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Abstract 

Skyline query processing in Location-based Services 

has been investigated extensively in recent years. In this 

paper, we address the issue of efficient evaluation of 

Continuous Range Skyline Queries (CRSQ) in road 

networks where the query points are moving and the 

interest points are within a certain range. We develop 

efficient skyline maintaining strategies to answer 

continuous range skyline queries. First, we propose a 

novel method named Dynamic Split Points Setting 

(DSPS) dividing a given path in road networks into 

several segments. Second, for each segment, we adopt the 

Progressive Incremental Network Expansion (PINE) 

technique based on Network Voronoi Diagrams (NVD) 

to calculate candidates of skyline interest points. After 

that, when the query point moves, the spilt points are 

dynamically set by DSPS strategies to ensure that when 

the query point moves within a segment, skyline points 

remain unchanged and only need to be updated while 

moving across the split points. Finally, extensive 

experiments show that our DSPS strategies are efficient 

compared with previous approaches. 

Keywords: Continuous range skyline queries, Progressive 

incremental network expansion, Dynamic 

split points setting, Network voronoi 

diagrams, Location-based services, Road 

networks 

1 Introduction 

Due to the exponentially increasing usage of 

smartphones and the availability of inexpensive 

position locators, location-based services (LBS) are 

increasingly popular where skyline queries based on 

the current location of the user is an important type of 

location-based query that can provide useful 

information and has a wide range of real applications. 

Skyline query [1-2] is an important operator for 

applications involving multi-criteria decision making. 

Given two multi-dimensional points u and v, u 

dominates v iff u is preferred to v in all dimensions, but 

strictly better than v in at least one dimension. In recent 

years, the research of skyline queries in road network 

has received considerable attention [3-9]. Skyline 

queries in road networks not only take the inherent 

static attributes of targets into consideration, but also 

consider spatial attribute (network distances between 

query point and targets). Figure 1 shows an example 

where 5 points (p1-p5) represent hotels with two 

inherent static attributes: price and ranking and a query 

point q represents a user’s location in a road network 

(shown in Table 1). When issuing a skyline query: find 

cheaper, higher ranking and also closer hotels, the 

network distance from each hotel to q becomes one of 

the dimensions. For detailed hotel information as 

shown in Table 1, the skyline query results are (p3, p5) 

for they are cheaper, higher ranking, and closer than 

others (p1, p2, p4). 
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Figure 1. Skyline query in road networks 

Table 1. Attributes of interest points 

Hotels Price Ranking Distance 

p1 7 2 10 

p2 3 3 11 

p3 3 6 7 

p4 5 4 15 

p5 4 5 4 
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In our hotel-finding example, if the query point q is 

a tourist in a moving car from n1 to n2 in the segment 

n1n2, she may only interest in the hotels which network 

distances to her are within a certain range, e.g. 6 km. 

We can see that hotel p3 is not a skyline point. This is 

because the distance between p3 and q is greater than 6.  

There are researches [5, 10-13] on continuous query 

processing. They all assume the distances between 

query point and data points are Euclidean distance 

which are not suitable for real road network 

applications. Skyline queries in road networks and 

continuous querying with skylines in road networks are 

considered in [5-6, 14]. However, in [5], the 

computation of network distance based on Grid index 

is time-consuming due to the limitation of Grid index. 

[6] only considered the query point is static while [14] 

assumed that the road network distance is city block 

distance (i.e. L1-distance or Manhattan distance). Also, 

the determination of split points is not efficient. 

In this paper, we address the problem of efficient 

Continuous Range Skyline Queries (CRSQ) processing 

in road networks [5]. To evaluate CRSQ on a path, we 

first determine global candidate skyline points by using 

Progressive Incremental Network Expansion (PINE*, 

which is an improved version of PINE technique first 

proposed by [15] based on Network Voronoi Diagrams 

(NVDs)). Then we determine the split points using our 

DSPS strategy and update skyline points according to 

the location of the query point as well as the locations 

of split points. In general, the contributions of this 

paper are summarized as follows: 

‧ We introduce improved Progressive Incremental 

Network Expansion (PINE*) technique for efficient 

network distance computation to answer range 

skyline queries in road networks. 

