
A Feature-Oriented Fault Diagnosis Agreement Protocol in Distributed Systems 1401

A Feature-Oriented Fault Diagnosis Agreement Protocol in

Distributed Systems

Hui-Ching Hsieh1, Mao-Lun Chiang2, Wen-Chung Tsai2, Yen-Chiu Chen3

1 Department of Information Communication, Hsing Wu University, Taiwan
2 Department of Information and Communication Engineering, Chaoyang University of Technology, Taiwan

3 Department of Information Management, Chung Hua University, Taiwan

luckyeva.hsieh@gmail.com, {mlchiang, azongtsai }@cyut.edu.tw, yhchenedu@gmail.com*

*Corresponding Author: Mao-Lun Chiang; E-mail: mlchiang@cyut.edu.tw

DOI: 10.3966/160792642019092005008

Abstract

Understanding the fault-tolerance of distributed

systems is crucial for achieving reliability. One of the

most important issues surrounding fault-tolerance is the

Fault Diagnosis Agreement (FDA) problem. The purpose

of FDA is to help each fault-free processor

detecting/locating a common set of faulty processors. In

general, FDA protocols need ⎣(n-1)/3⎦+2 rounds of
message exchange to detect or locate faulty components,

regardless of the presence or absence of faulty processors.

However, the number of messages produced results in a

large protocol overhead. To solve the FDA problems

efficiently, a novel concept of feature value is proposed

in our algorithm to reach an agreement using the

minimum constant number of rounds characterized by the

presence of dual failure characteristics of processors. In

addition, the proposed protocol can detect/locate the

maximum possible number of faulty processors in a

network.

Keywords: Byzantine agreement, Fault diagnosis

agreement, Fault-tolerance, Rule based

diagnosis

1 Introduction

In a distributed computing system, processors

allocated to different places, or units are connected to

create greater power and ability. To achieve reliability

in distributed computing systems, the Byzantine

Agreement (BA) [1, 3-7, 9-10, 12-14, 30] must be

considered. The BA problem, first studied by Lamport

in 1982 [15], was solved to make a distributed system

run and agree on a common value even if a given

number of processors in the system fail. The general

model of the problem describes a system containing n

communicating processors of which at most fm [15] are

corrupted (fm represents the number of faulty

processors and fm ≤ ⎣(n-1)/3⎦). Each processor will

agree on a common value if the number of faulty

components is less than the fault tolerant boundary fm.

The goal of BA is achieved if a number of independent

processors reach agreement in cases where some of

those processors might be faulty. The faulty symptoms

(fau_sym) of processor failure can be classified into

two categories: dormant faults and malicious faults [2,

6-7, 11, 29]. The dormant faults of processors is easy

to detect and to solve. Furthermore, a dormant fault is

detectable by other processors if a transmitted message

is encoded appropriately by either the Non-Return-to-

Zero code or the Manchester code [16] before

transmitting. However, malicious faults are unpredictable

and damaged. The malicious faulty processor can

withhold messages to be sent and can send irregular

messages, or it can collude with other malicious faulty

processors to send false messages. Thus, malicious

faults are more serious than dormant faults. The

following applications are examples of applications

that need healthy processors to achieve a common

value: the commitment problem in a distributed

database system [6, 17], the clock synchronization

problem [7], and a landing task controlled by a flight-

path finding system [1].

Basically, an agreement is reached if all healthy

processors agree upon a common value. Thus, various

protocols for the BA problem should meet the

following requirements [1, 7, 10, 12-14, 18-20, 30]:

(BA1) Agreement: All healthy processors should

agree on a common value v.

(BA2) Validity: If the initial value of the source is vs,

and the source is fault-free, then all healthy processors

must agree on the value vs; i.e., v = vs.

A closely related and important sub-issue, the Fault

Diagnosis Agreement (FDA) problem [18, 21-23], is

also in need of review. In general, the FDA problem

can be divided into two models: test-based approaches

[15, 21, 24-26] and evidence-based approaches [4, 8,

18, 22-23, 28]. In a test-based model, a processor Pa

can test the condition of a processor Pb unaided.

However, this is impracticable particularly if malicious

faulty processors exist. The malicious processors can

1402 Journal of Internet Technology Volume 20 (2019) No.5

hide their faulty behavior and then avoid detection.

Therefore, test-based approaches are not suitable for

systems with malicious faults.

Alternatively, the evidence-based protocol proposed

by Shin and Ramanathan [22] primarily collect

messages that have accumulated in BA protocols as

evidence to detect or locate faulty processors. To

detect/locate the maximum number of faulty

processors, the proposed protocol must consider dual

failure modes (including malicious and dormant faults)

of processors and instruct all healthy processors to

detect/locate all faulty components in the network.

Upon achieving FDA, the performance and integrity of

a distributed network can be guaranteed. A protocol

designed for FDA must satisfy the following

requirements [18, 23]:

(FDA1) Agreement: All healthy processors identify

the common set of faulty processors.

(FDA2) Fairness: No fault-free component is falsely

identified as faulty by any healthy processor.

To achieve the requirements above, Hsiao et al. [18],

proposed an evidence-based protocol FDAMIX with

dual failure modes to solve the FDA problem. The

FDAMIX protocol first collects received messages

according to the BA protocol GPBA [27] which is

designed to determine a common value in a distributed

system under dual failure mode for use as evidence to

detect/locate faulty processors. In the FDAMIX

protocol, all healthy processors can identify the

maximum number of faulty processors under dual

failure modes using fm+2 rounds of message exchange

because the GPBA requires fm+1 rounds of message

exchange to achieve agreement. However, message

passing is a time-consuming process. It will cause a

large protocol overhead under a large number of

messages. Thus, previous protocols [16, 18, 20, 25]

cannot reach the goal of FDA efficiently and quickly.

Therefore, this paper proposes a brand-new protocol

FFDA (Feature-oriented Fault Diagnosis Agreement)

to reach agreement only using three rounds of message

exchange while simultaneously solving the FDA

problem. Besides, the protocol FFDA can still tolerate

and detect/locate a maximal number of faulty

processors in a minimal number of message exchanges

under dual failure mode.

The rest of this paper is organized as follows.

Section 2 illustrates the basic assumptions and concept

underlying our protocol. Section 3 shows the details of

our proposed protocol and examples. The correctness

and complexity of our proposed protocol are illustrated

in Section 4; and finally, the conclusion is presented in

Section 5.

