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Abstract 

Understanding the fault-tolerance of distributed 

systems is crucial for achieving reliability. One of the 

most important issues surrounding fault-tolerance is the 

Fault Diagnosis Agreement (FDA) problem. The purpose 

of FDA is to help each fault-free processor 

detecting/locating a common set of faulty processors. In 

general, FDA protocols need ⎣(n-1)/3⎦+2 rounds of 
message exchange to detect or locate faulty components, 

regardless of the presence or absence of faulty processors. 

However, the number of messages produced results in a 

large protocol overhead. To solve the FDA problems 

efficiently, a novel concept of feature value is proposed 

in our algorithm to reach an agreement using the 

minimum constant number of rounds characterized by the 

presence of dual failure characteristics of processors. In 

addition, the proposed protocol can detect/locate the 

maximum possible number of faulty processors in a 

network. 

Keywords: Byzantine agreement, Fault diagnosis 

agreement, Fault-tolerance, Rule based 

diagnosis 

1 Introduction 

In a distributed computing system, processors 

allocated to different places, or units are connected to 

create greater power and ability. To achieve reliability 

in distributed computing systems, the Byzantine 

Agreement (BA) [1, 3-7, 9-10, 12-14, 30] must be 

considered. The BA problem, first studied by Lamport 

in 1982 [15], was solved to make a distributed system 

run and agree on a common value even if a given 

number of processors in the system fail. The general 

model of the problem describes a system containing n 

communicating processors of which at most fm [15] are 

corrupted (fm represents the number of faulty 

processors and fm ≤ ⎣(n-1)/3⎦ ). Each processor will 

agree on a common value if the number of faulty 

components is less than the fault tolerant boundary fm. 

The goal of BA is achieved if a number of independent 

processors reach agreement in cases where some of 

those processors might be faulty. The faulty symptoms 

(fau_sym) of processor failure can be classified into 

two categories: dormant faults and malicious faults [2, 

6-7, 11, 29]. The dormant faults of processors is easy 

to detect and to solve. Furthermore, a dormant fault is 

detectable by other processors if a transmitted message 

is encoded appropriately by either the Non-Return-to-

Zero code or the Manchester code [16] before 

transmitting. However, malicious faults are unpredictable 

and damaged. The malicious faulty processor can 

withhold messages to be sent and can send irregular 

messages, or it can collude with other malicious faulty 

processors to send false messages. Thus, malicious 

faults are more serious than dormant faults. The 

following applications are examples of applications 

that need healthy processors to achieve a common 

value: the commitment problem in a distributed 

database system [6, 17], the clock synchronization 

problem [7], and a landing task controlled by a flight-

path finding system [1]. 

Basically, an agreement is reached if all healthy 

processors agree upon a common value. Thus, various 

protocols for the BA problem should meet the 

following requirements [1, 7, 10, 12-14, 18-20, 30]: 

(BA1) Agreement: All healthy processors should 

agree on a common value v. 

(BA2) Validity: If the initial value of the source is vs, 

and the source is fault-free, then all healthy processors 

must agree on the value vs; i.e., v = vs. 

A closely related and important sub-issue, the Fault 

Diagnosis Agreement (FDA) problem [18, 21-23], is 

also in need of review. In general, the FDA problem 

can be divided into two models: test-based approaches 

[15, 21, 24-26] and evidence-based approaches [4, 8, 

18, 22-23, 28]. In a test-based model, a processor Pa 

can test the condition of a processor Pb unaided. 

However, this is impracticable particularly if malicious 

faulty processors exist. The malicious processors can 
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hide their faulty behavior and then avoid detection. 

Therefore, test-based approaches are not suitable for 

systems with malicious faults. 

Alternatively, the evidence-based protocol proposed 

by Shin and Ramanathan [22] primarily collect 

messages that have accumulated in BA protocols as 

evidence to detect or locate faulty processors. To 

detect/locate the maximum number of faulty 

processors, the proposed protocol must consider dual 

failure modes (including malicious and dormant faults) 

of processors and instruct all healthy processors to 

detect/locate all faulty components in the network. 

Upon achieving FDA, the performance and integrity of 

a distributed network can be guaranteed. A protocol 

designed for FDA must satisfy the following 

requirements [18, 23]: 

(FDA1) Agreement: All healthy processors identify 

the common set of faulty processors. 

(FDA2) Fairness: No fault-free component is falsely 

identified as faulty by any healthy processor. 

To achieve the requirements above, Hsiao et al. [18], 

proposed an evidence-based protocol FDAMIX with 

dual failure modes to solve the FDA problem. The 

FDAMIX protocol first collects received messages 

according to the BA protocol GPBA [27] which is 

designed to determine a common value in a distributed 

system under dual failure mode for use as evidence to 

detect/locate faulty processors. In the FDAMIX 

protocol, all healthy processors can identify the 

maximum number of faulty processors under dual 

failure modes using fm+2 rounds of message exchange 

because the GPBA requires fm+1 rounds of message 

exchange to achieve agreement. However, message 

passing is a time-consuming process. It will cause a 

large protocol overhead under a large number of 

messages. Thus, previous protocols [16, 18, 20, 25] 

cannot reach the goal of FDA efficiently and quickly. 

