
Cloudlet Scheduling Based Load Balancing on Virtual Machines in Cloud Computing Environment 1371

Cloudlet Scheduling Based Load Balancing on Virtual Machines

in Cloud Computing Environment

Aida A. Nasr1, Nirmeen A. El-Bahnasawy2, Gamal Attiya2, Ayman El-Sayed2

1 Faculty of Artificial Intelligence, Kafrelsheikh University, Egypt.
2 Computer Science and Engineering Dept., Faculty of Electronic Engineering, Menoufia University, Egypt.

Aida.nasr2009@gmail.com, nermeen.abd@el-eng.menofia.edu.eg, gamal.attiya@yahoo.com,

ayman.elsayed@el-eng.menofia.edu.eg *

*Corresponding Author: Aida A. Nasr; E-mail: Aida.nasr2009@gmail.com

DOI: 10.3966/160792642019092005005

Abstract

Management of cloud computing resources is critical,

especially when several cloudlets are submitted

simultaneously to cloud computing. Therefore, it is very

important to use high efficient cloudlet scheduling

techniques to guarantee efficient utilization of computing

resources. This paper presents a two-phase approach,

called SAAC, for scheduling cloudlets onto Virtual

Machines (VMs) of cloud computing environment to

balance workload on the available VMs and minimize

makespan (i.e., the completion time at the maximum

loaded VM). In the first phase, the SAAC approach applies

the Simulated Annealing (SA) to find a near optimal

scheduling of the cloudlets. While, in the second phase,

the SAAC approach improves the cloudlets distribution by

applying the Ant Colony Optimization (ACO)

considering the solution obtained by the SA as the initial

solution. The SAAC approach overcomes the

computational time complexity of the ACO algorithm and

low solutions quality of the SA. The proposed approach is

evaluated by using the CloudSim, and the results are

compared with that obtained by the most recent

algorithms in terms of schedule length, load balancing,

and time complexity.

Keywords: Cloud computing, Cloudlet scheduling, Load

balancing, Ant colony, Simulated annealing

1 Introduction

Cloud computing is a new type of shared

infrastructure. It has huge pools of computing

resources and allows end users to use these resources

over the Internet on-demand by pay-per-use strategy

[1]. Users and enterprises can use cloud-computing to

obtain high processing power without bearing the

elevated price of building huge data centers [2].

Providers, like amazon EC2, let their clients to access,

assign, and manage a group of Virtual Machines (VMs)

that run inside the data centers and only charge them

for the period of using the machines [3].

These days, cloud computing is becoming an

efficient computing model. It provides high-

performance computing over the Internet. However,

one of the key challenges that degrade cloud-

computing performance is cloudlets scheduling. This

problem characterizes by the presence of limited

number of VMs on which several cloudlets need to be

executed. Therefore, an efficient cloudlet scheduling

technique is required to guarantee good schedule of the

cloudlets onto the VMs in order to minimize makespan

and enhance cloud performance.

Recently, many researchers have developed meta-

heuristic algorithms to solve the scheduling problem.

However, most of the existing algorithms ignore

several constraints that may affect the scheduling

process [4]. In other words, they ignore the

requirements of different cloudlets (i.e., memory and

processing load requirements) and the availability of

cloud computing resources (i.e., the available memory

and processing power of VMs) [5].

This paper presents a new two-phase approach for

cloudlets scheduling in cloud computing environment

to balance workload on the VMs and minimize

makespan (i.e., schedule length). The proposed

approach, called SAAC, combines Simulated Annealing

(SA) and Ant Colony Optimization (ACO). It takes into

consideration the requirements of different cloudlets

and the availability of computing resources. The

proposed approach first finds a near optimal scheduling

of cloudlets by applying the SA and then improves the

cloudlets distribution by applying the ACO considering

the solution obtained by the SA as the initial solution.

The proposed SAAC approach overcomes the

computational time complexity of the ACO algorithm

and low solutions quality that obtained by the SA.

The remainder of this paper is organized as follows.

