
An Efficient Constraint Mapping-based Fault-causing Process Localization Method for Intelligent Dispatching Systems of Smart Grid: Case Study 1429

An Efficient Constraint Mapping-based Fault-causing Process

Localization Method for Intelligent Dispatching Systems of Smart

Grid: Case Study

Xinpeng Li1,2, Yuexing Peng3, Guangjie Han4,5, Hanxu Sun1, Bo Yan2

1 School of Automation, Beijing University of Posts and Telecommunications, China
2 Dispatching and Control Center, State Grid Jibei Electric Power company Limited, China

3 Key Lab of Universal Wireless Communication, MoE, Beijing University of Posts and Telecommunications, China
4 College of Engineering, Nanjing Agricultural University, China

5 Department of Information and Communication Systems, Hohai University, China

Xinpeng_li@126.com, yxpeng@bupt.edu.cn, hanguangjie@gmail.com, hxsun@bupt.edu.cn, yan.bo.c@jibei.sgcc.com.cn*

*Corresponding Author: Guangjie Han; E-mail: hanguangjie@gmail.com

DOI: 10.3966/160792642019092005010

Abstract

As the next generation power grid, smart grid, utilizing

modern information technologies, is able to deliver power

more efficiently and response to wide-ranging conditions

and events. Intelligent dispatch system (IDS) is regarded

as the core link of the smart grid to control all the systems,

and then its smooth running is vital to the smart grid.

With numerous functionalities including data aggregation,

data analysis, and decision making, the IDS platform is of

high complexity, and then the reliable online fault

diagnosis of the IDS platform becomes a big challenge

when the IDS platform becomes too complicated to avoid

faults such as functionality logic fault (FLF), software

bug (SB), and hardware fault (HF). In order to decouple

the services of IDS for easing understanding,

transplanting, and debugging, the software design and

implementation are under the principle of modular design

and independent service calling. However, due to the

sharing of the software and hardware resources of the

platform, the running services are coupled tightly, which

calls for efficient and reliable fault-causing process

localization methods. In this paper, a constraint mapping-

based method is proposed for efficient localization of the

fault-causing process. Firstly, the complicated interactions

among processes are analyzed and categorized into inter-

service and intra-service constraints, where inter-service

constraints include database operation constraint (DOC),

software resource constraint (SRC), and hardware

resource constraint (HRC), wihle the intra-service

constraint is summarized as functional logic constraint

(FLC). Then corresponding constraint mapping tables can

be constructed for the IDS platform. Originating from the

abnormal alerts of processes and fault messages of

services, the fault-causing process localization is

decomposed into the track of source abnormal process

within each service and the localization of fault-causing

process among the services regarding intra- and inter-

constraint mapping tables, respectively. At last, the fault

and alarming logics are reproduced in order to achieve

both verification of the result of the fault-causing process

localization and acquisition of new knowledge from the

fault-causing logics. Case studies are presented, and the

results show the efficiency of the proposed method.

Keywords: Fault-causing process localization, Intelligent

dispatch system, Smart grid

1 Introduction

The power grid is an inter-connected network that

transports the generated electricity from generators to

consumers. By utilizing modern information

technologies, smart grid (SG), regarded as the next

generation power grid, is capable of delivering power

in more efficient ways and responding to wide-ranging

conditions and events. More specifically, the SG is

regarded as a `smart’ electric system that makes full

use of modern communication technologies and

computational intelligence in an integrated fashion

across electricity generation, transmission, substations,

distribution and consumption to achieve a system that

is safe, secure, reliable, resilient, efficient, and

sustainable [1].

Intelligent dispatch system (IDS) is the control

system of the SG with functionalities of data

aggregation, data analysis, and decision-making [2].

There are fruitful researches on the data aggregation

[3-6], data analysis, fault diagnosis, and security for the

smart grid [7-12, 22].

IDS platform is a complicated software and

hardware platform, on which the IDS functionalities

are performed. It is vitally important to ensure the

smooth running of the IDS platform, so that a

monitoring system is a must to monitor the running

state of the IDS platform by abnormality early warning,

1430 Journal of Internet Technology Volume 20 (2019) No.5

fault-causing process localization, and troubleshooting.

For easing functionality expansion, transplanting,

modifying, debugging, and understanding, the IDS is

designed in an architectural and modular fashion, that

is, a complicated functionality is decomposed into

several simple and independent services. Moreover, the

software implementation accords to isolation principle,

i.e, a common service supporting several functionalities

will be generated multiple independent versions such

that they are isolated from each other. In this way, the

IDS software is decoupled to facilitate the fault

diagnosis for the monitoring system. However, the IDS

software is running on the hardware platform, and the

sharing of hardware resources (i.e., CPU, memory,

hard disk, and network bandwidth) introduces

complicated coupling among the running services,

which raises a big challenge for fault-causing process

localization. Compared to the fruitful fault diagnosis in

smart grid, the research on the fault-causing process

localization for the IDS platform is not sufficient.

Roughly, the existing fault-causing process localization

methods can be categorized into three types.

Knowledge-based method. Based on the knowledge

of functionality logics and the software implementation,

inference engine is employed to analyze the fault

generation logics. Knowledge-based methods include

thresholding-based method, fault-tree method, fuzzy

logic, expert system, and so on. Thresholding-based

method is simple but efficient in alarming and fault-

causing process localization. When a parameter of a

process exceeds a preset threshold, an alert is initiated.

For example, an active process inevitably occupies

memory. If the available memory is less than a

threshold so that this process cannot work properly, it

will trigger off an abnormal alert to show the shortage

of memory. Clearly, if the threshold is set accurately,

the fault can be traced efficiently. The thresholding-

based method is widely deployed in equipment

working condition monitoring, such as in [13].

