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Abstract 

Management of cloud computing resources is critical, 

especially when several cloudlets are submitted 

simultaneously to cloud computing. Therefore, it is very 

important to use high efficient cloudlet scheduling 

techniques to guarantee efficient utilization of computing 

resources. This paper presents a two-phase approach, 

called SAAC, for scheduling cloudlets onto Virtual 

Machines (VMs) of cloud computing environment to 

balance workload on the available VMs and minimize 

makespan (i.e., the completion time at the maximum 

loaded VM). In the first phase, the SAAC approach applies 

the Simulated Annealing (SA) to find a near optimal 

scheduling of the cloudlets. While, in the second phase, 

the SAAC approach improves the cloudlets distribution by 

applying the Ant Colony Optimization (ACO) 

considering the solution obtained by the SA as the initial 

solution. The SAAC approach overcomes the 

computational time complexity of the ACO algorithm and 

low solutions quality of the SA. The proposed approach is 

evaluated by using the CloudSim, and the results are 

compared with that obtained by the most recent 

algorithms in terms of schedule length, load balancing, 

and time complexity. 

Keywords: Cloud computing, Cloudlet scheduling, Load 

balancing, Ant colony, Simulated annealing 

1 Introduction 

Cloud computing is a new type of shared 

infrastructure. It has huge pools of computing 

resources and allows end users to use these resources 

over the Internet on-demand by pay-per-use strategy 

[1]. Users and enterprises can use cloud-computing to 

obtain high processing power without bearing the 

elevated price of building huge data centers [2]. 

Providers, like amazon EC2, let their clients to access, 

assign, and manage a group of Virtual Machines (VMs) 

that run inside the data centers and only charge them 

for the period of using the machines [3].  

These days, cloud computing is becoming an 

efficient computing model. It provides high-

performance computing over the Internet. However, 

one of the key challenges that degrade cloud-

computing performance is cloudlets scheduling. This 

problem characterizes by the presence of limited 

number of VMs on which several cloudlets need to be 

executed. Therefore, an efficient cloudlet scheduling 

technique is required to guarantee good schedule of the 

cloudlets onto the VMs in order to minimize makespan 

and enhance cloud performance. 

Recently, many researchers have developed meta-

heuristic algorithms to solve the scheduling problem. 

However, most of the existing algorithms ignore 

several constraints that may affect the scheduling 

process [4]. In other words, they ignore the 

requirements of different cloudlets (i.e., memory and 

processing load requirements) and the availability of 

cloud computing resources (i.e., the available memory 

and processing power of VMs) [5]. 

This paper presents a new two-phase approach for 

cloudlets scheduling in cloud computing environment 

to balance workload on the VMs and minimize 

makespan (i.e., schedule length). The proposed 

approach, called SAAC, combines Simulated Annealing 

(SA) and Ant Colony Optimization (ACO). It takes into 

consideration the requirements of different cloudlets 

and the availability of computing resources. The 

proposed approach first finds a near optimal scheduling 

of cloudlets by applying the SA and then improves the 

cloudlets distribution by applying the ACO considering 

the solution obtained by the SA as the initial solution. 

The proposed SAAC approach overcomes the 

computational time complexity of the ACO algorithm 

and low solutions quality that obtained by the SA.  

The remainder of this paper is organized as follows. 

Section 2 introduces cloud computing and cloudlet 

scheduling problem. Section 3 illustrates the 

formulation of scheduling problem. Section 4 presents 

the existing scheduling techniques, while the proposed 

approach is developed in Section 5. Section 6 presents 
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the simulation results while Section 7 presents the 

conclusion of this research work. 

2 Cloud Computing and Cloudlet 

Scheduling Problem 

Cloud computing environment contains several 

components namely, client, cloud information system, 

datacenter broker, and Virtual Machines (VMs) [6], as 

shown in Figure 1. Client is responsible for submitting 

cloudlet(s) into cloud environment to be processed. All 

information of the submitted cloudlets is stored in 

cloud information system. This information includes 

cloudlet length, arrival time and resources 

requirements. The information system also monitors 

the availability of cloud-computing resources. 

Datacenter broker contains a scheduler, the backbone 

of scheduling process, which is responsible for 

assigning the cloudlets onto the VMs. It determines the 

execution order of each cloudlet. The VMs are the main 

components in cloud computing environment that 

responsible for execution of cloudlets. 

