
Dynamic Skyline Maintaining Strategies for Moving Query Points in Road Networks 1359

Dynamic Skyline Maintaining Strategies for

Moving Query Points in Road Networks

Jiping Zheng1,2,3, Shunqing Jiang1, Jialiang Chen1, Wei Yu1, Siman Zhang1

1 College of Computer Science and Technology, Nanjing University of Aeronautics and Astronautics, China
2 Collaborative Innovation Center of Novel Software Technology and Industrialization, China

3 Department of Computer Science and Technology, Nanjing University, China

{jzh, jiangshunqing, chenjialiang, echoyu, zhangsiman}@nuaa.edu.cn*

*Corresponding Author: Jiping Zheng; E-mail: jzh@nuaa.edu.cn

DOI: 10.3966/160792642019092005004

Abstract

Skyline query processing in Location-based Services

has been investigated extensively in recent years. In this

paper, we address the issue of efficient evaluation of

Continuous Range Skyline Queries (CRSQ) in road

networks where the query points are moving and the

interest points are within a certain range. We develop

efficient skyline maintaining strategies to answer

continuous range skyline queries. First, we propose a

novel method named Dynamic Split Points Setting

(DSPS) dividing a given path in road networks into

several segments. Second, for each segment, we adopt the

Progressive Incremental Network Expansion (PINE)

technique based on Network Voronoi Diagrams (NVD)

to calculate candidates of skyline interest points. After

that, when the query point moves, the spilt points are

dynamically set by DSPS strategies to ensure that when

the query point moves within a segment, skyline points

remain unchanged and only need to be updated while

moving across the split points. Finally, extensive

experiments show that our DSPS strategies are efficient

compared with previous approaches.

Keywords: Continuous range skyline queries, Progressive

incremental network expansion, Dynamic

split points setting, Network voronoi

diagrams, Location-based services, Road

networks

1 Introduction

Due to the exponentially increasing usage of

smartphones and the availability of inexpensive

position locators, location-based services (LBS) are

increasingly popular where skyline queries based on

the current location of the user is an important type of

location-based query that can provide useful

information and has a wide range of real applications.

Skyline query [1-2] is an important operator for

applications involving multi-criteria decision making.

Given two multi-dimensional points u and v, u

dominates v iff u is preferred to v in all dimensions, but

strictly better than v in at least one dimension. In recent

years, the research of skyline queries in road network

has received considerable attention [3-9]. Skyline

queries in road networks not only take the inherent

static attributes of targets into consideration, but also

consider spatial attribute (network distances between

query point and targets). Figure 1 shows an example

where 5 points (p1-p5) represent hotels with two

inherent static attributes: price and ranking and a query

point q represents a user’s location in a road network

(shown in Table 1). When issuing a skyline query: find

cheaper, higher ranking and also closer hotels, the

network distance from each hotel to q becomes one of

the dimensions. For detailed hotel information as

shown in Table 1, the skyline query results are (p3, p5)

for they are cheaper, higher ranking, and closer than

others (p1, p2, p4).

n1 n2

q

p1

p2

p3

p4

p5

Figure 1. Skyline query in road networks

Table 1. Attributes of interest points

Hotels Price Ranking Distance

p1 7 2 10

p2 3 3 11

p3 3 6 7

p4 5 4 15

p5 4 5 4

1360 Journal of Internet Technology Volume 20 (2019) No.5

In our hotel-finding example, if the query point q is

a tourist in a moving car from n1 to n2 in the segment

n1n2, she may only interest in the hotels which network

distances to her are within a certain range, e.g. 6 km.

We can see that hotel p3 is not a skyline point. This is

because the distance between p3 and q is greater than 6.

There are researches [5, 10-13] on continuous query

processing. They all assume the distances between

query point and data points are Euclidean distance

which are not suitable for real road network

applications. Skyline queries in road networks and

continuous querying with skylines in road networks are

considered in [5-6, 14]. However, in [5], the

computation of network distance based on Grid index

is time-consuming due to the limitation of Grid index.

[6] only considered the query point is static while [14]

assumed that the road network distance is city block

distance (i.e. L1-distance or Manhattan distance). Also,

the determination of split points is not efficient.

In this paper, we address the problem of efficient

Continuous Range Skyline Queries (CRSQ) processing

in road networks [5]. To evaluate CRSQ on a path, we

first determine global candidate skyline points by using

Progressive Incremental Network Expansion (PINE*,

which is an improved version of PINE technique first

proposed by [15] based on Network Voronoi Diagrams

(NVDs)). Then we determine the split points using our

DSPS strategy and update skyline points according to

the location of the query point as well as the locations

of split points. In general, the contributions of this

paper are summarized as follows:

‧ We introduce improved Progressive Incremental

Network Expansion (PINE*) technique for efficient

network distance computation to answer range

skyline queries in road networks.

‧ To evaluate continuous range skyline queries, we

propose a Dynamic Split Points Setting (DSPS)

strategy which can return skyline points immediately

according to the locations of the query point and

split points.

‧ We give experimental evidence that the solutions we

proposed in this paper to address CRSQ problem are

effective and clear.

The rest of the paper is organized as follows. In

Section 2, we discuss related work. Some important

pieces of knowledge are discussed in section 3. In

Section 4 we present how our CRSQ method and

DSPS strategy can be used to answer continuous range

skyline queries in road networks. In Section 5,

extensive experiments are conducted to show the

efficiency of the proposed method. Finally, we

conclude our work and point out possible future work

in Section 6.

2 Related Work

The skyline operator has been introduced to the

database community in 2001 [1], and consequent

researches focus on efficient skyline query processing.

There have been some work considering the problem

of processing skyline queries in road networks, in

which the dynamic attribute of road network distance

has been involved. [3] first investigated spatial skyline

query problems which were first introduced in [16] in

road networks and presented multi-source skyline

queries which considered several query points at the

same time. [4] proposed in-route skyline processing in

road networks. [17] computed all linearly non-

dominated paths denoted as linear path skyline in

bicriteria networks. Processing skyline queries over

moving objects is an emerging research topic in recent

years. [10] introduced the continuous skyline query

problem in the context of LBSs, and an algorithm

called CSQ been proposed for moving clients. [11]

considered that due to privacy concerns and limited

precision of localization devices, the input of the user

location is often a spatial range, they studied a problem

of how to process range-based skyline query in mobile

environments. [14] considered the road network

distance as Manhattan distance and proposed

Manhattan spatial skyline queries. [18] focused on the

continuous skyline computation on moving data with

an arbitrary number of dynamic queriable dimensions.

