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Abstract 

As an extension to conditional proxy re-encryption, 

fuzzy conditional proxy re-encryption allows for a proxy 

to re-encrypt a ciphertext only if it satisfies some t-out-

of-d threshold condition. Therefore, it is more desirable 

in some applications where fine-grained control of the 

decryption delegation is required. In this paper, we 

construct the first lattice-based fuzzy conditional proxy 

re-encryption scheme as a post-quantum alternative to 

this primitive. In our construction, original ciphertexts 

and re-encryption ciphertexts have the same form, thus 

only one decryption algorithm is needed for both kinds of 

ciphertexts. We formalize its security model and prove 

that it is selective secure under the LWE assumption. 

Keywords: Proxy re-encryption, Lattice-based cryptography, 

Fine-grained control, Decryption delegation 

1 Introduction 

1.1 Motivation 

Proxy re-encryption (PRE) [1] allows a proxy, 

without performing decryption operation, to transform 

a ciphertext under Alice’s public key into a ciphertext 

of the same message under Bob’s public key. PRE 

turns out to be a useful primitive for delegation of 

decryption rights; however, it does not facilitate 

flexible delegation since a proxy can transform all of 

Alice’s ciphertexts, without any discrimination. 

To address this issue, Weng et al. [2] introduced the 

notion of conditional proxy re-encryption (CPRE), 

such that only ciphertexts satisfying certain condition 

can be transformed. Since the original CPRE in [2] can 

only deal with simple keyword-matching conditions, it 

is undesirable in some applications, such as cloud 

computing [3], where fine-grained decryption 

delegation is required. Therefore, some more 

expressive CPRE schemes, such as fuzzy CPRE [4] 

and attribute-based CPRE [5] are proposed to enable 

more fine-grained conditions.  

To resist against quantum attacks, a substantial 

number of lattice-based PRE schemes (e.g., [6-8]) and 

one lattice-based CPRE scheme [9] have been 

proposed in the literature. However, probably due to 

the fact that lattices have far less algebraic structure, 

construction of more expressive CPRE from lattices 

remains an unsolved problem. 

1.2 Contribution 

In this paper, we take the first step in this direction 

by constructing the first lattice-based fuzzy CPRE. Our 

fuzzy CPRE uses t-out-of-d threshold conditions to 

control the decryption delegation. More concretely, 

each ciphertext in our fuzzy CPRE is labeled with a 

keyword set W. To re-encrypt a ciphertext, a re-

encryption key is generated from another keyword set 

S with d keywords in it. The ciphertext can be re-

encrypted only if W and S have at least t common 

keywords. Furthermore, the threshold conditions in our 

fuzzy CPRE are flexible, in the sense that a delegator 

(Alice) can choose different t and d for each delegation. 

Like the fuzzy CPRE of [4], our fuzzy CPRE is 

single-hop unidirectional, in the sense that a ciphertext 

can only be delegated once and a re-encryption key can 

only work in one direction. However, our fuzzy CPRE 

is more compact, since original ciphertexts and re-

encryption ciphertexts have the same form, and thus 

only one algorithm is needed to decrypt both kinds of 

ciphertexts. 

We also strength the security model in [4] and prove 

that our fuzzy CPRE is selectively CPA-secure under 

the LWE assumption. 

1.3 Technical Approach 

We begin by recalling the basic idea in the fuzzy 

IBE of [10], and then explain our approach to make 

this idea work in our fuzzy CPRE. 

In the fuzzy IBE of [10], each keyword w has a 

uniform matrix Ew as its public key and the 

corresponding lattice short basis is included in the 

master secret key. The master secret key is used to 

generate users’ secret keys. To do so, the Shamir secret 

sharing scheme is used to construct l shares (u1,…, ul) 

of a public vector u, and then for each w = 1, …, l, a 

short vector ew is sampled such that Ewew = uw. Using 

these short vectors as her secret key, a user can decrypt 

a ciphertext if it has at least t same public key matrices 

as in her secret key. 
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In our fuzzy CPRE, a secret key is a lattice short 

basis so that a set of short vectors are sampled as a re-

encryption key. The dual trapdoor technique from [11] 

is used to reduce the secret key size. More concretely, 

for each user i, a uniform matrix Ai is generated and 

the corresponding lattice short basis is her secret key. 