Therefore, this paper proposes a brand-new protocol 

FFDA (Feature-oriented Fault Diagnosis Agreement) 

to reach agreement only using three rounds of message 

exchange while simultaneously solving the FDA 

problem. Besides, the protocol FFDA can still tolerate 

and detect/locate a maximal number of faulty 

processors in a minimal number of message exchanges 

under dual failure mode. 

The rest of this paper is organized as follows. 

Section 2 illustrates the basic assumptions and concept 

underlying our protocol. Section 3 shows the details of 

our proposed protocol and examples. The correctness 

and complexity of our proposed protocol are illustrated 

in Section 4; and finally, the conclusion is presented in 

Section 5. 

2 The Underlying Assumptions and Concept 

Before describing our protocol, the basic 

assumptions must be defined. According to Fischer et 

al. [6], the BA problem cannot achieve agreement in an 

asynchronous network if even only one processor has 

failed and that failure is a crash failure. Therefore, only 

a synchronous network in which bounds on processing 

and the communication delays of healthy components 

are finite is considered [6]. The parameters of this 

synchronous network are assumed to be the following: 

(1) s: The source processor  

(2) n: The total number of processors in a distributed 

network.  

(3) v(s): The initial value of processor s broadcasting 

to all other processors.  

(4) v(sa): The value v(s) is sent from the processor 

Pa. 

(5) fm: The number of processors with malicious 

faults. 

(6) fd: The number of processors with dormant faults. 

(7) λ: When a processor is detected as a dormant 

processor, the value sent from it will be replaced by λ.  

(8) c: The connectivity of a distributed network. 

Based on Menger’s theorem [5, 15], at least c disjoint 

paths must exist between any pairs of processors Px 

and Py when the connectivity of a distributed network 

is c. 

(9) mSet: The set of malicious faulty processors. 

(10) dSet: The set of dormant faulty processors. 

(11) Ti: An information collecting tree (ic-tree) of 

processor Pi. 

(12) FP(): The function to determine the feature 

processor. 

(13) MATi: The processor i collects all received 

vectors (Vj) from other processors. 

(14) MAJi (sa): The majority value of the level i of 

the ic-tree. 

(15) num_MAJi(sa): The number of MAJi(sa) 

(16) PFPi: The possible feature processor set of 

level i.  

(17) Feq_Pz: The frequency that the processor z 

appears in all PFP. 

(18) FPi: The feature processor set of level i. 

(19) MAJ3_FPx(sa): The majority value of sub-tree x 

of v(sa) of the FP in Level 3. 

(20) fau_sym: The symptoms of faulty processors, 

such as a noticeable change in the message. 

Furthermore, the proposed protocol can solve the 

BA problem and the FDA problem if the following 

constraints [15, 23, 27] are satisfied: 

Constraint 1: n> ⎣(n-1)/3⎦+2fm + fd, 

Constraint 2: c>2fm + fd. 

Constraint 3: The number of the fau_sym of 

malicious fault > ⎣(n-1-fd)/3⎦. 
The first constraint represents the number of 

processors required; it must be greater than ⎣(n-

1)/3⎦+2fm+fd, including malicious faulty processors (fm) 

and dormant faulty processors (fd). The number of 

malicious faulty processors must be less than (2n+3–

3fd)/6 when the influence of the dormant faults is 

clearly known. Namely, the number of n-(⎣(n-
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1)/3⎦+2fm+fd) healthy processors can provide the 

complete evidence that allows our proposed protocol 

reaching a common value and detecting/locating a 

common set of faulty processors.  

Based on Menger’s theorem [5], at least c disjoint 

paths must exist between any pairs of processors Px 

and Py when the connectivity of a distributed network 

is c. Therefore, the second constraint specifies 

connectivity requirements; that is to say that the total 

number of received messages should be greater than 

the number of fake messages originating from the 

faulty processor(s) when the influences of dormant 

faults are removed.  

Shin et al. proved that no fault diagnosis protocol for 

malicious faults could complete detecting/locating 

faulty processors [22]. The protocol cannot detect 

unobvious malicious faulty symptoms (fau_sym) of 

processors when the number of faulty behaviors of 

faulty processors is less than ⎣(n-1-fd)/3⎦. It is because 

that the number of faulty processors needs to conform 

to the BA constrains 1 (n>⎣(n-1)/3⎦+2fm+fd) [1, 6, 10, 

12-15, 19-20, 24]. To detect/locate faulty processors, 

we assume the number of faulty symptoms (fau_sym) 

of faulty processors can appear in the collected 

messages in the last constraint. According to the 

constraints above, an agreement can be achieved, and 

the number of detectable/locatable faulty processors is 

fm+fd in our protocol. 

Subsequently, a convenient data structure, the ic-tree 

(an information collecting; Ti) [1, 18-20] is invoked in 

our proposed protocol. This is because that each 

processor can easy to store and accumulate the 

received messages from other processors into 

corresponding vertices round by round. Besides, the 

structure of ic-tree can be used to prove the correctness 

of the protocol as Section 4. The vertex of an ic-tree is 

labeled with a list of processor names, and the value 

received from the source processor is denoted as v(s) at 

the root of the ic-tree. The name list of the processor 

contains the names of the processors through which the 

stored message has been transferred. For example, the 

statement v(sbc) represents the processor having 

received the value sb from processor Pc which was sent 

from source processor Ps to processor Pb. Similarly, the 

value v(sbd) of sibling vertex represents the processor 

having value sb from processor Pd. Subsequently, the 

ic-tree is constructed by following reorganization rules: 

‧ The leaves in level fm + 2 of the ic-tree are deleted. 