Some other studies in road network skyline query

focus on finding the skyline paths [7-8, 19]. Recently,

[20] also considered the skyline trips of multiple POIs

categories query problem, pre-computed and stored the

distances between POIs and some geographical regions

to produce near optimal results. [6] first addressed

continuous skyline queries in road networks. The most

related work to continuous range skyline queries is

Cdε-SQ+ based on Grid index proposed by [5]. Given a

path, Cdε-SQ+ broke the path to several segments and

each segment had no intersections. Cdε-SQ+ to answer

continuous range skyline queries on a segment includes

two phases: a global skyline points determination

phase, and a result turning point determination phase.

However, Cdε-SQ+ is not efficient due to time-

consuming network distance computation and

determination of split points.

There are also many research based on Voronoi

Diagrams. In past several years, calculating road

network distances based on Voronoi diagrams is

popular for kNN queries in road networks. [20] first

used Network Voronoi Diagrams (NVD) to solve kNN

queries in road networks. They proposed a novel

approach called VN3. VN3 partitions a large network

into smaller network Voronoi polygons (NVPs), then

pre-compute distances across each NVP. [15] proposed

a novel approach, termed Progressive Incremental

Network Expansion (PINE). PINE has less disk access

and CPU time than VN3, and PINE is applicable for all

kinds of the density and distribution of the interest

points. [9] addressed some spatial queries in road

networks based on PINE, include kNN and CkNN

Dynamic Skyline Maintaining Strategies for Moving Query Points in Road Networks 1361

queries to show the effectiveness of PINE technique.

[21] applied VN3 approach to address Continues k

nearest neighbor queries (CkNN) in spatial network

databases. Also, [22] used Voronoi diagrams to solve

the reverse nearest neighbor query problem on spatial

networks. In this paper, we take full virtues of PINE

and NVD to calculate the network distance to answer

continuous range skyline queries. We also adopt

Voronoi diagram techniques to compute the network

distances for our continuous range skyline queries.

3 Preliminaries

3.1 Problem Definition

In this paper, we consider the query point q as a

moving point and the data set P as a set of static

interest points in a road network. Each interest point pi

= <s1, s2,..., sm, d> in P has m static non-spatial

attributes and a dynamic spatial one d. d is the dynamic

distance between the query point and pi.

Definition 1. (Range Skyline Point) Given a query

point q and a range dr in a road network, a point p (p ∈

P) in the road network is considered to be a range

skyline point if it satisfies the following two conditions:

1. ∀ p' ∈ P, p' does not dominate p;

2. pd < dr, it means the distance between q and p is

less than dr.

Definition 2. (Continuous Range Skyline Query)

CRSQ is defined as: given a set of spatial interest

points, a distance range value, and a query point moves

on a given path, retrieve Range Skyline Point (RSP) set

to the query point. The RSP is updated according the

location of the query point on the path. And at any time,

the network distance of each interest point of RSP to

query point is less than or equal to the range distance.

3.2 Change of Skyline for a Moving Query

Point

According to the description in previous section, as

the query point moves on the path, some interest points

may enter or leave the RSP for the change of distances.

We adopt split points to represent the points to change

the skyline results. For CRSQ on a segment, the

approach that introduced by [5] computed all split

points of the segment at the beginning, as the query

point moves, just to update the RSP when the split

point arrives at. This process needs amount of time to

compute split points and stores them. In this paper, our

approach (DSPS) adopts a novel approach dynamically

setting the split points and updating the RSP as the

query point moves.

3.3 Data Model

To clarify the problem we study, we formally define

a road network as an undirected weighted graph G(N,

P, E). It consists of a set of nodes N and a set of edges

E which correspond to the road intersections and the

road segments, respectively. The lengths of the edges

are stored in E. P is a set of interest points. Figure 2(a)

depicts a road network model G(N,P,E), where N={n1,

n2,..., n13} are the intersections of the road, P={p1, p2,

p3} are the interest points, and the edges set E={n1n2,

n1n3, ..., p3n13} represents the segments of the road.

Figure 2(b) shows the NVD of the road network in

Figure 2(a) which divides the network into network

Voronoi polygons, namely NVP(pi). Interest points p1,

p2 and p3 are generators. The set B={b1, b2, ..., b7} is

called border point set. A border point is the midpoint

of a shortest path from one generator to another one,

e.g. b1, dN(b1, p1) = dN(b1, p2).

1
p

6
n

3
n

2
n

1
n 2

p

8
n

13
n

4
n

7
n

10
n

3
p

9
n

12
n11

n

5
n

(a) Road network model

1
p 2

p

3
p

1
b

2
b

3
b

4
b5

b
6
b

7
b

(b) Voronoi diagram of (a)

Figure 2. Network Voronoi diagrams

3.4 Pre-calculated Information of NVDs

After partitioning a road network into NVPs

according to the interest points, we need to pre-

calculate the information for each NVP such as the

network distances between any two border points and

the network distances between border points and

generated points before we run our PINE* algorithm to

obtain the CSP of each segment. For example, for

NVP(p1) in Figure 2(b), we need to pre-calculate the

following distances: dN(p1, b1), dN(p1, b2), dN(p1, b5),

dN(p1, b7), dN(b1, b2), dN(b1, b5), dN(b1, b7), dN(b2, b5),

dN(b2, b7), dN(b5, b7).

If two network Voronoi polygons NVP(pi) and

NVP(pj) have the same border point, we say that

NVP(pi) is adjacent with NVP(pj) and vice versa. For

1362 Journal of Internet Technology Volume 20 (2019) No.5

example, in Figure 2(b), NVP(p1) is adjacent with

NVP(p2) and PINE* algorithm needs the adjacent

information of the network Voronoi polygon for each

interest point to run. Thus the adjacent information

should be pre-calculated and stored which can be

obtained when generating the NVDs. We adopt

tabular-like data structure in [21] to store these

information as illustrated in Figure 3 which

corresponds to the NVD in Figure 2(b).

b1
p1 dN(b1, p1)

b1
p2 dN(b1, p2)

b1 b2
dN(b1, b2)

b1 b3 dN(b1, b3)

...

b6
p2 dN(b6, p2)

b6
p3 dN(b6, b3)

p1 b1, b2, b5, b7

p2 b1, b2, b3, b4, b6

p3 b3, b4, b5, b6, b7

p1 p2, p3

p2

p3

p1, p3

p1, p2

p1 NVP(p1)

p2

p3

NVP(p2)

NVP(p3)
Pre-calculate

information of

distances

Adjacent

information of

NVP's

Border points'

information of

NVP's

R-tree

index

Figure 3. The data structure to store the pre-calculated

information of NVDs

4 Proposed CRSQ

Algorithm 1 shows the pseudo codes of our DSPS

strategy that used to process CRSQ (D-CRSQ). At the

beginning, we divide path P (the given path in CRSQ)

into several segments not containing any interest point

or road network intersection (line 1). For each segment,

we first acquire the candidate skyline points CSP by

PINE*, then use our dynamic split points setting

strategy to implement CRSQ on this segment (lines 2-

4). Lemma 1 shows the basic idea of acquiring the CSP

of a segment.

