires certain statistical data before it can be

performed. So the materialized views set cannot make

specific adjustments for the change of the query

distribution or ad-hoc queries within a certain period.

Accordingly, literature [11] proposes an innovative

real-time adjusting algorithm named FPUS (frequency

per unit space) on the basis of improved static

algorithms. However, the overhead is relatively large

for the algorithm needs to compare the overall

materialized benefits after each query response. It is

unsuitable for the situation of high query density

especially. Additionally, frequent thrashing may occur

in some views, which results in the instability of

materialized views set and optimized query schemes

can’t be utilized repeatably. Therefore the query costs

are increased, and make the algorithm lose its truly

practical value to some extent.

In line with the dynamic cache mechanism, DCO

(dynamic cache optimization) is presented in this paper,

including DCO-S algorithm based on space constraints

and DCO-SM algorithm based on constraints of space

cost and maintenance cost. Assisted by static algorithm

that obtains the static materialized views set, DCO, as a

1454 Journal of Internet Technology Volume 20 (2019) No.5

complementary algorithm, uses dynamic cache

mechanism to achieve an extra dynamic materialized

views set. Then it can adapt to the changes of query

distribution and ad-hoc queries, and can render the

entire materialized views set with better dynamic

adaptability. Meanwhile, due to the adoption of

different selection mechanisms, the dynamic

materialized views set, to some extent, can avoid the

space-performance saturation effect (SPSE) [12] that

the performance of algorithm no longer changes with

the increase of materialization space. Then within a

larger range, increasing the materialization space can

make the materialization benefits increase continuously.

In addition, DCO can adopt a more novel space

allocation method to implement the cache. Referring to

the mechanism of recycling bins in operating system,

this method does not occupy the limited data area of

the database, but uses the remaining hard-disk space of

the system as the cache space. Finally, benefiting from

the plug-in technology, DCO has excellent portability

and compatibility and can be applied to other category

of data warehouse.

2 DCO Algorithm

2.1 Problem Description

In this paper the materialized view set selected by

static algorithm is referred as the static materialized set,

represented by Ms. The materialized view set

determined by DCO is called the dynamic materialized

set, represented by MD. The query cost definition based

on the materialized view set is given as follows.

Definition 1. If the frequency of each query
i
q in user

query set Q is
i
q
f , the query cost of obtaining

i
q from

the materialized view set M is ()
i
q

C M . The query cost

for the entire user query set Q is (,)C Q M =

* ().
i i i
q Q q qf C M
∈

Σ

a. If materialized view set M only includes
S

M ,

M=
S

M , then

 (,) (,) * ()
i i i

S q Q q qC Q M C Q M f C M
∈

= = Σ (1)

b. If materialized view set M includes
S

M and
D

M ,

M=
S

M ∪
D

M , then

(,) (,)

* () * ()
i D i i i D i i

S D

q M q q D q Q M q q S

C Q M C Q M M

f C M f C M
∈ ∈ −

= ∪

= Σ + Σ
 (2)

Due to the contribution of MD, a part of the query set

can be responded by matching directly the materialized

views in MD instead of obtaining originally from Ms.

The query cost of the entire user query set Q will bring

the following changes:

(,) (,)

* () * ()

* () * ()

*((), ())

i D i i i D i i

i D i i i D i i

i D i i i

S S D

q M q q S q Q M q q S

q M q q D q Q M q q S

q M q q S q D

C C Q M C Q M M

f C M f C M

f C M f C M

f C M C M

∈ ∈ −

∈ ∈ −

∈

Δ = − ∪

= Σ + Σ

−Σ −Σ

= Σ

 (3)

Definition 2. If the query cost of
i
q obtained from Ms

is ()
i
q SC M , its query cost turns into ()

i
q D

C M with the

help of the dynamic materialized views . Because of

the cache optimization mechanism, the benefits

produced by materialized
i
q are () ().

i i i
q q S q DC C M C M= −

If the frequency of each
i
q in user query set Q is

i
q
f ,

then the benefit of the entire query set from the

materialized set
D

M is

(, ,) * (() ())
i D i i i

i D i

S D q M q q S q D

q M q

B Q M M f C M C M

f

∈

∈

= Σ −

= Σ
 (4)

Existing benefit models of disk cache come from

memory cache, which do not consider the cost

()
i
q D

C M of retriving
i
q from disk. In contrast, the

model in this paper is strict, and has taken full account

of I/O costs and view retrieval costs for disk.