‧ The vertices with repeated processor’s names are 

deleted. 

According to reorganization rules, the ic-tree can be 

constructed to avoid cyclical influences [10, 17] from 

the faulty processors. The cyclical influences originate 

from messages sent by faulty processors that may be 

stored repeatedly in the ic-tree and this could result in 

an incorrect common value being obtained by taking a 

simple majority. Therefore, the ic-tree (Ti) can be used 

to store the received messages and to eliminate the 

influence of faulty components, as shown in Figure 1. 

 

Figure 1. The ic-tree (Ti) 

After constructing the ic-trees, our protocol can 

remove dormant faulty processors because recipients 

can always identify faulty messages produced by a 

dormant component (i.e., crash and omission faults) if 

the Manchester code [16] is used in encoding before 

transmitting. This is because Manchester encoding is a 

synchronous clock encoding technique; thus, the 

recipient can easily distinguish between the dormant 

faulty components. The values sent by dormant faulty 

components are replaced by λ in our protocol. 

Furthermore, each processor in our protocol can obtain 

an ic-tree; subsequently, the majority function MAJ(α), 

shown as Figure 2, is invoked in Level 3 of the ic-tree 

to compute a common value. In Figure 3, the majority 

value v(sa) can be obtained by taking the MAJ(α) on 

{v(sab), v(sac), v(sad), v(sae)} in Level 3. Otherwise, 

the majority value is replaced by the complement of 

v(α) when the majority value does not exist. 

In addition, the prior works of literature [7, 9, 11-12, 

15] argue for the BA problem under the assumption of 

synchronous behavior BA, showing that 3fm+1 

processors are allowed fm failures where fm is the 

number of faulty processors in a distributed network. 

Besides, the fm+1 rounds of message exchange are 

required under the dual failure mode. In the case of the 

FDA problems [1, 15, 21-23], the fm+2 rounds of 

message exchange are required to collect enough 

messages as evidence to detect/locate faulty processors  
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Figure 2. The function MAJ 

 

Figure 3. Take the MAJ functions in Level 3 

under dual failure modes due to the agreement protocol, 

such as GPBA [27]. 

However, the message passing is a time-consuming 

process and the number of messages results in a large 

protocol overhead. This is unreasonable and inefficient 

for a distributed system containing a large number of 

processors. For reducing the number of message 

exchange, a novel algorithm, the Feature-based Fault 

Diagnosis Agreement (FFDA) is proposed in this paper 

and the number of rounds is less than all of the 

previous BA algorithms [1, 6-7, 12-15, 17, 19-20 24, 

27]. This is because a brand-new concept of feature 

value is proposed to reduce the number of messages 

and the number of rounds rapidly. Besides, the FFDA 

algorithm is still better than IBA [28] due to the IBA 

needs to remove faulty processors first, and requires 

extra rounds of message exchange to achieve 

agreement. 

With regard to the FFDA, the feature value of fault-

free processors can be derived from a large number of 

messages and defined as the following paragraphs, 

subsequent the processors with the feature value can be 

recognized as the feature processors. Based on the 

feature processors, the faulty processors can easy to 

filter out and the agreement can be reached 

simultaneously regardless of the number of processors 

in a distributed network. The detail is described as 

follows. 

In general, a source processor may be a malicious 

faulty processor; thus, two situations must be 

considered, malicious faulty source processors and 

healthy source processors, as shown in Figure 4. In 

Figure 4(a), the values in round 1 (R1), under the 

influence of the malicious faulty source processor may 

send different values to each processor. Similarly, the 

values in R2 demonstrate influences from the malicious 

faulty processors and malicious faulty source processor. 

Namely, the stored values of R2 can be influenced by 

R1 and R2. 

 

(a) Malicious faulty source processor 

 

(b) Healthy source processor 

Figure 4. The influence of each round 

However, the influences from R2 can be removed 

from R3 by taking the majority on messages in Level 3 

of its ic-tree, such as MAJ(α){v(sab), v(sac), v(sad), 

v(sae)} = MAJ3(sa). This is because there are more 

than ⎣(n-1- fd)/3⎦ healthy processors in a distributed 

network even if the source is a malicious faulty 

processor. Hence, MAJ3(sa) of Level 2 in R3 can be 

obtained without the faulty influence of R2. 
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Based on the reason above, the messages in Level 2 

can also be removed in R3 when the source is a healthy 

processor, as shown in Figure 4(b). Regardless whether 

the source is healthy, the stored values of Level 2 in R3 

are real values sent from the predecessor and 

uninfluenced by the malicious faulty processors in R2 

and are called feature values. Therefore, each vertex i 

(1≤i≤n) in Level 3 of an ic-tree is a possible feature 

processor Pi when it has this feature value (v(sai) = 

MAJ3(sa)). For each sub-tree of the ic-tree, we can 

identify processor Pi as the feature processor if the 

number of Pi in (PFP) exceeds (n- fm). This is because 

there are more than ⎣(n-1-fd)/3⎦ healthy processors able 

to transfer the feature value received from the 

predecessor to other processors. Based on this novel 

concept, the goals of FDA and BA can be achieved. 

