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Abstract 

As the next generation power grid, smart grid, utilizing 

modern information technologies, is able to deliver power 

more efficiently and response to wide-ranging conditions 

and events. Intelligent dispatch system (IDS) is regarded 

as the core link of the smart grid to control all the systems, 

and then its smooth running is vital to the smart grid. 

With numerous functionalities including data aggregation, 

data analysis, and decision making, the IDS platform is of 

high complexity, and then the reliable online fault 

diagnosis of the IDS platform becomes a big challenge 

when the IDS platform becomes too complicated to avoid 

faults such as functionality logic fault (FLF), software 

bug (SB), and hardware fault (HF). In order to decouple 

the services of IDS for easing understanding, 

transplanting, and debugging, the software design and 

implementation are under the principle of modular design 

and independent service calling. However, due to the 

sharing of the software and hardware resources of the 

platform, the running services are coupled tightly, which 

calls for efficient and reliable fault-causing process 

localization methods. In this paper, a constraint mapping-

based method is proposed for efficient localization of the 

fault-causing process. Firstly, the complicated interactions 

among processes are analyzed and categorized into inter-

service and intra-service constraints, where inter-service 

constraints include database operation constraint (DOC), 

software resource constraint (SRC), and hardware 

resource constraint (HRC), wihle the intra-service 

constraint is summarized as functional logic constraint 

(FLC). Then corresponding constraint mapping tables can 

be constructed for the IDS platform. Originating from the 

abnormal alerts of processes and fault messages of 

services, the fault-causing process localization is 

decomposed into the track of source abnormal process 

within each service and the localization of fault-causing 

process among the services regarding intra- and inter-

constraint mapping tables, respectively. At last, the fault 

and alarming logics are reproduced in order to achieve 

both verification of the result of the fault-causing process 

localization and acquisition of new knowledge from the 

fault-causing logics. Case studies are presented, and the 

results show the efficiency of the proposed method. 

Keywords: Fault-causing process localization, Intelligent 

dispatch system, Smart grid 

1 Introduction 

The power grid is an inter-connected network that 

transports the generated electricity from generators to 

consumers. By utilizing modern information 

technologies, smart grid (SG), regarded as the next 

generation power grid, is capable of delivering power 

in more efficient ways and responding to wide-ranging 

conditions and events. More specifically, the SG is 

regarded as a `smart’ electric system that makes full 

use of modern communication technologies and 

computational intelligence in an integrated fashion 

across electricity generation, transmission, substations, 

distribution and consumption to achieve a system that 

is safe, secure, reliable, resilient, efficient, and 

sustainable [1]. 

Intelligent dispatch system (IDS) is the control 

system of the SG with functionalities of data 

aggregation, data analysis, and decision-making [2]. 

There are fruitful researches on the data aggregation 

[3-6], data analysis, fault diagnosis, and security for the 

smart grid [7-12, 22]. 

IDS platform is a complicated software and 

hardware platform, on which the IDS functionalities 

are performed. It is vitally important to ensure the 

smooth running of the IDS platform, so that a 

monitoring system is a must to monitor the running 

state of the IDS platform by abnormality early warning, 
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fault-causing process localization, and troubleshooting. 

For easing functionality expansion, transplanting, 

modifying, debugging, and understanding, the IDS is 

designed in an architectural and modular fashion, that 

is, a complicated functionality is decomposed into 

several simple and independent services. Moreover, the 

software implementation accords to isolation principle, 

i.e, a common service supporting several functionalities 

will be generated multiple independent versions such 

that they are isolated from each other. In this way, the 

IDS software is decoupled to facilitate the fault 

diagnosis for the monitoring system. However, the IDS 

software is running on the hardware platform, and the 

sharing of hardware resources (i.e., CPU, memory, 

hard disk, and network bandwidth) introduces 

complicated coupling among the running services, 

which raises a big challenge for fault-causing process 

localization. Compared to the fruitful fault diagnosis in 

smart grid, the research on the fault-causing process 

localization for the IDS platform is not sufficient. 

Roughly, the existing fault-causing process localization 

methods can be categorized into three types. 

Knowledge-based method. Based on the knowledge 

of functionality logics and the software implementation, 

inference engine is employed to analyze the fault 

generation logics. Knowledge-based methods include 

thresholding-based method, fault-tree method, fuzzy 

logic, expert system, and so on. Thresholding-based 

method is simple but efficient in alarming and fault-

causing process localization. When a parameter of a 

process exceeds a preset threshold, an alert is initiated. 