The public key for each keyword w is the matrix [Ai | 

Ew + B], where B is a public random matrix. 

Accordingly, a ciphertext includes one Ai component 

and multiple [Ew + B] components, so that the 

combination of the Ai component and any subset of 

[Ew + B] components is used to perfrom the re-

encryption operation. 

The benefits of this approach are three-fold. First, 

using the basis delegation technique [12], the user i can 

obtain the trapdoor for the matrix [Ai | Ew + B], thus 

she can generate re-encryption keys for any keyword 

sets. Second, secret keys are constant size, while the 

master secret key in [10] is linear in the size of 

keyword universe. Third, since a ciphertext is split into 

Ai component and [Ew + B] components, the 

combination of different users and different keyword 

sets need not to be considered, thus the ciphertext size 

does not increase. 

To show the efficiency of our fuzzy CPRE, we 

choose the fuzzy IBE of [10] as a benchmark and make 

a comparison in Table 1, where n is the main security 

parameter, l is the size of keyword universe and |W | ≤ l 

is the size of keywords set attached to a ciphertext. The 

sizes for the public parameters, a secret key (or the 

master secret key in [10]) and a ciphertext are denoted 

by #PP, #SK and #CT.  

Table 1. Comparison with the fuzzy IBE scheme of 

[10] 

Schemes #PP #SK #CT m q 

fuzzy IBE of [11] O(l) O(l) O(l) 5nlogq 3 5log 2 l
m m⋅ ⋅  

Our fuzzy CPRE O(l) O(1) O(|W|) 5nlogq 5 2 5log 2 l
m m⋅ ⋅  

 

Our fuzzy CPRE has shorter secret key size and 

ciphertext size, but slightly larger parameter q to allow 

the growth of noise during the re-encryption operation. 

Since the fuzzy CPRE is a more sophisticated primitive 

than the fuzzy IBE, this increase of parameter q seems 

unavoidable. 

1.4 Related Work in Lattice World 

After Xagawa [6] constructed the first PRE under 

lattice assumptions, a substantial number of lattice-

based PRE schemes have been proposed in the 

lierature. A main line of these research is trying to 

strengthen the security of PRE. For example, 

Kirshanova [7] presented a CCA-1 secure PRE in the 

selective model under the LWE assumption. Fan and 

Liu [8] constructed a tag-based CCA secure PRE. 

Aono et al. [13] presented a key-private PRE to gain 

anonymity. Singh et al. [14] constructed a master 

secret key secure PRE to prevent coalition. 

Some efforts have also been made to to add new 

features to PRE, or find new approaches to construct 

PRE. For example, Chandran et al. [15] construct a 

secure obfuscator for the PRE primitive under LWE 

assumption, and Ma et al. [9] constructed the first 

CPRE under lattice assumptions. 

2 Preliminaries 

Notation. We use Λ,D σ  to denote the discrete Gaussian 

distribution over the lattice Λ with parameter σ. We 

also use [m] as the abbreviation of the integer set {1,…, 

m}. We denote vectors and matrices by bold lowercase 

and uppercase letters, and denote by GS(A) the Gram-

Schmidt orthogonalization of a matrix A. Finally, we 

use ||⋅|| to denote the Euclidean norm of a vector or a 

matrix, and |S| to denote the size of a set S.  

2.1 Integer Lattices and Trapdoors 

We consider integer lattices defined by Ajtai [16], 

and the trapdoor generation algorithm proposed by 

Alwen and Peikert [17]. 

Definition 2.1 (q-ary Lattices). Given a matrix A 

∈ n m
q
×Z  for some integers n, m, q and any u ∈ n

qZ , 

define two m-dimensional full-rank lattices as: 

( )q
⊥Λ A = { y∈ mZ : Ay = 0 mod q } 

( )qΛu A = { y∈ mZ : Ay = u mod q } 

Lemma 2.2 [17]. There is a PPT algorithm TrapGen 

(n, q, m) that, on input some integers n = n(λ), q ≥ 2 

and m ≥ 5nlogq, outputs a matrix A∈ ×n m
qZ  and a basis 

TA for ( )q
⊥Λ A  such that: 

− A is statistically close to uniform. 