2 The Underlying Assumptions and Concept

Before describing our protocol, the basic

assumptions must be defined. According to Fischer et

al. [6], the BA problem cannot achieve agreement in an

asynchronous network if even only one processor has

failed and that failure is a crash failure. Therefore, only

a synchronous network in which bounds on processing

and the communication delays of healthy components

are finite is considered [6]. The parameters of this

synchronous network are assumed to be the following:

(1) s: The source processor

(2) n: The total number of processors in a distributed

network.

(3) v(s): The initial value of processor s broadcasting

to all other processors.

(4) v(sa): The value v(s) is sent from the processor

Pa.

(5) fm: The number of processors with malicious

faults.

(6) fd: The number of processors with dormant faults.

(7) λ: When a processor is detected as a dormant

processor, the value sent from it will be replaced by λ.

(8) c: The connectivity of a distributed network.

Based on Menger’s theorem [5, 15], at least c disjoint

paths must exist between any pairs of processors Px

and Py when the connectivity of a distributed network

is c.

(9) mSet: The set of malicious faulty processors.

(10) dSet: The set of dormant faulty processors.

(11) Ti: An information collecting tree (ic-tree) of

processor Pi.

(12) FP(): The function to determine the feature

processor.

(13) MATi: The processor i collects all received

vectors (Vj) from other processors.

(14) MAJi (sa): The majority value of the level i of

the ic-tree.

(15) num_MAJi(sa): The number of MAJi(sa)

(16) PFPi: The possible feature processor set of

level i.

(17) Feq_Pz: The frequency that the processor z

appears in all PFP.

(18) FPi: The feature processor set of level i.

(19) MAJ3_FPx(sa): The majority value of sub-tree x

of v(sa) of the FP in Level 3.

(20) fau_sym: The symptoms of faulty processors,

such as a noticeable change in the message.

Furthermore, the proposed protocol can solve the

BA problem and the FDA problem if the following

constraints [15, 23, 27] are satisfied:

Constraint 1: n> ⎣(n-1)/3⎦+2fm + fd,

Constraint 2: c>2fm + fd.

Constraint 3: The number of the fau_sym of

malicious fault > ⎣(n-1-fd)/3⎦.
The first constraint represents the number of

processors required; it must be greater than ⎣(n-

1)/3⎦+2fm+fd, including malicious faulty processors (fm)

and dormant faulty processors (fd). The number of

malicious faulty processors must be less than (2n+3–

3fd)/6 when the influence of the dormant faults is

clearly known. Namely, the number of n-(⎣(n-

A Feature-Oriented Fault Diagnosis Agreement Protocol in Distributed Systems 1403

1)/3⎦+2fm+fd) healthy processors can provide the

complete evidence that allows our proposed protocol

reaching a common value and detecting/locating a

common set of faulty processors.

Based on Menger’s theorem [5], at least c disjoint

paths must exist between any pairs of processors Px

and Py when the connectivity of a distributed network

is c. Therefore, the second constraint specifies

connectivity requirements; that is to say that the total

number of received messages should be greater than

the number of fake messages originating from the

faulty processor(s) when the influences of dormant

faults are removed.

Shin et al. proved that no fault diagnosis protocol for

malicious faults could complete detecting/locating

faulty processors [22]. The protocol cannot detect

unobvious malicious faulty symptoms (fau_sym) of

processors when the number of faulty behaviors of

faulty processors is less than ⎣(n-1-fd)/3⎦. It is because

that the number of faulty processors needs to conform

to the BA constrains 1 (n>⎣(n-1)/3⎦+2fm+fd) [1, 6, 10,

12-15, 19-20, 24]. To detect/locate faulty processors,

we assume the number of faulty symptoms (fau_sym)

of faulty processors can appear in the collected

messages in the last constraint. According to the

constraints above, an agreement can be achieved, and

the number of detectable/locatable faulty processors is

fm+fd in our protocol.

Subsequently, a convenient data structure, the ic-tree

(an information collecting; Ti) [1, 18-20] is invoked in

our proposed protocol. This is because that each

processor can easy to store and accumulate the

received messages from other processors into

corresponding vertices round by round. Besides, the

structure of ic-tree can be used to prove the correctness

of the protocol as Section 4. The vertex of an ic-tree is

labeled with a list of processor names, and the value

received from the source processor is denoted as v(s) at

the root of the ic-tree. The name list of the processor

contains the names of the processors through which the

stored message has been transferred. For example, the

statement v(sbc) represents the processor having

received the value sb from processor Pc which was sent

from source processor Ps to processor Pb. Similarly, the

value v(sbd) of sibling vertex represents the processor

having value sb from processor Pd. Subsequently, the

ic-tree is constructed by following reorganization rules:

‧ The leaves in level fm + 2 of the ic-tree are deleted.

‧ The vertices with repeated processor’s names are

deleted.

According to reorganization rules, the ic-tree can be

constructed to avoid cyclical influences [10, 17] from

the faulty processors. The cyclical influences originate

from messages sent by faulty processors that may be

stored repeatedly in the ic-tree and this could result in

an incorrect common value being obtained by taking a

simple majority. Therefore, the ic-tree (Ti) can be used

to store the received messages and to eliminate the

influence of faulty components, as shown in Figure 1.

Figure 1. The ic-tree (Ti)

After constructing the ic-trees, our protocol can

remove dormant faulty processors because recipients

can always identify faulty messages produced by a

dormant component (i.e., crash and omission faults) if

the Manchester code [16] is used in encoding before

transmitting. This is because Manchester encoding is a

synchronous clock encoding technique; thus, the

recipient can easily distinguish between the dormant

faulty components. The values sent by dormant faulty

components are replaced by λ in our protocol.

Furthermore, each processor in our protocol can obtain

an ic-tree; subsequently, the majority function MAJ(α),

shown as Figure 2, is invoked in Level 3 of the ic-tree

to compute a common value. In Figure 3, the majority

value v(sa) can be obtained by taking the MAJ(α) on

{v(sab), v(sac), v(sad), v(sae)} in Level 3. Otherwise,

the majority value is replaced by the complement of

v(α) when the majority value does not exist.

In addition, the prior works of literature [7, 9, 11-12,

15] argue for the BA problem under the assumption of

synchronous behavior BA, showing that 3fm+1

processors are allowed fm failures where fm is the

number of faulty processors in a distributed network.