For example, an active process inevitably occupies 

memory. If the available memory is less than a 

threshold so that this process cannot work properly, it 

will trigger off an abnormal alert to show the shortage 

of memory. Clearly, if the threshold is set accurately, 

the fault can be traced efficiently. The thresholding-

based method is widely deployed in equipment 

working condition monitoring, such as in [13]. 

However, it is of big challenges for applying this 

method into the IDS platform. Since all active 

processes running at the same network element share 

the hardware resources, i.e., memory, central 

processing unit (CPU), one resource shortage fault will 

cause avalanche type chain reaction of alarms because 

other running processes will be also short of hardware 

resource. One real case is: a process periodically 

calculates some intermediates for other services, which 

may require a huge memory to store the data and speed 

up the calculation. When this process has a syntax 

error so that it does not release the memory after the 

calculation, the memory will be used up rapidly, which 

causes the memory shortage alerts for all other active 

processes. Moreover, all active processes may have to 

postpone their proceedings due to the shortage of 

memory, which results in the burst of other types of 

abnormal alerts. In this case, avalanche type alerts are 

observed, but it is very hard to localize the source 

fault-causing process by the thresholding-based 

method solely due to the tight coupling of the 

processes in the form of hardware resource sharing. 

Fault tree method is based on the rules which are 

originated from experts’ knowledge, i.e., timing 

relationship between processes and reasonable region 

of a key parameter, then the inference engine uses rules 

to infer conclusions with respect to certain faults. Fault 

tree method is widely applied to localize the fault-

causing process within a service, but it becomes 

infeasible for large-scale coupling system like IDS 

platform due to the exponentially increased complexity. 

Fuzzy logic is a method to partition a feature space into 

fuzzy sets and utilize fuzzy rules for reasoning [14]. 

Fuzzy logic has been applied successfully for fault 

diagnosis [15-16]. The knowledge based expert system 

methods can provide insight for the IDS, however, its 

performance is limited by the expert knowledge and 

known rules. The ever-increasing expansion and 

updating of the IDS and the obscure coupling among 

the services make the solo use of knowledge-based 

methods degrade severely in the fault-causing process 

localization of the IDS. Naturally, the knowledge-

based methods are combined with other techniques to 

overcome the problem of large scale and high coupling. 

Software testing methods. Before the practical 

application, software testing is a must for the IDS. 

From the testing level, there are unit testing, 

integration testing, system testing, and operational 

acceptance testing [17]. As for testing methods, there 

are static testing, dynamic testing, and the box 

approach which includes white-box testing, black-box 

testing, and gray-box testing [18]. However, even after 

strict software testing, software errors are inevitable for 

the tightly coupled IDS. With the expansion of the grid 

and the increase of functionality, the IDS needs 

constant updating, which severely hardens the software 

testing. In other words, software testing cannot avoid 

the software errors of the IDS, and what is more severe 

for software testing methods is that they cannot 

localize the fault of IDS on the spot. 

Machine learning methods. Owing to its powerful 

ability of nonlinear approximation and adaptive 

learning, machine learning has been the most well-

established data-driven fault diagnosis tool for 

hardware and network [19-21]. When there are enough 

fault localization samples to illustrate the connection 

between the source fault-causing process and the 

following alerts, machine learning method is an 

efficient tool to model the obscure relation between the 

input and the output instead of modeling the cause and 

the effect of the fault. When the fault examples or the 

monitored parameters are not sufficient, however, 

machine learning method degrades badly. In the case 

of the IDS platform, the fault samples usually are 

seldom, which severely hinders the application of 

machine learning methods in the fault localization of 

the IDS. 
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Concerning the big challenges on the fault-causing 

process localization of the complicated IDS platform, 

in this paper we study the constraint mapping-based 

method to localize the fault-causing process. It is 

notable that the localization of faults caused by 

functionalities of the smart grid is out of the scope of 

this method. The main contributions include: 

‧ The complicated couplings among the processes and 

services in the IDS system are described and 

analyzed, and most critical constraints are then 

refined and categorized into inter-service constrains 

and intra-service constrains, where inter-service 

constraints include database operation constraint 

(DOC), hardware resource constraint (HRC), and 

software resource constraint (SRC), and intra-

service constraint is summarized as functional logic 

constraint (FLC). Based on the constraint types of 

services, four classes of constrain mapping tables 

can be constructed for the IDS platform, which are 

the basis of the proposed method. 