‧ To evaluate continuous range skyline queries, we 

propose a Dynamic Split Points Setting (DSPS) 

strategy which can return skyline points immediately 

according to the locations of the query point and 

split points. 

‧ We give experimental evidence that the solutions we 

proposed in this paper to address CRSQ problem are 

effective and clear. 

The rest of the paper is organized as follows. In 

Section 2, we discuss related work. Some important 

pieces of knowledge are discussed in section 3. In 

Section 4 we present how our CRSQ method and 

DSPS strategy can be used to answer continuous range 

skyline queries in road networks. In Section 5, 

extensive experiments are conducted to show the 

efficiency of the proposed method. Finally, we 

conclude our work and point out possible future work 

in Section 6. 

2 Related Work 

The skyline operator has been introduced to the 

database community in 2001 [1], and consequent 

researches focus on efficient skyline query processing. 

There have been some work considering the problem 

of processing skyline queries in road networks, in 

which the dynamic attribute of road network distance 

has been involved. [3] first investigated spatial skyline 

query problems which were first introduced in [16] in 

road networks and presented multi-source skyline 

queries which considered several query points at the 

same time. [4] proposed in-route skyline processing in 

road networks. [17] computed all linearly non-

dominated paths denoted as linear path skyline in 

bicriteria networks. Processing skyline queries over 

moving objects is an emerging research topic in recent 

years. [10] introduced the continuous skyline query 

problem in the context of LBSs, and an algorithm 

called CSQ been proposed for moving clients. [11] 

considered that due to privacy concerns and limited 

precision of localization devices, the input of the user 

location is often a spatial range, they studied a problem 

of how to process range-based skyline query in mobile 

environments. [14] considered the road network 

distance as Manhattan distance and proposed 

Manhattan spatial skyline queries. [18] focused on the 

continuous skyline computation on moving data with 

an arbitrary number of dynamic queriable dimensions. 

Some other studies in road network skyline query 

focus on finding the skyline paths [7-8, 19]. Recently, 

[20] also considered the skyline trips of multiple POIs 

categories query problem, pre-computed and stored the 

distances between POIs and some geographical regions 

to produce near optimal results. [6] first addressed 

continuous skyline queries in road networks. The most 

related work to continuous range skyline queries is 

Cdε-SQ+ based on Grid index proposed by [5]. Given a 

path, Cdε-SQ+ broke the path to several segments and 

each segment had no intersections. Cdε-SQ+ to answer 

continuous range skyline queries on a segment includes 

two phases: a global skyline points determination 

phase, and a result turning point determination phase. 

However, Cdε-SQ+ is not efficient due to time-

consuming network distance computation and 

determination of split points. 

There are also many research based on Voronoi 

Diagrams. In past several years, calculating road 

network distances based on Voronoi diagrams is 

popular for kNN queries in road networks. [20] first 

used Network Voronoi Diagrams (NVD) to solve kNN 

queries in road networks. They proposed a novel 

approach called VN3. VN3 partitions a large network 

into smaller network Voronoi polygons (NVPs), then 

pre-compute distances across each NVP. [15] proposed 

a novel approach, termed Progressive Incremental 

Network Expansion (PINE). PINE has less disk access 

and CPU time than VN3, and PINE is applicable for all 

kinds of the density and distribution of the interest 

points. [9] addressed some spatial queries in road 

networks based on PINE, include kNN and CkNN 
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queries to show the effectiveness of PINE technique. 

[21] applied VN3 approach to address Continues k 

nearest neighbor queries (CkNN) in spatial network 

databases. Also, [22] used Voronoi diagrams to solve 

the reverse nearest neighbor query problem on spatial 

networks. In this paper, we take full virtues of PINE 

and NVD to calculate the network distance to answer 

continuous range skyline queries. We also adopt 

Voronoi diagram techniques to compute the network 

distances for our continuous range skyline queries. 