Besides, the fm+1 rounds of message exchange are

required under the dual failure mode. In the case of the

FDA problems [1, 15, 21-23], the fm+2 rounds of

message exchange are required to collect enough

messages as evidence to detect/locate faulty processors

1404 Journal of Internet Technology Volume 20 (2019) No.5

Figure 2. The function MAJ

Figure 3. Take the MAJ functions in Level 3

under dual failure modes due to the agreement protocol,

such as GPBA [27].

However, the message passing is a time-consuming

process and the number of messages results in a large

protocol overhead. This is unreasonable and inefficient

for a distributed system containing a large number of

processors. For reducing the number of message

exchange, a novel algorithm, the Feature-based Fault

Diagnosis Agreement (FFDA) is proposed in this paper

and the number of rounds is less than all of the

previous BA algorithms [1, 6-7, 12-15, 17, 19-20 24,

27]. This is because a brand-new concept of feature

value is proposed to reduce the number of messages

and the number of rounds rapidly. Besides, the FFDA

algorithm is still better than IBA [28] due to the IBA

needs to remove faulty processors first, and requires

extra rounds of message exchange to achieve

agreement.

With regard to the FFDA, the feature value of fault-

free processors can be derived from a large number of

messages and defined as the following paragraphs,

subsequent the processors with the feature value can be

recognized as the feature processors. Based on the

feature processors, the faulty processors can easy to

filter out and the agreement can be reached

simultaneously regardless of the number of processors

in a distributed network. The detail is described as

follows.

In general, a source processor may be a malicious

faulty processor; thus, two situations must be

considered, malicious faulty source processors and

healthy source processors, as shown in Figure 4. In

Figure 4(a), the values in round 1 (R1), under the

influence of the malicious faulty source processor may

send different values to each processor. Similarly, the

values in R2 demonstrate influences from the malicious

faulty processors and malicious faulty source processor.

Namely, the stored values of R2 can be influenced by

R1 and R2.

(a) Malicious faulty source processor

(b) Healthy source processor

Figure 4. The influence of each round

However, the influences from R2 can be removed

from R3 by taking the majority on messages in Level 3

of its ic-tree, such as MAJ(α){v(sab), v(sac), v(sad),

v(sae)} = MAJ3(sa). This is because there are more

than ⎣(n-1- fd)/3⎦ healthy processors in a distributed

network even if the source is a malicious faulty

processor. Hence, MAJ3(sa) of Level 2 in R3 can be

obtained without the faulty influence of R2.

A Feature-Oriented Fault Diagnosis Agreement Protocol in Distributed Systems 1405

Based on the reason above, the messages in Level 2

can also be removed in R3 when the source is a healthy

processor, as shown in Figure 4(b). Regardless whether

the source is healthy, the stored values of Level 2 in R3

are real values sent from the predecessor and

uninfluenced by the malicious faulty processors in R2

and are called feature values. Therefore, each vertex i

(1≤i≤n) in Level 3 of an ic-tree is a possible feature

processor Pi when it has this feature value (v(sai) =

MAJ3(sa)). For each sub-tree of the ic-tree, we can

identify processor Pi as the feature processor if the

number of Pi in (PFP) exceeds (n- fm). This is because

there are more than ⎣(n-1-fd)/3⎦ healthy processors able

to transfer the feature value received from the

predecessor to other processors. Based on this novel

concept, the goals of FDA and BA can be achieved.

Besides, the number of messages can be reduced even

if a large number of processor exists. Subsequently, the

details of our proposed protocol FFBA are introduced

in the next section.

3 The FFDA Protocol

The Feature-based Fault Diagnosis Agreement

(FFDA) protocol we proposed includes three phases:

message exchange phase, fault diagnosis phase, and

decision-making phase. The FFDA protocol is shown

in Figure 5. The details of the protocol are shown as

follows.

3.1 The Message Collection Phase

This phase is used to collect three rounds of message

exchange and store the received messages in the

processors’ ic-tree. The collected three rounds of

messages are necessary to be used as evidence to

eliminate the influence of faulty processors in the next

phase.

3.2 The Fault Diagnosis Phase

In general, healthy destination processors can detect

message(s) from dormant faulty components if the

protocol appropriately encodes a transmitting message

by using either the Non-Return-to-Zero code or the

Manchester code [5, 7] before transmission. Therefore,

the messages sent from dormant faulty components can

be replaced by λ and can be removed during each

round of message exchange by dormant diagnosis rule.

Furthermore, we use the dSet (dormant faulty

processor set) to record dormant faulty processors

during this phase.

However, the malicious diagnosis rule is used to

search the feature processors. Subsequently, the mSet

(malicious faulty processor set) is used to record

malicious faulty processors. In first for loop of function

FP, the MAJ3(sa) is taken by MAJ function in level 3

of the ic-tree. The processors can be stored into the

PFP (possible feature processor) set when the v(sa)

=MAJ3(sa) and the num_MAJ3(sa) ≥ fm. After visiting

all sub-trees of vertex v(sa) in the ic-tree, the processor

Pz of PFP can be identified as a feature processor when

the Feq_Pz ≥ (n- fm) is satisfied. Subsequently, the

values of non-feature processors are set as MAJ3_FPi(sa)

in second for loop. Finally, the dormant and malicious

faulty processors can be obtained.

Message Exchange Phase

Collect r (r = 3) rounds of messages which have

accumulated in the GPBA [27] as evidences.

r = 1, do:

for i ≤ n {

source processor (s) broadcasts initial value v(s) to Pi}

r = 2, do:

for each Pi (i ≤ n) {

broadcast v(s) && receive others broadcasted values

store v(sa) into the corresponding ic-tree Ti}

r = 3, do:

for each Pi (i ≤ n) {

broadcast Ti && receive others broadcasted Ti

construct the MATi}

for each MATi (i ≤ n) {

for each row k (k ≤ n) {

If vki = λ, then { vki is ignored}

majority (row k of MATi) && construct a corresponding ic-

tree Ti}

return (Ti)

Fault Diagnosis Phase

dormant diagnosis rule: Let processor i (1≤i≤n) be a

healthy processor. Pi can detect processor Pk (1≤k≤n) as

faulty processor if:

Pi receives the λ from Pk (or no message is received from

Pk) and the number of copies of λ is greater than ⎣(n-1-

fd)/3⎦, then dSet = dSet ∪ {Pk};

malicious diagnosis rule:

Run FP()

for each sub-tree of vertex v(sa) in level 2 of ic-tree Ti (i ≤

n){

if v(sa) = MAJ3(sa) && num_MAJ3(sa) ≥ fm then{

Pa ∈ PFPi.

for each sub-vertex of the sub-tree of vertex v(sa){

if v(sab) = v(sa) then PFPi ∪ {Pb}}}}

for each PFP i (i ≤ n){

Count (Feq_Pz)
if Feq_Pz ≥ (n- fm) then{

FP ∪ {Pz}

else mSet ∪ {Pz} && v(sab) = MAJ3_FPi(sa)}

return (mSet && dSet)

Decision Making Phase:

Step 1: Applying function VOTE to the root of each ic-tree

Ti and common value, VOTE(s) is obtained.