Lemma 1. Given a segment ninj of a road network G,

the length of ninj is L, a query point q moves from ni to

nj, distance range value dr, the set CSPninj is a collection

of interest points, and dN(p, ni)<L+dr, p∈CSPninj.

Wherever the query point q is located on ninj, if p' ∈ P

∩p' ∉ CSPninj, then, dN(p', q)>dr.

Proof. Because p'∉CSPninj, so, dN (p', ni) > L+dr, we

prove dN(p', q)>dr. There are two situations: 1). If dN(p',

ni)≤ dN(p', nj), we have dN(p', q) = dN(p', ni) + dN(ni, q),

because dN(p', ni)>L+dr, so dN(p', q)>dr. 2). If dN(p',

ni)<dN(p', nj), so, dN(p', ni)=L+dN(p', nj). Because dN(p',

ni) >L+dr, we can obtain dN(p', nj)>dr. dN(p', q)=dN(p',

nj)+dN(nj, q). That is, dN(p', q)>dr.

According to Lemma 1, when we acquire the CSP of

segment ninj, we just find all the interest points p(p ∈ P)

that, dN(p, ni)<L+dr, L is the length of ninj, dr is the

distance range value.

Algorithm 1. DSPS strategy of CRSQ queries

(D-CRSQ)

1. Divide Path PA into several segments each of

which does not contain any interest point or road

network intersections;

2. for each segment Psegi of PA do

3. Find candidate skyline points of Psegi at the

starting node of Psegi;

4. Dynamically acquire split points and update the

RSQ according to the candidate skyline points of

Psegi as the query point q moves.

In the next two subsections, we first illustrate how to

efficiently acquire the CSP of a segment by using

PINE* technique, then introduce our proposed method

to process dynamic continuous range skyline queries.

4.1 Calculation of Candidate Skyline Point Set

of a Segment

Our PINE* approach to acquire candidate skyline

points exploits the properties of the Network Voronoi

Diagrams (NVDs) and the pre-computed distances for

each cell of the NVD. Each candidate skyline interest

point pi of segment ninj is in the form of (pi, dN(ni, pi)),

and sorted according to dN(ni, pi) in ascending order.

The main process to acquire candidate skyline point

set of a segment can be summarized as performing

network-segment expansion in the first polygon, and

then bulk loading a set of NVPs recursively, until all

objects of interest within the expected searching range

are retrieved.

Algorithm 2 shows the pseudocodes of acquiring the

CSPninj of the segment ninj.

Algorithm 2. Acquire CSPninj based on PINE*

Input: ni, dr, length of segment ninj L.

Output: CSPninj

1. CSPninj = φ , H =φ ;

2. NVP(pi) is the cell containing ni in NVD;

3. bi1, bi2, ..., bik is the borders point of NVP(pi)

4. calculate the road network distance from ni to pi

and bi1, bi2, ..., bik;

5. insert (pi, dN(ni, pi)) into CSPninj;

6. insert (bi1, dN(ni, bi1)),(bi2, dN(ni, bi2)), ..., (bin,

dN(ni, bin)) into H;

7. remove first entry (b, dN(ni, b)) from H;

8. while dN(ni, b) < dr + L do

9. pk is the other generator point of border point b;

10. dN(ni, pk)= dN(ni, b)+ dN(b, pk);

11. if dN(ni, pk) < dr + L then

12. insert (pk, dN(ni, pk)) into CSPninj;

13. for each border point bj of NVP(pk) do

14. dN(ni, bj)= dN(ni, b)+ dN(b, bj);

15. insert (bj, dN(ni, bj)) into H;

16. if H is not empty then

17. remove first entry (b, dN(ni, b)) from H;

18. return CSPninj.

Dynamic Skyline Maintaining Strategies for Moving Query Points in Road Networks 1363

4.2 Processing DSPS for CRPQ on a Segment

In this section, we discuss dynamic split points

setting (DSPS) strategy for CRSQ queries (D-CRSQ)

in segment ninj. The result of D-CRSQ for a query

point q in segment ninj includes the skyline result set

and a split point. Table 2 summarizes the mathematical

notations frequently used in the rest of this paper.

Table 2. Summary of notations

Notation Definition

pi ≺ pj
pi dominates pj in terms of static and dynamic

attributes

pi≺ static pj
pi dominates pj only in terms of static

attributes

pi � pj pi cannot dominates pj

RSP range skyline points set q

RSPup increasing group of RSP

RSPdown decreasing group of RSP

CSPninj the candidate skyline points of segment ninj

CSP
up

ninj increasing group of CSPninj

CSP
down

ninj decreasing group of CSPninj

CSP
R

ninj
interest points group within a distance range

dr of CSPninj

After acquiring the CSPninj of segment ninj, for each

point pi in CSPninj, we need to monitor the changing

trend of the network distance between pi and the query

point q. We divide the interest points in CSPninj into

increasing and decreasing groups [23]. The increasing

group (decreasing group) of CSPninj is represented as

CSP
up

ninj (CSP
down

ninj). If p∈CSP
up

ninj (CSP
down

ninj), as the query

point q moves from ni to nj, the network distance dN(p,

q) is increasing (decreasing). And when we get CSPninj

utilizing the approach that introduced in previous

section, we can easily find the shortest path between ni

and each point in CSPninj. For an interest point pi ∈
CSPninj, if the shortest path from pi to ni passes through

nj, we insert it into CSP
up

ninj. Otherwise, we add it into

CSP
down

ninj . Hence, we can directly determine whether a

point belongs to increasing or decreasing groups.

Similarly, RSP is classified into two sets RSPup and

RSPdown.

When obtaining the changing trend for each interest

point from CSPninj, we can further delete the interest

points that will not belong to the skyline result set

when the query point is located on the segment ninj

from CSPninj according to Lemma 2 and Theorem 2.