‧ An efficient fault-causing process localization 

method is proposed, which is divided into two 

phases: (i) intra-service tracing phase traces the 

source abnormal process within every service with 

alerts based on the intra-service constraint mapping 

tables; (ii) inter-service localization phase localizes 

the source fault-causing process from the set of 

traced source abnormal processes on the base of 

inter-service constraint mapping tables. 

‧ The alarming logic of the fault event is reproduced 

to achieve both the verification of the fault-causing 

process localization result and discovery of either 

new knowledge or software bug. 

The rest of paper is organized as follows. Section II, 

the IDS platform, including its software and hardware 

architecture, functionalities, and causes and types of 

couplings among services, are presented. In Section III, 

the proposed decoupling-based fault-causing process 

localization method is detailed, and practical case is 

studied to illustrate the effectiveness of the proposed 

method in Section IV. Section V concludes the paper. 

2 IDS Platform and Constraint Mapping 

2.1 IDS Software and Hardware Platform 

The IDS platform is a complicated software and 

hardware systems. The software architecture can be 

layered to five layers, i.e., operation system layer, data 

storage layer, transport layer, public service layer, 

application layer. Based on the layered architecture, the 

IDS software platform provides functionalities in a 

manner of decoupling via (i) layered architecture, 

modular design, and functionality abstraction 

mechanism, i.e., functionality-service-process, for easy 

transplanting and understanding; (ii) independent 

calling, that is, independent new public service is 

initiated for a new caller to ensure the independent 

running of multiple implementations of the same 

services; (iii) message and service bus mechanism for 

message transferring between services in order to avoid 

direct calling. In this way the IDS software platform 

features: (i) complicated functional logic among the 

services and processes due to the inner interconnection 

among functionalities; (ii) independent running of 

services as the result of independent calling of the 

common services by functionalities.  

The hardware platform of the IDS consists of four 

parts, i.e., data storage and database management by 

the storage array and data server; data processing by 

the application server; networking by routers, switches, 

and firewalls; and data visualization, decision making, 

and dispatching by command & dispatch center. The 

layout of the IDS hardware has much to do with the 

software implementation, and affects the coupling of 

the services. The features of the hardware platform of 

IDS include: (i) server cluster-based parallel 

computing mechanism to greatly improve the 

processing capability for ever-increasing traffic data in 

smart grid; (ii) hot backup-based redundancy 

mechanism for robustness of the IDS; and (iii) 

distributed data storage mechanism for bandwidth save 

and quick response. 

Although the isolated mechanism is deployed for the 

software platform of IDS, the sharing of hardware 

resource of IDS introduces complicated coupling 

among processes and services, which is detailed in the 

following section. In summary, two big challenges are 

arose for the fault-causing process localization in the 

IDS, i.e., (i) the sharing of both software and hardware 

resource of IDS induces tight coupling among 

processes and services, which makes it impossible to 

exhaust all possible coupling among processes and 

services for knowledge-based inference methods; (ii) 

besides those services with routine timing, there are 

lots of event-driving services in IDS, which results in 

the dynamic running of services and processes. 

Consequently IDS requires real-time monitoring and 

fault localization of the IDS, which causes a big 

problem for software testing methods; (iii) After 

careful software testing before practical 

implementation of IDS, the fault events, though 

inevitable, are seldom. In this case, machine learning-

based methods degrade severely. 

2.1.1 Coupling Analysis and Constraint Mapping  

The complicated coupling among the processes of 

the IDS services is the result of software and hardware 

resources sharing of the IDS platform. More 

specifically, from the viewpoint of the layered 

architecture of IDS software, the following operations 

will cause the coupling of processes. To ease the 

coupling analysis, the function of real-time visual 

monitoring of a key parameter is set as an example. As 
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illustrated in Figure 1, there are four services running 

at three servers: data aggregation service at the front 

end server (FES), data harvest service and data 

visualization service at the managing server, data 

transport service at the data server. Firstly, data 

aggregation service calls data harvest service via 

service bus to collect data. At receiving the data 

request, data transport service locates the data and then 

transmits the requested data via message bus to data 

harvest service. These monitored data are written to the 

real-time database and then are transferred to the 

history database by data transport service. At last, data 

visualization service reads the data from the history 

database and then transfers them to human-machine 

interface for visualization. The following operations 

will cause coupling of processes. 

 

Figure 1. Illustration of the coupling among processes 

of three services 

‧ Collaboration among various services to support a 

function. As illustrated in Figure 1, the function of 

real-time visual monitoring of a key parameter 

requires the collaboration of four services. In this 

case, timing constraint exists among the processes of 

these services. 