Besides, the number of messages can be reduced even 

if a large number of processor exists. Subsequently, the 

details of our proposed protocol FFBA are introduced 

in the next section. 

3 The FFDA Protocol 

The Feature-based Fault Diagnosis Agreement 

(FFDA) protocol we proposed includes three phases: 

message exchange phase, fault diagnosis phase, and 

decision-making phase. The FFDA protocol is shown 

in Figure 5. The details of the protocol are shown as 

follows. 

3.1 The Message Collection Phase 

This phase is used to collect three rounds of message 

exchange and store the received messages in the 

processors’ ic-tree. The collected three rounds of 

messages are necessary to be used as evidence to 

eliminate the influence of faulty processors in the next 

phase. 

3.2 The Fault Diagnosis Phase 

In general, healthy destination processors can detect 

message(s) from dormant faulty components if the 

protocol appropriately encodes a transmitting message 

by using either the Non-Return-to-Zero code or the 

Manchester code [5, 7] before transmission. Therefore, 

the messages sent from dormant faulty components can 

be replaced by λ and can be removed during each 

round of message exchange by dormant diagnosis rule. 

Furthermore, we use the dSet (dormant faulty 

processor set) to record dormant faulty processors 

during this phase.  

However, the malicious diagnosis rule is used to 

search the feature processors. Subsequently, the mSet 

(malicious faulty processor set) is used to record 

malicious faulty processors. In first for loop of function 

FP, the MAJ3(sa) is taken by MAJ function in level 3 

of the ic-tree. The processors can be stored into the 

PFP (possible feature processor) set when the v(sa) 

=MAJ3(sa) and the num_MAJ3(sa) ≥ fm. After visiting 

all sub-trees of vertex v(sa) in the ic-tree, the processor 

Pz of PFP can be identified as a feature processor when 

the Feq_Pz ≥ (n- fm) is satisfied. Subsequently, the 

values of non-feature processors are set as MAJ3_FPi(sa) 

in second for loop. Finally, the dormant and malicious 

faulty processors can be obtained. 

 
Message Exchange Phase 

Collect r (r = 3) rounds of messages which have 

accumulated in the GPBA [27] as evidences. 

r = 1, do: 

for i ≤ n { 

source processor (s) broadcasts initial value v(s) to Pi}  

r = 2, do: 

for each Pi (i ≤ n) { 

broadcast v(s) && receive others broadcasted values  

store v(sa) into the corresponding ic-tree Ti} 

r = 3, do: 

for each Pi (i ≤ n) { 

broadcast Ti && receive others broadcasted Ti 

construct the MATi} 

for each MATi (i ≤ n) { 

for each row k (k ≤ n) { 

If vki = λ, then { vki is ignored} 

majority (row k of MATi) && construct a corresponding ic-

tree Ti}  

return (Ti) 

Fault Diagnosis Phase 

dormant diagnosis rule: Let processor i (1≤i≤n) be a 

healthy processor. Pi can detect processor Pk (1≤k≤n) as 

faulty processor if: 

Pi receives the λ from Pk (or no message is received from 

Pk) and the number of copies of λ is greater than ⎣(n-1-

fd)/3⎦, then dSet = dSet ∪ {Pk}; 

malicious diagnosis rule: 

Run FP( ) 

for each sub-tree of vertex v(sa) in level 2 of ic-tree Ti (i ≤ 

n){ 

if v(sa) = MAJ3(sa) && num_MAJ3(sa) ≥ fm then{ 

Pa ∈ PFPi. 

for each sub-vertex of the sub-tree of vertex v(sa){ 

if v(sab) = v(sa) then PFPi ∪ {Pb}}}} 

for each PFP i (i ≤ n){ 

Count (Feq_Pz) 
if Feq_Pz ≥ (n- fm) then{ 

FP ∪ {Pz} 

else mSet ∪ {Pz} && v(sab) = MAJ3_FPi(sa)} 

return (mSet && dSet ) 

Decision Making Phase: 

Step 1: Applying function VOTE to the root of each ic-tree 

Ti and common value, VOTE(s) is obtained. 

VOTE Function 

The function 

VOTE(α)= 

1. v(α), if α is a leaf. 

2. The majority value in the set of 

{VOTE(αi)| 1 ≤ i ≤ n, and vertex αi is a 

child of vertex α}, if such a majority 

value exists. 

3. A default value φ  is chosen, otherwise 

Figure 5. FFDA Protocol 
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3.3 The Decision-making Phase 

In this phase, the function VOTE is applied to root s 

of each healthy processor’s ic-tree. Finally, each 

processor can obtain a decision value VOTE(s) during 

this phase. 

Table 1 shows the important comparisons between 

FFDA and previous BA protocols. Basically, the 

overall performance is better than other protocols. 

Furthermore, another important contribution of our 

protocol is to reduce the complexity of the diagnostic 

procedure; the FDA problem and BA problem [1, 15-

16, 18, 20-23] are solved early by our proposed 

protocol FFDA that uses the minimum number of 

rounds characterized by dual failure of processors. The 

comparisons between FFDA and previous diagnosis 

protocols are assumed to solve the BA and FDA 

problems simultaneously are shown in Table 2. As a 

result, the FFDA we proposed is more efficient and 

reasonable than previous protocols, such as the number 

of message exchanges, the message complexity, and 

the number of required rounds. 