Section 2 introduces cloud computing and cloudlet

scheduling problem. Section 3 illustrates the

formulation of scheduling problem. Section 4 presents

the existing scheduling techniques, while the proposed

approach is developed in Section 5. Section 6 presents

1372 Journal of Internet Technology Volume 20 (2019) No.5

the simulation results while Section 7 presents the

conclusion of this research work.

2 Cloud Computing and Cloudlet

Scheduling Problem

Cloud computing environment contains several

components namely, client, cloud information system,

datacenter broker, and Virtual Machines (VMs) [6], as

shown in Figure 1. Client is responsible for submitting

cloudlet(s) into cloud environment to be processed. All

information of the submitted cloudlets is stored in

cloud information system. This information includes

cloudlet length, arrival time and resources

requirements. The information system also monitors

the availability of cloud-computing resources.

Datacenter broker contains a scheduler, the backbone

of scheduling process, which is responsible for

assigning the cloudlets onto the VMs. It determines the

execution order of each cloudlet. The VMs are the main

components in cloud computing environment that

responsible for execution of cloudlets.

Figure 1. Components of cloud computing

environment

In cloud computing environment, several cloudlets

arrive to the system at the same time. Each cloudlet

needs to be assigned into a suitable VM to be executed

in a shortest time. However, because the number of

available VMs is less than the number of submitted

cloudlets, the problem is how to find a good schedule

of the cloudlets onto the VMs to minimize the

execution cost or makespan. This problem is called

cloudlet scheduling problem. Briefly, a set of n

cloudlets needs to be processed on m VMs in the cloud-

computing environment. The cloudlets require certain

resources while the VMs have limited resources as

memory and processing. Thus, the purpose is to

schedule the cloudlets onto the VMs such that the

completion time is minimized, the requirements of

cloudlets are met, and the availability of the VMs

resources is not violated.

3 Problem Formulation

The cloudlet-scheduling problem may be formulated

as an optimization problem to be solved by

optimization approaches. Designing a mathematical

model to the cloudlet scheduling problem involves two

steps; (i) formulate a cost function to represent the

objective of the cloudlet scheduling, (ii) formulate set

of constraints in terms of the cloudlets requirements

and the availability of the VMs resources.

To formulate the scheduling problem, let n be the

number of cloudlets, m be the number of VMs,
iv
e be

the processing time of cloudlet i on machine v, and

iv
X is a binary variable such that

iv
X is 1 if the

cloudlet i is assigned to VM v and 0 otherwise, as

shown in Eq. (1).

1,

0,
iv

if cloudlet i assigned to machine v
x

Otherwise

⎧
= ⎨
⎩

 (1)

Therefore, the scheduling problem may be

formulated mathematically as:

1 1

min

n m

iv iv

i v

Z e x

= =

=∑∑ (2)

Subject to

1

1,
m

iv

v

x cloudlet i

=

= ∀∑ (3)

1

n

i iv v

i

MI x L VM

=

≤ ∀∑ (4)

1

n

i iv v

i

mem x Mem VM

=

≤ ∀∑ (5)

In this model, the objective of scheduling is

formulated, Eq. (2), to minimize the execution time.

Indeed, several constraints are modeled to meet the

requirements of cloudlets and not violate the

availability of VM resources. The first constrain, Eq.

(3), guarantees that each cloudlet i is assigned to

exactly one virtual machine v. The second constraint,

Eq. (4), guarantees that the total processing load of all

cloudlets, in Million Instructions (MI), assigned to a

virtual machine v doesn’t exceed the available

processing (Lv) of that VM. The third constraint, Eq. (5),

guarantees that the total memory requirements of all

cloudlets scheduled into a virtual machine v should not

Cloudlet Scheduling Based Load Balancing on Virtual Machines in Cloud Computing Environment 1373

exceed the maximum available memory of that VM.

Where, memi is the memory requirements of cloudlet i,

and Memv is the available memory of virtual machine v.

After formulating the scheduling problem, the

solution may be obtained by solving the formulated

problem. The optimal solution to the formulated

problem may be achieved by applying an optimization

method such as exhaustive search or branch-and-bound.

However, the problems of applying such methods are

that they provide very high time complexity and it is

very difficult to be used in case of large number of

cloudlets. Therefore, most of the research works trend

to use heuristic methods which achieve near optimal

solution.