 

Figure 1. Components of cloud computing 

environment 

In cloud computing environment, several cloudlets 

arrive to the system at the same time. Each cloudlet 

needs to be assigned into a suitable VM to be executed 

in a shortest time. However, because the number of 

available VMs is less than the number of submitted 

cloudlets, the problem is how to find a good schedule 

of the cloudlets onto the VMs to minimize the 

execution cost or makespan. This problem is called 

cloudlet scheduling problem. Briefly, a set of n 

cloudlets needs to be processed on m VMs in the cloud-

computing environment. The cloudlets require certain 

resources while the VMs have limited resources as 

memory and processing. Thus, the purpose is to 

schedule the cloudlets onto the VMs such that the 

completion time is minimized, the requirements of 

cloudlets are met, and the availability of the VMs 

resources is not violated.  

3 Problem Formulation 

The cloudlet-scheduling problem may be formulated 

as an optimization problem to be solved by 

optimization approaches. Designing a mathematical 

model to the cloudlet scheduling problem involves two 

steps; (i) formulate a cost function to represent the 

objective of the cloudlet scheduling, (ii) formulate set 

of constraints in terms of the cloudlets requirements 

and the availability of the VMs resources.  

To formulate the scheduling problem, let n be the 

number of cloudlets, m be the number of VMs, 
iv
e  be 

the processing time of cloudlet i on machine v, and 

iv
X  is a binary variable such that 

iv
X  is 1 if the 

cloudlet i is assigned to VM v and 0 otherwise, as 

shown in Eq. (1). 
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Therefore, the scheduling problem may be 

formulated mathematically as: 
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In this model, the objective of scheduling is 

formulated, Eq. (2), to minimize the execution time. 

Indeed, several constraints are modeled to meet the 

requirements of cloudlets and not violate the 

availability of VM resources. The first constrain, Eq. 

(3), guarantees that each cloudlet i is assigned to 

exactly one virtual machine v. The second constraint, 

Eq. (4), guarantees that the total processing load of all 

cloudlets, in Million Instructions (MI), assigned to a 

virtual machine v doesn’t exceed the available 

processing (Lv) of that VM. The third constraint, Eq. (5), 

guarantees that the total memory requirements of all 

cloudlets scheduled into a virtual machine v should not 
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exceed the maximum available memory of that VM. 

Where, memi is the memory requirements of cloudlet i, 

and Memv is the available memory of virtual machine v. 

After formulating the scheduling problem, the 

solution may be obtained by solving the formulated 

problem. The optimal solution to the formulated 

problem may be achieved by applying an optimization 

method such as exhaustive search or branch-and-bound. 

However, the problems of applying such methods are 

that they provide very high time complexity and it is 

very difficult to be used in case of large number of 

cloudlets. Therefore, most of the research works trend 

to use heuristic methods which achieve near optimal 

solution. 

The optimal solution (Sopt) may be defined as the 

best solution that achieves the lowest makespan. 

According to [7], the system can achieve the lowest 

makespan (i.e. optimal solution) if and only if the next 

conditions are met: 

‧ Each cloudlet is assigned to distinct VM.  

‧ Each cloudlet starts execution as soon as possible. 

4 Related Work 

Recently, several cloudlet-scheduling techniques are 

developed to solve the scheduling problem. Two types 

of algorithms are developed; heuristic algorithms and 

meta-heuristic algorithms. Heuristic algorithms use the 

predictions to achieve a near optimal solution [8]. On 

the other hand, the meta-heuristic methods search the 

solution space in a direct manner and produce efficient 

results on the broad domain problems, but these 

methods have high time complexity [9]. Genetic 

Algorithm (GA) and Ant Colony Optimization (ACO) 

are the famous algorithms. In [10], the authors use GA 

with ACO to develop a two-phase algorithm for the 

scheduling process. In the first phase, the authors apply 

one GA generation and select the best solution. In the 

second phase, they apply the ACO algorithm, using the 

GA solution of as initial solution, to obtain near 

optimal solution. Another metaheuristic cloudlet-

scheduling algorithm is Simulated Annealing (SA) [11]. 