VOTE Function

The function

VOTE(α)=

1. v(α), if α is a leaf.

2. The majority value in the set of

{VOTE(αi)| 1 ≤ i ≤ n, and vertex αi is a

child of vertex α}, if such a majority

value exists.

3. A default value φ is chosen, otherwise

Figure 5. FFDA Protocol

1406 Journal of Internet Technology Volume 20 (2019) No.5

3.3 The Decision-making Phase

In this phase, the function VOTE is applied to root s

of each healthy processor’s ic-tree. Finally, each

processor can obtain a decision value VOTE(s) during

this phase.

Table 1 shows the important comparisons between

FFDA and previous BA protocols. Basically, the

overall performance is better than other protocols.

Furthermore, another important contribution of our

protocol is to reduce the complexity of the diagnostic

procedure; the FDA problem and BA problem [1, 15-

16, 18, 20-23] are solved early by our proposed

protocol FFDA that uses the minimum number of

rounds characterized by dual failure of processors. The

comparisons between FFDA and previous diagnosis

protocols are assumed to solve the BA and FDA

problems simultaneously are shown in Table 2. As a

result, the FFDA we proposed is more efficient and

reasonable than previous protocols, such as the number

of message exchanges, the message complexity, and

the number of required rounds.

Table 1. The comparisons between FFDA and previous BA protocols

Required

rounds

Message

complexity

Allowable

faulty processors

Previous protocols

[8, 16-17, 20]
fm + 1

O(cnσ);

(σ≦⎣(n-1)-fd)/3⎦)
fm

FFDA 3 O(cn2) fm

Table 2. The comparisons between FFDA and previous diagnosis protocols

 Required rounds Message complexity Fault types The number of processor required

Hsiao et al. [8, 19] ⎣(n-1))/3⎦+3
O(cnσ+ cnσ+1+ n)

σ≦⎣(n-1)-fd)/3⎦+1
Dual faults n>3fm+fd

IBA [3] 4 O(cn3+ n); Dual faults n>3fm+fd

FFDA 3 O(cn3); Dual faults n>3fm+fd

3.4 Example of Executing FFDA

In this section, an example is provided to show the

overall procedure of FFDA. The initial environment is

shown in Figure 6(a). Besides, to prove the validity of

FFDA, a worst case is designed (the numbers of 0’s

and 1’s are approximately the same) and the

transmission behavior of the faulty processors is shown

in Figure 6(b). Based on [4, 17, 19, 20, 22-23], BA and

FDA requirements, the result of an agreement of faulty

processors need not be discussed. This is because the

goal of the BA/FDA protocol is to allow all healthy

processors to reach a common value. Besides, the

faulty processors cannot influence the agreement

results of healthy processors by BA and FDA

requirements. Therefore, this example only shows the

results of healthy processors.

At the beginning of the protocol, the faulty source

processor Pa broadcasts its initial value to all

processors during the first round of message exchange

phase. Unfortunately, the source processor Pa is a

malicious faulty processor; it sends different values, 0,

1, 0, 1, 0, 1, 0, 1, and 0, respectively, to processors Pd,

Pe, Pf, Pg, Ph, Pi, Pj, Pk, Pl, and Pm. Here, each healthy

processor stores the received value into the root of its

ic-tree in the first round, as shown in Figure 6(c).

Figure 6(a). The 13-processor environment

 e f g h i j k l m

a 0 1 0 1 0 1 0 1 0

b 1 0 1 1 1 0 1 0 1

c 1 1 1 1 0 0 0 0 1

d 0 0 1 1 0 0 1 1 0

Figure 6(b). The transmission behavior of faulty

processors

A Feature-Oriented Fault Diagnosis Agreement Protocol in Distributed Systems 1407

Figure 6(c). The vectors received from source

processor Pa in first round of message exchange phase

Subsequently, each processor exchanges the

received value from the first round of message

exchange phase with all processors during the second

round of message exchange phase. Similarly, the

received messages are stored in the second level of its

ic-tree, as shown in Figure 6(d). In the third round of

message exchange phase, each processor exchanges

the received values from the second round of message

exchange phase with all processors and stores the

received values into the third level of their ic-trees. For

this example, the result of processor Pe is shown in

Figure 6(e).

Figure 6(d). The ic-trees of processors Pe, Pf, Pg, Ph, Pi,

Pj, Pk, Pl, and Pm in the second round of message

exchange phase

In the next phase, the fault diagnosis phase, each

processor must first determine which processors are

possible feature processors. For example, the

procedure for processor Pe is shown in Figure 6(f).

Processors Pa, Pd, Pe, Pf, Pg, Ph, Pi, Pj, Pk, Pl and Pm

can be recognized as possible feature processors and

stored into the PFP set in Figure 6(f) when the

following conditions are satisfied.