The optimal solution (Sopt) may be defined as the

best solution that achieves the lowest makespan.

According to [7], the system can achieve the lowest

makespan (i.e. optimal solution) if and only if the next

conditions are met:

‧ Each cloudlet is assigned to distinct VM.

‧ Each cloudlet starts execution as soon as possible.

4 Related Work

Recently, several cloudlet-scheduling techniques are

developed to solve the scheduling problem. Two types

of algorithms are developed; heuristic algorithms and

meta-heuristic algorithms. Heuristic algorithms use the

predictions to achieve a near optimal solution [8]. On

the other hand, the meta-heuristic methods search the

solution space in a direct manner and produce efficient

results on the broad domain problems, but these

methods have high time complexity [9]. Genetic

Algorithm (GA) and Ant Colony Optimization (ACO)

are the famous algorithms. In [10], the authors use GA

with ACO to develop a two-phase algorithm for the

scheduling process. In the first phase, the authors apply

one GA generation and select the best solution. In the

second phase, they apply the ACO algorithm, using the

GA solution of as initial solution, to obtain near

optimal solution. Another metaheuristic cloudlet-

scheduling algorithm is Simulated Annealing (SA) [11].

In [12], the authors developed a new cloudlet-

scheduling algorithm for cloud computing based on SA

and greedy. The algorithm uses greedy strategy as

initial stage to get a near optimal solution and then

improve the solution by applying the SA. Other meta-

heuristic algorithm developed to solve the scheduling

issue is the Particle Swarm Optimization (PSO) [13].

5 Proposed Approach

This section presents a two-phase approach for

cloudlet scheduling in cloud computing to balance

workload on the available VMs and achieve minimum

schedule length. The first phase of the proposed

algorithm finds a near optimal solution rapidly by

applying the well-known Simulated Annealing (SA)

while the second phase improves cloudlets allocation

by applying the Ant Colony Optimization (ACO). The

developed approach exploits the low time complexity

of SA and the quality of solution of the ACO algorithm.

In addition, the approach overcomes the drawback of

the ACO that occurs in the first stage due to absence of

pheromone by generating an initial solution using the

SA algorithm.

5.1 Simulated Annealing

Simulated Annealing (SA) is a global optimization

technique that attempts to find lowest point in an

energy landscape [14]. The main idea of this method is

derived from cooling molten metal slowly to generate a

regular crystalline structure. The distinctive feature is

that it starts with an initial solution, at high temperature,

and incorporates random jumps to potential new

solutions. At each temperature level, a new solution is

generated and the quality of this solution is tested. The

algorithm accepts the new solution as the current

solution if it optimizes the objective function. Figure 2

shows sample of SA solution space of 500 cloudlets at

4VMs. From the figure, solution B is generated after

current solution A and the algorithm accepts solution B

as it improves quality of solution. In SA, to achieve

good solution, initial temperature should be high. In

this paper, the SA is developed to generate a good

solution at low running time. The algorithm starts at

temperature Temp=1000 and then searches for good

solution. The algorithm repeats the searching process

until the quality of a solution does not change 10

consecutive solutions. Algorithm 1 presents the SA

algorithm steps.

Figure 2. Sample of SA solution space of 500

cloudlets and 4 VMs

Algorithm 1. Simulated Annealing (SA) Steps

1. Generate Current solution randomly

2. Set No_rejects=0

3. Set good solution= Current solution

4. Calculate Egood and Es

5. Initialize SA parameters; Temp and cooling rate α

∈ [0-1]