− With overwhelming probability, ||GS(TA)|| ≤ 

logO n q( ) . 

2.2 Discrete Gaussians and Sampling 

Algorithms 

Lemma 2.3. Let TA be any basis of ( )q
⊥Λ A  for some 

A∈ ×n m
qZ  whose columns generate n

qZ . Then for any 

vector u∈ n
qZ  and σ ≥ || ( ) || ( log )GS mAT ω . 

− Pr[ Λ ( ),qD σ← u Ae : ||e|| > mσ ] ≤ negl(n) [18]. 

− For ,
mD σ←e Z , the marginal distribution of u = Ae 

n
q∈Z  is uniform (up to negl(n) statistical distance), 

and the conditional distribution of e given u is 

Λ ( ),qD σ
u A  [19]. 

− There is a PPT algorithm SamplePre (A, TA, u, σ) 

that outputs ( )q∈Λue A  distributed statistically close 

to Λ ( ),qD σ
u A  [19].  

Lemma 2.4 [11]. Let q > 2 and m > 2nlogq. There 

exists a PPT algorithm SampleLeft (A, B, TA, u, σ) 
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that, on input a full rank matrix n m
q
×

∈A Z , a matrix 

n m
q
×

∈B Z , a basis TA of ( )q
⊥Λ A , a vector n

q∈u Z  and a 

parameter σ ≥ || ( ) || ( log2 )GS mAT ω , outputs a sample 

1( )q∈Λue F  distributed statistically close to 1Λ ( ),qD σ
u F  

where F1 = [A | B]. 

Lemma 2.5 [11]. Let q > 2 and m > n. There exists a 

PPT algorithm SampleRight (A, AR + B, TB, u, σ) 

that, on input two matrices A, B ∈ ×n m
qZ , a uniform 

random matrix R∈{−1, 1}m×m, a basis TB of ( )q
⊥Λ B , a 

vector u ∈ n
qZ  and a parameter σ ≥ || ( ) || (log )GS m m⋅ ⋅BT ω , 

outputs a sample 2( )q∈Λue F  distributed statistically 

close to 2Λ ( ),qD σ
u F  where F2 = [A | AR + B]. 

2.3 Learning with Errors 

Regev [20] introduced the Learning With Errors 

(LWE) problem, and showed it is as hard as the worst-

case SIVP and GapSVP under a quantum reduction. 

Applebaum et al. [21] further showed that the LWE 

problem remains equivalently hard even if the secret 

vector is sampled from the noise distribution.  

Definition 2.6 (LWE). For any real α ∈ (0, 1), q 

≥ 2 /n α , let T= /R Z  be the group of reals [0, 1) with 

addition modulo 1, and let αψ  be the distribution over 

T  of a normal variable with mean 0 and standard 

deviation / 2α π . Define αψ  as the discrete 

distribution of the random variable ⎡qX⎦ mod q, where 

the random variable X ∈T  has the distribution αψ .  

Let n, m ≥ 1. Given a secret vector n
q∈s Z , let 

,
A

α
ψs  

be a pseudo-random distribution obtained by uniformly 

random sampling n
q∈a Z , sampling x αψ←  and 

outputting (a, a
T
s + x) n

q q∈ ×Z Z . The ( qZ , n, αψ )-

LWE problem asks to distinguish m samples chosen 

according to 
,

A
α

ψs  and m samples from the uniform 

distribution over n
q q×Z Z . 

Lemma 2.7 [21]. Let q = pe be a prime power. There is 

a deterministic polynomial time transformation that, 

for arbitrary n
q∈s Z  and noise distribution χ, maps ,χAs  

to ,χA
x

 where χn←x , and maps the uniform 

distribution over n
q q×Z Z  to itself. 

To prove the security of our construction, we also 

need two lemmas presented by Agrawal et al. [11].  

Lemma 2.8 [11]. Let m∈e Z  and m

αψ←x . Then the 

quanity |eT
x| treated as an integer in [0, q − 1] satisfies 

 |eT
x| ≤ || || ( log ) || || / 2q m mα +e eω  

with all but negligible probability in m.  