Table 1. The comparisons between FFDA and previous BA protocols 

 
Required 

rounds 

Message 

complexity 

Allowable 

faulty processors 

Previous protocols 

[8, 16-17, 20] 
fm + 1 

O(cnσ); 

(σ≦⎣(n-1)-fd)/3⎦) 
fm 

FFDA 3 O(cn2) fm 

Table 2. The comparisons between FFDA and previous diagnosis protocols 

 Required rounds Message complexity Fault types The number of processor required 

Hsiao et al. [8, 19] ⎣(n-1))/3⎦+3 
O(cnσ+ cnσ+1+ n) 

σ≦⎣(n-1)-fd)/3⎦+1 
Dual faults n>3fm+fd 

IBA [3] 4 O(cn3+ n); Dual faults n>3fm+fd 

FFDA 3 O(cn3); Dual faults n>3fm+fd 

 

3.4 Example of Executing FFDA 

In this section, an example is provided to show the 

overall procedure of FFDA. The initial environment is 

shown in Figure 6(a). Besides, to prove the validity of 

FFDA, a worst case is designed (the numbers of 0’s 

and 1’s are approximately the same) and the 

transmission behavior of the faulty processors is shown 

in Figure 6(b). Based on [4, 17, 19, 20, 22-23], BA and 

FDA requirements, the result of an agreement of faulty 

processors need not be discussed. This is because the 

goal of the BA/FDA protocol is to allow all healthy 

processors to reach a common value. Besides, the 

faulty processors cannot influence the agreement 

results of healthy processors by BA and FDA 

requirements. Therefore, this example only shows the 

results of healthy processors.  

At the beginning of the protocol, the faulty source 

processor Pa broadcasts its initial value to all 

processors during the first round of message exchange 

phase. Unfortunately, the source processor Pa is a 

malicious faulty processor; it sends different values, 0, 

1, 0, 1, 0, 1, 0, 1, and 0, respectively, to processors Pd, 

Pe, Pf, Pg, Ph, Pi, Pj, Pk, Pl, and Pm. Here, each healthy 

processor stores the received value into the root of its 

ic-tree in the first round, as shown in Figure 6(c).  

 

Figure 6(a). The 13-processor environment 

 e f g h i j k l m 

a 0 1 0 1 0 1 0 1 0 

b 1 0 1 1 1 0 1 0 1 

c 1 1 1 1 0 0 0 0 1 

d 0 0 1 1 0 0 1 1 0 

Figure 6(b). The transmission behavior of faulty 

processors 
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Figure 6(c). The vectors received from source 

processor Pa in first round of message exchange phase 

Subsequently, each processor exchanges the 

received value from the first round of message 

exchange phase with all processors during the second 

round of message exchange phase. Similarly, the 

received messages are stored in the second level of its 

ic-tree, as shown in Figure 6(d). In the third round of 

message exchange phase, each processor exchanges 

the received values from the second round of message 

exchange phase with all processors and stores the 

received values into the third level of their ic-trees. For 

this example, the result of processor Pe is shown in 

Figure 6(e). 

 

Figure 6(d). The ic-trees of processors Pe, Pf, Pg, Ph, Pi, 

Pj, Pk, Pl, and Pm in the second round of message 

exchange phase 

In the next phase, the fault diagnosis phase, each 

processor must first determine which processors are 

possible feature processors. For example, the 

procedure for processor Pe is shown in Figure 6(f). 

Processors Pa, Pd, Pe, Pf, Pg, Ph, Pi, Pj, Pk, Pl and Pm 

can be recognized as possible feature processors and 

stored into the PFP set in Figure 6(f) when the 

following conditions are satisfied. 

 

Figure 6(e). The ic-tree of processors Pe in the third 

round of message exchange phase 

 

Figure 6(f). The procedure of FP( ) to determine the 

feature processors in fault diagnosis phase 

‧ v(ae) = MAJ3(ae) = 0, 

‧ [num_MAJ3(ae) = 10] ≥ [(n- fm) = 9], and 
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‧ v(aei) = MAJ3(ae){such as, v(aea), v(aed), v(aef), 

v(aeg), v(aeh), v(aei), v(aej), v(aek), v(ael) and 

v(aem) = MAJ3(ae) = 0} 

After that, the FFDA protocol will count the 

frequency (Feq_Pz) that each processor appears in all 

PFP and computes whether the Feq_Pz is greater than 

(n-fm) or not. In this example, processors Pe, Pf, Pg, Ph, 

Pi, Pj, Pk, Pl, and Pm are feature processors, as shown 

in Figure 6(f). Subsequently, the values of non-feature 

processors can be replaced by MAJ3_FPi(sa) using Rep 

function. For example, the v(aba) and v(abd) are not 

equal to the MAJ3_FP3(ab) in Figure 6(g), thus the 

values v(aba) and v(abd) in the third level of the ic-tree 

will be changed to MAJ3_FPi(sa) =1. Similarly, all sub-

trees in the third level of the ic-tree can be executed the 

same procedures; the result of processor Pe is shown in 

Figure 6(g). Finally, the function VOTE is applied to 

root v(a) of an ic-tree during the decision- making 

phase. The common result (VOTE(a) =φ) of the 

processor Pe are shown in Figure 6(h). Since all 

healthy processors will execute the same procedures, 

an agreement is reached while the fm faulty processors 

exist. Furthermore, the Pa, Pb, Pc, and Pd can be 

detected as a malicious faulty processor by feature 

processors. Therefore, only three rounds of message 

exchange are needed in our protocol FFDA, but the 

fm+2 rounds of message exchange are needed to reach 

an agreement and detect/locate faulty processors in 

traditional protocols. 