Figure 6(e). The ic-tree of processors Pe in the third

round of message exchange phase

Figure 6(f). The procedure of FP() to determine the

feature processors in fault diagnosis phase

‧ v(ae) = MAJ3(ae) = 0,

‧ [num_MAJ3(ae) = 10] ≥ [(n- fm) = 9], and

1408 Journal of Internet Technology Volume 20 (2019) No.5

‧ v(aei) = MAJ3(ae){such as, v(aea), v(aed), v(aef),

v(aeg), v(aeh), v(aei), v(aej), v(aek), v(ael) and

v(aem) = MAJ3(ae) = 0}

After that, the FFDA protocol will count the

frequency (Feq_Pz) that each processor appears in all

PFP and computes whether the Feq_Pz is greater than

(n-fm) or not. In this example, processors Pe, Pf, Pg, Ph,

Pi, Pj, Pk, Pl, and Pm are feature processors, as shown

in Figure 6(f). Subsequently, the values of non-feature

processors can be replaced by MAJ3_FPi(sa) using Rep

function. For example, the v(aba) and v(abd) are not

equal to the MAJ3_FP3(ab) in Figure 6(g), thus the

values v(aba) and v(abd) in the third level of the ic-tree

will be changed to MAJ3_FPi(sa) =1. Similarly, all sub-

trees in the third level of the ic-tree can be executed the

same procedures; the result of processor Pe is shown in

Figure 6(g). Finally, the function VOTE is applied to

root v(a) of an ic-tree during the decision- making

phase. The common result (VOTE(a) =φ) of the

processor Pe are shown in Figure 6(h). Since all

healthy processors will execute the same procedures,

an agreement is reached while the fm faulty processors

exist. Furthermore, the Pa, Pb, Pc, and Pd can be

detected as a malicious faulty processor by feature

processors. Therefore, only three rounds of message

exchange are needed in our protocol FFDA, but the

fm+2 rounds of message exchange are needed to reach

an agreement and detect/locate faulty processors in

traditional protocols.

Figure 6(g). The values of non-feature processors can

be set to MAJ3_FPi(sa) during fault diagnosis phase

Figure 6(h). An agreement value of the decision-

making phase

4 The Correctness and Complexity of the

FFDA

The following required proofs for agreement and

validity of our solution to the BA are given in this

section. The lemmas and theorems are used to prove

the correctness and complexity of FFDA.

4.1 Correctness of FFDA

To prove the correctness of our protocol, a tree

structure, ic-tree is used to explain our procedures. The

ic-tree collected sufficient complete messages to

eliminate the influences of faulty components and

solve the cyclical influences of the faulty processors by

eliminating the repeated names. The function VOTE

must also be used to obtain a common value from the

ic-tree in the decision-making phase. Therefore, this

paper proves the correctness of our protocol by ic-tree

structure.

This paper defined a vertex α as common [17] if

each healthy processor computes the same value for α.

In other words, the value stored in vertex α of each

healthy processor’s ic-tree is common to all. Once each

healthy processor has a common initial value from the

source processor in the root of its ic-tree, an agreement

is reached since that root is common to all. Thus, the

Agreement and Validity can be rewritten as:

A Feature-Oriented Fault Diagnosis Agreement Protocol in Distributed Systems 1409

(Agreement’): Root s is common, and

(Validity’): VOTE(s) = vs for each healthy processor,

if the source processor is healthy.

To prove a vertex is common, the term common

frontier [1] is defined as follows: When every root-to-

leaf path of the ic-tree contains a common vertex, the

collection of the common vertices forms a common

frontier. In other words, every healthy processor has

the same messages collected in the common frontier if

a common frontier does exist in a healthy processor’s

ic-tree. Subsequently, using the same voting function

VOTE to compute the root value of the ic-tree, every

healthy processor can obtain the same root value as a

result of the same input and the same computing

function.

Before proving the correctness, the term correct

vertex is defined as (1) correct vertex-vertex αi of a

tree is a correct vertex if processor Pi is healthy. In

other words, a correct vertex is a place to store the

value received from a healthy processor. (2) true value:

for a correct vertex αi in the tree of a healthy processor

Pi, v(αi) is the true value of vertex αi. Namely, the

stored value is called the true value and can be

recognized as the feature value.

By the definition of a correct vertex, the stored value

is received from the healthy processors and a healthy

processor always transmits the same value to other

processors. The repeated vertices of the ic-tree are

deleted, thus, the correct vertices of such an ic-tree are

common. Based on the definition of the correct vertex,

a common frontier does exist in the ic-tree. Namely,

the root can be proven to be a common vertex

(Agreement’) due to the existence of a common

frontier, regardless of the correctness of a source

processor. Therefore, an agreement of the root value is

reached.

Subsequently, we will check the condition of

(Validity’). Based on (Validity’), we know that when

the source processor has failed, the (Validity’) is true.

This is because the propositional logic P�Q means

(NOT(P) OR Q), then (NOT(P) OR Q) or (P�Q) is

true when P is false, where P implies “the source

processor is healthy” and (P�Q) implies BA2’.

Conversely, root s is a correct vertex by the definition

of a correct vertex if the source processor is healthy. If

all correct vertices’ true values can be computed by

FFDA, then the true value of the root can be computed

because the root is a correct vertex. By definition, the

true value of the root is the initial value of the source

processor if the source processor is healthy. Namely,

each healthy processor’s root value is the initial value

of the source processor. If the source processor is

healthy, then Validity’ is true when the source

processor is healthy. In short, the Agreement’ and

Validity’ are both true no matter whether the source

processor is healthy or failed, and the BA problem is

solved.

Lemma 1. The messages through dormant faulty

components can be detected by a healthy destination

processor.

Proof. A healthy destination processor can detect the

message(s) from dormant faulty components if the

protocol appropriately encodes a transmitted message

using either the Non-Return-to-Zero code or the

Manchester code [5, 7] before transmitting.

Lemma 2. The healthy processors can receive

messages from healthy processors if c > 2fm+ fd..
Proof. A healthy sender processor broadcasts a

message to others and itself. In general, each healthy

processor can receive at least c copies of messages in

c-connectivity distributed network based on Menger’s

theorem [5]. However, a healthy processor can receive

c - fd messages transmitted during each round of

message exchange in the worst case (the dormant

faulty components can be detected by Return-to-Zero

code or the Manchester code). If c -fd > 2fm, a healthy

processor can determine messages from sender

processors by taking the majority value from the values

received during each message exchange round.

Theorem 1. A healthy processor can remove the faulty

influences from dormant faulty processors if c > 2fm+fd.

Proof. By Lemmas 1 and 2, the theorem is proved.

Lemma 3. The healthy destination processor can

detect a dormant faulty sender processor using a

forwarding technique in a distributed network.

Proof. If the number of value λ is greater than or equal

to c - ⎣(n-1)/3⎦, then the sender processor is in dormant

fault. The reason for this is that there are at most ⎣(n-

1)/3⎦ malicious faulty components in a distributed

network, hence there are at most ⎣(n-1)/3⎦ non-λ values

in the vector Vi.