Meanwhile, the assumptions that any query is only

relevant to one materialized view in [2, 9] are not

adopted in this model, so the model objectively reflects

the correlation between the query cost and its view size

and the entire materialized view set size.

Definition 3. Given a static materialized set Ms and

user query set Q, the dynamic cache optimization is to

select a materialized set MD under certain constraints

and make the benefit (, ,)
S D

B Q M M maximal.

Finding the maximum value of (, ,)
S D

B Q M M is

often constrained by some conditions such as space

and maintenance costs. For this reason, we will discuss

them separately in the following.

2.2 DCO-S Algorithm based on Space

Constraint

First, DCO-S algorithm is proposed to obtain the

optimal materialized set MD under the cache space

constraint. The direct materialized view of a query is

defined in order to describle the algorithm.

Definition 4. If a query has a direct corresponding

view in the materialized set (including MD and Ms), it

can be obtained without cutting, slicing, drilling down

and rolling up from the current views, then this view is

a direct materialized view (direct_view (
i
q)) of this

query.

Dynamic Optimization Algorithm of Static Materialized Views 1455

Algorithm 1. DCO-S Algorithm

Input: ,
S x

M q /*
x

q is a query belonging to Q */

Output:
D

M

1. if direct_view (
x

q)
D S

M M∈ ∪ then return

2. For each
i D
q M∈

3. () * () /
i

i i i q
q fq B q sΦ = /*

i
q
s is the size of query result */

4. Sortby (,)
i
q SignAΦ /* storing id, Φ and

i
q
s of

i
q into the array SignA, and sorting by Φ*/

5.
i

D D q
S S s= + /*

D
S is the total sizes of all views in the cache. The initial value is 0.*/

6. end for

7. free cache DS S S= − /*
cache

S is the total size of the cache space, freeS is the remaining space in the current cache */

8. ()
x

q x
S sizeof q= is the size of

x
q waiting to store into the cache */

9. pre_evit={∅} /* Pre-deleted view set */

10. count=0

11. while
x

q freeS S> do /* Not enough free space to store this view */

12. count++

13. [].
j

q signA count id=

14. pre_evit=pre_evit ∪{
j

q } /* sorted by Φ, the view is set to be pre-deleted one by one until the free

 space is large enough */

15. [].free freeS S SignA count s= +

16. end while

17. () * () /
i x

i q x q
q f B q sΦ =

18. (_) max({ () | })
i j evit

pre evit q q preΦ = Φ ∈ /* Get a view of the pre-deleted set with the largest Φ value */

19. if () ()
evit x

pre qΦ <Φ then /*Ensure that
x

q is optimal*/

20. Del pre_evit from
D

M

21. Insert
x

q into
D

M

22. Return.

The differences between DCO-S and the algorithm

in literature [13] include not only the model, but also

the method, which guarantee the optimality of the

DCO-S. Under the constraints of the cache space,

optimizing the materialization benefits of
D

M can be

expressed by the following:

 (* ())
i D i i
q M q q

Max f B M
∈

Σ (5)

i D i
q M q caches S
∈

Σ ≤ (6)

The problem defined by formula (5) and formula (6)

belongs to NP-complete backpack problem. There is

no effective algorithm for this type of problem, but if

the size of the cache
cache
s is large enough compared to

the size of a single view
i
q
s ,

cache
s can almost be filled

up by the small
i
q
s . In this way, formula (6) can be

modified to

i D i
q M q caches S
∈

Σ = (7)

For the problems defined by equations (5) and (7), it

can be proved that the algorithm DCO-S can obtain the

optimal solution.

Lemma 1. The materialized set obtained by the DCO-

S is the optimal solution to the problem defined by

formula (5) and (7).