6. Generate new solution

1374 Journal of Internet Technology Volume 20 (2019) No.5

7. Calculate Enew

8. Calculate Δ= Enew – E s

9. If 0Δ <

10. Es=Enew and Current Solution=New Solution

11. Else

12. Generate a random value r ∈ [0-1]

13. If (r < exp (-Δ /Temp))

14. No_rejects++

15. Es=Enew and Current Solution=New Solution

16. End if

17. End if

18. If (Egood>Es)

19. Egood=Es and good Solution=Current Solution

20. End If

21. Set Temp=Temp – (Tempα ×)

22. If (Temp >1 and No_rejects<10)

23. Go to step (6)

24. Else

25. Return SA solution=good Solution

26. End if

5.2 Ant Colony Optimization

The Ant Colony Optimization (ACO) algorithm

takes its characteristics from the ability of ants to find

the shortest path between the food and their nest. The

ants connect by laying trails of pheromone. Ants

choose their path by computing probability P. Where,

P depends on pheromone trails on the ground. When

the pheromone of any path increases, the number of

ants that choose this path will increase. Thus, each new

solution is better than the previous [15]. Algorithm 2

illustrates the steps of ACO algorithm.

Algorithm 2. An Iteration of the ACO Algorithm

1. Assign y ants on m VMs according to the initial

SA solution

2. Initialize
iv

τ for each path between cloudleti and

VMv

3. While cloudlet-list is not empty repeat

4. For k=0 to y

5. Antk selects a suitable VMv for the selected

cloudleti according to Piv
k (T)

6. Insert VMv in Tabuk and remove it from allowedk

7. Remove the selected_cloudlet from cloudlet_list

8. Update local pheromone

9. End For

10. End while

11. Update global pheromone

5.2.1 Initialization of Pheromone

When a cloudlet i assigned to a virtual machine v, a

new path is created with pheromone trial
iv

τ . By using

the SA solution, the algorithm assigns each ant on a

specific VM according to the same order of initial

solution [18]. Then, it initializes the pheromone trial

for each edge according to Eq. (6):

(VM)
(0)

_

k v

iv c

i

MIPS

task length
τ τ= + (6)

Where,
k

iv
τ (0) is the pheromone trial value at initial

iteration t=0 for ant k, and
c

τ is constant.

5.2.2 Virtual Machine Selection for Next Cloudlet

Each ant applies the next probability P in Eq. 7 to

choose VMv for next cloudlet i.

()
()

()

0

k

iv iv

k

is is

s allo

k

iv

wed

t
t if v allowed

t

Othe wise

P

r

τ η

τ η

∈

⎧ ×
= ∈⎪

⎪ ×⎨
⎪
⎪⎩

∑
 (7)

Where,
iv

τ is the pheromone trial of cloudlet i in

VMv, allowedk is the available VMs of ant k that are not

chosen yet for any cloudlet by the ant. The VMs that

are chosen are stored in tabuek. iv
η = 1/div is heuristic

information representing the visibility of ant k at

iteration t, where div is the expected execution time of

cloudlet i at VMv.

5.2.3 Pheromone Updating

After each ant creates a path, it updates the local

pheromone of this path by Eq. 8.

 (t) (,) ()
(t)

0

k k

iv k

Q
if i v T t

L

O therw ise

τ
⎧
Δ = ∈⎪

⎨
⎪
⎩

 (8)

Where, Tk(t) represents Tabuk (the collection of VMs

that ant k visited) at iteration t, Lk (t) is the expected

makespan of ant k and Q is a control parameter. After

generating a new solution, the global pheromone

updates by the Eq. 9.

 (t 1) (1 () ()
iv iv iv

t tτ ρ τ τ+ = −) +Δ (9)

Where, ρ∈ [0-1] is the trial volatility coefficient,

and (t)
iv

τΔ is computed by
0

(t)
n

k

iv iv

k

τ τ

=

Δ = Δ∑ .

5.3 Two-Phase SAAC Approach

Algorithm 3 illustrates the developed SAAC

approach. The approach combines both the well-known

Simulated Annealing (SA) and the Ant Colony

Optimization (ACO). In the first phase, the SA is

applied to generate an initial solution, while, in the

second phase, the ACO is applied to find the best

schedule of cloudlets on the available VMs. The

developed SAAC approach solves the tradeoff between

Cloudlet Scheduling Based Load Balancing on Virtual Machines in Cloud Computing Environment 1375

minimizing schedule length and time complexity by

passing the SA solution to the ACO algorithm. Where,

the ACO algorithm enhances the SA solution until it

achieves the optimal solution.