In [12], the authors developed a new cloudlet-

scheduling algorithm for cloud computing based on SA 

and greedy. The algorithm uses greedy strategy as 

initial stage to get a near optimal solution and then 

improve the solution by applying the SA. Other meta-

heuristic algorithm developed to solve the scheduling 

issue is the Particle Swarm Optimization (PSO) [13]. 

5 Proposed Approach 

This section presents a two-phase approach for 

cloudlet scheduling in cloud computing to balance 

workload on the available VMs and achieve minimum 

schedule length. The first phase of the proposed 

algorithm finds a near optimal solution rapidly by 

applying the well-known Simulated Annealing (SA) 

while the second phase improves cloudlets allocation 

by applying the Ant Colony Optimization (ACO). The 

developed approach exploits the low time complexity 

of SA and the quality of solution of the ACO algorithm. 

In addition, the approach overcomes the drawback of 

the ACO that occurs in the first stage due to absence of 

pheromone by generating an initial solution using the 

SA algorithm.  

5.1 Simulated Annealing  

Simulated Annealing (SA) is a global optimization 

technique that attempts to find lowest point in an 

energy landscape [14]. The main idea of this method is 

derived from cooling molten metal slowly to generate a 

regular crystalline structure. The distinctive feature is 

that it starts with an initial solution, at high temperature, 

and incorporates random jumps to potential new 

solutions. At each temperature level, a new solution is 

generated and the quality of this solution is tested. The 

algorithm accepts the new solution as the current 

solution if it optimizes the objective function. Figure 2 

shows sample of SA solution space of 500 cloudlets at 

4VMs. From the figure, solution B is generated after 

current solution A and the algorithm accepts solution B 

as it improves quality of solution. In SA, to achieve 

good solution, initial temperature should be high. In 

this paper, the SA is developed to generate a good 

solution at low running time. The algorithm starts at 

temperature Temp=1000 and then searches for good 

solution. The algorithm repeats the searching process 

until the quality of a solution does not change 10 

consecutive solutions. Algorithm 1 presents the SA 

algorithm steps. 

 

Figure 2. Sample of SA solution space of 500 

cloudlets and 4 VMs 

Algorithm 1. Simulated Annealing (SA) Steps 

1. Generate Current solution randomly  

2. Set No_rejects=0 

3. Set good solution= Current solution 

4. Calculate Egood and Es 

5. Initialize SA parameters; Temp and cooling rate α  

∈  [0-1] 

6. Generate new solution  
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7. Calculate Enew  

8. Calculate Δ= Enew – E s 

9.  If 0Δ <  

10.     Es=Enew and Current Solution=New Solution 

11.  Else 

12.      Generate a random value r ∈  [0-1] 

13.     If (r < exp (-Δ /Temp)) 

14.              No_rejects++ 

15.         Es=Enew and Current Solution=New Solution 

16.     End if 

17. End if 

18. If ( Egood>Es) 

19.     Egood=Es and good Solution=Current Solution 

20. End If 

21. Set Temp=Temp – ( Tempα × ) 

22. If (Temp >1 and No_rejects<10)    

23.           Go to step (6)  

24.  Else  

25.         Return SA solution=good Solution 

26.  End if 

 

5.2 Ant Colony Optimization 

The Ant Colony Optimization (ACO) algorithm 

takes its characteristics from the ability of ants to find 

the shortest path between the food and their nest. The 

ants connect by laying trails of pheromone. Ants 

choose their path by computing probability P. Where, 

P depends on pheromone trails on the ground. When 

the pheromone of any path increases, the number of 

ants that choose this path will increase. Thus, each new 

solution is better than the previous [15]. Algorithm 2 

illustrates the steps of ACO algorithm. 

 

Algorithm 2. An Iteration of the ACO Algorithm 

1. Assign y ants on m VMs according to the initial 

SA solution 

2. Initialize 
iv

τ for each path between cloudleti and 

VMv 

3. While cloudlet-list is not empty repeat 

4. For k=0 to y 

5. Antk selects a suitable VMv for the selected 

cloudleti according to Piv
k (T) 

6. Insert VMv in Tabuk and remove it from allowedk 

7. Remove the selected_cloudlet from cloudlet_list 

8. Update local pheromone  

9. End For 

10. End while 

11. Update global pheromone 

 

5.2.1 Initialization of Pheromone  

When a cloudlet i assigned to a virtual machine v, a 

new path is created with pheromone trial 
iv

τ . By using 

the SA solution, the algorithm assigns each ant on a 

specific VM according to the same order of initial 

solution [18]. Then, it initializes the pheromone trial 

for each edge according to Eq. (6): 
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Where, 
k

iv
τ  (0) is the pheromone trial value at initial 

iteration t=0 for ant k, and 
c

τ  is constant. 