Proof. Omitted for the length limitation of paper.

For the calculation of the real-time frequency
i
q
f ,

the literatures [13-14] learn from the LRU-K

mechanism [15]. The calculation considers the latest K

references to this query (generally 1≤K≤5), avoiding

the shortcomings of using a single reference for recent

estimates. This is a relatively good way to express

instant frequency, but it ignores the long-term

distribution of queries. In literature [14] the sum of

query times is added to consider the long-term

cumulative value. However, if the queries do not occur

during the accumulation period, the cumulative value

is cleared to zero. This processing method appears a bit

rough and can cause frequency change sharply. For this

reason, this paper improves the method and proposes

an algorithm AIF (attenuator of instantaneous

frequency), which uses the attenuation factor to

gradually reduce the cumulative value to zero. That is,

if the query does not occur during a shorter period,

1456 Journal of Internet Technology Volume 20 (2019) No.5

then the cumulative number of its query is

decremented by a certain attenuation coefficient.

Accordingly frequency values is avoided to change

sharply that cause large thashing of the materialized set.

The algorithm is as follows:

Algorithm 2. AIF Algorithm

Input:
x

q

Output:
x

q
f

1. while any query
x

q occur do

2. query_count_sum++ /* The sum of query times */

3.
x

q ⋅ ref_count++ /* Accumulate the query times of
x

q */

4. _

x
q ref flag⋅ = USED

5.
x

q .ts [ref_count%K]=query_count_sum

/* Time stamp: record the time when
j

q occurs. Here, the total number of the query occurrence is used as

time stamp.*/

/* Assume that the array starts at 1, K represents the number of recent references */

6. if , _
x

q ref count > K then

7. _

x
q
f ref count= * K /(query_count_sum) -

x
q ⋅ ts[(ref_count+K)%K])

8. else

9.
x

q
f =ref_count/(query_count_sum-

x
q ,ts [1])

10. If query_count_sum%Time=0 then /* Time is a shorter statistical period */

11. For all
j

q Q∈ do

12. If _

j
q ref flag⋅ = UNUESD then /*

j
q does not occur in this period */

13. If _

j
q ref count⋅ > K then /*ξ is an attenuation factor*/

14.
j

q .ref_count=
j

q .ref_count%K+K*(
j

q .ref_count/K/ξ);

15. else
j

q ref_count=0

16.
j

q .ref_flag=UNUESD

17. end while

18. Return.

In the end of this section, the cache replacement

measurement will be discussed.

1

1

()
() * *(() ()) / .

i i i i

i

i q q q S q D x

x

B q
q f f C M C M s

s
Φ = = −

In fact, the implementation of the entire algorithm is

mainly based on the calculation and comparison of the

measurement Φ (
i
q). This is the common feature of all

cache algorithms. The difference lies in the definition

of specific measurement. Compared to WATCHMAN

[13], Dynamat [16], and other algorithms that are

simply migrated from the memory mechanism and

ignore the I/O cost ()
i
q D

C M of reading the

materialized views from the hard disk, DCO’s model is

strict and it doesn’t ignore the I/O cost ()
i
q D

C M .

Because ()
i
q D

C M may not be much different from

()
i
q SC M , it cannot be ignored. Otherwise, it will cause

a large deviation, which will affect the choice of the

optimal materializated view set.

2.3 DCO-SM Algorithm

In practice, materialized view selection is often

constrained by the size of space and the cost of view

maintenance simultaneously. View selection under

multiple constraints is a complex issue. For this reason,

this problem is simplified in light of the algorithm

presented in this paper. It is classified in the following

situations: (1) The maintenance window of the

materialized view is large, and both Ms and MD can be

synchronously updated and maintained. The

maintenance cost does not become constraints, only the

space constraints are taken into account; (2) The view

maintenance window is medium. When Ms is

maintained, MD can be partially maintained. In this

case, the problem is transformed into a dynamic

materialized view selection problem under the

maintenance cost constraints. Similar studies can be

carried out referring to space constraints; (3) The view

maintenance window is small, only Ms can be

maintained. For situation (3) is universal and practical,

this paper discusses it in detail and proposes a DCO-

SM algorithm that takes multiple constraints into

Dynamic Optimization Algorithm of Static Materialized Views 1457

consideration. The algorithm is based on a strategy:

synchronous updates are not adopted for MD. Once

views in MD are required to be updated, they are simply

eliminated from the cache. This approach makes the

algorithm simple and practical.