However, it is of big challenges for applying this

method into the IDS platform. Since all active

processes running at the same network element share

the hardware resources, i.e., memory, central

processing unit (CPU), one resource shortage fault will

cause avalanche type chain reaction of alarms because

other running processes will be also short of hardware

resource. One real case is: a process periodically

calculates some intermediates for other services, which

may require a huge memory to store the data and speed

up the calculation. When this process has a syntax

error so that it does not release the memory after the

calculation, the memory will be used up rapidly, which

causes the memory shortage alerts for all other active

processes. Moreover, all active processes may have to

postpone their proceedings due to the shortage of

memory, which results in the burst of other types of

abnormal alerts. In this case, avalanche type alerts are

observed, but it is very hard to localize the source

fault-causing process by the thresholding-based

method solely due to the tight coupling of the

processes in the form of hardware resource sharing.

Fault tree method is based on the rules which are

originated from experts’ knowledge, i.e., timing

relationship between processes and reasonable region

of a key parameter, then the inference engine uses rules

to infer conclusions with respect to certain faults. Fault

tree method is widely applied to localize the fault-

causing process within a service, but it becomes

infeasible for large-scale coupling system like IDS

platform due to the exponentially increased complexity.

Fuzzy logic is a method to partition a feature space into

fuzzy sets and utilize fuzzy rules for reasoning [14].

Fuzzy logic has been applied successfully for fault

diagnosis [15-16]. The knowledge based expert system

methods can provide insight for the IDS, however, its

performance is limited by the expert knowledge and

known rules. The ever-increasing expansion and

updating of the IDS and the obscure coupling among

the services make the solo use of knowledge-based

methods degrade severely in the fault-causing process

localization of the IDS. Naturally, the knowledge-

based methods are combined with other techniques to

overcome the problem of large scale and high coupling.

Software testing methods. Before the practical

application, software testing is a must for the IDS.

From the testing level, there are unit testing,

integration testing, system testing, and operational

acceptance testing [17]. As for testing methods, there

are static testing, dynamic testing, and the box

approach which includes white-box testing, black-box

testing, and gray-box testing [18]. However, even after

strict software testing, software errors are inevitable for

the tightly coupled IDS. With the expansion of the grid

and the increase of functionality, the IDS needs

constant updating, which severely hardens the software

testing. In other words, software testing cannot avoid

the software errors of the IDS, and what is more severe

for software testing methods is that they cannot

localize the fault of IDS on the spot.

Machine learning methods. Owing to its powerful

ability of nonlinear approximation and adaptive

learning, machine learning has been the most well-

established data-driven fault diagnosis tool for

hardware and network [19-21]. When there are enough

fault localization samples to illustrate the connection

between the source fault-causing process and the

following alerts, machine learning method is an

efficient tool to model the obscure relation between the

input and the output instead of modeling the cause and

the effect of the fault. When the fault examples or the

monitored parameters are not sufficient, however,

machine learning method degrades badly. In the case

of the IDS platform, the fault samples usually are

seldom, which severely hinders the application of

machine learning methods in the fault localization of

the IDS.

An Efficient Constraint Mapping-based Fault-causing Process Localization Method for Intelligent Dispatching Systems of Smart Grid: Case Study 1431

Concerning the big challenges on the fault-causing

process localization of the complicated IDS platform,

in this paper we study the constraint mapping-based

method to localize the fault-causing process. It is

notable that the localization of faults caused by

functionalities of the smart grid is out of the scope of

this method. The main contributions include:

‧ The complicated couplings among the processes and

services in the IDS system are described and

analyzed, and most critical constraints are then

refined and categorized into inter-service constrains

and intra-service constrains, where inter-service

constraints include database operation constraint

(DOC), hardware resource constraint (HRC), and

software resource constraint (SRC), and intra-

service constraint is summarized as functional logic

constraint (FLC). Based on the constraint types of

services, four classes of constrain mapping tables

can be constructed for the IDS platform, which are

the basis of the proposed method.

‧ An efficient fault-causing process localization

method is proposed, which is divided into two

phases: (i) intra-service tracing phase traces the

source abnormal process within every service with

alerts based on the intra-service constraint mapping

tables; (ii) inter-service localization phase localizes

the source fault-causing process from the set of

traced source abnormal processes on the base of

inter-service constraint mapping tables.

‧ The alarming logic of the fault event is reproduced

to achieve both the verification of the fault-causing

process localization result and discovery of either

new knowledge or software bug.

The rest of paper is organized as follows. Section II,

the IDS platform, including its software and hardware

architecture, functionalities, and causes and types of

couplings among services, are presented. In Section III,

the proposed decoupling-based fault-causing process

localization method is detailed, and practical case is

studied to illustrate the effectiveness of the proposed

method in Section IV. Section V concludes the paper.

2 IDS Platform and Constraint Mapping

2.1 IDS Software and Hardware Platform

The IDS platform is a complicated software and

hardware systems. The software architecture can be

layered to five layers, i.e., operation system layer, data

storage layer, transport layer, public service layer,

application layer. Based on the layered architecture, the

IDS software platform provides functionalities in a

manner of decoupling via (i) layered architecture,

modular design, and functionality abstraction

mechanism, i.e., functionality-service-process, for easy

transplanting and understanding; (ii) independent

calling, that is, independent new public service is

initiated for a new caller to ensure the independent

running of multiple implementations of the same

services; (iii) message and service bus mechanism for

message transferring between services in order to avoid

direct calling. In this way the IDS software platform

features: (i) complicated functional logic among the

services and processes due to the inner interconnection

among functionalities; (ii) independent running of

services as the result of independent calling of the

common services by functionalities.