5.2.2 Virtual Machine Selection for Next Cloudlet  

Each ant applies the next probability P in Eq. 7 to 

choose VMv for next cloudlet i. 
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Where, 
iv

τ  is the pheromone trial of cloudlet i in 

VMv, allowedk is the available VMs of ant k that are not 

chosen yet for any cloudlet by the ant. The VMs that 

are chosen are stored in tabuek. iv
η  = 1/div is heuristic 

information representing the visibility of ant k at 

iteration t, where div is the expected execution time of 

cloudlet i at VMv. 

5.2.3 Pheromone Updating 

After each ant creates a path, it updates the local 

pheromone of this path by Eq. 8. 

 (t)           ( , )  ( )
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0
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if i v T t

L

O therw ise
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Where, Tk(t) represents Tabuk (the collection of VMs 

that ant k visited) at iteration t, Lk (t) is the expected 

makespan of ant k and Q is a control parameter. After 

generating a new solution, the global pheromone 

updates by the Eq. 9.  

 (t 1) (1 ( ) ( )
iv iv iv

t tτ ρ τ τ+ = − ) +Δ  (9) 

Where, ρ∈  [0-1] is the trial volatility coefficient, 

and (t)
iv

τΔ  is computed by
0

(t)
n

k

iv iv

k

τ τ

=

Δ = Δ∑ . 

5.3 Two-Phase SAAC Approach 

Algorithm 3 illustrates the developed SAAC 

approach. The approach combines both the well-known 

Simulated Annealing (SA) and the Ant Colony 

Optimization (ACO). In the first phase, the SA is 

applied to generate an initial solution, while, in the 

second phase, the ACO is applied to find the best 

schedule of cloudlets on the available VMs. The 

developed SAAC approach solves the tradeoff between 
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minimizing schedule length and time complexity by 

passing the SA solution to the ACO algorithm. Where, 

the ACO algorithm enhances the SA solution until it 

achieves the optimal solution.  

 

Algorithm 3. Two-Phase SAAC Approach 

1. Set No_rejects=0 

2. Set Current solution=SA solution and Best 

solution=SA solution 

3. For t=0 to tMax do 

4.    Generate new solution using ACO algorithm 

5.   If new Solution quality is less than the  

   current solution quality 

6.       No_rejects++ 

7.       If (No_rejects>4) 

8.         End the algorithm and Return Best Solution 

9.       End If 

10.   Else 

11.       Best solution=new solution 

12.   End If 

13.   Current solution = new solution 

14. End For 

 

From Algorithm 3, the SAAC starts with setting 

No_rejects equal to zero. This value is used to prevent 

repeating the same solution and monitors the quality of 

searching. If No_rejects reaches to 4 this means that 

the quality is decreased and the solution is bad. At this 

moment, the SAAC approach will stop and gives the 

best solution. 

5.4 Time Complexity 

The time complexity of SA depends on two factors; 

the number of iterations (itr) and the product (n×m). It 

has time complexity O(itr×n×m), where itr is often 

>1000 for the initialize temperature=2500 and cooling 

rate=0.01. The time complexity of the ACO is the 

summation of steps for generate number of solutions 

O(tmax n× ×m), and time complexity for evaluating the 

solutions O(tmax n× ). So, the overall time complexity 

of the ACO is O(tmax n× ×m + tmax n× . Where, tmax is 

the maximum number of generations. The time 

complexity of SAAC is the summation of the time 

complexity of both the SA and the ACO. The SA has 

time complexity O(itr × n × m), while the time 

complexity of the ACO is O(tmax × n× m). Thus, the 

overall time complexity of the new SAAC algorithm is 

O (itr×n×m+tmax × n×m). The SAAC approach uses 

No_rejects variable to decrease tmax (i.e. from the 

experiments tmax < 30 <<n). So, the time complexity 

for SAAC approach may be recomputed as 

O(itr×n×m). Since, itr for SAAC algorithm is less than 

itr for SA algorithm (i.e. itr<200). Therefore, time 

complexity of SAAC approach is less than time 

complexity of SA algorithm. 