Algorithm 3. DCO-SM algorithm

Input:
S

M ,
x

q

Output:
D

M

1. if direct_view (
x

q)
D S

M M∈ ∪ then return

2. For each
i D
q M∈

3. () (1)* () /
i i i

i q u i q
q f f B q sΦ = − /*Adopt the measurement different from that of algorithm 1*/

4. Sortby (,)
i
q SignAΦ /*In non-decreasing order of Φ */

5.
i

D D q
S S S= +

6. end for

7. free cache DS S S= −

8. ()
x

q x
s sizeof q=

9. pre_evit={∅}

10. count=0

11. while
x

q freeS S> do

12. count++

13. [].
j

q signA count id=

14. pre_evit=pre_evit∪{
x

q freeS S> }

15. [].free freeS S SignA count s= +

16. end while

17. () *(1)* /
x x x x

x q u q q
q f f B sΦ = − /*The update of the measurement of

x
q for eliminate impact is considered

 when calculating*/

18. (_) max({ () | _ })
j j

pre evit q q pre evitΦ = Φ ∈ /*Get the view with the max value of Φ in pre-deleted set*/

19. if Φ (pre_evit)< ()
x

qΦ then

20. Del pre_evit from
D

M

21. Insert
x

q into
D

M

22. Return.

There is no essential difference between Algorithm

3 and Algorithm 1. However, Algorithm 3 considers

the benefits’ decrease of dynamic materialized views

due to updating the materialized view. the changed

benefit model is () * (1)* () / .
x i i

i q u i q
q f f B q sΦ = − That

is, an (1)
i
u
f− item is added and

i
u
f is the update

frequency of query
i
q . The measurement in Algorithm

1 is () * () / .
i i

i q i x
q f B q sΦ = Its premise is not to

consider the materialized view update or to assume that

the system has strong update and maintenance

capabilities. When update cost of the materialized view

is large and must be considered, it will lead to a large

deviation in the calculation of the measurement.

For the optimization of the algorithm, it can be

similarly expressed by the following optimal solution:

 (*(1)* ())
i D i i
q M q u i

Max f f B q
∈

Σ − (8)

i D i
q M q caches S
∈

Σ = (9)

According to the problems defined by formula (8)

and formula (9), we can prove that the DCO-SM can

obtain the optimal solution. The lemma is as follows:

Lemma 2. The materialized set obtained by DCO-SM

algorithm is the optimal solution to the problem

defined by formula (8) and formula (9).

Proof. Omitted for the length limitation of paper.

2.4 Implementation of Dynamic Cache

Mechanism

 In order to implement the cache mechanism better,

DCO proposes a more novel approach to space

allocation, which learns from the implementation

mechanism of the recycle bin in the operating system.

Fully using the system’s remaining hard disk space as

the cache space can avoid occupying the limited space

of the database, and also avoid conflicting with other

1458 Journal of Internet Technology Volume 20 (2019) No.5

data in the database.This plug-in implementation

technology can form a loose combination between the

data warehouse and the dynamic cache. So that it will

not limited to a specific data warehouse, and has a high

portability and compatibility.

When the system’s remaining space is limited, DCO

must periodically detect the available space of the

system, or intercept the alarm of other applications

lacking space. Then it can dynamically adjust the

available free space so that the free space of the system

can be fully utilized and meanwhile other applications

of the system are not interfered. When the available

space is reduced and some of the views need to be

eliminated, DCO can re-select MD under the new

constraint space; or the simple elimination algorithm

can be used to eliminate some views according to Ф of

the views until space requirements are satisfied.. The

specific elimination algorithm is as follows:

Algorithm 4. Simple elimination algorithm

1. ΔS=
cache cache

S S ′− /*
cache

S ′ is the size of cache space after shrinking */

2. 0
evit

S =

3. while
evit

S S< Δ do

4. count++

5. [].
j

q SignA count id=

6. pre_evit=pre_evit∪{
j

q }

7.
evit evit

S S= +SignA [count].s

8. end while

9. Del pre_evit from
D

M

10. Return

On the contrary, if the remaining space of the system

becomes larger, the dynamic cache space can be

expanded in an appropriate manner, so that more views

can be materialized and the query response

performance of the system can be improved.