Lemma 2. If pi ∈CSP
up

ninj and dN(pi, ni) > dr, pi will

never become skyline point.

Proof. As the query point q moves from ni, dN(pi, q) =

dN(pi, ni) + dN(pi, q). For dN(pi, ni) > dr, dN(pi, q) > dr is

hold all the time. Hence, pi will not become skyline

point.

Theorem 2. The points in CSP
up

ninj and CSP
down

ninj being

dominated will never become skyline points.

Proof. We first prove the situation that the points in

CSP
up

ninj. For two points pi, pj ∈CSP
up

ninj, suppose pj ≺ pi,

so dN(pi, q) > dN(pj, q). As the query point q moves, the

distances between pi, pj and q have the same changing

trend, and the static attributes of them keep the same.

That pi is dominated by pj all the time. Thus, pi will

never become skyline point. Proof for the points in

CSP
down

ninj is similar.

Based on the above Lemma 2 and Theorem 2, we

delete corresponding interesting points from CSP
up

ninj and

CSP
down

ninj . This step could improve the efficiency of

CRSQ queries processing.

Now, we could acquire the initial skyline points (ISP)

of q (starting moving at the node ni). We take skyline

domination test in CSP
R

ninj, where CSP
R

ninj ⊂ CSPninj, for

each p ∈CSP
R

ninj, dN(p, q) < dr, and if p′∈ (CSPninj –

CSP
R

ninj), dN(p′, q) > dr. The non-dominated interesting

points of CSP
R

ninj is ISP.

When ISP to q (moving starts at node ni) from

CSPninj is obtained, we could return RSP=ISP to the

user. Next, we apply Dynamic Split Points Setting

(DSPS) strategy for CRSQ queries. Before this, we

introduce the generation rules for four types of split

points.

exitp. Select interest point pmax, pmax∈RSPup and

dN(pmax, q) > dN(p′, q). ∀p′, p′∈ (RSPup – pmax), if dr –

dN(pmax, q) < L, then pmax generates split point: (exitpmax,

dr – dN(pmax, q)).

inp. Select interest point pmin, pmin∈((CSPninj – CSP
R

ninj)

∩CSP
down

ninj) and dN(pmin, q) < dN(p′, q), ∀p′, p′∈((CSPninj

– CSP
R

ninj)∩CSP
down

ninj – pmin). If dN(pmin, q) – dr < L, pmin

generates split point: (inpmin, dN(pmin, q) – dr).

exitpj/pi. For each point pi in RSPup and pj in RSPdown,

if pi ≺static pj, (dN(pj, q) – dN(pi, q))/2 < L. Then, pi and

pj generate split point: (exitpj/pi, (dN(pj, q) – dN(pi, q))/2).

inpi/pj. For each point pi in RSPup and pj ∈(CSP
R

ninj ∩

CSP
down

ninj) but pj ∉RSP, if pi ≺pj, (dN(pj, q) –dN(pi, q))/2 <

L, then, pi and pj generate split point: (inpi/pj, (dN(pj, q) –

dN(pi, q))/2).

We use the split point generation rules mentioned

above to find the locations of split points that the query

point (start at ni) will arrive at in the future. We use a

priority queue SPQ to store the split points calculated

and the split points in SPQ are stored in the form of:

(sp, dN(sp, q)) where sp denotes the type of split points

with their generating points (e.g. inpi/pj, the type is in

and the generating points are pi, pj) and dN(sp, q) is the

distance between sp and the query point q. At this time,

we should calculate the four types of candidate split

points respectively according to the updated CSPninj and

RSP. After acquiring each type split point sp, if dN(sp,

ni)<L, then we insert it into split point priority queue

SPQ. Note that at the process of determining first type

of split points, we only select interest point pmax, pmax ∈

RSPup and dN(pmax, q)>dN(p', q), ∀ p', p′∈(RSPup – pmax)

to generate exitpmax. This is because the query point q

will always arrive exitpmax before exitp'. Similarly, when

determining second type of split points we only select

1364 Journal of Internet Technology Volume 20 (2019) No.5

interest point pmin, pmin ∈ ((CSPninj – CSP
R

ninj) ∩ CSP
down

ninj)

and dN(pmin, q) < dN(p′, q), ∀p′, p′∈ ((CSPninj – CSP
R

ninj)

∩ CSP
down

ninj – pmin). In this way, we could reduce the

calculation of split points as far as possible. After RSP

and SPQ are obtained, we take DSPS strategy for

processing CRSQ queries and the details are shown in

Algorithm 3.

Algorithm 3. DSPS strategy for processing CRSQ

queries on segment ninj

Input: dr, ninj, L, CSPninj, q(located at ni), RSP, SPQ

Output: Processing CSPQ queries of segment ninj

1. MD=0;

2. while MD<L && SPQ is not empty do

3. remove the top entry sp from SPQ;

4. return (RSP, sp.dis);

5. MD = sp.dis;

6. add sp.dis to pairs of CSP
up

ninj and subtract sp.dis

from pairs of CSP
down

ninj ;

7. subtract sp.dis from each split point of SPQ;

8. switch sp do

9. case exitp

10. delete the interest point p from RSP

 and CSPninj;

11. delete sp' which generated by p from

 SPQ;

12. determine exitp’ and insert it into SPQ;

13. case inp

14. for each interest point pi in RSPup do

15. if pi ≺ p then

16. determine split point inpi/p;

17. if dN(p, q)–dN(pi, q)/2<L then

18. insert (inpi/p, dN(p, q)–dN(pi, q)/2)

 into SPQ;

19. if there is no interest point p*, P*∈RSP

 and p* ≺ p then

20. insert the interest point p into RSP;

21. determine split point exitpj/p and

 insert it into SPQ;

22. determine inp* and insert it into SPQ;

23. case exitpj/pi

24. delete the interest point pi from RSP

and CSPninj;

25. delete sp’ which generated by pi from

 SPQ;

26. case inpi/pj

27. if there is no inpk/pj exist in SPQ then

28. insert the interest point pj into RSP;

29. for each interest point p in RSPup do

30. if pj ≺ static p then

31. determine split exitpj/p;

32. if dN(pj, q) – dN(p, q)/2 < L then

33. insert (exitpj/p, dN(pj, q) –

 dN(p, q)/2) into SPQ;

34. end switch

34. end while;

We use the segment ninj of Figure 4 to describe the

walkthrough of processing continuous range skyline

queries where the query point q moves from ni to nj.