6 Simulation Results 

This section presents performance evaluation of the 

proposed two-phase SAAC scheduling approach. In this 

evaluation, the well-known CloudSim is used to 

simulate the cloud computing [16]. The simulation 

environment is a 64-bit windows 7 operating system 

installed in a laptop core i5 with 8 GB RAM. In 

addition, list of cloudlets are generated with lengths 

from 1000 to 10,000 MI, and a list of VMs is generated 

with MIPS ∈  [100-1000]. The initial values of the 

SAAC approach parameters are y=50, ρ =0.5, 
c

τ =0.3, 

Temp=1000, α =0.01 and tmax=150. The results of the 

proposed SAAC approach are compared with both the 

SA and the ACO in terms of schedule length, load 

balancing and time complexity. 

6.1 Schedule Length  

Schedule length (SL) or makespan is the elapsed 

execution time at the maximum loaded virtual machine. 

Table 1 shows a simple comparison between the 

proposed SAAC approach and both the ACO and the SA 

algorithms in terms of makespan. From the table, the 

proposed SAAC approach is more efficient than the 

ACO and SA algorithms for all test cases. The new 

SAAC approach has lower schedule length at smaller 

number of VMs and larger number of cloudlets. 

Table 1. Schedule length of SAAC, ACO and SA at 

different numbers of cloudlets and VMs 

Conditions Makespan in seconds 
No. of 

Cloudlets
No. of VMs SAAC ACO SA 

2 2518 3036 2687 

4 1960 1990 2000 500 

8 1111 1118 2125 

2 4335 5946 5941 

4 2217 2321 4768 1000 

8 1213 1218 5768 

2 9281 10508 10599 

4 3604 3650 7077 1500 

8 2540 2553 9491 

2 11379 11931 21039 

4 6013 6020 8993 2000 

8 2841 2850 12014 

2 13379 13431 11672 

4 6937 7000 12537 2500 

8 3055 3070 6651 

2 18123 21142 11937 

4 8369 8878 24194 3000 

8 3243 3350 13597 

2 20105 25200 20596 

4 9937 10950 38299 3500 

8 4007 4115 15560 

2 43526 55433 40985 

4 11012 12025 45472 4000 

8 4370 4390 18616 
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From Table 1, both the SA and the ACO algorithms 

provide high schedule length with large number of 

cloudlets. In some cases (at 4000 cloudlets and 2 VMs), 

the new SAAC approach can save more than 2 hours 

than both the SA and the ACO algorithms. The SAAC 

approach minimizes the schedule length by 47.24% 

with SA and 14.5% with ACO. This is because the 

SAAC approach uses the advantages of SA and ACO 

algorithms with additional modifications to minimize 

the schedule length.  

6.2 Balancing Degree 

Balancing Degree (BD) is the degree of balancing 

the workload on the available VMs after scheduling. 

The balancing degree may be calculated as follows. 

 ( ) / ( )opt finBD SL S SL S=   (10) 

Where, Sopt is the optimal solution and Sfin is the final 

solution obtained from the applied algorithm. In this 

study, Sopt is assumed as the ideal solution, where Sopt is 

computed as the summation of total MI of all the 

cloudlets over the total MIPS of the available VMs. 

That is, Sopt = ToalMI/TotalMIPS. From Eq. (10), the 

algorithm with high balancing degree achieves near 

optimal solution. 

Figure 3, Figure 4 and Figure 5 show the balancing 

degree of scheduling different cloudlets by three 

different algorithms at 2, 4, and 8 VMs respectively. 

From the figures, the SAAC achieves higher BD ratio 

than SA and ACO algorithms, because it achieves the 

lowest makespan. Let’s take Figure 3 as an example. 

From the figure we note that the new algorithm always 

has higher BD ratio than the others. Although, the new 

algorithm gives BD ratios near of ACO in Figure 4, and 

Figure 5, it achieves the near optimal solution at very 

little time than the ACO. This is shown in Figure 6, 

Figure 7, and Figure 8.The developed SAAC improves 

BD ratio with 45.9% than SA and 4.8% than ACO 

algorithms. 