3 Experimental Design

3.1 Experimental Design

In order to verify the effectiveness of the dynamic

cache optimization algorithm, a series of performance

comparisons were made in the experiments between

DCO and static algorithms. As a selection algorithm of

static materialized views set, PBS (pick by size) [12] is

currently the fastest and most widely used one. Despite

the advantage of selecting the optimal materialized

views set, the latest static algorithms, such as the

genetic algorithm [7-8], have the disadvantage of the

high time complexity. Therefore, the static materialized

views set Ms in the experiments was selected by PBS,

and the dynamic materialized views set MD was

dynamically selected by DCO-S (update problem was

not considered). That meant the actual comparison was

between DCO-S+PBS and PBS.

The experimental hardware platform was Dell

PowerEdge 6600 (Dual Xeon CPU 1.5G, RAM 4G),

and the database platform was Oracle 8. The

experimental data set was a data warehouse

corresponding to a pharmaceutical sale company

transaction database [17]. There were 4 dimension

tables and 1 fact table. The size of fact table records

was 1.6M. The K value of the AIF used for frequency

estimation was 3, the attenuation factor was 2. The

average response time of the queries was used to

measure the system response performance of different

materialized views set to the queries. In the

experiments, the system’s remaining space was 53G,

which made the actual space constraints nonexistent. In

order to test the effectiveness of the algorithm, two

methods of changing the size of the cache space were

adopted in this experiment.

3.2 Experimental Steps and Results

The experimental steps are as follows: First, the

space constraint was set to 100M. And the static

materialized views set Ms was determined by using the

PBS. Then the simulated query generator generated

5,000 random queries using 6 query templates, and the

average query response time were calculated. Second,

DCO-S algorithm was invoked, the constraint space

was set to 20M, and the average response time to

different template query sets under Ms and MD were

calculated. The results are shown in Figure 1, where T1

represents that template 1 was used to generated

queries

Dynamic Optimization Algorithm of Static Materialized Views 1459

Figure 1. Comparsion of query response time (1)

Figure 1 shows that due to the help of MD abtained

by DCO-S, the query response performance of the

system has been greatly improved. At the same time,

the response performance to the queries generated by

different templates appears to be relatively balanced.

On the contrary, when the materialized views are only

consisted of Ms (the static materialized views), the

response performance appears great volatile. This is

because the dynamic adjustment strategy of DCO-S

enables the entire materialized views set to have a good

adaptability. However, these changes or improvements

cannot exclude the help of the increased cache space

(even if this increased space utilizes the remaining

space of the system). For this reason, the following

experiment was conducted: MD was deleted, DCO-S

was suspended, and the space constraint was offset to

120M; Ms was reselected by the PBS, then its response

time to each query set was re-calculated. The

experimental results are also expressed in Figure 1.

From the results, the performance improvement does

not have too much difference from the PBS+DCO-S.

That is said, when the total available space is 120M,

there is slight difference in query performance between

PBS+DCO-S and PBS, except for PBS+DCO-S having

the greater advantage in balancing the different queries

and tracking the ad-hoc queries.

However, when the space constraint was changed to

300M, the cache space remained to be 20M and the

above three groups of experimental steps were repeated

in the same order. The results are shown in Figure 2. It

can be seen that PBS (300)+DCO-S (20) has a

considerable increase compared to PBS (320) or PBS

(300); while PBS (320) has few changes compared to

PBS (300). By analyzing the space-performance curve

of a static materialized views, it is not difficult to

explain: When the space is small, the slope of the curve

is steeper, and the space change can cause a large

change in performance (by contrast, the advantages of

DCO are not obvious); when the space is large enough,

the curve is in the saturation region where the increase

of static materialization space can not lead to the

improvement of query performance. At this time, DCO

appears the great advantage because it is not affected

by the space-performance saturation effect in a certain

range.