Theorem 2. Healthy processors can detect dormant

faulty processors in an n-processor system.

Proof. In the protocol FFDA, there are three rounds of

message exchange during the message exchange phase,

where fm ≤ ⎣(n-1)/3⎦ and n > 3. Each healthy processor

can receive the message from the source processor

during the first round of message exchange and

receives other processors’ messages during the second

round of message exchange. Each processor can

receive all other processors’ messages in a distributed

network after two rounds of message exchange.

According to the Lemma 3, each healthy processor can

detect dormant faulty processors in an n-processor

system.

Lemma 4. All healthy correct vertices of an ic-tree are

common.

Proof. Since the vertices with repeated processor

names of ic-trees are removed, no repeatable vertices

are in an ic-tree. In the level fm or above, the correct

vertex α has at least 2fm+1 children (n-fm ≥ 2fm+1) in

which at least fm+1 children are correct. The true value

of these fm+1 correct vertices is common, and the

majority value of vertex α is common. The correct

vertex α is common in the ic-tree if the level of α is

1410 Journal of Internet Technology Volume 20 (2019) No.5

less than fm+1. Thus, all correct vertices of the ic-tree

are common.

Lemma 5. The common frontier exists in an ic-tree.

Proof. By Lemmas 4, the true values of these fm+1

correct vertex are common. Since at most fm (≤ ⎣(n-

1)/3⎦) processors can be failed, at least one vertex is

correct along each root-to-leaf path of the ic-tree.

Therefore, the correct vertex is common, and the

common frontier exists in each healthy processor’s ic-

tree.

Lemma 6. Let α be a vertex, where α is common if

there is a common frontier in the subtree rooted at α.

Proof. If the height of α is 0 and the common frontier

(α itself) exists, α is common. If the height of α is σ,

the children of α are all in common using an induction

hypothesis with the height of the children at σ-1, then

the vertex α is common.

Lemma 7. The values replaced by the majority value

of feature processors are common.

Proof. By Lemmas 4, 5, and 6, all correct vertices of

the ic-tree are common, and each healthy processor’s

ic-tree also has the same common frontier. Further,

there are at least n-fm processors that are healthy and

having the feature value. Hence, all these healthy

processors with the feature value must be feature

processors. Thus, the majority value of these feature

processors for each sub-tree in the third level must be

common. The values replaced by the majority value of

feature processors are also common.

Lemma 8. The values sent by the healthy processors

are the same as the majority value after applying the

VOTE function.

Proof. There are at least n-fm healthy processors in a

distributed network. All the healthy processors will

transmit their values to others correctly. In each round

of message exchange, there will be n-fm healthy

processors that can receive these values and resend

them. Then, the majority values which are applied

using the VOTE function for the (i + 1; 1≤ i ≤ fm)th

level of the ic-tree must be equal to the values in the

ith level of the ic-tree. It is unnecessary to send the

values for (fm+1) rounds if the sender is a healthy

processor.

Corollary 1. The root is common if the common

frontier exists in the ic-tree.

Theorem 3. The root of a healthy processor’s ic-tree is

common.

Proof. By Lemmas 4, 5, 6, 7, 8 and Corollary 1, the

theorem is proved.

Theorem 4. Protocol FFDA can solve the BA in a

distributed network.

Proof. To prove the theorem, it must show that FFDA

meets the constraints (Agreement’) and (Validity’).

(Agreement’): Root s is common. By Theorem 3,

(Agreement’) is satisfied.

(Validity’): VOTE(s) = v for all healthy processors,

if the initial value of the source is vs, say v = vs.

Since most of the processors are healthy, they

transmit the message to all others. As a result, each

correct vertex of the ic-tree is common (Lemma 4),

and its true value (feature value) is v. By Theorem 3,

this root is common. The computed value VOTE(s) = v

is stored in the root for all healthy processors.

(Validity’) is satisfied.

Lemma 9. All correct vertices of an ic-tree are

identical.

Proof. After the finishing the message exchange phase,

no repeatable vertices are located in an ic-tree. In level

3, the correct vertex (the vertex uninfluenced by the

faulty processors) α has at least 2 ⎣(n-1-fd)/3⎦+1

children, of which at least ⎣(n-1-fd)/3⎦+1 children are

correct. Therefore, the feature value of the ⎣(n-1-fd)/3⎦-
1 round from the correct processor can be obtained.

However, the source processor may be a malicious

processor, thus we discuss two cases as follows.

CASE 1. In this case, the source processor is a

malicious faulty processor. The malicious faulty source

processor sends the different initial value v(s) to each

processor during the first round of message exchange.

Subsequently, each processor broadcasts the received

value from the faulty source processor during the

second round of message exchange. The value v(vsi)

(1≤i≤n) may be also altered to a different value by

malicious processors in this round. In the final round,

each processor broadcasts the received value from the

second round of message exchange to the others.

However, the influence of a faulty value from healthy

processors produced in the previous round can be

removed by the majority function MAJ. This is

because there are more than ⎣(n-1- fd)/3⎦ healthy

processors that can receive the feature value v(α) from

the previous round regardless whether the v(α) is

correct or not.

CASE 2. In this case, the source processor is a healthy

processor in a distributed network. The healthy source

processor sends the same initial value v(s) (the correct

value) to each processor during the first round of

message exchange. Subsequently, each processor Pi

(1≤i≤n) broadcasts the received value from the healthy

source processor to the others in the second round of

message exchange. The value v(vsi) may be also altered

by malicious processors during this round. Finally,

each processor can exchange received values during

the third round of message exchange. As in CASE 1,

the number of feature value v(α) received from the

healthy processors exceeds n-fm. Therefore, the faulty

processors can easily be detected.

Theorem 5. The FFDA can solve the FDA problem if

n> ⎣(n-1)/3⎦+2fm+fd and c>2fm+fd.

Proof. By Theorem 1, Theorem 2, Theorem 3,

Theorem 4, and Lemmas 9, the theorem is proven.

4.2 Complexity of FFDA

Theorem 6. FFDA requires three rounds to solve the

BA and FDA problems with a distributed network if n>

A Feature-Oriented Fault Diagnosis Agreement Protocol in Distributed Systems 1411

⎣(n-1)/3⎦+2fm+fd and c>2fm+fd are satisfied.

Furthermore, the three rounds are the minimum

number of rounds of message exchange.