 

Figure 6(g). The values of non-feature processors can 

be set to MAJ3_FPi(sa) during fault diagnosis phase 

 

Figure 6(h). An agreement value of the decision-

making phase 

4 The Correctness and Complexity of the 

FFDA 

The following required proofs for agreement and 

validity of our solution to the BA are given in this 

section. The lemmas and theorems are used to prove 

the correctness and complexity of FFDA. 

4.1 Correctness of FFDA 

To prove the correctness of our protocol, a tree 

structure, ic-tree is used to explain our procedures. The 

ic-tree collected sufficient complete messages to 

eliminate the influences of faulty components and 

solve the cyclical influences of the faulty processors by 

eliminating the repeated names. The function VOTE 

must also be used to obtain a common value from the 

ic-tree in the decision-making phase. Therefore, this 

paper proves the correctness of our protocol by ic-tree 

structure. 

This paper defined a vertex α as common [17] if 

each healthy processor computes the same value for α. 

In other words, the value stored in vertex α of each 

healthy processor’s ic-tree is common to all. Once each 

healthy processor has a common initial value from the 

source processor in the root of its ic-tree, an agreement 

is reached since that root is common to all. Thus, the 

Agreement and Validity can be rewritten as: 
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(Agreement’): Root s is common, and 

(Validity’): VOTE(s) = vs for each healthy processor, 

if the source processor is healthy. 

To prove a vertex is common, the term common 

frontier [1] is defined as follows: When every root-to-

leaf path of the ic-tree contains a common vertex, the 

collection of the common vertices forms a common 

frontier. In other words, every healthy processor has 

the same messages collected in the common frontier if 

a common frontier does exist in a healthy processor’s 

ic-tree. Subsequently, using the same voting function 

VOTE to compute the root value of the ic-tree, every 

healthy processor can obtain the same root value as a 

result of the same input and the same computing 

function.  

Before proving the correctness, the term correct 

vertex is defined as (1) correct vertex-vertex αi of a 

tree is a correct vertex if processor Pi is healthy. In 

other words, a correct vertex is a place to store the 

value received from a healthy processor. (2) true value: 

for a correct vertex αi in the tree of a healthy processor 

Pi, v(αi) is the true value of vertex αi. Namely, the 

stored value is called the true value and can be 

recognized as the feature value. 

By the definition of a correct vertex, the stored value 

is received from the healthy processors and a healthy 

processor always transmits the same value to other 

processors. The repeated vertices of the ic-tree are 

deleted, thus, the correct vertices of such an ic-tree are 

common. Based on the definition of the correct vertex, 

a common frontier does exist in the ic-tree. Namely, 

the root can be proven to be a common vertex 

(Agreement’) due to the existence of a common 

frontier, regardless of the correctness of a source 

processor. Therefore, an agreement of the root value is 

reached. 

Subsequently, we will check the condition of 

(Validity’). Based on (Validity’), we know that when 

the source processor has failed, the (Validity’) is true. 

This is because the propositional logic P�Q means 

(NOT(P) OR Q), then (NOT(P) OR Q) or (P�Q) is 

true when P is false, where P implies “the source 

processor is healthy” and (P�Q) implies BA2’. 

Conversely, root s is a correct vertex by the definition 

of a correct vertex if the source processor is healthy. If 

all correct vertices’ true values can be computed by 

FFDA, then the true value of the root can be computed 

because the root is a correct vertex. By definition, the 

true value of the root is the initial value of the source 

processor if the source processor is healthy. Namely, 

each healthy processor’s root value is the initial value 

of the source processor. If the source processor is 

healthy, then Validity’ is true when the source 

processor is healthy. In short, the Agreement’ and 

Validity’ are both true no matter whether the source 

processor is healthy or failed, and the BA problem is 

solved. 

Lemma 1. The messages through dormant faulty 

components can be detected by a healthy destination 

processor. 

Proof. A healthy destination processor can detect the 

message(s) from dormant faulty components if the 

protocol appropriately encodes a transmitted message 

using either the Non-Return-to-Zero code or the 

Manchester code [5, 7] before transmitting. 

Lemma 2. The healthy processors can receive 

messages from healthy processors if c > 2fm+ fd.. 
Proof. A healthy sender processor broadcasts a 

message to others and itself. In general, each healthy 

processor can receive at least c copies of messages in 

c-connectivity distributed network based on Menger’s 

theorem [5]. However, a healthy processor can receive 

c - fd messages transmitted during each round of 

message exchange in the worst case (the dormant 

faulty components can be detected by Return-to-Zero 

code or the Manchester code). If c -fd > 2fm, a healthy 

processor can determine messages from sender 

processors by taking the majority value from the values 

received during each message exchange round. 

Theorem 1. A healthy processor can remove the faulty 

influences from dormant faulty processors if c > 2fm+fd. 

Proof. By Lemmas 1 and 2, the theorem is proved. 

Lemma 3. The healthy destination processor can 

detect a dormant faulty sender processor using a 

forwarding technique in a distributed network.  