Lemma 2.9 [11]. Let q be prime and m > (n + 1) logq 

+ (log )nω . Matrices A, B, R are randomly chosen from 

×n m
qZ , ×n m

qZ  and {−1, 1}m×m. Then for all vectors 

m
q∈u Z , the distribution (A, AR, R

T
u) is statistically 

close to the distribution (A, B, RT
u).  

3 Definitions 

3.1 Fuzzy CPRE  

Definition 3.1 A (single-hop) fuzzy conditional proxy 

re-encryption over a keyword universe U consists of 

the following six algorithms. 

− Setup(λ, l). On input a security parameter λ and the 

size of keyword universe l, outputs some public 

parameters PP. 

− KeyGen(i). On input an user index i, outputs a 

public/secret key pair (pki, ski). 

− Enc(pki, W, m). On input a public key pki, a 

keyword set W ⊆ U and a message m∈{0, 1}, 

outputs an original ciphertext i
W

CT . 

− ReKeyGen(pki, ski, pkj, S, t). On input a delegator’s 

public/secret key pair (pki, ski), a delegatee’s public 

key pkj, a keyword set S⊆ U and a threshold t such 

that t ≤ |S| ≤ l, outputs a re-encryption key rki→j,S. 

− ReEnc( i
W

CT , rki→j,S). On input an original ciphertext 

i
W

CT  and a re-encryption key rki→j,S, outputs a re-

encryption ciphertext j
WCT  under the public key pkj 

if |W∩S| ≥ t, or ⊥ otherwise. 

− Dec(ski, i
W

CT ). On input a secret key ski and a 

(original or re-encryption) ciphertext i
W

CT , outputs 

either a plaintext m or ⊥. 

3.2 Security Model 

In the fuzzy CPRE of [4], since the first encryption 

algorithm and the re-encryption algorithm output 

exactly same first level ciphertexts, one security game 

is defined to consider these two kinds of ciphertexts, 

where the challenge ciphertext is generated by the first 

encryption algorithm. In our fuzzy CPRE, however, the 

encryption algorithm and the re-encryption algorithm 

output LWE-based ciphertexts which are different in 

noise levels and distributions. If we directly follow this 

security model, the indistinguishability of re-

encryption ciphertexts can not be guaranteed. 

Therefore, we strength this security model by defining 

two security games, namely sIND-OC-CPA and sIND-

RC-CPA (selective indistinguishability of original/re-

encryption ciphertexts under chosen-plaintext attacks), 

to capture the respective indistinguishability of original 

ciphertexts and re-encryption ciphertexts, where the 

challenge ciphertext in the second game is generated 

by the re-encryption algorithm. 

Both games are selective secure in the sense that the 

challenge user index and the challenge keyword set 

should be declared at the beginning of the games. 
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sIND-OC-CPA Game. Consider the following game 

between a challenger C and an adversary A. 

− Init. A declares an user index i* and a keyword set 

W* to be challenged upon. 

− Setup. C generates PP ← Setup(λ, l) and returns 

them to A. 

− Query. A makes the following types of queries: 

(1) Corrupted key query on i ≠ i*. C generates (pki, 

ski) ← KeyGen(i) and returns (pki, ski) to A.  

(2) Uncorrupted key query on i. C generates (pki, ski) 

← KeyGen(i) and returns pki to A. 

(3) Re-encryption key query on 〈i, j, S〉. C ignores 

the request if i = i* and |W*∩S| ≥ t. If C responds with a 

re-encryption key to this query, A could change the 

challenge public key 
*ipk  to pkj, which is inconsistent 

with our selective security model. Otherwise, C 

generates the re-encryption key rki→j,S ← 

ReKeyGen(pki, ski, pkj, S, t) and returns it to A.  

− Challenge. A outputs (m0, m1). C tosses a coin b ∈ 

{0, 1} and returns *

*

i
WCT ← Enc(

*ipk , W*, mb) to A. 

− Guess. A outputs a guess b′ of b. 

sIND-RC-CPA Game. Same as the sIND-OC-CPA game 

except the Challenge phase. 

− Challenge. A outputs (m0, m1, pkj, skj, S, t) such that 

|W*∩S| ≥ t. C tosses a coin b ∈ {0, 1}, computes 

*

j
WCT ← Enc(pkj, W

*, mb), rkj→i*,S ← ReKeyGen(pkj, 

skj, *ipk , S, t) and returns *

*

i

W
CT ← ReEnc(

*

j
WCT , 

rkj→i*,S) to A. 