The hardware platform of the IDS consists of four

parts, i.e., data storage and database management by

the storage array and data server; data processing by

the application server; networking by routers, switches,

and firewalls; and data visualization, decision making,

and dispatching by command & dispatch center. The

layout of the IDS hardware has much to do with the

software implementation, and affects the coupling of

the services. The features of the hardware platform of

IDS include: (i) server cluster-based parallel

computing mechanism to greatly improve the

processing capability for ever-increasing traffic data in

smart grid; (ii) hot backup-based redundancy

mechanism for robustness of the IDS; and (iii)

distributed data storage mechanism for bandwidth save

and quick response.

Although the isolated mechanism is deployed for the

software platform of IDS, the sharing of hardware

resource of IDS introduces complicated coupling

among processes and services, which is detailed in the

following section. In summary, two big challenges are

arose for the fault-causing process localization in the

IDS, i.e., (i) the sharing of both software and hardware

resource of IDS induces tight coupling among

processes and services, which makes it impossible to

exhaust all possible coupling among processes and

services for knowledge-based inference methods; (ii)

besides those services with routine timing, there are

lots of event-driving services in IDS, which results in

the dynamic running of services and processes.

Consequently IDS requires real-time monitoring and

fault localization of the IDS, which causes a big

problem for software testing methods; (iii) After

careful software testing before practical

implementation of IDS, the fault events, though

inevitable, are seldom. In this case, machine learning-

based methods degrade severely.

2.1.1 Coupling Analysis and Constraint Mapping

The complicated coupling among the processes of

the IDS services is the result of software and hardware

resources sharing of the IDS platform. More

specifically, from the viewpoint of the layered

architecture of IDS software, the following operations

will cause the coupling of processes. To ease the

coupling analysis, the function of real-time visual

monitoring of a key parameter is set as an example. As

1432 Journal of Internet Technology Volume 20 (2019) No.5

illustrated in Figure 1, there are four services running

at three servers: data aggregation service at the front

end server (FES), data harvest service and data

visualization service at the managing server, data

transport service at the data server. Firstly, data

aggregation service calls data harvest service via

service bus to collect data. At receiving the data

request, data transport service locates the data and then

transmits the requested data via message bus to data

harvest service. These monitored data are written to the

real-time database and then are transferred to the

history database by data transport service. At last, data

visualization service reads the data from the history

database and then transfers them to human-machine

interface for visualization. The following operations

will cause coupling of processes.

Figure 1. Illustration of the coupling among processes

of three services

‧ Collaboration among various services to support a

function. As illustrated in Figure 1, the function of

real-time visual monitoring of a key parameter

requires the collaboration of four services. In this

case, timing constraint exists among the processes of

these services.

‧ Database reading and writing. As illustrated in

Figure 1, data writing process of the data

aggregation service at the FES server renews the RT

database, and then data reading & writing process

of the data transport service at the data server writes

the history database with the data reading from the

real-time database, and finally data reading process

of the data visualization service at the managing

server reads the history database and outputs the

monitored data to human-machine interface for

visualization. All data writing and reading processes

have to occupy the read-write lock before their

reading/writing action, and then the read-write lock

becomes a constraint for these processes. From this

simple example, it is clearly that the database

reading and writing connects several services.

‧ Public service calling via service bus and

data/message transportation via message bus. These

two types of connections are also depicted in Figure

1. More specifically, the data aggregation service at

the FES server is responsible for the renewing of the

monitored data in the real-time database, which is

achieved by calling data harvest service at the

managing server via service bus, and the data

harvest service collects the requested data and feeds

them back to the data aggregation service via a

message bus. At receiving the requested data, the

data writing process of the data aggregation service

writes the monitored data into the real-time database

to renew the data. Consequently the data transport

service copies the monitored data and stores the

copy at the history database, which is read and then

visualized by the data visualization service at the

managing server.

The deployment of IDS software on a hardware

platform will also introduce complicated coupling

among the processes of services. Some typical causes

are listed below, which also illustrate the hardware-

related coupling types.

‧ The ever-increasing massive data are always stored

in a distributed way with redundancy to ensure data

security. In the fog computing aided cloud storage

mode, a large amount of data will be stored at the

network edge which is near to the data generators so

as to facilitate local intelligence and reduce the

bandwidth consumption. Then the data access might

visit multiple data servers.

‧ Hot backup mechanic is a standard technique for the

stability of the IDS. Some key application servers

may have several backup servers, and this hot

backup mechanic introduces bi-direction

communication between the host server and the

backup ones. Although the same service is running

at both master and backup servers, but there are

often constraints on the service, i.e., only the service

at the master server can write data to the database.

Clearly, these constraints introduce coupling among

the independent services due to the backup

mechanism.

‧ With the rapid expansion of the grid scale and its

functionalities, the IDS scale increases correspondingly.

Then more hardware resources are required,

including computing, storage, and networking.

Parallel computing is inevitable, which coordinates

the resources to fulfil the tasks efficiently, but at the

same time it couples the services involved in the

parallel computing.

‧ In the large-scale IDS, networking becomes more

important, which introduces interaction among the

connected servers.

‧ All processes running on the same network element

(i.e., server, router) will share the hardware

resources, like CPU, memory, hard disk, and

networking bandwidth. By sharing the hardware

resources, all active processes are coupled. Since the

hardware resources have hard constraints, excessive

occupancy of hardware resources by one process

may cause avalanche type chain reaction of alerts

due to the shortage of resource to fulfil their tasks.