Algorithm 3. Two-Phase SAAC Approach

1. Set No_rejects=0

2. Set Current solution=SA solution and Best

solution=SA solution

3. For t=0 to tMax do

4. Generate new solution using ACO algorithm

5. If new Solution quality is less than the

 current solution quality

6. No_rejects++

7. If (No_rejects>4)

8. End the algorithm and Return Best Solution

9. End If

10. Else

11. Best solution=new solution

12. End If

13. Current solution = new solution

14. End For

From Algorithm 3, the SAAC starts with setting

No_rejects equal to zero. This value is used to prevent

repeating the same solution and monitors the quality of

searching. If No_rejects reaches to 4 this means that

the quality is decreased and the solution is bad. At this

moment, the SAAC approach will stop and gives the

best solution.

5.4 Time Complexity

The time complexity of SA depends on two factors;

the number of iterations (itr) and the product (n×m). It

has time complexity O(itr×n×m), where itr is often

>1000 for the initialize temperature=2500 and cooling

rate=0.01. The time complexity of the ACO is the

summation of steps for generate number of solutions

O(tmax n× ×m), and time complexity for evaluating the

solutions O(tmax n×). So, the overall time complexity

of the ACO is O(tmax n× ×m + tmax n× . Where, tmax is

the maximum number of generations. The time

complexity of SAAC is the summation of the time

complexity of both the SA and the ACO. The SA has

time complexity O(itr × n × m), while the time

complexity of the ACO is O(tmax × n× m). Thus, the

overall time complexity of the new SAAC algorithm is

O (itr×n×m+tmax × n×m). The SAAC approach uses

No_rejects variable to decrease tmax (i.e. from the

experiments tmax < 30 <<n). So, the time complexity

for SAAC approach may be recomputed as

O(itr×n×m). Since, itr for SAAC algorithm is less than

itr for SA algorithm (i.e. itr<200). Therefore, time

complexity of SAAC approach is less than time

complexity of SA algorithm.

6 Simulation Results

This section presents performance evaluation of the

proposed two-phase SAAC scheduling approach. In this

evaluation, the well-known CloudSim is used to

simulate the cloud computing [16]. The simulation

environment is a 64-bit windows 7 operating system

installed in a laptop core i5 with 8 GB RAM. In

addition, list of cloudlets are generated with lengths

from 1000 to 10,000 MI, and a list of VMs is generated

with MIPS ∈ [100-1000]. The initial values of the

SAAC approach parameters are y=50, ρ =0.5,
c

τ =0.3,

Temp=1000, α =0.01 and tmax=150. The results of the

proposed SAAC approach are compared with both the

SA and the ACO in terms of schedule length, load

balancing and time complexity.

6.1 Schedule Length

Schedule length (SL) or makespan is the elapsed

execution time at the maximum loaded virtual machine.

Table 1 shows a simple comparison between the

proposed SAAC approach and both the ACO and the SA

algorithms in terms of makespan. From the table, the

proposed SAAC approach is more efficient than the

ACO and SA algorithms for all test cases. The new

SAAC approach has lower schedule length at smaller

number of VMs and larger number of cloudlets.

Table 1. Schedule length of SAAC, ACO and SA at

different numbers of cloudlets and VMs

Conditions Makespan in seconds
No. of

Cloudlets
No. of VMs SAAC ACO SA

2 2518 3036 2687

4 1960 1990 2000 500

8 1111 1118 2125

2 4335 5946 5941

4 2217 2321 4768 1000

8 1213 1218 5768

2 9281 10508 10599

4 3604 3650 7077 1500

8 2540 2553 9491

2 11379 11931 21039

4 6013 6020 8993 2000

8 2841 2850 12014

2 13379 13431 11672

4 6937 7000 12537 2500

8 3055 3070 6651

2 18123 21142 11937

4 8369 8878 24194 3000

8 3243 3350 13597

2 20105 25200 20596

4 9937 10950 38299 3500

8 4007 4115 15560

2 43526 55433 40985

4 11012 12025 45472 4000

8 4370 4390 18616

1376 Journal of Internet Technology Volume 20 (2019) No.5

From Table 1, both the SA and the ACO algorithms

provide high schedule length with large number of

cloudlets. In some cases (at 4000 cloudlets and 2 VMs),

the new SAAC approach can save more than 2 hours

than both the SA and the ACO algorithms. The SAAC

approach minimizes the schedule length by 47.24%

with SA and 14.5% with ACO. This is because the

SAAC approach uses the advantages of SA and ACO

algorithms with additional modifications to minimize

the schedule length.