‧ Database reading and writing. As illustrated in 

Figure 1, data writing process of the data 

aggregation service at the FES server renews the RT 

database, and then data reading & writing process 

of the data transport service at the data server writes 

the history database with the data reading from the 

real-time database, and finally data reading process 

of the data visualization service at the managing 

server reads the history database and outputs the 

monitored data to human-machine interface for 

visualization. All data writing and reading processes 

have to occupy the read-write lock before their 

reading/writing action, and then the read-write lock 

becomes a constraint for these processes. From this 

simple example, it is clearly that the database 

reading and writing connects several services. 

‧ Public service calling via service bus and 

data/message transportation via message bus. These 

two types of connections are also depicted in Figure 

1. More specifically, the data aggregation service at 

the FES server is responsible for the renewing of the 

monitored data in the real-time database, which is 

achieved by calling data harvest service at the 

managing server via service bus, and the data 

harvest service collects the requested data and feeds 

them back to the data aggregation service via a 

message bus. At receiving the requested data, the 

data writing process of the data aggregation service 

writes the monitored data into the real-time database 

to renew the data. Consequently the data transport 

service copies the monitored data and stores the 

copy at the history database, which is read and then 

visualized by the data visualization service at the 

managing server. 

The deployment of IDS software on a hardware 

platform will also introduce complicated coupling 

among the processes of services. Some typical causes 

are listed below, which also illustrate the hardware-

related coupling types. 

‧ The ever-increasing massive data are always stored 

in a distributed way with redundancy to ensure data 

security. In the fog computing aided cloud storage 

mode, a large amount of data will be stored at the 

network edge which is near to the data generators so 

as to facilitate local intelligence and reduce the 

bandwidth consumption. Then the data access might 

visit multiple data servers. 

‧ Hot backup mechanic is a standard technique for the 

stability of the IDS. Some key application servers 

may have several backup servers, and this hot 

backup mechanic introduces bi-direction 

communication between the host server and the 

backup ones. Although the same service is running 

at both master and backup servers, but there are 

often constraints on the service, i.e., only the service 

at the master server can write data to the database. 

Clearly, these constraints introduce coupling among 

the independent services due to the backup 

mechanism. 

‧ With the rapid expansion of the grid scale and its 

functionalities, the IDS scale increases correspondingly. 

Then more hardware resources are required, 

including computing, storage, and networking. 

Parallel computing is inevitable, which coordinates 

the resources to fulfil the tasks efficiently, but at the 

same time it couples the services involved in the 

parallel computing. 

‧ In the large-scale IDS, networking becomes more 

important, which introduces interaction among the 

connected servers. 

‧ All processes running on the same network element 

(i.e., server, router) will share the hardware 

resources, like CPU, memory, hard disk, and 

networking bandwidth. By sharing the hardware 

resources, all active processes are coupled. Since the 

hardware resources have hard constraints, excessive 

occupancy of hardware resources by one process 

may cause avalanche type chain reaction of alerts 

due to the shortage of resource to fulfil their tasks. 
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From the knowledge graph and the deployment of 

the IDS, couplings among processes and services can 

be categorized into four types of constraints, i.e., the 

functional logic constraints of services (FLC), the 

hardware resource constraints of network elements 

(HRC), the software resource constraints of IDS (SRC), 

and the database operation constraints of the IDS 

(DOC). 

FLC. The implementation of a service requires the 

reasonable assembling and the fulfilling of some rules 

for the ensemble of the involved processes. There are 

mainly two kinds of FLC, i.e., the order of operation 

constraint and the value range constraint. Traditionally 

the operation order of processes includes sequential, 

parallel, and conditional selective operations in both 

event-driving and periodic operation mode of the 

services. The order of operation constraints depends on 

both functional logic of functionality and software 

implementation mode, and they keep constant when 

the IDS software is implemented. Value range 

constraints, such as the state query should be finished 

within one second, are always determined by the expert 

knowledge of the IDS functionalities, and often 

reflected as the threshold in anomaly detection. 

Different from the order of operation constraints, 

which can be determined by the logic of the software, 

the value range constraints are variable according to 

the hardware capacity. 

HRC. The hardware resource of a network element 

(i.e., server, workstation, router, switch, gateway) 

mainly includes the CPU, memory (both physical and 

virtual memory), hard disk, and network bandwidth. 

An active process would occupy some resources, and 

the limits are usually predetermined as the threshold 

for anomaly detection to ensure the smooth running of 

the service and the available resource of the hardware. 