The length of ninj is 5, and the value of dr is 4. The

static attributes of each interest point in Figure 6 are

shown in Table 3.

Figure 4. Example of dynamic CRSQ

Table 3. Attributes of interest points

Hotels Price Ranking Distance

p1 5 4 2.0

p2 4 4 0.5

p3 6 3 2.0

p4 8 6 7.0

p5 7 2 5.5

p6 4 3 8.0

p7 3 5 6.0

p8 4 4 8.0

First, we get the CSPninj of segment ninj and ensure if

each point of CSPninj is an increasing or decreasing

point. The sequence is as follows: {(p2, 0.5, ↑), (p1,

2.0, ↑), (p3, 2.0, ↑), (p5, 5.5, ↓), (p7, 6.0, ↓), (p4, 7.0,

↓), (p6, 8.0, ↓), (p8, 8.0, ↑)}.

According to Lemma 2 and Theorem 2, we delete

the interest points which will not be the skyline points

when the query point q is moving along with the

segment ninj from CSPninj. After this step, the CSPninj

are {(p2, 0.5, ↑), (p3, 2.0, ↑), (p5, 5.5, ↓), (p7, 6.0,

↓), (p4, 7.0, ↓), (p6, 8.0, ↓)}.

After that, when q’s moving starts at ni, CSP
R

ninj = {p2,

p3}, combining the distance with static attributes of

Table 3, we can see that they cannot dominate each

other. So, the initial skyline result set is {p2, p3}.

Next, we calculate the split points that q will

encounter first. In the initial skyline result set: {p2, p3},

p3 has the maximum distance to ni and p3 ∈ CSP
up

ninj.

exitp3 is generated by p3 at a distance of 4.0-2.0=2.0

from q (at the beginning, q is located at ni). In CSPninj –

CSP
R

ninj ={(p5, 5.5, ↓), (p7, 6.0, ↓), (p4, 7.0, ↓), (p6,

8.0, ↓)}, p5 has the minimum distance to ni and p5 ∈

CSP
down

ninj . inp5 is generated by p5, at a distance of 5.5–

4.0=1.5 from q. Insert (inp5, 1.5), (exitp3, 1.75) into the

candidate split point priority queue SPQ. In RSP and

(CSP
R

ninj –RSP), there is no decreasing point. So q will

Dynamic Skyline Maintaining Strategies for Moving Query Points in Road Networks 1365

not encounter the third and fourth types of the split

points until arriving at inp5.

When the query point q moves, the candidate

skyline point set CSPninj, split point priority queue SPQ

and skyline result set S(Q) are maintained as follows

(shown in Table 4, the first column is the distance that

q moves).

Table 4. DSPS strategy for the example in Figure 4

Moving CSPninj SPQ S(Q)

0
{(p2, 0.5,↑), (p3, 2.0,↑), (p5, 5.5,↓), (p7, 6.0, ↓),

(p4, 7.0,↓), (p6, 8.0,↓)}
{(inp5, 1.5), (exitp3, 2.0)} {p2, p3}

1.5
{(p2, 2.0,↑), (p3, 3.5,↑), (p5, 4.0,↓), (p7, 4.5, ↓),

(p4, 5.5,↓), (p6, 6.5,↓)}

{(inp3/p5, 0.25), (exitp3, 0.5),

(inp7, 0.5), (inp2/p5, 1.0)}
{p2, p3}

0.25
{(p2, 2.25,↑), (p3, 3.75,↑), (p5, 3.75,↓), (p7, 4.25, ↓),

(p4, 5.25,↓), (p6, 6.25,↓)}

{(exitp3, 0.25), (inp7, 0.25),

(inp2/p5, 0.75)}
{p2, p3}

0.25
{(p2, 2.5,↑), (p5, 3.5,↑), (p7, 4.0,↓), (p4, 5.0,↓),

(p6, 6.0,↓)}

{(inp2/p5, 0.5), (exitp7/p2, 0.75),

(inp4, 1.0), (exitp2, 1.5)}
{p2, p7}

0.5
{(p2, 3.0,↑), (p5, 3.0,↑), (p7, 3.5,↓), (p4, 4.5,↓),

(p6, 5.5,↓)}

{(exitp7/p2, 0.25), (inp4, 0.5),

(exitp2, 1.0)}
{p2, p5, p7}

0.25 {(p5, 2.75,↑), (p7, 3.25,↓), (p4, 4.25,↓), (p6, 5.25,↓)} {(inp4, 0.25)} {p5, p7}

0.25 {(p5, 2.5,↑), (p7, 3.0,↓), (p4, 4.0,↓), (p6, 5.0,↓)} {(inp6, 1.0)} {p4, p5, p7}

1.0 {(p5, 1.5,↑), (p7, 2.0,↓), (p4, 3.0,↓), (p6, 4.0,↓)} Ф {p4, p5, p6, p7}

‧ Get the first split point inp5 from SPQ, and the

distance from this split point to ni is 1.5.

‧ q moves 1.5 forward and reaches the split point inp5,

the skyline result set will change.

‧ Update the distances of CSPninj and SPQ.

‧ Take skyline domination test between p5 with

ISP={p2, p3} (the static attributes of them show in

Table 3), we can see that p5 ≺ p2, p3, S(Q) remains

unchanged.

‧ Determine new split points (inp7, 0.5), (inp3/p5, 0.25),

(inp2/p5, 1.0) and insert them into SPQ.

‧ Repeat above process, as the movement of the query

point q, the changes of CSPninj, SPQ and S(Q) are

shown in Table 4.

4.3 Discussion

When we answer CRSQ queries in segment ninj,

there are two differences between our proposed method

and Grid index method in [5] which can improve the

efficiency greatly.

The first difference lies in the calculation of

candidate skyline points. In [5], in order to acquire

candidate skyline points, they need to process range

queries at ni and nj respectively. Then the union of the

query results will be the candidate skyline points.

However, our method only needs to process range

queries at ni to obtain candidate skyline points by

utilizing PINE* technique and guaranteed by Lemma 1.

It is obvious that [5] needs more time to determine the

candidate skyline points. Furthermore, we adopt

Voronoi diagram instead of Grid index to search

candidate skyline points in road networks. We can see

that even in a simple example [5, Figure 4], CRSQ

query needs to access 5 Grid cells while in our method

we only access one NVP cell by R-tree index and

extend accessed network nodes to maintain the skyline

results. Because all related information of each NVP

cell is pre-calculated and stored, the efficiency is

improved to a great extent.

The other main difference of [5] and our proposed

method is the calculation of split points on a segment.