Proof. If the number of value λ is greater than or equal 

to c - ⎣(n-1)/3⎦, then the sender processor is in dormant 

fault. The reason for this is that there are at most ⎣(n-

1)/3⎦ malicious faulty components in a distributed 

network, hence there are at most ⎣(n-1)/3⎦ non-λ values 

in the vector Vi. 

Theorem 2. Healthy processors can detect dormant 

faulty processors in an n-processor system. 

Proof. In the protocol FFDA, there are three rounds of 

message exchange during the message exchange phase, 

where fm ≤ ⎣(n-1)/3⎦ and n > 3. Each healthy processor 

can receive the message from the source processor 

during the first round of message exchange and 

receives other processors’ messages during the second 

round of message exchange. Each processor can 

receive all other processors’ messages in a distributed 

network after two rounds of message exchange. 

According to the Lemma 3, each healthy processor can 

detect dormant faulty processors in an n-processor 

system. 

Lemma 4. All healthy correct vertices of an ic-tree are 

common. 

Proof. Since the vertices with repeated processor 

names of ic-trees are removed, no repeatable vertices 

are in an ic-tree. In the level fm or above, the correct 

vertex α has at least 2fm+1 children (n-fm ≥ 2fm+1) in 

which at least fm+1 children are correct. The true value 

of these fm+1 correct vertices is common, and the 

majority value of vertex α is common. The correct 

vertex α is common in the ic-tree if the level of α is 



1410 Journal of Internet Technology Volume 20 (2019) No.5 

 

less than fm+1. Thus, all correct vertices of the ic-tree 

are common. 

Lemma 5. The common frontier exists in an ic-tree. 

Proof. By Lemmas 4, the true values of these fm+1 

correct vertex are common. Since at most fm (≤ ⎣(n-

1)/3⎦) processors can be failed, at least one vertex is 

correct along each root-to-leaf path of the ic-tree. 

Therefore, the correct vertex is common, and the 

common frontier exists in each healthy processor’s ic-

tree. 

Lemma 6. Let α be a vertex, where α is common if 

there is a common frontier in the subtree rooted at α. 

Proof. If the height of α is 0 and the common frontier 

(α itself) exists, α is common. If the height of α is σ, 

the children of α are all in common using an induction 

hypothesis with the height of the children at σ-1, then 

the vertex α is common. 

Lemma 7. The values replaced by the majority value 

of feature processors are common.  

Proof. By Lemmas 4, 5, and 6, all correct vertices of 

the ic-tree are common, and each healthy processor’s 

ic-tree also has the same common frontier. Further, 

there are at least n-fm processors that are healthy and 

having the feature value. Hence, all these healthy 

processors with the feature value must be feature 

processors. Thus, the majority value of these feature 

processors for each sub-tree in the third level must be 

common. The values replaced by the majority value of 

feature processors are also common. 

Lemma 8. The values sent by the healthy processors 

are the same as the majority value after applying the 

VOTE function. 

Proof. There are at least n-fm healthy processors in a 

distributed network. All the healthy processors will 

transmit their values to others correctly. In each round 

of message exchange, there will be n-fm healthy 

processors that can receive these values and resend 

them. Then, the majority values which are applied 

using the VOTE function for the (i + 1; 1≤ i ≤ fm)th 

level of the ic-tree must be equal to the values in the 

ith level of the ic-tree. It is unnecessary to send the 

values for (fm+1) rounds if the sender is a healthy 

processor. 

Corollary 1. The root is common if the common 

frontier exists in the ic-tree. 

Theorem 3. The root of a healthy processor’s ic-tree is 

common. 

Proof. By Lemmas 4, 5, 6, 7, 8 and Corollary 1, the 

theorem is proved. 

Theorem 4. Protocol FFDA can solve the BA in a 

distributed network. 

Proof. To prove the theorem, it must show that FFDA 

meets the constraints (Agreement’) and (Validity’). 

(Agreement’): Root s is common. By Theorem 3, 

(Agreement’) is satisfied. 

(Validity’): VOTE(s) = v for all healthy processors, 

if the initial value of the source is vs, say v = vs. 

Since most of the processors are healthy, they 

transmit the message to all others. As a result, each 

correct vertex of the ic-tree is common (Lemma 4), 

and its true value (feature value) is v. By Theorem 3, 

this root is common. The computed value VOTE(s) = v 

is stored in the root for all healthy processors. 

(Validity’) is satisfied. 

Lemma 9. All correct vertices of an ic-tree are 

identical. 

Proof. After the finishing the message exchange phase, 

no repeatable vertices are located in an ic-tree. In level 

3, the correct vertex (the vertex uninfluenced by the 

faulty processors) α has at least 2 ⎣(n-1-fd)/3⎦+1 

children, of which at least ⎣(n-1-fd)/3⎦+1 children are 

correct. Therefore, the feature value of the ⎣(n-1-fd)/3⎦-
1 round from the correct processor can be obtained. 

However, the source processor may be a malicious 

processor, thus we discuss two cases as follows. 

CASE 1. In this case, the source processor is a 

malicious faulty processor. The malicious faulty source 

processor sends the different initial value v(s) to each 

processor during the first round of message exchange. 

Subsequently, each processor broadcasts the received 

value from the faulty source processor during the 

second round of message exchange. The value v(vsi) 

(1≤i≤n) may be also altered to a different value by 

malicious processors in this round. In the final round, 

each processor broadcasts the received value from the 

second round of message exchange to the others. 