An Efficient Constraint Mapping-based Fault-causing Process Localization Method for Intelligent Dispatching Systems of Smart Grid: Case Study 1433

From the knowledge graph and the deployment of

the IDS, couplings among processes and services can

be categorized into four types of constraints, i.e., the

functional logic constraints of services (FLC), the

hardware resource constraints of network elements

(HRC), the software resource constraints of IDS (SRC),

and the database operation constraints of the IDS

(DOC).

FLC. The implementation of a service requires the

reasonable assembling and the fulfilling of some rules

for the ensemble of the involved processes. There are

mainly two kinds of FLC, i.e., the order of operation

constraint and the value range constraint. Traditionally

the operation order of processes includes sequential,

parallel, and conditional selective operations in both

event-driving and periodic operation mode of the

services. The order of operation constraints depends on

both functional logic of functionality and software

implementation mode, and they keep constant when

the IDS software is implemented. Value range

constraints, such as the state query should be finished

within one second, are always determined by the expert

knowledge of the IDS functionalities, and often

reflected as the threshold in anomaly detection.

Different from the order of operation constraints,

which can be determined by the logic of the software,

the value range constraints are variable according to

the hardware capacity.

HRC. The hardware resource of a network element

(i.e., server, workstation, router, switch, gateway)

mainly includes the CPU, memory (both physical and

virtual memory), hard disk, and network bandwidth.

An active process would occupy some resources, and

the limits are usually predetermined as the threshold

for anomaly detection to ensure the smooth running of

the service and the available resource of the hardware.

SRC. SRC in the IDS is the communication constraints,

where there are two types of bus mechanisms for

communication. The first one is the inter-server

communication. For example, when two servers

collaborate to fulfill a service, the processes running in

different servers will communicate with each other via

message bus. The other one is the inter-service

communication. As shown in Figure 1, when a service

needs to call a public service, it will send a call

message via service bus to the public service. The SRC

mainly consists of the communication constraints on

the query length and the delay spread.

DOC. In IDS, there are history database and real-time

database, and all data reading and writing operations

are correlated with these two databases. For safe, there

are always constraints on the read-write lock of the

sheet, operation concurrency of a database, and length

of the database operation waiting queue, which

contribute to DOC.

In order to facilitate the localization of the fault-

causing process by our proposed method, these four

types of constraints can be further categorized into

intra- and inter-service constraints. When the processes

involved in a constraint belong to different services,

this constraint then can be split into several intra-

service constraints. This splitting operation greatly

increases the number of constraints, but it is necessary

for the proposed method because the FLC is mainly

single service based, and classic knowledge-based fault

diagnoses methods are also single service-based. On

the other hand, as stated above, HRC, SRC, and DOC

are the main cause of inter-service coupling in the IDS.

These inter-service constraints are the base of final

fault-causing process localization.

After the categorization of coupling types of

processes, four types of intra- and inter-service

constraint-mapping tables can be further constructed,

which act as the basis of the proposed method and will

be explained in the following two sections.

3 Constraint Mapping-based Fault-

causing Process Localization Method

In order to ease the understanding of the proposed

method, a practical case is studied as an example to

explain the four steps of the proposed method.

3.1 Fault Case: A Monitored Parameter Stops

Refresh

Supervisory control and data acquisition (SCADA)

application is responsible for the online RT monitoring

of key grid parameters. In this case, the fault is that one

of key parameters stopped refreshing during 17:45-

18:00 and 19:19-19:41 at the SCADA host server, but

this key parameter tele-metering service worked

properly at the SCADA backup server. The flow chart

of the related services at the host server during the

faulting period is presented in Figure 2. Specifically,

the procedure of the related services is that: service 1

performs periodical data reading and plotting by

calling public service 2 to read data from the RT

database, while service 4 performs model updating

with the aid of public service 3 to download the model

from the RT database. Obviously there are two

independent functionalities: reading the value of the

key parameter and showing it periodically; installing a

new model and broadcasting the model renewing

messages to other node. These two functionalities are

coupled via DOC and HRC.

1434 Journal of Internet Technology Volume 20 (2019) No.5

Figure 2. Flow chart of tele-metering data refresh-

related services

When the monitored parameter stops refresh, three

types of alert messages are reported, which are listed

below.

‧ Database alerts: too many read-lock occupation

requests in the waiting list of the RT database from

service 2 and 5 ; the read-lock of RT database is

held by the service 4 for long time.

‧ Software resource alerts: message bus is crowded by

too many model renewing message from broadcast

message process of service 3; service bus is crowded

by calling model download process of service 3.

‧ Function logic alerts: receive data process and plot

data process of service 1 are delayed; read data

process and send data process of service 2 are

delayed; receive model process of service 4 is

delayed.

3.2 The Proposed Method

Based on the functional logics of services and the

monitored fault and alert messages, the proposed

method localizes the fault-causing process via four

steps: (i) constructing process state mapping tables

according to the intra- and inter-service constraints; (ii)

source abnormal process tracing within every service

based on intra-service constraints; (iii) fault-causing

process localization among the set of source abnormal

processes based on inter-service constraints; (iv) the

fault and overall alarming process reproduction for

both verification of the fault-causing process

localization result and new knowledge discovery. The

flow chart of the proposed method is shown in Figure 3.

We take the above case as an example to explain the

four steps of the proposed method.

Step 1: Constructing fault tree model of every

service of the IDS platform. Fault tree model will be

employed to trace the intra-service source abnormal

process, and it is also the basis of FLC mapping table

construction. We firstly construct the fault tree model

for every service based on the expert knowledge of

IDS software and hardware platform.

Figure 3. Block diagram of the procedures of the

proposed fault-causing process localization method

Step 2: Constructing intra- and inter-service

constraint mapping tables. Guided by the knowledge

of IDS software and hardware platform, intra- and

inter-service constraint mapping tables can be

constructed.