In [4], split points are all calculated beforehand which

is time-consuming. Instead, we compute the split

points dynamically with the moving of query point by

DSPS strategy. Furthermore, our DSPS strategy

ensures that when the query point moves at two

adjacent split points, the skyline results remain

unchanged which also works well to process CRSQ

queries by avoiding repeated computation (guaranteed

by Lemma 2 and Theorem 2).

5 Experiments

We conduct three sets of experiments for the

proposed approaches in this section. Firstly, we study

the effect of the CPU cost on the performance of range

queries that used to acquire the candidate skyline result

set. The second one investigates the performance of the

D-CRSQ by measuring the CPU time. Finally, the last

set of experiments studies the performance of our

approach for larger road networks.

5.1 Calculation of Candidate Skyline Point Set

of a Segment

Experiments are implemented in Visual C++ 2010,

and all algorithms are executed on a Windows 7

Service Pack 1 PC with 3.3 GHz Intel Core i5-4590

1366 Journal of Internet Technology Volume 20 (2019) No.5

CPU and 4GB memory. We use two different graphs1

on which skyline queries are performed: (1) the road

map of California Road Network that consists of

21,048 nodes and 21,693 edges. (2) the road map of

San Francisco that consists of 174,956 vertices and

223,001 edges. The first two sets of experiments

conducted on California road network. The moving

query point follows a random path, e.g. when a query

point moves on an edge with a given speed to the end

node, it randomly selects a neighbor edge and

continues to move on it.

Table 5 shows the system parameters used in our

experiments: interest points (varying from 0.5K to 10K)

are generated from the road network edges randomly,

the percentage of query range is set from 1% to 10% of

the entire space. Each interest point has several static

attributes (varying from 2 to 6), whose values satisfy

Gaussian distribution (μ=5, σ2=3). The numbers of

segments of each path are from 1 to 20. Bold values

are the default used in our experiments.

Table 5. Parameters and values

Parameters Values

Number of interest points(K) 0.5, 1, 2, 5, 10

Percentage of query range 1%, 2%, 3%, 5%, 10%

Number of static attributes 2, 3, 4, 5, 6

Segments of every query path 1, 5, 10, 15, 20

5.2 Performance of Range Query to Acquire

the Candidate Skyline Result Set

We first evaluate the efficiency of three approaches

for range queries to acquire the candidate skyline

interest points of a segment: our PINE* approach, Grid

Index based (GI) approach that proposed in [5] for

network distance computation of Cdε-SQ and the

further improved version of GI named GI+ of Cdε-SQ+.

Figure 5(a) shows the average CPU time under

different numbers of interest points (varying from 0.5K

to 10K), and for each experiment, the query range is

set as 3% of the total road map. We can see that PINE*

need much less CPU time than GI and GI+. When the

number of interest points is 2K, the numbers of

network nodes expanded are 28, 69 and 98 for PINE*,

GI+ and GI, respectively. For our PINE* approach,

from the experiment results, we can find that when the

distribution of the interest points become denser, the

CPU time of PINE* decreases at the beginning, and

then increases as the number of interest points is larger

than 2K. This is because when the density of interest

points is sparse, the size of each Voronoi polygon

(NVP) is large. At the beginning of PINE* approach, it

will spend much time to calculate the distances

between the query point and the generated points, the

border points of the NVP that including query point.

1 http://www.cs.utah.edu/~lifeifei/SpatialDataset.htm

 0.001

 0.01

 0.1

 1

 10

 100

 1000

0.5 1 2 5 10

C
P

U
 T

im
e(

se
c)

Number of interest points(K)

PINE*
GI+

GI

(a) Number of interest points

 0.001

 0.01

 0.1

 1

 10

 100

 1000

1% 2% 3% 5% 10%
C

P
U

 T
im

e(
se

c)
Query range

PINE*
GI+

GI

(b) Query range

Figure 5. Efficiency of range queries

When the number of interest points is more than 2K,

the density of NVP is large, the processing time of

expanding NVP will increase. When the number of

interest points is 2K, the average CPU time is

minimum.

Figure 5(b) shows the average CPU time under the

different query range (varying from 1% to 10%) in

road networks and the number of interest points is set

to 2K. It is obvious that as the query range increase,

every approach will expand more nodes and interest

points. Therefore, the processing time will increase.

When the percentage of the query is set to 3%, the

numbers of networks nodes expanded are 21, 60 and

97 for PINE*, GI+ and GI, respectively. And the

experiment results show that our PINE*-based

approach significantly outperforms Grid index based

GI and GI+ approaches.

5.3 Performance of D-CRSQ Method

In this subsection, we compare the D-CRSQ method

with the approaches introduced in [9] in terms of the

CPU time. Five experiments are conducted to

investigate the effects of five important factors on the

performance of processing CRSQ queries. These

important factors are the number of interest points, the

size of query range, the number of static attributes, the

length of query path and the distribution of interest

points in the road map.

Figure 6(a) shows the average processing time under

different number of interest points (varying from 0.5K

to 10K). We can see that as the number of the interest

points increases, the processing time of D-CRSQ

Dynamic Skyline Maintaining Strategies for Moving Query Points in Road Networks 1367

increases slightly. When there are a large number of

interest points, D-CRSQ is much better than Cdε-SQ

and Cdε-SQ+ algorithms. When the number of interest

points is 2K, the numbers of network nodes expanded

are 327, 439 and 645 for D-CRSQ, cd-SQ+ and cd-SQ,

respectively. This is because our D-CRSQ method

reduces expensive shortest path computations greatly.

As the increasing number of interest points, our DSPS

strategy also decreases the number of calculation of

split points to a large extent.

Figure 6(b) shows the average processing time under

different ranges (varying from 1% to 10%). When the

percentage of query range is 3%, the number of

network nodes expanded are 345, 357 and 368 for D-

CRSQ, cd-SQ+ and cd-SQ, respectively. As the query

range increases, our PINE* technique to answer D-

CRSQ queries could acquire CSP efficiently. Thus, the

query range has little influence on our DSPS strategy.

Figure 6(c) shows the average CPU time under static

attributes (varying from 2 to 6). When the number of

static attributes is 4, the number of network nodes

expanded are 301, 325 and 722 for D-CRSQ, cd-SQ+

and cd-SQ, respectively. More attributes of each

interest point result in more skyline points so that more

dominance tests are performed. D-CRSQ method can

reduce the number of skyline domination test and the

settings of split points. So the efficiency of D-CRSQ is

better than Cdε-SQ and Cdε-SQ+.