Proof. In general, the traditional protocol [22] needs

⎣(n-1-fd)/3⎦ +1 rounds of message exchange to reach an

agreement. Based on the concept of Figure 4, the

feature value of the previous round can be obtained.

However, we take the majority on level 3 of each ic-

tree and determine the processors which agree. Each

vertex can be identified as possible feature processor if

it is equal to the feature value. Subsequently, our

protocol accumulates the frequency of processor Pz of

possible feature processor sets and compares them

with ⎣(n-1-fd)/3⎦. The processor Pz can be identified as

a feature processor since there are n-(⎣(n-1-fd)/3⎦)
healthy processors assuming it is correct. Similarly,

there are more than ⎣(n-1- fd)/3⎦+1 vertices in all ic-

trees having feature values by Lemma 9, thus the

faulty processors can be easily detected/located. The

three rounds of message exchange are necessary

because the influences from R2 can be removed in R3

by taking the majority on messages in Level 3 of its ic-

tree. As a result, our proposed protocol FFDA requires

only three rounds to solve the BA and FDA problems;

three rounds being the minimum number of rounds of

message exchange required for this purpose.

Theorem 7. The total number of allowable faulty

components by the FFDA is fm+fd, where n>⎣(n-

1)/3⎦+2fm+fd and c>2fm+fd.

Proof. According to the constraints of the BA problem

for a processor which was proposed by Siu et al. [22,

27], the constraints over our protocol are n>⎣(n-

1)/3⎦+2fm+fd and c>2fm + fd. In the worst-case scenario,

the malicious faulty processors and dormant faulty

processor exist simultaneously, thus the total number

of allowable faulty components by the FFDA is fm

malicious faulty processors and fd dormant faulty

processors.

Theorem 8. The total number of messages in the

FFDA is cn3.

Proof. The protocol FFDA must use the ic-tree as

evidence to detect/locate faulty processors. The ic-tree

is constructed from the message exchange phase of

each round. Hence, we have O(cn3) (c represents a

constant) messages in each ic-tree. Furthermore,

previous protocols [22, 27] required O(cnσ+cnσ+1)

(σ≤⎣(n-1- fd)/3⎦+1) messages to reach an agreement

and detect/locate the faulty processors. However, we

know the message exchange phase is a time-

consuming phase. The number of messages burdens

the protocol with a large overhead. As a result, the

FFDA can reach an agreement and detect/locate the

maximum number of faulty processors using a minimal

number of rounds efficiently and quickly.

5 Conclusion

In general, the previous protocols [20, 23] require

fm+1 rounds of message exchange to reach agreement

in BA problem, and fm+2 rounds of message exchange

are needed to detect/locate the faulty processors in

FDA problem. Besides, the complexities of message

exchanges in BA and FDA problem are O(cnσ) and

O(cnσ+cnσ+1+n) [13-14, 18] respectively in previous

works. However, the traditional protocols are

inefficient and unsuitable for a distributed network

topology due to a large number of message exchange

imposes a heavy overhead on the protocol. To reduce a

large number of message exchange, a concept of

feature value which is used to recognize the feature

processors is proposed in FFDA to make each healthy

processor solve BA and FDA problems simultaneously

with dual failure mode by using three rounds of

message exchange regardless of the number of

processors in a distributed network. Furthermore, the

number of messages can be reduced to O(cn3). As a

result, the FFDA protocol is more efficient and

reasonable in a distributed network topology than

previous protocols [1, 4, 10, 12-14, 18-20, 23-24, 28]

where n> ⎣(n-1)/3⎦ +2fm+fd and c>2fm + fd.

References

[1] I. Abraham, D. Dolev, Byzantine Agreement with Optimal

Early Stopping, Optimal Resilience and Polynomial

Complexity, Proceeding of the Forty-Seventh Annual ACM

on Symposium on Theory of Computing, ACM New York, NY,

USA, 2015, pp. 605-614.

[2] W. Ahmed, Y. W. Wu, A Survey on Reliability in Distributed

Systems, Journal of Computer and System Sciences, Vol. 79,

No. 8, pp. 1243-1255, December, 2013.

[3] A. Bar-Noy, D. Dolev, C. Dwork, H. Raymond Strong,

Shifting Gears: Changing Algorithms on the Fly to Expedite

Byzantine Agreement, Information and Computation, Vol. 97,

No. 2, pp. 205-233, April, 1992.

[4] R. W. Buskens, R. P. Bianchini, Distributed on-line

Diagnosis in the Presence of Arbitrary Faults, Proceeding of

the Symposium. Fault-tolerant Computing, 1993, pp. 470-479.

[5] N. Deo, Graph Theory with Applications to Engineering and

Computer Science, Prentice-Hall, 1974.

[6] D. Dolev, R. Reischuk, Bounds on Information Exchange for

Byzantine Agreement, Journal of ACM, Vol. 32, No. 1, pp.

191-204, January, 1985.

[7] M. Fischer, The Consensus Problem in Unreliable Distributed

Systems (A Brief Survey), Proceeding of the International

FCT-Conference on Fundamentals of Computation Theory,

1983, pp. 127-140.

[8] A. Mostéfaoui, H. Moumen, M. Raynal, Signature-Free

Asynchronous Binary Byzantine Consensus with t < n/3, O(n2)

Messages, and O(1) Expected Time, Journal of the ACM

(JACM), Vol. 62, No. 4, Article No. 31, 2015.

1412 Journal of Internet Technology Volume 20 (2019) No.5

[9] D. Ramesh, C. Kumar, An Optimal Novel Byzantine

Agreement Protocol (ONBAP) for Heterogeneous Distributed

Database Processing Systems, Procedia Technology, Vol. 6,

pp. 57-66, 2012.

[10] S. S. Wang, S. C. Wang, K. Q. Yan, An Optimal Solution for

Byzantine Agreement under a Hierarchical Cluster-Oriented

Mobile Ad-hoc Network, Computers and Electrical

Engineering, Vol. 36, No. 1, pp. 100-113, January, 2010.

[11] S. C. Wang, K. Q. Yan, C. C. Ho, S. S. Wang, The Optimal

Generalized Byzantine Agreement in Cluster-based Wireless

Sensor Networks, Computer Standards & Interfaces, Vol. 36,

No. 5, pp. 821-830, September, 2014.

[12] S. C. Wang, K. Q. Yan, H. C. Hsieh, The New Territory of

Mobile Agreement, Computer Standards & Interfaces, Vol.