Definition 3.2 (sIND-CPA) A fuzzy CPRE scheme is 

selective secure against chosen plaintext attack if the 

advantages of any PPT adversary in above two games 

are both negligible in λ, where the advantage is defined 

as Pr[b′ = b] − 1/2. 

4 Our Construction 

4.1 Construction 

− Setup(λ, l). The algorithm first set the parameters n, 

m, q, σ, α as specified in Section 4.2. Then it 

chooses (l + 1) uniformly random matrices B, E1,…, 

El ∈ ×n m
qZ  and outputs PP := (B, E1,…, El). 

− KeyGen(i). This algorithm runs ( n m
i q

×
∈A Z , iAT ) ← 

TrapGen (n, q, m). It also picks a random vector ui 

∈ n
qZ  and outputs pki := (Ai, ui), ski := iAT . 

− Enc( pki, W, m). Given pki := (Ai, ui), this algorithm 

does following steps: 

(1) Choose a uniformly random vector n

αψ←s . 

(2) For each keyword w ∈ W, choose a uniformly 

random matrix Rw ∈{−1, 1}m×m. 

(3) Sample x αψ← , m

αψ←x , define D := (l!)2 and 

compute: 

c0 = Ai
T
s + Dx. 

c1,w = (Ew + B)T
s +DRw

T
x, w ∈ W. 

c2 = T / 2i Dx m q+ + ⎢ ⎥⎣ ⎦u s . 

(4) Output i
W

CT := (c0, {c1,w}w∈W, c2). 

− ReKeyGen ((pki, ski, pkj, S, t). Let pki = (Ai, ui), ski 

= iAT , pkj = (Aj, uj) and |S| = d ≥ t. This algorithm 

does following steps:  

(1) Sample two noisy matrices n n
αψ ×

←Y , n m
αψ ×

←Z , 

a noisy vector n

αψ←z , and compute jA = YAj + Z, 

ju = Yuj + z. 

(2) For each column ka  of jA , k ∈ [m], construct d 

shares. That is, choose n uniformly random degree t − 

1 polynomials pk,1,…, pk,n ∈ [ ]q xZ  such that (pk,1(0),…, 

pk,n(0))T = ka , and compute a share 
,

ˆ k wa = (pk,1(w),…, 

pk,n(w)) for each w ∈ S. 

(3) For each k ∈ [m] and w ∈ S, sample a vector ek,w 

∈ 2mZ ← SampleLeft(Ai, Ew + B, iAT , 
,

ˆ k wa , σ) such 

that [Ai |Ew + B]ek,w =
,

ˆ k wa . 

(4) Construct d shares of ju − ui by choose n 

uniformly random degree t − 1 polynomials g1,…, gn 

∈ [ ]q xZ  such that (g1(0),…, gn(0))T = ju − ui, and 

compute a share ˆwu = (g1(w),…, gn(w)) for each w ∈ S. 

(5) Sample a vector 2m
w ∈v Z ← SampleLeft(Ai, Ew 

+ B, iAT , ˆwu , σ) such that [Ai |Ew + B]vw = ˆ
wu . 

(6) Output rki→j,S := ({ek,w}k ∈ [m], w ∈ S, {vw}w ∈ S). 

− ReEnc( i
W

CT , rki→j,S). If |W∩S| ≥ t, this algorithm 

does following steps:  

(1) Choose a subset S′⊆ W∩S such that |S′| = t. 

(2) Compute 0
′c = [ 0,1

′c |…| 0,m
′c ]T, where 0,k

′c = 

T
, 0 1,' [ ]w k w ww S

L
∈

∑ e c | c  and Lw = '
' ', ' '

w
w S w w w w

−

∈ ≠ −
∏ . 

(3) Compute 2c
′ = T

0 1, 2' [ ]w w ww S
L c

∈
+∑ v c | c . 

(4) Output j
WCT := ( 0

′c , {c1,w}w∈W, 2c
′ ). 

− Dec(ski, i
W

CT ). Given ski = iAT , this algorithm does 

following steps:  

(1) Sample a vector m
i ∈e Z ← SamplePre(Ai, iAT , 

ui, σ) such that Aiei = ui. 