Firstly, functional logic constrain (FLC) of the

related four services are constructed in the form of

fault tree model and illustrated in Figure 4, which

facilitates the tracing of source abnormal process

within service by fault tree method.

Figure 4. Fault tree models for the services related to

the fault that a monitored data stops refreshing

An Efficient Constraint Mapping-based Fault-causing Process Localization Method for Intelligent Dispatching Systems of Smart Grid: Case Study 1435

Then the HRC, SRC, and DOC-mapping tables are

constructed according to the resources that the related

services occupy. These three types of constraints are

summarized below.

HRC. The hardware resource of a network element

(i.e., server, workstation, router, switch, gateway)

mainly includes the CPU, memory (both physical and

virtual memory), hard disk, and network bandwidth.

An active process would occupy some resources, and

the limits are usually preset as the threshold for

abnormal alarming. The HRC mapping tables are

constructed and updated for every network element

timely, and Table 1 depicts the CPU-type HRC

mapping table. It is natural to construct memory, hard

disk, and network bandwidth-type HRC mapping

tables, which are omitted here.

Table 1. CPU-type HRC mapping table at backup

server

Process Service Ratio Constraint State

Request data 1 0.01 0.05 Normal

Receive data 1 0.02 0.05 Normal

Refresh data 1 0.01 0.05 Normal

Read message 2 0.01 0.05 Normal

Occupy real-lock 2 0.01 0.05 Normal

Read data 2 0.01 0.05 Normal

… … … … …

SRC. SRC is the networking type including service

bus and message bus. From the functional logics of the

related services, it is easy to construct SRC table,

which is listed in Table 2.

Table 2. SRC mapping table at backup server

Req. Proc. Req. Srv. Resp. proc. Resp. Srv. Bus State

Req. data 1 Read Msg 2 Srv. Normal

Send data 2 Rec. data 1 Msg. Normal

Req. model 4 DL model 3 Srv. Normal

Send model 3 Rec. model 4 Msg. Normal

B.C model 4 Read Msg. 5 Msg. Normal

DOC. DOC includes the read-write lock of the sheet,

operation concurrency of a database, length of the

database operation waiting queue. The DOC mapping

tables can be constructed accordingly as shown in

Table 3. Notable that there are several independent

copies of services 4 at the backup server.

Table 3. DOC mapping table at backup server

Req. Proc. Req. Srv. Ratio State

Occupy read-lock 2 0.01 Delayed

Read data 2 0.02 Delayed

Occupy read-lock 4 0.01 Delayed

Download model 4 0.01 Delayed

Then HRC, SRC, and DOC mapping tables are

constructed, which are summarized below.

Step 3: Intra-service source abnormal process

tracing. Firstly, all alert messages are arranged into

their belonged services, and then the intra-service

HLC-based source abnormal process is traced within

every service with alerts according to the inter-service

constraint mapping tables and alerts. Here the fault tree

method is employed such that the source abnormal

process is traced on the basis of fault tree models for

the four related services, which are shown in Figure 4.

Specifically, for service 1, both request data and

receive data processes are reported with alert of

“delayed”, but the receive data process is traced as the

source abnormal process due to their functional logic.

For service 2, among the three processes with alerts,

occupy read-lock process is traced as the source

abnormal process. In service 3, too many messages in

message bus is due to broadcast message process

sends too many model renewing messages via message

bus, then the broadcast message process is traced as

the source abnormal process. For service 4, occupy

read-lock process is obvious the source abnormal

process due to its taking read-lock a long time.

Step 4: Inter-service fault-causing process

localization. When the source abnormal processes

have been traced for all services with alerts, the fault-

causing process can be localized via the coupling

relationship among the services in the form of inter-

service constrain mapping tables. In the concerned case,

the four services are coupled by the RT database

reading. From the DOC mapping table, the broadcast

message process of service 3 is localized as the fault-

causing process, because it broadcasts too many model

renewing messages with result of the read-lock of the

RT database is took by the download model process of

service 4, which further delays the data reading of

service 2.

Step 5: Alarming and fault logic reproduction. In

order to verify the fault localization, the overall

alarming process and the fault event are reproduced,

that is, how does the fault-causing process produce the

overall alerts. This overall alarming process, as well as

the fault-causing process, would be visualized to help

the understanding of the IDS.

The logic of the fault event is depicted in Figure 5,

that is, the upgrading model service at the host server

broadcasts the model upgrading message to all servers

via message bus. After receiving this message again,

the host server calls downloading model service 3 to

download the model consequently. As such there are

several download model processes, which hold the

read-lock of the RT database for a long time. At the

same time, the read data process of service 2 is

delayed because it cannot hold the read-lock thus

cannot read the RT database within its reading period,

which causes the interruption of the monitored data

refresh.

1436 Journal of Internet Technology Volume 20 (2019) No.5

Figure 5. Fault causing logic of interruption of a tele-

metering data refresh

Step 6: Debugging and/or renewing the fault

localization knowledge. When new fault-alert logic is

found, new knowledge is acquired and then can be

appended to the expert system and the FLC.

In the studied case, from the results of both fault-

causing process localization and its alerting logic

reproduction, we trace the syntax error of service 4,

that is, the model updating message should not be sent

back to itself. After the patching and updating, the

monitored key parameter is periodically refreshed

during the period of model updating.

4 Case Study

In this section, we employ the proposed method to

localize the fault-causing process of a complicated case.

In this case, the monitored key parameter in SCADA

application is the generated power (GP) of the grid.