6.2 Balancing Degree

Balancing Degree (BD) is the degree of balancing

the workload on the available VMs after scheduling.

The balancing degree may be calculated as follows.

 () / ()opt finBD SL S SL S= (10)

Where, Sopt is the optimal solution and Sfin is the final

solution obtained from the applied algorithm. In this

study, Sopt is assumed as the ideal solution, where Sopt is

computed as the summation of total MI of all the

cloudlets over the total MIPS of the available VMs.

That is, Sopt = ToalMI/TotalMIPS. From Eq. (10), the

algorithm with high balancing degree achieves near

optimal solution.

Figure 3, Figure 4 and Figure 5 show the balancing

degree of scheduling different cloudlets by three

different algorithms at 2, 4, and 8 VMs respectively.

From the figures, the SAAC achieves higher BD ratio

than SA and ACO algorithms, because it achieves the

lowest makespan. Let’s take Figure 3 as an example.

From the figure we note that the new algorithm always

has higher BD ratio than the others. Although, the new

algorithm gives BD ratios near of ACO in Figure 4, and

Figure 5, it achieves the near optimal solution at very

little time than the ACO. This is shown in Figure 6,

Figure 7, and Figure 8.The developed SAAC improves

BD ratio with 45.9% than SA and 4.8% than ACO

algorithms.

Figure 3. BD by different algorithms at 2VM

Figure 4. BD by different algorithms at 4VM

Figure 5. BD by different algorithms at 8VM

6.3 Computation Time Complexity

Figure 6, Figure 7 and Figure 8 show the computation

time complexity of the SAAC, the SA and the ACO at

different values of VMs; 2, 4, and 8 respectively. The

figures show that the SAAC approach has lower time

complexity than both the SA and the ACO. The SAAC

approach combines both the SA and the ACO

algorithms to improve the overall performance of cloud

computing. The new approach avoids the high time

complexity by using a new variable called No_rejects,

which counts the number of rejected solutions, and

stops the repetition when reaching to the specific value.

This prevents generating new bad solutions more times

for minimizing time complexity.

Figure 6. Running time of different algorithms at 2VM

Cloudlet Scheduling Based Load Balancing on Virtual Machines in Cloud Computing Environment 1377

Figure 7. Running time of different algorithms at 4VM

Figure 8. Running time of different algorithms at 8VM

From Figure 6, Figure 7 and Figure 8, the SAAC has

running time less than the SA and the ACO algorithms.

For example, in Figure 6, the SAAC approach takes 40

second to find the near optimal solution, whereas the

ACO takes 100 second, and SA takes 45 second. In

addition, from Figure 8, the SAAC approach takes less

than 100 second to find the near optimal solution of

4000 cloudlets, whereas the ACO algorithm gets a

solution at 600 second. On other words, the SAAC

approach is better than the SA and ACO in terms of

running time. It decreases the running time 20.5% than

SA and 87.12% than ACO algorithms.

In summary, from the figures, the new SAAC is

better than both the SA and the ACO algorithms in

terms of schedule length, balancing degree, and

running time.

6.4 Real Experiments

To insure that the new approach is more efficient

than the other algorithms, the proposed SAAC is

applied to schedule a list of real cloudlets on different

numbers of VMs. The cloudlets are generated by using

a standard formatted workload of a high-performance

computing center, called HPC2N, in Sweden as a

benchmark [17]. Table 2 shows the makespan obtained

by 4 different algorithms.

Table 2. Experimental results of different algorithms

Conditions Makespan in seconds

No. of

Cloudlets

No.