Figure 2. Comparsion of query response time (2)

It can be seen that the materialized views set

optimized by DCO has a good dynamic adaptability to

different query sets, and that whether the static

materialized view reaches saturation or not, it can still

improve the query performance. When the static

materialized view is in the saturation region, the

performance advantage of DCO can be better reflected

compared to the same space increase.

In addition, although FPUS and PMVS can also

improve the dynamic performance of the materialized

views set, practically it is very difficult for them to

adjust the materialized views set online Different from

the real-time online adjustment performed by DCO,

PMVS can only lead to the periodic dynamic

adjustment of the static materialized views set. While

FPUS can theoretically adjust materialized views set

online, it must traverse the entire view after each query

occurs. which results in a large overhead and is

infeasible for large data sets.

4 Conclusion

As data warehouse is time-varying, the query

response performance of the static materialized view

set decreases, especially for ad-hoc queries. Therefore,

this paper proposes a dynamic cache optimization

algorithm as a supplementary of the static materialized

view selection algorithm. The algorithm can provide

effective support for dynamic queries and ad-hoc

queries. At the same time, experiments have revealed

that due to the combination of the cache mechanism,

this algorithm can effectively overcome SPSE of the

static materialized view set to some extent, making it

possible to improve the system’s query response

performance by increasing the materialization space.

By changing the size of the cache, the subsequent

experiments discovered that the dynamic materialized

views set also had a saturation effect. How to solve this

problem would be the next work.

Acknowledgements

This work was partly supported by the National Key

R&D Program of China (2018YFC0830200) ， the

Fundamental Research Funds for the Central

Universities (2242018S30021 and 2242017S30023)

1460 Journal of Internet Technology Volume 20 (2019) No.5

and Open Research Fund from Key Laboratory of

Computer Network and Information Integration In

Southeast University, Ministry of Education, China.

References

[1] A. Dhankar, V. Singh, A Scalable Query Materialization

Algorithm for Interactive Data Exploration, 2016 Fourth

International Conference on Parallel Distributed and Grid

Computing (PDGC), Waknaghat, India, 2016, pp. 128-133.

[2] B. Arun, T. V. V. Kumar, Materialized View Selection Using

Bumble Bee Mating Optimization, Int. J. Decision Support

Syst. Technol., Vol. 9, No. 3, pp. 1-27, July, 2017.

[3] V. Harinarayan, A. Rajaraman, J. D. Ullman, Implementing

Data Cubes Efficiently, Proc. of the 1996 ACM SIGMOD

International Conference on Management of Data, Montreal,

Quebec, Canada, 1996, pp. 205-216.

[4] H. Gupta, Selection of Views to Materialize in a Data

Warehouse, Proc. of the 6th ICDT, Greece, 1997, pp. 98-112.

[5] D. Theodoratos, T. Sellis, Designing Data Warehouse, Data

& Knowledge Engineering, Vol. 31, No. 3, pp. 279-301,

November, 1999.

[6] M. K. Sohrabi, V. Ghods, Materialized View Selection for a

Data Warehouse Using Frequent Itemset Mining, Journal of

Computers, Vol. 11, No. 2, pp. 140-148, March, 2016.

[7] C. Zhang, X. Yao, J. Yang, An Evolutionary Approach to

Materialized Views Selection in A Data Warehouse

Environment, IEEE Trans. on Systems, Man and Cybernetics,

Part C, Vol. 31, No. 3, pp. 282-294, August, 2001.

[8] J. T. Horng, Y. J. Chang, B. J. Liu, Applying Evolutionary

Algorithms to Materialized View Selection in a Data

Warehouse, Soft Computing, Vol. 7, No. 8, pp. 574-581, July,

2003.