(2) Compute r = c2 − ei
T
c0 mod q. 

(3) Output 0 if | r | < q / 4 or 1 otherwise.  

4.2 Correctness and Parameters 

Given an original ciphertext i
W

CT := (c0, {c1,w}w∈W, 

c2), the algorithm ReEnc first computes: 

 0,k
′c = T

T
,' ([ ]w k w i ww S

L
∈

∑ e A | E +B s +
w

Dy ) 

 = TT
,'( )k w k w ww S

DL
∈

+∑a s e y  
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where yw = (x; Rw
T
x)T. Then it generates the re-

encryption ciphertext as j
WCT := ( 0

′c , {c1,w}w∈W, 2c
′ ), 

where: 

0
′c = [ 0,1

′c |…| 0,m
′c ]T = Aj

T(YT
s) + Z

T
s + (y1;…;ym)T, 

and yk = T
,' w k w ww S

DL
∈

∑ e y  for k ∈ [m], and 

2c
′ = T

T
'

([ ]w w i ww S
L

∈
∑ v A | E +B s +

w
Dy ) + c2 

      = ( ju − ui)
T
s + T

' w w ww S
DL

∈
∑ v y + ui

T
s+ / 2Dx m q+ ⎢ ⎥⎣ ⎦  

= uj
T(YT

s) + zT
s + T

'
/ 2w w ww S DL Dx m q

∈
+ +∑ ⎢ ⎥⎣ ⎦v y  

If we consider Y
T
s as the secret vector, this 

ciphertext has the same form as an original ciphertext, 

and thus the decryption algorithm first samples a short 

ej such that Ajej = uj and then computes: 

r = 2c
′ − ej

T
0
′c   

 = zT
s + T

' w w ww S
DL

∈
∑ v y + Dx − ej

T
Z

T
s − ej

T(y1;…;ym)T  

      + / 2m q⎢ ⎥⎣ ⎦  mod q.  (1) 

If the noise term |zT
s + T

' w w ww S
DL

∈
∑ v y + Dx − ej

T
Z

T
s − 

ej
T(y1;…;ym)T| < q / 4 with overwhelming probability, 

the decryption algorithm will output correct message m. 

The above re-encryption ciphertext can not be 

further re-encrypted since secret vectors (e.g., YT
s or s) 

in 0
′c , 2c

′  and c1,w are different..  

To ensure the correctness of our construction, we 

should set parameters under following constraints. 

− Constraints on m due to Lemma 2.2, 2.4, 2.5 and 2.9. 

− Constraints on σ due to Lemma 2.3, 2.4 and 2.5 

− Constraints on q due to Lemma 2.6 and 2.7.  

− The noise term in Equation (1) has magnitude less 

than q / 4. 

We determine these parameters by first estimating 

the magnitude of the noise term. Let T
,k we = (e1

T;e2
T), and 

thus T
,k w we y = e1

T
x + e2

T
Rw

T
x = (e1

T + e2
T
Rw

T)x. Since 

||e1||, ||e2|| ≤ mσ  due to Lemma 2.3 and the facts of 

||Rw|| = m , DLw ≤ D2, by Lemma 2.8 we have |yk| = 

| T
,' w k w ww S

DL
∈

∑ e y | ≤ lD2mσ (qα ( log )mω + / 2m ). By 

further applying the Cauchy-Schwarz inequality, we 

have |ej
T(y1;…;ym)T| ≤ ||ej||⋅||(y1;…; ym)|| ≤ mσ|yk|. Since 

this is largest subterm in the noise term, we have 

|zT
s + T

' w w ww S
L D

∈
∑ v y + Dx − ej

T
Z

T
s − ej

T(y1;…; ym)T| 

≤ 5|ej
T(y1;…; ym)T| 

≤ 25lm2σ2( ( log ) / 2q m mα +ω ) 

where the last inequality follows from the fact that 

5lD2 ≤ 25l. 

Let δ be a real such that 1
n

δ+ ≥ (n + 1)logq + (log )nω . 

To meet the above constrains, we takes: 

n = poly(λ), m = ⎡ ⎤15n δ+ , σ = (log )m mω  

q = 5 5 2(log )l
m m2 ω , α = 5 4.5 1(log ))l

m m
−(2 ω

 

and round up q to the nearest larger integer such that q 

= pe for some integer p and prime e. 