However, the influence of a faulty value from healthy 

processors produced in the previous round can be 

removed by the majority function MAJ. This is 

because there are more than ⎣(n-1- fd)/3⎦ healthy 

processors that can receive the feature value v(α) from 

the previous round regardless whether the v(α) is 

correct or not. 

CASE 2. In this case, the source processor is a healthy 

processor in a distributed network. The healthy source 

processor sends the same initial value v(s) (the correct 

value) to each processor during the first round of 

message exchange. Subsequently, each processor Pi 

(1≤i≤n) broadcasts the received value from the healthy 

source processor to the others in the second round of 

message exchange. The value v(vsi) may be also altered 

by malicious processors during this round. Finally, 

each processor can exchange received values during 

the third round of message exchange. As in CASE 1, 

the number of feature value v(α) received from the 

healthy processors exceeds n-fm. Therefore, the faulty 

processors can easily be detected. 

Theorem 5. The FFDA can solve the FDA problem if 

n> ⎣(n-1)/3⎦+2fm+fd and c>2fm+fd. 

Proof. By Theorem 1, Theorem 2, Theorem 3, 

Theorem 4, and Lemmas 9, the theorem is proven. 

4.2 Complexity of FFDA 

Theorem 6. FFDA requires three rounds to solve the 

BA and FDA problems with a distributed network if n> 
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⎣(n-1)/3⎦+2fm+fd and c>2fm+fd are satisfied. 

Furthermore, the three rounds are the minimum 

number of rounds of message exchange. 

Proof. In general, the traditional protocol [22] needs 

⎣(n-1-fd)/3⎦ +1 rounds of message exchange to reach an 

agreement. Based on the concept of Figure 4, the 

feature value of the previous round can be obtained. 

However, we take the majority on level 3 of each ic-

tree and determine the processors which agree. Each 

vertex can be identified as possible feature processor if 

it is equal to the feature value. Subsequently, our 

protocol accumulates the frequency of processor Pz of 

possible feature processor sets and compares them 

with ⎣(n-1-fd)/3⎦. The processor Pz can be identified as 

a feature processor since there are n-(⎣(n-1-fd)/3⎦) 
healthy processors assuming it is correct. Similarly, 

there are more than ⎣(n-1- fd)/3⎦+1 vertices in all ic-

trees having feature values by Lemma 9, thus the 

faulty processors can be easily detected/located. The 

three rounds of message exchange are necessary 

because the influences from R2 can be removed in R3 

by taking the majority on messages in Level 3 of its ic-

tree. As a result, our proposed protocol FFDA requires 

only three rounds to solve the BA and FDA problems; 

three rounds being the minimum number of rounds of 

message exchange required for this purpose. 

Theorem 7. The total number of allowable faulty 

components by the FFDA is fm+fd, where n>⎣(n-

1)/3⎦+2fm+fd and c>2fm+fd. 

Proof. According to the constraints of the BA problem 

for a processor which was proposed by Siu et al. [22, 

27], the constraints over our protocol are n>⎣(n-

1)/3⎦+2fm+fd and c>2fm + fd. In the worst-case scenario, 

the malicious faulty processors and dormant faulty 

processor exist simultaneously, thus the total number 

of allowable faulty components by the FFDA is fm 

malicious faulty processors and fd dormant faulty 

processors. 

Theorem 8. The total number of messages in the 

FFDA is cn3. 

Proof. The protocol FFDA must use the ic-tree as 

evidence to detect/locate faulty processors. The ic-tree 

is constructed from the message exchange phase of 

each round. Hence, we have O(cn3) (c represents a 

constant) messages in each ic-tree. Furthermore, 

previous protocols [22, 27] required O(cnσ+cnσ+1) 

(σ≤⎣(n-1- fd)/3⎦+1) messages to reach an agreement 

and detect/locate the faulty processors. However, we 

know the message exchange phase is a time-

consuming phase. The number of messages burdens 

the protocol with a large overhead. As a result, the 

FFDA can reach an agreement and detect/locate the 

maximum number of faulty processors using a minimal 

number of rounds efficiently and quickly. 

5 Conclusion 

In general, the previous protocols [20, 23] require 

fm+1 rounds of message exchange to reach agreement 

in BA problem, and fm+2 rounds of message exchange 

are needed to detect/locate the faulty processors in 

FDA problem. Besides, the complexities of message 

exchanges in BA and FDA problem are O(cnσ) and 

O(cnσ+cnσ+1+n) [13-14, 18] respectively in previous 

works. However, the traditional protocols are 

inefficient and unsuitable for a distributed network 

topology due to a large number of message exchange 

imposes a heavy overhead on the protocol. To reduce a 

large number of message exchange, a concept of 

feature value which is used to recognize the feature 

processors is proposed in FFDA to make each healthy 

processor solve BA and FDA problems simultaneously 

with dual failure mode by using three rounds of 

message exchange regardless of the number of 

processors in a distributed network. Furthermore, the 

number of messages can be reduced to O(cn3). As a 

result, the FFDA protocol is more efficient and 

reasonable in a distributed network topology than 

previous protocols [1, 4, 10, 12-14, 18-20, 23-24, 28] 

where n> ⎣(n-1)/3⎦ +2fm+fd and c>2fm + fd. 
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