VMs
SAAC ACO SA PSO Hybrid

10 1980 2800 2783 2700 1983

20 840 1254 1440 1497 854 1000

30 483 1345 1224 1505 531

10 4614 4912 5678 4987 4616

20 2192 2978 3728 3018 21943600

30 1651 2598 4395 2678 1649

10 11135 21800 22343 22800 11137

20 5416 10800 13075 11800 54206500

30 3492 6987 8280 8019 3500

10 17886 19599 23284 23000 17889

20 13513 14200 16857 15300 135108500

30 5609 7000 8525 6800 5609

From Table 2, the new SAAC algorithm achieves the

lowest schedule length in all the test cases. It can

distribute a large number of cloudlets into different

numbers of VMs and achieves better schedule length

than the current SA, ACO, PSO, and the Hybrid

algorithm [18].

7 Conclusion

In this paper, a new two-phase SAAC approach is

proposed for cloudlet scheduling in cloud computing

environment. The proposed SAAC approach can

schedule a large number of cloudlets into the available

VMs considering several resources constraints, at low

time complexity. It keeps the VMs in high balancing

degree, and enhances the overall system performance.

By comparing the new SAAC approach with the SA and

the ACO, the new approach is more efficient than those

algorithms. The experimental results show that the

SAAC approach decreases running time by about

32.5% than SA and 87.12% than ACO algorithm. In

addition, it achieves lower schedule length than SA and

ACO algorithms. It decreases the schedule length by

about 47.24% with SA and 14.5% with ACO. The

SAAC also provides high load balancing degree. It

improves balancing degree ratio by 45.9% than SA and

4.8% than ACO algorithms. Moreover, the new SAAC

algorithm is compared with the PSO and the Hybrid

algorithms.

References

[1] O. Terzo, L. Mossucca, Cloud Computing with e-Science

Applications, Crc Press, 2015.

[2] C. Changchit, C. Chuchuen, Cloud Computing: An

Examination of Factors Impacting Users’ Adoption, Journal

of Computer Information Systems, Vol. 58, No.1, pp. 1-9,

September, 2018.

[3] B. Varghese, R. Buyya, Next Generation Cloud Computing:

New Trends and Research Directions, Future Generation

1378 Journal of Internet Technology Volume 20 (2019) No.5

Computer Systems, Vol. 79, pp. 849-861, February, 2018.

[4] R. K. Jena, Task Scheduling in Cloud Environment: A Multi-

objective ABC Framework, Journal of Information and

Optimization Sciences, Vol. 38, No. 1, pp. 1-19, February,

2017.

[5] A. A. Nasr, S. A. Elbooz, Scheduling Strategies in Cloud

Computing: Methods and Implementations, American

Journal of Engineering and Applied Sciences, Vol. 11, No. 2,

pp. 426-432, April, 2018.

[6] M. Kumar, A. K. Yadav, P. Khatri, R. S. Raw, Global Host

Allocation Policy for Virtual Machine in Cloud Computing,

International Journal of Information Technology, Vol. 10, No.

3, pp. 279-287, September, 2018.

[7] O. Sinnen, Task Scheduling for Parallel Systems, John Wiley

& Sons, 2007.

[8] S. H. H. Madni, M. S. A. Latiff, M. Abdullahi, S. M.

Abdulhamid, M. J. Usman, Performance Comparison of

Heuristic Algorithms for Task Scheduling in IaaS Cloud

Computing Environment, PloS one, Vol. 12, No. 5, e0176321,

May, 2017.

[9] F. Villa, E. Vallada, L. Fanjul-Peyro, Heuristic Algorithms

for the Unrelated Parallel Machine Scheduling Problem with

One Scarce Additional Resource, Expert Systems with

Applications, Vol. 93, pp. 28-38, March, 2018.

[10] C. Y. Liu, C. M. Zou, P. Wu, A Task Scheduling Algorithm

Based on Genetic Algorithm and Ant Colony Optimization in

Cloud Computing, Proceedings of the 13th International

Symposium on Distributed Computing and Applications to

Business, Engineering and Science (DCABES), Xian Ning,

China, 2014, pp. 68-72.

[11] F. Fanian, V. K. Bardsiri, M. Shokouhifar, A New Task

Scheduling Algorithm Using Firefly and Simulated Annealing

Algorithms in Cloud Computing, International Journal of

Advanced Computer Science and Applications, Vol. 9, No. 2,

pp. 195-202, March, 2018.