If we set l = nε for some real ε ∈ (0, 1/2), then the 

noise parameter α = 51/ (2 poly( ))n
n

ε

⋅ . We get security 

under the hardness of ( )2O nε -approximating gapSVP or 

SIVP on n-dimensional lattices. 

4.3 Security Reduction 

Lemma 4.1. If there exists a PPT adversary A with 

some advantage ξ against the sIND-OC-CPA security 

game, then there exists a simulator B that can solve the 

( qZ , n, αψ )-LWE problem with advantage ξ / 2. 

Proof. We construct the simulator B as follows. 

− Init. A declares i* and W*.  

− Setup. B requests (m + 1) LWE instances and 

rearrange them as (Ai*, v) n m m
q q
×

∈ ×Z Z , (ui*, v) 

n
q q∈ ×Z Z . Then it sets pki* := (Ai*, ui*) and generates 

public parameters as follows.  

(1) Run ( n m
q
×

∈B Z , TB) ← TrapGen(n, q, m). 

(2) For each keyword w ∈ W*, choose a uniformly 

random matrix *
wR ∈{−1, 1}m×m and set Ew = *

*i wA R − B. 

(3) For each keyword w ∉ W*, choose a uniformly 

random matrix *
wR ∈{−1, 1}m×m and set Ew = *

*i wA R . 

(4) Return the public parameters PP = (B, E1,…, El) 

to A. 

− Corrupted or uncorrupted Key query. For any i ≠ 

i*, B generates (pki, ski) ← KeyGen(i) and returns 

(pki, ski) or pki to A. 

− Re-encryption key query. We divide these queries 

into following two cases: 

(1) If i ≠ i*, B generates rki→j,S ← ReKeyGen(pki, ski, 

pkj, S, t) and returns it to A.  

(2) If i = i* and |W*∩S| = s < t, B simulates the re-

encryption key as follows. 

‧ Sample two noisy matrices n n

αψ ×
←Y , n m

αψ ×
←Z , a 

noisy vector n

αψ←z , and compute jA = YAj + Z, 

ju = Yuj + z. 

‧ For each column ka  of jA , k ∈ [m], B generates 

{ek,w}w ∈ S as follows. For each w ∈ W*∩S, B 

samples ek,w ← ,
mD σZ  and computes a vector 

,
ˆ k wa = 

[Ai* |Ew + B]ek,w. It also chooses (t − s − 1) random 

vectors from n
qZ . Using these (t − 1) vectors as 

shares, B can determine n polynomials pk,1,…, pk,n 

∈ [ ]q xZ  of degree t − 1, such that (pk,1(0),…, pk,n(0)) 

= ka . Then, for each w∈ S / W
*, B computes a share 

,
ˆ k wa = (pk,1(w),…, pk,n(w)) and samples ek,w ← 

SampleRight(Ai*, Ew + B, TB, 
,

ˆ k wa , σ) such that 

[Ai* |Ew + B]ek,w =
,

ˆ k wa . 

‧ B also generates {vw}w ∈ S in a very similar way. 

That is, for each w ∈ W*∩S, B samples ,
m

w D σ←v Z  

and computes ˆ
wu = [Ai* |Ew + B]vw. Then it chooses 
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(t − s − 1) random vectors from n
qZ  and thus can 

determine n polynomials g1,…, gn ∈ [ ]q xZ  of degree 

t − 1, such that (g1(0),…, gn(0)) = uj − ui*. Then, for 

each w ∈ S / W
*, B computes a share ˆwu = (g1(w),…, 

gn(w)) and samples vw ← SampleRight(Ai*, Ew + B, 

TB, ˆwu , σ) such that [Ai* |Ew + B]vw = ˆ
wu . 

‧ B returns rki*→j,S := ({ek,w}k ∈ [m], w ∈ S, {vw}w ∈ S) to A. 

− Challenge. When receiving (m0, m1) from A, B 

simulates the challenge ciphertext *

*

i

W
CT := (c0, 

{c1,w}w∈W, c2) as follows. 

c0 = Dv. 

c1,w = * T( wD R ) v , for w ∈ W*. 

c2 = / 2bDv m q+ ⎢ ⎥⎣ ⎦ . 