SRC. SRC in the IDS is the communication constraints, 

where there are two types of bus mechanisms for 

communication. The first one is the inter-server 

communication. For example, when two servers 

collaborate to fulfill a service, the processes running in 

different servers will communicate with each other via 

message bus. The other one is the inter-service 

communication. As shown in Figure 1, when a service 

needs to call a public service, it will send a call 

message via service bus to the public service. The SRC 

mainly consists of the communication constraints on 

the query length and the delay spread. 

DOC. In IDS, there are history database and real-time 

database, and all data reading and writing operations 

are correlated with these two databases. For safe, there 

are always constraints on the read-write lock of the 

sheet, operation concurrency of a database, and length 

of the database operation waiting queue, which 

contribute to DOC. 

 

 

 

In order to facilitate the localization of the fault-

causing process by our proposed method, these four 

types of constraints can be further categorized into 

intra- and inter-service constraints. When the processes 

involved in a constraint belong to different services, 

this constraint then can be split into several intra-

service constraints. This splitting operation greatly 

increases the number of constraints, but it is necessary 

for the proposed method because the FLC is mainly 

single service based, and classic knowledge-based fault 

diagnoses methods are also single service-based. On 

the other hand, as stated above, HRC, SRC, and DOC 

are the main cause of inter-service coupling in the IDS. 

These inter-service constraints are the base of final 

fault-causing process localization. 

After the categorization of coupling types of 

processes, four types of intra- and inter-service 

constraint-mapping tables can be further constructed, 

which act as the basis of the proposed method and will 

be explained in the following two sections. 

3 Constraint Mapping-based Fault- 

causing Process Localization Method 

In order to ease the understanding of the proposed 

method, a practical case is studied as an example to 

explain the four steps of the proposed method. 

3.1 Fault Case: A Monitored Parameter Stops 

Refresh 

Supervisory control and data acquisition (SCADA) 

application is responsible for the online RT monitoring 

of key grid parameters. In this case, the fault is that one 

of key parameters stopped refreshing during 17:45-

18:00 and 19:19-19:41 at the SCADA host server, but 

this key parameter tele-metering service worked 

properly at the SCADA backup server. The flow chart 

of the related services at the host server during the 

faulting period is presented in Figure 2. Specifically, 

the procedure of the related services is that: service 1 

performs periodical data reading and plotting by 

calling public service 2 to read data from the RT 

database, while service 4 performs model updating 

with the aid of public service 3 to download the model 

from the RT database. Obviously there are two 

independent functionalities: reading the value of the 

key parameter and showing it periodically; installing a 

new model and broadcasting the model renewing 

messages to other node. These two functionalities are 

coupled via DOC and HRC. 
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Figure 2. Flow chart of tele-metering data refresh-

related services 

When the monitored parameter stops refresh, three 

types of alert messages are reported, which are listed 

below. 

‧ Database alerts: too many read-lock occupation 

requests in the waiting list of the RT database from 

service 2 and 5 ; the read-lock of RT database is 

held by the service 4 for long time. 

‧ Software resource alerts: message bus is crowded by 

too many model renewing message from broadcast 

message process of service 3; service bus is crowded 

by calling model download process of service 3. 

‧ Function logic alerts: receive data process and plot 

data process of service 1 are delayed; read data 

process and send data process of service 2 are 

delayed; receive model process of service 4 is 

delayed. 

3.2 The Proposed Method 

Based on the functional logics of services and the 

monitored fault and alert messages, the proposed 

method localizes the fault-causing process via four 

steps: (i) constructing process state mapping tables 

according to the intra- and inter-service constraints; (ii) 

source abnormal process tracing within every service 

based on intra-service constraints; (iii) fault-causing 

process localization among the set of source abnormal 

processes based on inter-service constraints; (iv) the 

fault and overall alarming process reproduction for 

both verification of the fault-causing process 

localization result and new knowledge discovery. The 

flow chart of the proposed method is shown in Figure 3. 

We take the above case as an example to explain the 

four steps of the proposed method. 

Step 1: Constructing fault tree model of every 

service of the IDS platform. Fault tree model will be 

employed to trace the intra-service source abnormal 

process, and it is also the basis of FLC mapping table 

construction. We firstly construct the fault tree model 

for every service based on the expert knowledge of 

IDS software and hardware platform. 

 

Figure 3. Block diagram of the procedures of the 

proposed fault-causing process localization method 

Step 2: Constructing intra- and inter-service 

constraint mapping tables. Guided by the knowledge 

of IDS software and hardware platform, intra- and 

inter-service constraint mapping tables can be 

constructed. 