26, No. 5, pp. 435-447, September, 2004.

[13] K. Q. Yan, S. C. Wang, S. S. Wang, An Optimal Solution of

Byzantine Agreement in a Scale Free Network, Proceeding of

IEEE 22nd International Conference on Advanced

Information Networking and Applications (AINA 2008),

Ginowan, Okinawa, Japan, 2008.

[14] K. Q. Yan, S. S. Wang, S. C. Wang, Reaching an Agreement

under Wormhole Networks within Dual Failure Component,

International Journal of Innovative Computing, Information

and Control, Vol. 6, No. 3, pp. 1151-1164, March, 2010.

[15] L. Lamport, R. Shostak, M. Pease, The Byzantine Generals

Problem, ACM Transactions on Programming Languages

and Systems, Vol. 4, No. 3, pp. 382-401, July, 1982.

[16] F. Halsall, Data Communications, Computer Networks and

Open Systems, 4th ed., Addison-Wesley, 1995.

[17] H. S. Siu, Y. H. Chin, W. P. Yang, A Note on Consensus on

Dual Failure Modes, IEEE Transactions on Parallel and

Distributed Systems, Vol. 7, No. 3, pp. 225-229, March, 1996.

[18] H. S. Hsiao, Y. H. Chin, W. P. Yang, Reaching Fault

Diagnosis Agreement under a Hybrid Fault Model, IEEE

Transactions on Computers, Vol. 49, No. 9, pp. 980-986,

September, 2000.

[19] S. C. Wang, K. Q. Yan, S. S. Wang, G. Y. Zheng, Reaching

Agreement among Virtual Subnets in Hybrid Failure Mode,

IEEE Transactions on Parallel and Distributed Systems, Vol.

19, No. 9, pp. 1-11, June, 2008.

[20] K. Q. Yan, S. C. Wang, Grouping Byzantine Agreement,

Computer Standard & Interfaces, Vol. 28, No. 1, pp. 75-92,

July, 2005.

[21] S. Mallela, G. M. Masson, Diagnosis without Repair for

Hybrid Fault Situations, IEEE Transactions on Computers,

Vol. 29, No. 6, pp. 461-471, June, 1980.

[22] K. Shin, P. Ramanathan, Diagnosis of Processors with

Byzantine Faults in a Distributed Computing System.

Proceeding of the symposium Fault-tolerant Computing,

1987, pp. 55-60.

[23] K. Q. Yan, S. C. Wang, Reaching Fault Diagnosis Agreement

on an Unreliable General Network, Information Sciences, Vol.

170, No. 2-4, pp. 397-407, February, 2005.

[24] F. J. Meyer, D. K. Pradhan, Consensus with Dual Failure

Modes, IEEE Transactions on Parallel Distribute System,

Vol. 2, No. 2, pp. 214-222, April, 1991.

[25] F. Preparata, G. Metze, R. Chien, On the Connection

Assignment Problem of Diagnosable Systems. IEEE

Transactions on Electronic Computers, Vol. 16, No. 12, pp.

848-854, December, 1967.

[26] D. F. Zhang, G. G. Xie, Y. H. Min, Node Grouping in

System-Level Fault Diagnosis, Journal of Computer Science

and Technology, Vol. 16, No. 5, pp. 474-479, September,

2001.

[27] H. S. Siu, Y. H. Chin, W. P. Yang, Byzantine Agreement in

the Presence of Mixed Faults on Processors and Links, IEEE

Transactions on Parallel and Distributed Systems, Vol. 9, No.

4, pp. 335-345, April, 1998.

[28] M. L. Chiang, S. C. Wang, L. Y. Tseng, The Incremental

Agreement, Information Processing Letters, Vol. 107, No. 5,

pp. 165-170, August, 2008.

[29] R. Chen, J.-M. J. Park, K. Bia, Robustness against Byzantine

Failures in Distributed Spectrum Sensing, Computer

Communications, Vol. 35, No. 17, pp. 2115-2124, October,

2012.

[30] S. C. Wang, S. S. Wang, K. Q. Yan, L. H. Chang, C. P.

Huang, Reaching Fast Agreement in a Generalized Cloud

Computing Environment, Journal of Internet Technology,

Vol. 11, No. 7, pp. 975-984, December, 2010.

Biographies

Hui-Ching Hsieh received her Ph.D.

degree in computer science at

National Tsing Hua University in

Taiwan in 2010. She is an assistant

professor in the Department of

Information Communication at Hsing

Wu University, Taiwan. Her research

interests include distributed data processing, fault

tolerant computing, cloud computing and Software-

Defined network.

Mao-Lun Chiang received his Ph.D.

degree in Department of Computer

Science from National Chung-Hsing

University, Taiwan. He is an associate

professor in the Department of

Information and Communication

Engineering at the Chaoyang

University of Technology, Taiwan. His current

research interests include Ad Hoc, mobile computing,

distributed data processing, fault tolerant computing,

and cloud computing.

Wen-Chung Tsai received the Ph.D.

degree in Electronics Engineering

from National Taiwan University in

2011. During 2011 to 2013, he was a

researcher at Industrial Technology

Research Institute of Taiwan and

focuses on, but not limited to 4G/LTE

A Feature-Oriented Fault Diagnosis Agreement Protocol in Distributed Systems 1413

(Long Term Evolution) researches. Dr. Tsai is

currently a faculty of Department of Information and

Communication Engineering, Chaoyang University of

Technology.

Yen-Chiu Chen received her Ph.D.

degree in Computer Sciences from

National Tsing-Hua University,

Taiwan in 2010 and B.S. degree in

information management from Chung

Hua University in 2004. Her research

interests are in Mobile Edge Computing, Cloud

Computing, Real-time scheduling theory.

1414 Journal of Internet Technology Volume 20 (2019) No.5

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (Adobe RGB \0501998\051)
 /CalCMYKProfile (Japan Color 2001 Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHT <FEFF005b683964da300c9ad86a94002851fa8840002b89d27dda0029300d005d0020005b683964da300c8f3851fa0033003000300064002851fa88400029300d005d00204f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks true
 /AddPageInfo false
 /AddRegMarks false
 /BleedOffset [
 8.503940
 8.503940
 8.503940
 8.503940
]
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MarksOffset 9.354330
 /MarksWeight 0.141730
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed true
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