 

Figure 3. BD by different algorithms at 2VM 

 

Figure 4. BD by different algorithms at 4VM  

 

Figure 5. BD by different algorithms at 8VM 

6.3 Computation Time Complexity 

Figure 6, Figure 7 and Figure 8 show the computation 

time complexity of the SAAC, the SA and the ACO at 

different values of VMs; 2, 4, and 8 respectively. The 

figures show that the SAAC approach has lower time 

complexity than both the SA and the ACO. The SAAC 

approach combines both the SA and the ACO 

algorithms to improve the overall performance of cloud 

computing. The new approach avoids the high time 

complexity by using a new variable called No_rejects, 

which counts the number of rejected solutions, and 

stops the repetition when reaching to the specific value. 

This prevents generating new bad solutions more times 

for minimizing time complexity. 

 

Figure 6. Running time of different algorithms at 2VM 
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Figure 7. Running time of different algorithms at 4VM 

 

Figure 8. Running time of different algorithms at 8VM 

From Figure 6, Figure 7 and Figure 8, the SAAC has 

running time less than the SA and the ACO algorithms. 

For example, in Figure 6, the SAAC approach takes 40 

second to find the near optimal solution, whereas the 

ACO takes 100 second, and SA takes 45 second. In 

addition, from Figure 8, the SAAC approach takes less 

than 100 second to find the near optimal solution of 

4000 cloudlets, whereas the ACO algorithm gets a 

solution at 600 second. On other words, the SAAC 

approach is better than the SA and ACO in terms of 

running time. It decreases the running time 20.5% than 

SA and 87.12% than ACO algorithms. 

In summary, from the figures, the new SAAC is 

better than both the SA and the ACO algorithms in 

terms of schedule length, balancing degree, and 

running time. 

6.4 Real Experiments 

To insure that the new approach is more efficient 

than the other algorithms, the proposed SAAC is 

applied to schedule a list of real cloudlets on different 

numbers of VMs. The cloudlets are generated by using 

a standard formatted workload of a high-performance 

computing center, called HPC2N, in Sweden as a 

benchmark [17]. Table 2 shows the makespan obtained 

by 4 different algorithms.  

Table 2. Experimental results of different algorithms 

Conditions Makespan in seconds 

No. of 

Cloudlets 

No. 

VMs 
SAAC ACO SA PSO Hybrid 

10 1980 2800 2783 2700 1983

20 840 1254 1440 1497 854 1000 

30 483 1345 1224 1505 531 

10 4614 4912 5678 4987 4616

20 2192 2978 3728 3018 21943600 

30 1651 2598 4395 2678 1649

10 11135 21800 22343 22800 11137

20 5416 10800 13075 11800 54206500 

30 3492 6987 8280 8019 3500

10 17886 19599 23284 23000 17889

20 13513 14200 16857 15300 135108500 

30 5609 7000 8525 6800 5609

 

From Table 2, the new SAAC algorithm achieves the 

lowest schedule length in all the test cases. It can 

distribute a large number of cloudlets into different 

numbers of VMs and achieves better schedule length 

than the current SA, ACO, PSO, and the Hybrid 

algorithm [18]. 

7 Conclusion 

In this paper, a new two-phase SAAC approach is 

proposed for cloudlet scheduling in cloud computing 

environment. The proposed SAAC approach can 

schedule a large number of cloudlets into the available 

VMs considering several resources constraints, at low 

time complexity. It keeps the VMs in high balancing 

degree, and enhances the overall system performance. 

By comparing the new SAAC approach with the SA and 

the ACO, the new approach is more efficient than those 

algorithms. The experimental results show that the 

SAAC approach decreases running time by about 

32.5% than SA and 87.12% than ACO algorithm. In 

addition, it achieves lower schedule length than SA and 

ACO algorithms. It decreases the schedule length by 

about 47.24% with SA and 14.5% with ACO. The 

SAAC also provides high load balancing degree. It 

improves balancing degree ratio by 45.9% than SA and 

4.8% than ACO algorithms. Moreover, the new SAAC 

algorithm is compared with the PSO and the Hybrid 

algorithms.  
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