Firstly, functional logic constrain (FLC) of the 

related four services are constructed in the form of 

fault tree model and illustrated in Figure 4, which 

facilitates the tracing of source abnormal process 

within service by fault tree method. 

 

Figure 4. Fault tree models for the services related to 

the fault that a monitored data stops refreshing 
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Then the HRC, SRC, and DOC-mapping tables are 

constructed according to the resources that the related 

services occupy. These three types of constraints are 

summarized below. 

HRC. The hardware resource of a network element 

(i.e., server, workstation, router, switch, gateway) 

mainly includes the CPU, memory (both physical and 

virtual memory), hard disk, and network bandwidth. 

An active process would occupy some resources, and 

the limits are usually preset as the threshold for 

abnormal alarming. The HRC mapping tables are 

constructed and updated for every network element 

timely, and Table 1 depicts the CPU-type HRC 

mapping table. It is natural to construct memory, hard 

disk, and network bandwidth-type HRC mapping 

tables, which are omitted here. 

Table 1. CPU-type HRC mapping table at backup 

server 

Process Service Ratio Constraint State 

Request data 1 0.01 0.05 Normal

Receive data 1 0.02 0.05 Normal

Refresh data 1 0.01 0.05 Normal

Read message 2 0.01 0.05 Normal

Occupy real-lock 2 0.01 0.05 Normal

Read data 2 0.01 0.05 Normal

… … … … … 

 

SRC. SRC is the networking type including service 

bus and message bus. From the functional logics of the 

related services, it is easy to construct SRC table, 

which is listed in Table 2. 

Table 2. SRC mapping table at backup server 

Req. Proc. Req. Srv. Resp. proc.  Resp. Srv. Bus State  

Req. data 1 Read Msg 2 Srv. Normal  

Send data 2 Rec. data 1 Msg. Normal 

Req. model 4 DL model 3 Srv. Normal 

Send model 3 Rec. model 4 Msg. Normal 

B.C model 4 Read Msg. 5 Msg. Normal 

 

DOC. DOC includes the read-write lock of the sheet, 

operation concurrency of a database, length of the 

database operation waiting queue. The DOC mapping 

tables can be constructed accordingly as shown in 

Table 3. Notable that there are several independent 

copies of services 4 at the backup server. 

Table 3. DOC mapping table at backup server 

Req. Proc. Req. Srv. Ratio State 

Occupy read-lock 2 0.01 Delayed 

Read data 2 0.02 Delayed 

Occupy read-lock 4 0.01 Delayed 

Download model 4 0.01 Delayed 

 

Then HRC, SRC, and DOC mapping tables are 

constructed, which are summarized below. 

Step 3: Intra-service source abnormal process 

tracing. Firstly, all alert messages are arranged into 

their belonged services, and then the intra-service 

HLC-based source abnormal process is traced within 

every service with alerts according to the inter-service 

constraint mapping tables and alerts. Here the fault tree 

method is employed such that the source abnormal 

process is traced on the basis of fault tree models for 

the four related services, which are shown in Figure 4. 

Specifically, for service 1, both request data and 

receive data processes are reported with alert of 

“delayed”, but the receive data process is traced as the 

source abnormal process due to their functional logic. 

For service 2, among the three processes with alerts, 

occupy read-lock process is traced as the source 

abnormal process. In service 3, too many messages in 

message bus is due to broadcast message process 

sends too many model renewing messages via message 

bus, then the broadcast message process is traced as 

the source abnormal process. For service 4, occupy 

read-lock process is obvious the source abnormal 

process due to its taking read-lock a long time. 

Step 4: Inter-service fault-causing process 

localization. When the source abnormal processes 

have been traced for all services with alerts, the fault-

causing process can be localized via the coupling 

relationship among the services in the form of inter-

service constrain mapping tables. In the concerned case, 

the four services are coupled by the RT database 

reading. From the DOC mapping table, the broadcast 

message process of service 3 is localized as the fault-

causing process, because it broadcasts too many model 

renewing messages with result of the read-lock of the 

RT database is took by the download model process of 

service 4, which further delays the data reading of 

service 2. 

Step 5: Alarming and fault logic reproduction. In 

order to verify the fault localization, the overall 

alarming process and the fault event are reproduced, 

that is, how does the fault-causing process produce the 

overall alerts. This overall alarming process, as well as 

the fault-causing process, would be visualized to help 

the understanding of the IDS. 