− Guess. When A outputs a guess b′, B outputs 

“pseudo-random” if b′ = b, or outputs “random” 

otherwise. 

By Lemma 2.2 and the fact that Ai* and ui* come 

from the LWE instances, the distribution of (Ai*, ui*, B) 

is statistically close to the distribution in the real game. 

By Lemma 2.9, all of Ew are statistical close to uniform. 

Further by Lemma 2.5, the simulated re-encryption key 

is statistically close to the output from the algorithm 

ReKeyGen. Therefore, the simulator is statistically 

indistinguishable from the challenger in the real game. 

If the LWE problem instances are random, the 

probability that the adversary guesses the right b is 1/2. 

If the LWE problem instances are pseudo-random, the 

challenge cipheretext has following form: 

c0 = Dv = Ai*
TD *

s + Dx, m

αψ←x  

c1,w = * T( wD R ) v  

= (Ew + B)TD *
s + * T( wD R ) x  

c2 = / 2bDv m q+ ⎢ ⎥⎣ ⎦  

= ui*
TD *

s + / 2bDx m q+ ⎢ ⎥⎣ ⎦ , x αψ←  

When we regard the secret vector as s = D *
s , this is 

a valid original cipheretext, and thus the simulator can 

solve the LWE problem with the same advantage. 

Lemma 4.2. Our fuzzy PRE is sIND-RC-CPA secure 

provided that the ( qZ , n, αψ )-LWE assumption holds. 

Proof. We prove this lemma via a hybrid argument 

over a sequence of games as follows. 

− Game 0: The real sIND-RC-CPA game. 

− Game 1: Same as Game 0 except that the challenge 

re-encryption key is simulated by sampling ek,w, vw 

← ,
mD σZ  for k ∈ [m] and w ∈ S.  

− Game 2: Same as Game 0 except that 0
′c  and 2c

′  in 

the challenge re-encryption ciphertext are uniformly 

chosen from m
q q×Z Z . 

Since the adversary in Game 2 has advantage of 

exact zero, we only need to show that the adversary 

cannot distinguish between every two consecutive 

games with non-negligible advantage.  

Game 0 and 1. In Game 0, by Lemma 2.7, the 

distributions of *iA = YAi* + Z and *iu = Yui + z are 

computationally indistinguishable from the uniform. 

Thus the distributions of their shares 
,

ˆ k wa  and ˆ wu  are 

also computationally indistinguishable from the 

uniform. Further by Lemma 2.4, ek,w and vw are 

statistically close to ˆ , ( ),k w
q

D
σΛ

a

F  and ˆ ( ),w
qD σΛu

F , respectively, 

where F = [Aj |Ew + B]. In Game 1, since both ek,w and 

vw are sampled from ,
mD σZ , by Lemma 2.3 the 

distributions of 
,

ˆ k wa = Fek,w and ˆ
wu = Fvw are 

statistically close to the uniform, and the conditional 

distribution of ek,w and vw given 
,

ˆ k wa  and ˆwu  are also 

ˆ , ( ),k w
q

D
σΛ

a

F  and ˆ ( ),w
qD σΛu F , respectively.  

Game 1 and 2. In Game 1, since ek,w and vw are 

sampled from ,
mD σZ , by Lemma 2.3, both 0,k

′c = 

T
, 0 1,' [ ]w k w ww S

L
∈

∑ e c | c  and 2c
′
=

T
0 1, 2' [ ]w w ww S

L c
∈

+∑ v c | c  are 

also statistically close to the uniform. 

5 Conclusion 

In this paper, we construct the first lattice-based 

fuzzy CPRE under the LWE assumption. Our fuzzy 

CPRE is single-hop unidirectional, and allows to re-

encryption ciphertexts under some flexible t-out-of-d 

threshold conditions. In addition, original ciphertexts 

and re-encryption ciphertexts in our construction have 

the same form, thus only one algorithm is needed to 

decrypt these two kinds of ciphertexts. 

Since Boolean formulas are more flexible to express 

re-encryption conditions, attribute-based CPRE under 

lattice assumptions is more desirable in some 

applications. We leave it as an interesting open 

problem. 
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