Usually, the GP value changes steadily without sharp

fluctuation, as shown in Figure 6(a). However, a fault

is detected at 7:40, 7:53, 7:55, and 8:20, when the

measured value fluctuated sharply as illustrated by the

green curve in Figure 6(b).

(a) Normal trend (b) Abnormal trend

Figure 6. trend of the generated power of grid

Before the localization of the fault-causing process,

we first present the services related to the GP

monitoring. As illustrated in Figure 7, three servers are

involved in the GP monitoring, i.e., the IDS managing

server (in white), the host SCADA application server

(in blue), and the SCADA application backup server

(in green). The default host SCADA application server

is preset, but its state can be changed to backup when

some conditions are met, and the server’s state

determines its function. For example, only the server in

the host state can write GP data to the history database

in order to avoid data overwriting. There are eight

services running at the two SCADA application servers

and one human-machine interface (HMI) visualization

service in the IDS system managing server, which are

listed below.

Figure 7. Flow chart of GP monitoring-related services

‧ Service 1: the backup server determines its host or

backup (H/B) state. The backup server requests the

host server’s state information periodically via

service (Srv.) bus and sets its state as backup when

host state is fed back by the host server. When it

does not receive the feedback from host server in 5

seconds or the feedback state is backup, the backup

server changes its state into host.

‧ Service 2: the host server feeds back its H/B state.

At receiving the querying message from the backup

server via service bus, the host server queries its

own state and feeds back its working state to the

backup server via a message bus.

‧ Service 3: the backup server reads GP data and

writes the GP data into history database if necessary.

The backup server periodically calls the common

service of data reading from the RT database, and

writes the GP data to the history database only if its

state is host.

‧ Service 4: the host server reads GP data and writes

this GP data into the history database if necessary.

Similar to the Service 3, the host server periodically

An Efficient Constraint Mapping-based Fault-causing Process Localization Method for Intelligent Dispatching Systems of Smart Grid: Case Study 1437

reads GP data from the RT database and writes them

to the history database when its state is host.

‧ Service 5: the system managing server plots the GP

data for data visualization. The system managing

server periodically calls the common service of data

reading to get GP data from the history database and

then plots them at the monitor.

‧ Service 6: the backup server computes data. This

service receives data from message bus, calculates

an intermediate, and then sends it out via message

bus.

‧ Common service of data reading from RT database.

This service reads data as requested from the RT

database and then feeds back the data via message

bus.

‧ Common service of data writing to history database.

This service receives data from message bus and

then writes them into the history database as

requested.

Request host
server state

Srv. bus

Receive data

Msg. bus

Data?

Yes

Set state as
Backup

No

Calling data
reading

Svr. bus

Receive data

Data?

Yes

No

Query server
H/B state

Calling data
writing

Srv. bus

State is

Host?

Yes

Time >5s?
No

Yes

Set state as
Backup

H/B
state

Query server
state

H/B
state

Read
Message

Srv. bus

Srv.

Calling?

Yes

No

Feed back
server state

Msg. bus

H/B
state

Host?

Yes

No

Service 1: backup server
sets its H/B state

Service 2: host server
feedbacks its H/B state

Service 3: backup server
decides to write data or not

Service 4: host server
decides to write data or not

Calling data
reading

Svr. bus

Receive data

Data?

Yes

No

Query server
H/B state

Calling data
writing

Srv. bus

H/B
state

Host?

Yes

The alert messages are categorized according to the

constraint types and listed below.

Hardware resource alerts. At the backup server,

calculate data process of service 6 alarms overuse of

the memory, while all other processes alarm the

shortage of memory, and the system information

monitoring service reports that SWAP memory has

been used up.

Functional logic alerts. The system managing process

of the backup server alarms the processing delay; all

processes at the backup server alarm processing delay.

Software resource alerts. At the backup server, the

system managing process alarms the H/B state frequent

switching.

It is notable that all alerts are related to the backup

server and visualization server, while no alarm

message is reported from the host server. Then it is

believed that the host server works properly.

Based on the knowledge of GP monitoring logic and

the alerts, we can localize the fault-causing process by

the proposed four-step method.

Step 1: constraint mapping table construction.

Firstly, FLC of the eight services in the form of fault

tree models are constructed for intra-service source

abnormal process tracing by fault tree method, which is

shown in Figure 8.

Read data

Msg. bus

Data?

Yes

Compute data

Send data

Msg. bus

No

Read
Message

Srv. bus

Srv. Req.?

Yes

Occupy
read-lock

No

Real-time
database

Read-

lock?
Yes

No

Read data

Release
Read-lock

Transmit
model data

Msg. bus

Calling data
reading

Srv. bus

Data?

Plot data

No

Service 6: backup
server computes data

Yes

Service 5: visualization
server plots data

Common service of data
reading from RT database

Common service of data
writing to history database

Read
Message

Srv. bus

Srv. Req.?

Yes

Occupy
write-lock

No

History
database

write-lock?

Yes

No

Write data

Release
Read-lock

Read data

Msg. bus

Figure 8. Fault tree of GP monitoring-related services

Then HRC, SRC, and DOC mapping tables are

constructed, which are summarized in Table 4 to Table

7. For brevity, the number of occupied resource is

omitted and only the state is listed.