Figure 6(d) shows that the average processing time

under different query paths. It is obvious that as the

query path number increases, the processing time will

increase. When the number of segments is 10, the

numbers of network nodes expanded are 348, 362 and

674 for D-CRSQ, cd-SQ+ and cd-SQ, respectively. For

the same reason mentioned above, our DSPS strategy

for CRSQ queries is also much better than Grid index

based methods.

Finally in this subsection, we study how the

distribution of interest points in the road map affects

the performance of the Cdε-SQ algorithm, Cdε-SQ+

algorithm and D-CRSQ, by considering two types of

interest point distributions. The two interest point

distributions are the uniform distributions and Gaussian

distribution. As shown in Figure 6(e), the CPU time of

three approaches for the Uniform distribution is

slightly lower than that for the Gaussian distribution.

For uniform distribution, the numbers of network

nodes expanded are 147, 345 and 714 for D-CRSQ, cd-

SQ+ and cd-SQ, respectively. While for Gaussian

distribution the numbers of network nodes expanded

are 213, 378 and 732 for D-CRSQ, cd-SQ+ and cd-SQ,

respectively. This is because for the Gaussian

distribution, the interest points are closer to each other

(comparing to the uniform distribution). Therefore,

more NVPs need to be expanded for D-CRSQ, and

more landmarks need to be examined in the split point

determination phase for all approaches, so that it takes

more CPU time to process the CRSQ queries.

 0.1

 1

 10

 100

0.5 1 2 5 10

A
ve

ra
ge

 T
im

e(
S

ec
)

Number of interest points(K)

D-CRSQ
cd-SQ

cd-SQ+

(a) Number of interest points

 0.1

 1

 10

 100

1% 2% 3% 5% 10%

A
ve

ra
ge

 T
im

e(
S

ec
)

Query range

D-CRSQ
cd-SQ

cd-SQ+

(b) Query range

 0

 5

 10

 15

 20

2 3 4 5 6

A
ve

ra
ge

 T
im

e(
S

ec
)

Static attributes

D-CRSQ
cd-SQ

cd-SQ+

(c) Static attributes

 0

 5

 10

 15

 20

1 5 10 15 20

A
ve

ra
ge

 T
im

e(
S

ec
)

Query path length

D-CRSQ
cd-SQ

cd-SQ+

(d) Query range length

 0

 2

 4

 6

 8

 10

Uniform Gaussian

C
P

U
 T

im
e(

se
c)

Number of interest points(K)

D-CRSQ
cd-SQ

cd-SQ+

(e) Interest points distribution

Figure 6. CRSQ performance

1368 Journal of Internet Technology Volume 20 (2019) No.5

5.4 Performance for Larger Road Networks

In this subsection, we conduct two experiments to

study how well the proposed D-CRSQ work for a

larger road network. The road maps of San Francisco

which consists of 174,956 vertices and 223,001 edges.

Figure 7(a) and Figure 7(b) measures the CPU time

for our CRSQ applied in the larger road networks, as

functions of the number of interest points and query

range. When the number of interest points is 2K, the

numbers of network nodes expanded are 478, 573 and

658 for D-CRSQ, cd-SQ+ and cd-SQ, respectively.

While when the percentage of query range is 3%, the

number of network nodes expanded are 438, 514 and

537 for D-CRSQ, cd-SQ+ and cd-SQ, respectively.

Compared to the experimental results in Figure 6(a)

and Figure 6(b) (which shows the performance for a

small road network, California Road), the CPU time

overhead for the three approaches is increasing. The

reason for this is the road connectivity of the larger

road networks is more complicated so that more time is

required for computing the road distance.

 0.1

 1

 10

 100

0.5 1 2 5 10

A
ve

ra
ge

 T
im

e(
S

ec
)

Number of interest points(K)

D-CRSQ
cd-SQ

cd-SQ+

(a) Number of interest points

 0.1

 1

 10

 100

1% 2% 3% 5% 10%

A
ve

ra
ge

 T
im

e(
S

ec
)

Query range

D-CRSQ
cd-SQ

cd-SQ+

(b) Query range

Figure 7. CRSQ performance for the larger road

networks

6 Conclusion

In this paper, we address continuous range skyline

queries in road networks. Due to the network distance

computation is expensive, we utilize PINE* technique

based on NVDs to calculate candidate skyline interest

points. Further, we propose DSPS strategy to set the

split points for efficient processing continuous range

skyline queries. Experiments show that our proposed

method to answer CRSQ queries is efficient for

calculating and maintaining skyline in road networks.

Possible future work includes two aspects. The first is

to consider skyline paths [7, 8, 19] instead of skyline

points in road networks. The idea adopting PINE* to

deal with CRSQ queries can be modified and extended

to deal with skyline path queries in road networks. The

other aspect is to concern dynamic road networks and

changing data objects. For real-world applications in

road networks, data object attributes and road

conditions vary inevitably with time [24, 25],

extending our proposed method or developing novel

techniques to satisfy the requirements to process CRSQ

queries is an important issue in the future.

Acknowledgements

This work is partially supported by the National

Natural Science Foundation of China under grants

U1733112, 61702260. The authors also would like to

thank the anonymous reviewers for their helpful

suggestions.

References

[1] S. Borzsony, D. Kossmann, K. Stocker, The Skyline Operator,

Proceedings of the 17th International Conference on Data

Engineering, Heidelberg, Germany, 2001, pp. 421-430.

[2] H. Li, S. Jang, J. Yoo, An Efficient Architecture for Parallel

Skyline Computation over Large Distributed Datasets,

Journal of Internet Technology, Vol. 15, No. 4, pp. 577-588,

July, 2014.

[3] K. Deng, X. Zhou, H. T. Shen, Multi-source Skyline Query

Processing in Road Networks, Proceedings of the 23th

International Conference on Data Engineering, Istanbul,

Turkey, 2007, pp. 796-805.

[4] X. Huang, C. S. Jensen, In-route Skyline Querying for

Location-based Services, Proceedings of the 4th International

Conference on Web and Wireless Geographical Information

Systems, Goyang, Korea, 2004, pp. 120-135.

[5] Y.-K. Huang, C.-H. Chang, C. Lee, Continuous Distance-

based Skyline Queries in Road Networks, Information

Systems, Vol. 37, No. 7, pp. 611-633, November, 2012.

[6] S. Jang, J. Yoo, Processing Continuous Skyline Queries in

Road Networks, International Symposium on Computer

Science and its Applications, Hobart, ACT, Australia, 2008,

pp. 353-356.