The logic of the fault event is depicted in Figure 5, 

that is, the upgrading model service at the host server 

broadcasts the model upgrading message to all servers 

via message bus. After receiving this message again, 

the host server calls downloading model service 3 to 

download the model consequently. As such there are 

several download model processes, which hold the 

read-lock of the RT database for a long time. At the 

same time, the read data process of service 2 is 

delayed because it cannot hold the read-lock thus 

cannot read the RT database within its reading period, 

which causes the interruption of the monitored data 

refresh. 
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Figure 5. Fault causing logic of interruption of a tele- 

metering data refresh 

Step 6: Debugging and/or renewing the fault 

localization knowledge. When new fault-alert logic is 

found, new knowledge is acquired and then can be 

appended to the expert system and the FLC. 

In the studied case, from the results of both fault-

causing process localization and its alerting logic 

reproduction, we trace the syntax error of service 4, 

that is, the model updating message should not be sent 

back to itself. After the patching and updating, the 

monitored key parameter is periodically refreshed 

during the period of model updating. 

4 Case Study 

In this section, we employ the proposed method to 

localize the fault-causing process of a complicated case. 

In this case, the monitored key parameter in SCADA 

application is the generated power (GP) of the grid. 

Usually, the GP value changes steadily without sharp 

fluctuation, as shown in Figure 6(a). However, a fault 

is detected at 7:40, 7:53, 7:55, and 8:20, when the 

measured value fluctuated sharply as illustrated by the 

green curve in Figure 6(b). 

 

(a) Normal trend (b) Abnormal trend 

Figure 6. trend of the generated power of grid 

Before the localization of the fault-causing process, 

we first present the services related to the GP 

monitoring. As illustrated in Figure 7, three servers are 

involved in the GP monitoring, i.e., the IDS managing 

server (in white), the host SCADA application server 

(in blue), and the SCADA application backup server 

(in green). The default host SCADA application server 

is preset, but its state can be changed to backup when 

some conditions are met, and the server’s state 

determines its function. For example, only the server in 

the host state can write GP data to the history database 

in order to avoid data overwriting. There are eight 

services running at the two SCADA application servers 

and one human-machine interface (HMI) visualization 

service in the IDS system managing server, which are 

listed below. 

 

Figure 7. Flow chart of GP monitoring-related services 

‧ Service 1: the backup server determines its host or 

backup (H/B) state. The backup server requests the 

host server’s state information periodically via 

service (Srv.) bus and sets its state as backup when 

host state is fed back by the host server. When it 

does not receive the feedback from host server in 5 

seconds or the feedback state is backup, the backup 

server changes its state into host. 

‧ Service 2: the host server feeds back its H/B state. 

At receiving the querying message from the backup 

server via service bus, the host server queries its 

own state and feeds back its working state to the 

backup server via a message bus. 

‧ Service 3: the backup server reads GP data and 

writes the GP data into history database if necessary. 

The backup server periodically calls the common 

service of data reading from the RT database, and 

writes the GP data to the history database only if its 

state is host. 

‧ Service 4: the host server reads GP data and writes 

this GP data into the history database if necessary. 

Similar to the Service 3, the host server periodically 
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reads GP data from the RT database and writes them 

to the history database when its state is host. 

‧ Service 5: the system managing server plots the GP 

data for data visualization. The system managing 

server periodically calls the common service of data 

reading to get GP data from the history database and 

then plots them at the monitor. 

‧ Service 6: the backup server computes data. This 

service receives data from message bus, calculates 

an intermediate, and then sends it out via message 

bus. 

‧ Common service of data reading from RT database. 

This service reads data as requested from the RT 

database and then feeds back the data via message 

bus. 

‧ Common service of data writing to history database. 

This service receives data from message bus and 

then writes them into the history database as 

requested. 
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The alert messages are categorized according to the 

constraint types and listed below. 

Hardware resource alerts. At the backup server, 

calculate data process of service 6 alarms overuse of 

the memory, while all other processes alarm the 

shortage of memory, and the system information 

monitoring service reports that SWAP memory has 

been used up. 

Functional logic alerts. The system managing process 

of the backup server alarms the processing delay; all 

processes at the backup server alarm processing delay. 

Software resource alerts. At the backup server, the 

system managing process alarms the H/B state frequent 

switching. 

It is notable that all alerts are related to the backup 

server and visualization server, while no alarm 

message is reported from the host server. Then it is 

believed that the host server works properly. 