Table 4. Memory-type HRC mapping table at the

backup server

Proc. Belonged Srv. State

Request host state 1 insufficient

Receive host state 1 insufficient

Read GP data 3 insufficient

Calculate data 6 excessive

… … …

Table 5. SRC mapping table at the backup server

Type Caller Callee State

Msg. bus Req. host state Query H/B state delayed

Msg. bus Feedback H/B state Receive host state delayed

… … … …

1438 Journal of Internet Technology Volume 20 (2019) No.5

Table 6. DOC mapping table of the RT database

Proc. Srv. Operation

Read GP data 3 Reading

Read GP data 4 Reading

Table 7. DOC mapping table of the history database

Proc. Srv. Operation

Write GP data 3 Writing

Write GP data 4 Writing

Step 2: source abnormal process tracing within

service. Since no alert is reported by the host server,

the source abnormal process tracing is only

implemented at the backup server. Based on the alerts

and fault-tree models, the source abnormal process of

service 1 is the Request host server state process due to

being the starting process and no abnormality from the

host server to introduce alert at the backup server

thereafter. For service 3, the source abnormal process

read GP data is traced due to the same logic as that in

service 1. Obviously the source abnormal process is

regarded as Calculate data in service 6 regarding the

alert from memory-type HRC mapping table.

Step 3: fault-causing process localization among

services via inter-service constraints. Besides the

FLCs, HRCs connect different services at the backup

server. Specifically, among the source abnormal

processes set, the memory-type HRC alerts have been

reported by all these three processes. It is straight to

infer that Calculate data process is the fault-cause

process which occupies too much memory with result

of memory shortage for other two processes. This

deduction is further confirmed by the earliest alarming

time index of the Calculate data process.

Step 4: alarming logic reproduction. From the fault-

causing process and the source abnormal processes of

services with alerts, we can reproduce the story of

alarming, which is illustrated in Figure 9. First,

Calculate data process of service 6 occupies too much

memory, then all other active processes at the backup

server are short of memory, which causes the following

results: i) both request host state and receive host state

processes of service 1 are delayed, then the backup

server changes its state into host because it cannot

receive the state message of the host server in the

request period and then believes in the host server

being off-line; ii) read GP data process of service 3 is

delayed and then reads the overdue data. When the

state of the backup server is set as host, it will write the

overdue GP data to the history database and then

overlap the up-to-the-date data written by the host

server which works regularly; iii) read GP data

process of service 5 will read the overdue GP data and

the plotted GP curve shows a sharp fluctuation; iv)

when SWAP memory is used up, the out of memory

(OOM) killer mechanic of Linux will kill some active

processes to release memory.

Figure 9. Fault causing logic of sharp fluctuaton of GP

data

From the fault localization result, the missing of

memory release at the Calculate data process of

service 6 is detected. Moreover, from the alarming

logic reproduction, two new constraints can be

appended to the FLC, i.e., the GP field of the history

database cannot be written twice within a data writing

period, and only one server with host state is permitted

to appear at the system. After the patching and

updating, the sharp fluctuation fault disappears, which

verifies the correctness of the fault localization by the

proposed method.

5 Conclusion

In this paper, a fault localization method is proposed

for the IDS of smart grid. To decouple the complicated

coupling among the services, four types of constraints

are synthesized and constraint mapping tables are

constructed accordingly. Based on the constructed

constraint mapping tables and alert messages, the

obscure fault localization is simplified greatly into

three steps. In step 1, the source abnormal process is

traced within every service with alerts without

concerning other services. In step 2, fault-causing

process is localized among the abnormal processes by

only concerning the four types of constraints. In the

last step, the alarming logic is reproduced to verify the

fault localization result. Two practical case studies are

presented and the results show the effect of the

proposed method.

References

[1] X. Fang, S. Misra, G. Xue, D. Yang, Smart Grid - The New

and Improved Power Grid: A Survey, IEEE Communication

Survey & Tutorials, Vol. 14, No. 4, pp. 944-980, April, 2012.

[2] P. Zhang, F. Li, N. Bhatt. Next-generation Monitoring,

Analysis, and Control for the Future Smart Control Center,

An Efficient Constraint Mapping-based Fault-causing Process Localization Method for Intelligent Dispatching Systems of Smart Grid: Case Study 1439

IEEE Transactions on Smart Grid, Vol. 1, No. 2, pp. 186-192,

2010.

[3] A. Aburabou, A Wireless Communication Architecture for

Smart Grid Distribution Networks, IEEE System Journal, Vol.

10, No.1, pp. 251-261, January, 2016.

[4] Z. Guan, J. Li, L. Wu, Y. Zhang, J. Wu, X. Du, Achieving

Efficient Ad Secure Data Acquisition for Cloud-Supported

Internet of Things in Smart Grid, IEEE Internet of Thing

Journal, Vol. 4, No. 6, pp. 1934-1944, June, 2017.

[5] F. Aalamifar, L. Lampe, Cost-efficient QoS-aware Data

Acquisition Point Placement for Advanced Metering

Infrastructure, IEEE Transactions on Communications, Vol.

66, No. 12, pp. 6260-6274, December, 2018.

[6] Z. Wang, An Identity-based Data Aggregation Protocol for

the Smart Grid, IEEE Transactions on Industrial Informatics,

Vol. 13, No. 5, pp. 2428-2435, 2017.

[7] A. Singh, R. Singh, B. Pal, Stability Analysis of Networked

Control in Smart Grids, IEEE Transactions on Smart Grid,

Vol. 6, No. 1, pp. 381-390, 2015.

[8] K. Sun, Q. Chen, Z. Gao, An Automatic Faulted Line Section

Location Method for Electric Power Distribution Systems

Based on Multisource Information, IEEE Transactions on

Power Delivery, Vol. 31, No.4 pp. 1542-1551, August, 2016.

[9] U. Choi, J. Lee, F. Blaabjerg, K. Lee, Open-circuit Fault

Diagnosis and Fault-tolerant Control for a Grid-connected

NPC Inverter, IEEE Transactions on Power Electronics, Vol.

31, No. 10, pp. 7234-7247, October, 2016.