[12] X. Liu, J. Liu, A Task Scheduling Based on Simulated

Annealing Algorithm in Cloud Computing, International

Journal of Hybrid Information Technology, Vol. 9, No. 6, pp.

403-412, June, 2016.

[13] A. I. Awad, N. A. El-Hefnawy, H. M. Abdel_kader,

Enhanced Particle Swarm Optimization for Task Scheduling

in Cloud Computing Environments, Procedia Computer

Science, Vol. 65, pp. 920-929, 2015.

[14] A. Assad, K. Deep, A Hybrid Harmony Search and Simulated

Annealing Algorithm for Continuous Optimization,

Information Sciences, Vol. 450, pp. 246-266, June, 2018.

[15] Y. J. Moon, H. C. Yu, J. M. Gil, J. B. Lim, A Slave Ants

Based Ant Colony Optimization Algorithm for Task

Scheduling in Cloud Computing Environments, Human-

centric Computing and Information Sciences, Vol. 7, No. 1,

pp. 1-10, December, 2017.

[16] R. N. Calheiros, R. Ranjan, A. Beloglazov, C. A. F. D. Rose,

R. Buyya, CloudSim: A Toolkit for Modeling and Simulation

of Cloud Computing Environments and Evaluation of

Resource Provisioning Algorithms, Software: Practice and

experience, Vol. 41, No. 1, pp. 23-50, January, 2011.

[17] D. G. Feitelson, D. Tsafrir, D. Krakov, Experience with

Using the Parallel Workloads Archive, Journal of Parallel

and Distributed Computing, Vol. 74, No. 10, pp. 2967-2982,

October, 2014.

[18] H. Idris, A. E. Ezugwu, S. B. Junaidu, A. O. Adewumi, An

Improved Ant Colony Optimization Algorithm with Fault

Tolerance for Job Scheduling in Grid Computing Systems,

PloS one, Vol. 12, No. 5, e0177567, May, 2017.

Biographies

Aida A. Nasr received a Ph.D. in 2019,

in the Dept. of Computer Science and

Engineering, Faculty of Electronic

Engineering, Menoufia University,

Egypt. She is a Lecturer in the faculty

of Artificial Intelligence, Kafrelsheikh University,

Egypt. She received M.Sc. and B.S. from the Faculty

of electronic Engineering, Menoufia University, Egypt

in 2015 and 2010 respectively.

Nirmeen A. El-Bahnasawy received

her B.S. in Electronic Engineering in

1998 and M.Sc. and Ph.D. degrees in

Computer Science and Engineering

from Menofia University in 2003 and

2013, respectively. Currently, she has

been appointed as an Associate Professor at Menofia

University in 2019. Her research interests include

distributed computing, grid computing, and Cloud

computing.

Gamal Attiya graduated in 1993 and

obtained his M.Sc. degree in

computer science and engineering

from the Menoufia University, Egypt,

in 1999. He received Ph.D. degree in

computer engineering from the

University of Marne-La-Vallée,

Paris-France, in 2004. He is currently full Professor at

the Department of Computer Science and Engineering,

Faculty of Electronic Engineering, Menoufia

University, Egypt.

Ayman El-Sayed received the B.Sc.

(1994) and M.Sc. (2000) in computer

science and engineering from the

Menoufia University, Egypt. Ph.D.

(2004) in computer network from

Institute National De Polytechnique

De Grenoble (INPG), France. He is full Professor/Dean

of Faculty of Electronic Engineering, Menoufia

University, Egypt. He is a IEEE senior member.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (Adobe RGB \0501998\051)
 /CalCMYKProfile (Japan Color 2001 Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHT <FEFF005b683964da300c9ad86a94002851fa8840002b89d27dda0029300d005d0020005b683964da300c8f3851fa0033003000300064002851fa88400029300d005d00204f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks true
 /AddPageInfo false
 /AddRegMarks false
 /BleedOffset [
 8.503940
 8.503940
 8.503940
 8.503940
]
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MarksOffset 9.354330
 /MarksWeight 0.141730
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed true
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