[9] D. Theodoratos, T. Sellis, Dynamic Data Warehouse Design,

Proc. of the 1st Int’l Conf. on Data Warehousing and

Knowledge Discovery, London, UK, 1999, pp. 1-10.

[10] B. L. Zhang, Z. H. Sun, X. Sun, Preprocessor of Materialized

Views Selection, Journal of Computer Research and

Development, Vol. 41, No. 10, pp. 1645-1651,October, 2004.

[11] H. X. Tan, L. X. Zhou, Dynamic Selection of Materialized

Views of Multi-Dimensional Data, Journal of Software, Vol.

13, No. 6, pp. 1090-1096, June, 2002. http://www.jos.org.cn/

1000-9825/13/1090.htm.

[12] A. Shukla, P. Deshpande, J. F. Naughton, Materialized View

Selection for Multidimensional Datasets, Proc. of the 24th

Int’l Conf. on VLDB, San Francisco, USA, 1998, pp. 488-499.

[13] P. Scheuermann, J. Shim, R. Vingralek, Watchman: A Data

Warehouse Intelligent Cache Manager, Proc. of the 22nd Int’l

Conf. on VLDB, San Francisco, USA, 1996, pp. 51-62.

[14] E. Otoo, F. Olken, A. Shoshani, Disk Cache Replacement

Algorithm for Storage Resource Managers in Data Grids,

Proc. of the IEEE/ACM SC 2002 Conf. on Supercomputing,

Los Alamitos, USA, 2002, pp. 1-15.

[15] E. J. O’Neil, P. E. O’Neil, G. Weikum, The LRU-K Pages

Replacement Algorithm for Database Disk Buffering, Proc.

of the 1993 ACM SIGMOD Int’l Conf. on Management of

Data, New York, USA, 1993, pp. 297-306.

[16] Y. Kotidis, N. Roussopoulos, Dyna Mat: A Dynamic View

Management System for Data Warehouses, Proc. of the 1999

ACM SIGMOD Int’l Conf on Management of Data, New

York, USA, 1999, pp. 371-382.

[17] R. Kimball, The Data Warehouse Toolkit, 2nd ed., John

Wiley & Son, 2002.

Biographies

Baili Zhang is an associate professor

in School of Computer Science and

Engineering, Southeast University,

China. Before joining university, he

worked as an engineer in NARI, a

famous electric power research

institution in China. He obtained his

PhD in Computer Applications from School of

Computer Science and Engineering, Southeast

University. His current research focuses on (1) big data

and service computing; (2) uncertain data managemen;

(3) materialized view in data warehouse, and

application of wireless sensor network.

Yuhang Wu received his BE degree

in Nanjing Audit University, China

2017. He will continue to study for a

Master’s degree at Southeast

University. His current research

interests include interests include

Natural Language Processing and

deep learning.

Linmu Wang is a postgraduate

student in College of Software

Engineering, Southeast University,

China. His current research focuses

on (1) data science and data

engineering; (2) natural language

processing.

Jie Wang is a postgraduate student in

College of Software Engineering,

Southeast University, China. His

current research focuses on (1) data

science and data engineering; (2)

natural language processing.

Dynamic Optimization Algorithm of Static Materialized Views 1461

Jianhua Lu is an associate professor

in School of Computer Science and

Engineering, Southeast University,

China. He obtained his Ph.D. in

Computer Science from School of

Information Science and Engineering,

Northeastern University of China. His current research

focuses on (1) data science and data engineering; (2)

healthcare data analytics; (3) anomaly detection and

fault diagnosis.

1462 Journal of Internet Technology Volume 20 (2019) No.5

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (Adobe RGB \0501998\051)
 /CalCMYKProfile (Japan Color 2001 Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHT <FEFF005b683964da300c9ad86a94002851fa8840002b89d27dda0029300d005d0020005b683964da300c8f3851fa0033003000300064002851fa88400029300d005d00204f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks true
 /AddPageInfo false
 /AddRegMarks false
 /BleedOffset [
 8.503940
 8.503940
 8.503940
 8.503940
]
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MarksOffset 9.354330
 /MarksWeight 0.141730
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed true
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