[7] H. P. Kriegel, M. Renz, M. Schubert, Route Skyline Queries:

A Multi-preference Path Planning Approach, Proceedings of

the 26th International Conference on Data Engineering,

Long Beach, CA, USA, 2010, pp. 261-272.

[8] K. Mouratidis, Y. Lin, M. L. Yiu, Preference Queries in

Large Multi-cost Transportation Networks, Proceedings of

the 26th International Conference on Data Engineering,

Long Beach, CA, USA, 2010, pp. 533-544.

[9] M. Safar, D. El-Amin, D. Taniar, Optimized Skyline Queries

Dynamic Skyline Maintaining Strategies for Moving Query Points in Road Networks 1369

on Road Networks Using Nearest Neighbors, Personal and

Ubiquitous Computing, Vol. 15, No. 8, pp. 845-856,

December, 2011.

[10] Z. Huang, H. Lu, B. C. Ooi, A. K. H. Tung, Continuous

Skyline Queries for Moving Objects, IEEE Transactions on

Knowledge and Data Engineering, Vol. 18, No. 12, pp. 1645-

1658, December, 2006.

[11] X. Lin, J. Xu, H. Hu, Range-based Skyline Queries in Mobile

Environments, IEEE Transactions on Knowledge and Data

Engineering, Vol. 25, No. 4, pp. 835-849, April, 2013.

[12] J. Zheng, J. Chen, H. Wang, Efficient Geometric Pruning

Strategies for Continuous Skyline Queries, International

Journal of Geo-Information, Vol. 6, No. 3, Article 91, March,

2017.

[13] X. Guo, B. Zheng, Y. Ishikawa, Y. Gao, Direction-based

Surrounder Queries for Mobile Recommendations, The VLDB

Journal, Vol. 20, No. 5, pp. 743-766, October, 2011.

[14] W. Son, S.-W. Hwang, H.-K. Ahn, Mssq: Manhattan Spatial

Skyline Queries, Information Systems, Vol. 40, pp. 67-83,

March, 2014.

[15] M. Safar, K Nearest Neighbor Search in Navigation Systems,

Mobile Information Systems, Vol. 1, No. 3, pp. 207-224,

October, 2005.

[16] M. Sharifzadeh, C. Shahabi, The Spatial Skyline Queries,

Proceedings of the 32th International Conference on Very

Large Data Bases, Seoul, Korea, 2006, pp. 751-762.

[17] M. Shekelyan, G. Jossé, M. Schubert, H.-P. Kriegel, Linear

Path Skyline Computation in Bicriteria Networks, Proceedings

of the 19th International Conference on Database Systems for

Advanced Applications, Bali, Indonesia, 2014, pp. 173-187.

[18] M. Lee, S. Hwang, Continuous Skylining on Volatile Moving

Data, Proceedings of the 25th International Conference on

Data Engineering, Shanghai, China, 2009, pp. 1568-1575.

[19] Y. Tian, K. C. Lee, W.-C. Lee, Finding Skyline Paths in Road

Networks, Proceedings of the 17th ACM SIGSPATIAL

International Conference on Advances in Geographic

Information Systems, Seattle, Washington, 2009, pp. 444-447.

[20] S. Aljubayrin, Z. He, R. Zhang, Skyline Trips of Multiple

POIs Categories, Proceedings of the 20th International

Conference on Database Systems for Advanced Applications,

Hanoi, Vietnam, 2015, pp. 189-206.

[21] M. Kolahdouzan, C. Shahabi, Voronoi-based k Nearest

Neighbor Search for Spatial Network Databases, Proceedings

of the 30th International Conference on Very Large Data

Bases, Toronto, Canada, 2004, pp. 840-851.

[22] M. Safar, D. Ibrahimi, D. Taniar, Voronoi-based Reverse

Nearest Neighbor Query Processing on Spatial Networks,

Multimedia Systems, Vol. 15, No. 5, pp. 295-308, October,

2009.

[23] M. R. Kolahdouzan, C. Shahabi, Alternative Solutions for

Continuous k Nearest Neighbor Queries in Spatial Network

Databases, Geoinformatica, Vol. 9, No. 4, pp. 321-341,

December, 2005.

[24] S. Jiang, J. Zheng, J. Chen, W. Yu, K-th Order Skyline

Queries in Bicriteria Networks, The 18th Asia Pacific Web

Conference, Suzhou, China, 2016, pp. 488-491.

[25] Y. K. Huang, Within Skyline Query Processing in Dynamic

Road Networks, International Journal of Geo-Information,

Vol. 6, No. 5, Article 137, May, 2017.

Biographies

Jiping Zheng is now an associate

professor of the College of Computer

Science & Technology, Nanjing

University of Aeronautics &

Astronautics, and a visiting fellow of

the Department of Computer Science

and Technology, Nanjing University.

His research interests include skyline computing,

sensor data management, spatial indexes and database

security.

Shunqing Jiang received the B.S.

degree from Yancheng Teachers

University, Yancheng, in 2014 and the

M.S. degree from College of

Computer Science and Technology,

Nanjing University of Aeronautics

and Astronautics, in 2017. His

research interests include skyline queries in road

networks and spatial data index.

Jialiang Chen received the B.S. and

M.S. degrees from Nanjing University

of Aeronautics & Astronautics,

Nanjing, in 2014, 2017, respectively.

His research interests include

continuous and spatial skyline queries.

Wei Yu received the B.S. degree from

Taiyuan Institute of Technology,

Taiyuan, in 2014 and the M.S. degree

from College of Computer Science

and Technology, Nanjing University

of Aeronautics and Astronautics, in

2017. Her research interests include

skyline queries in road networks and Voronoi diagrams.

Siman Zhang received the B.S. and

MS degrees from Nanjing University

of Aeronautics & Astronautics,

Nanjing, in 2015, 2018, respectively.

Her research interests include skyline

computation in social networks.

1370 Journal of Internet Technology Volume 20 (2019) No.5

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (Adobe RGB \0501998\051)
 /CalCMYKProfile (Japan Color 2001 Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHT <FEFF005b683964da300c9ad86a94002851fa8840002b89d27dda0029300d005d0020005b683964da300c8f3851fa0033003000300064002851fa88400029300d005d00204f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks true
 /AddPageInfo false
 /AddRegMarks false
 /BleedOffset [
 8.503940
 8.503940
 8.503940
 8.503940
]
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MarksOffset 9.354330
 /MarksWeight 0.141730
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed true
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