Based on the knowledge of GP monitoring logic and 

the alerts, we can localize the fault-causing process by 

the proposed four-step method. 

Step 1: constraint mapping table construction. 

Firstly, FLC of the eight services in the form of fault 

tree models are constructed for intra-service source 

abnormal process tracing by fault tree method, which is 

shown in Figure 8. 
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Figure 8. Fault tree of GP monitoring-related services 

Then HRC, SRC, and DOC mapping tables are 

constructed, which are summarized in Table 4 to Table 

7. For brevity, the number of occupied resource is 

omitted and only the state is listed. 

Table 4. Memory-type HRC mapping table at the 

backup server 

Proc.  Belonged Srv.  State 

Request host state 1 insufficient 

Receive host state 1 insufficient 

Read GP data 3 insufficient 

Calculate data 6 excessive 

… … … 

Table 5. SRC mapping table at the backup server 

Type Caller Callee State 

Msg. bus Req. host state Query H/B state delayed

Msg. bus Feedback H/B state Receive host state delayed

… … … … 
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Table 6. DOC mapping table of the RT database 

Proc. Srv. Operation 

Read GP data 3 Reading 

Read GP data 4 Reading 

Table 7. DOC mapping table of the history database 

Proc.  Srv.  Operation  

Write GP data  3 Writing  

Write GP data  4 Writing  

 

Step 2: source abnormal process tracing within 

service. Since no alert is reported by the host server, 

the source abnormal process tracing is only 

implemented at the backup server. Based on the alerts 

and fault-tree models, the source abnormal process of 

service 1 is the Request host server state process due to 

being the starting process and no abnormality from the 

host server to introduce alert at the backup server 

thereafter. For service 3, the source abnormal process 

read GP data is traced due to the same logic as that in 

service 1. Obviously the source abnormal process is 

regarded as Calculate data in service 6 regarding the 

alert from memory-type HRC mapping table. 

Step 3: fault-causing process localization among 

services via inter-service constraints. Besides the 

FLCs, HRCs connect different services at the backup 

server. Specifically, among the source abnormal 

processes set, the memory-type HRC alerts have been 

reported by all these three processes. It is straight to 

infer that Calculate data process is the fault-cause 

process which occupies too much memory with result 

of memory shortage for other two processes. This 

deduction is further confirmed by the earliest alarming 

time index of the Calculate data process. 

Step 4: alarming logic reproduction. From the fault-

causing process and the source abnormal processes of 

services with alerts, we can reproduce the story of 

alarming, which is illustrated in Figure 9. First, 

Calculate data process of service 6 occupies too much 

memory, then all other active processes at the backup 

server are short of memory, which causes the following 

results: i) both request host state and receive host state 

processes of service 1 are delayed, then the backup 

server changes its state into host because it cannot 

receive the state message of the host server in the 

request period and then believes in the host server 

being off-line; ii) read GP data process of service 3 is 

delayed and then reads the overdue data. When the 

state of the backup server is set as host, it will write the 

overdue GP data to the history database and then 

overlap the up-to-the-date data written by the host 

server which works regularly; iii) read GP data 

process of service 5 will read the overdue GP data and 

the plotted GP curve shows a sharp fluctuation; iv) 

when SWAP memory is used up, the out of memory 

(OOM) killer mechanic of Linux will kill some active 

processes to release memory. 

 

Figure 9. Fault causing logic of sharp fluctuaton of GP 

data 

From the fault localization result, the missing of 

memory release at the Calculate data process of 

service 6 is detected. Moreover, from the alarming 

logic reproduction, two new constraints can be 

appended to the FLC, i.e., the GP field of the history 

database cannot be written twice within a data writing 

period, and only one server with host state is permitted 

to appear at the system. After the patching and 

updating, the sharp fluctuation fault disappears, which 

verifies the correctness of the fault localization by the 

proposed method. 

5 Conclusion 

In this paper, a fault localization method is proposed 

for the IDS of smart grid. To decouple the complicated 

coupling among the services, four types of constraints 

are synthesized and constraint mapping tables are 

constructed accordingly. Based on the constructed 

constraint mapping tables and alert messages, the 

obscure fault localization is simplified greatly into 

three steps. In step 1, the source abnormal process is 

traced within every service with alerts without 

concerning other services. In step 2, fault-causing 

process is localized among the abnormal processes by 

only concerning the four types of constraints. In the 

last step, the alarming logic is reproduced to verify the 

fault localization result. Two practical case studies are 

presented and the results show the effect of the 

proposed method. 
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