[10] M. Rana, W. Xiang, G. Wang, IoT-based State Estimation for

Microgrids, IEEE Internet of Things Journal, Vol. 5, No. 2,

pp. 1345-1346, April, 2018.

[11] M. M. Rana, L. Li, S. W. Su, W. Xiang, Microgrid State

Estimation: A Distributed Approach, IEEE Transactions on

Industrial Informatics, Vol. 14, No. 8, pp. 3368-3375, August,

2018.

[12] G. Han, X. Miao, H. Wang, M. Guizani, W. Zhang, CPSLP:

A Cloud-based Scheme for Protecting Source-location

Privacy in Wireless Sensor Networks Using Multi-sinks,

IEEE Transaction on Vehicular Technology, Vol. 68, No. 3,

pp: 2739-2750, Mary, 2019.

[13] Z. Li, Q. Li, Z. Wu, J. Yu, R. Zheng, A Fault Diagnosis

Method for on Load Tap Changer of Aerospace Power Grid

Based on the Current Detection, IEEE Access, Vol. 6, No. 4,

pp. 24148-24156, April, 2018.

[14] C. Nan, F. Khan, M. Iqbal, Real-time Fault Diagnosis Using

Knowledge-based Expert System, Process Safety Environ.

Protection, Vol. 86, No. 1, pp. 55-71, January, 2008.

[15] F. Zidani, D. Diallo, M. Benbouzid, R. Nait-Said, A Fuzzy-

based Approach for the Diagnosis of Fault Modes in a

Voltage-fed PWM Inverter Induction Motor Drive, IEEE

Transactions on Industrial Informatics, Vol. 55, No. 2, pp.

586-593, February, 2008.

[16] O. Linda, D. Wijayasekara, M. Manic, C. Rieger, FN-DFE:

Fuzzy Neural Data Fusion Engine for Enhanced Resilient

State-awareness of Hybrid Energy Systems, IEEE Transactions

on Cybernetics, Vol. 44, No. 11, pp. 2065-2075, November,

2014.

[17] W. Lewis, Software Testing and Continuous Quality

Improvement, 3rd ed., CRC Press, 2016.

[18] P. Ammann, J. Offutt, Introduction to Software Testing,

Cambridge University Press, 2016.

[19] Y. Shatnawi, M. Al-Khassaweneh, Fault Diagnosis in Internal

Combustion Engines Using Extension Neural Network, IEEE

Transactions on Industrial Electronics, Vol. 61, No. 3, pp.

1434-1443, Mary, 2014.

[20] S. Toma, L. Capocchi, G. Capolino, Wound-rotor Induction

Generator Inter-turn Short-circuits Diagnosis Using a New

Digital Neural Network, IEEE Transactions on Industrial

Electronics, Vol. 60, No. 9, pp. 4043-4052, September, 2013.

[21] M. Valtierra-Rodriguez, R. Romero-Troncoso, R. Osornio-

Rios, A. Garcia-Perez, Detection and Classification of Single

and Combined Power Quality Disturbances Using Neural

Networks, IEEE Transactions on Industrial Electronics, Vol.

61, No. 5, pp. 2473-2482, May, 2014.

[22] G. Han, H. Wang, M. Guizani, S. Chan, W. Zhang, KCLP: A

k-means Cluster-based Location Privacy Protection Scheme

in WSNs for IoT, IEEE Wireless Communication Magazine,

Vol. 25, No. 6, pp. 84-90, June, 2018.

Biographies

Xinpeng Li received the B.S. and

M.S. degree from Shanghai Jiaotong

University in 2012 and Hongkong

University of Science and Technology

in 2013, respectively, both in

Electronics Engineering. He is

currently pursuing the Ph.D. degree

with the Beijing University of Posts and

Telecommunications (BUPT), Beijing, China.

Currently he is also with the State Grid Jibei Electric

Power Company Limited as a senior engineer.

Yuexing Peng received the Ph.D

degree from Southeast University,

Nanjing, China, in 2004. From 2006

to 2008, he was a Postdoctoral

Research Associate with BUPT. Since

May 2008, he has been a faculty

member with BUPT, where he is currently an

Associate Professor. His research interests include

machine learning, intelligent signal processing and

Internet of Things.

Guangjie Han received the Ph.D.

degree from Northeastern University,

Shenyang, China, in 2004. From

October 2010 to 2011, he was a

Visiting Research Scholar with Osaka

University, Suita, Japan. He is

currently a Professor with the

Department of Information and Communication

System, Hohai University, Nanjing, China.

1440 Journal of Internet Technology Volume 20 (2019) No.5

Hanxu Sun is a professor of BUPT,

China. He was granted a special

government subsidy of the State

Council, and was awarded the Prize

for the first successful manned

spaceflight and the May 1 labour

medal of Beijing Municipality. His

research areas include space robotics and automatic

control theory.

Bo Yan received the B.S. and Ph.D

degree from Zhejiang University,

China, in 2007 and 2012, respectively,

both in Electrical Engineering. He was

a visiting scholar with Missrouri

University of Science and Technology

from 2011 to 2012. Currently he is

with the State Grid Jibei Electric Power Company

Limited as a senior engineer.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (Adobe RGB \0501998\051)
 /CalCMYKProfile (Japan Color 2001 Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHT <FEFF005b683964da300c9ad86a94002851fa8840002b89d27dda0029300d005d0020005b683964da300c8f3851fa0033003000300064002851fa88400029300d005d00204f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks true
 /AddPageInfo false
 /AddRegMarks false
 /BleedOffset [
 8.503940
 8.503940
 8.503940
 8.503940
]
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MarksOffset 9.354330
 /MarksWeight 0.141730
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed true
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