3 Preliminaries 

3.1 Problem Definition 

In this paper, we consider the query point q as a 

moving point and the data set P as a set of static 

interest points in a road network. Each interest point pi 

= <s1, s2,..., sm, d> in P has m static non-spatial 

attributes and a dynamic spatial one d. d is the dynamic 

distance between the query point and pi.  

Definition 1. (Range Skyline Point) Given a query 

point q and a range dr in a road network, a point p (p ∈ 

P) in the road network is considered to be a range 

skyline point if it satisfies the following two conditions: 

1. ∀ p' ∈ P, p' does not dominate p; 

2. pd < dr, it means the distance between q and p is 

less than dr. 

Definition 2. (Continuous Range Skyline Query) 

CRSQ is defined as: given a set of spatial interest 

points, a distance range value, and a query point moves 

on a given path, retrieve Range Skyline Point (RSP) set 

to the query point. The RSP is updated according the 

location of the query point on the path. And at any time, 

the network distance of each interest point of RSP to 

query point is less than or equal to the range distance. 

3.2 Change of Skyline for a Moving Query 

Point 

According to the description in previous section, as 

the query point moves on the path, some interest points 

may enter or leave the RSP for the change of distances. 

We adopt split points to represent the points to change 

the skyline results. For CRSQ on a segment, the 

approach that introduced by [5] computed all split 

points of the segment at the beginning, as the query 

point moves, just to update the RSP when the split 

point arrives at. This process needs amount of time to 

compute split points and stores them. In this paper, our 

approach (DSPS) adopts a novel approach dynamically 

setting the split points and updating the RSP as the 

query point moves. 

3.3 Data Model 

To clarify the problem we study, we formally define 

a road network as an undirected weighted graph G(N, 

P, E). It consists of a set of nodes N and a set of edges 

E which correspond to the road intersections and the 

road segments, respectively. The lengths of the edges 

are stored in E. P is a set of interest points. Figure 2(a) 

depicts a road network model G(N,P,E), where N={n1, 

n2,..., n13} are the intersections of the road, P={p1, p2, 

p3} are the interest points, and the edges set E={n1n2, 

n1n3, ..., p3n13} represents the segments of the road. 

Figure 2(b) shows the NVD of the road network in 

Figure 2(a) which divides the network into network 

Voronoi polygons, namely NVP(pi). Interest points p1, 

p2 and p3 are generators. The set B={b1, b2, ..., b7} is 

called border point set. A border point is the midpoint 

of a shortest path from one generator to another one, 

e.g. b1, dN(b1, p1) = dN(b1, p2).  
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(b) Voronoi diagram of (a) 

Figure 2. Network Voronoi diagrams 

3.4 Pre-calculated Information of NVDs 

After partitioning a road network into NVPs 

according to the interest points, we need to pre-

calculate the information for each NVP such as the 

network distances between any two border points and 

the network distances between border points and 

generated points before we run our PINE* algorithm to 

obtain the CSP of each segment. For example, for 

NVP(p1) in Figure 2(b), we need to pre-calculate the 

following distances: dN(p1, b1), dN(p1, b2), dN(p1, b5), 

dN(p1, b7), dN(b1, b2), dN(b1, b5), dN(b1, b7), dN(b2, b5), 

dN(b2, b7), dN(b5, b7). 

If two network Voronoi polygons NVP(pi) and 

NVP(pj) have the same border point, we say that 

NVP(pi) is adjacent with NVP(pj) and vice versa. For 
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example, in Figure 2(b), NVP(p1) is adjacent with 

NVP(p2) and PINE* algorithm needs the adjacent 

information of the network Voronoi polygon for each 

interest point to run. Thus the adjacent information 

should be pre-calculated and stored which can be 

obtained when generating the NVDs. We adopt 

tabular-like data structure in [21] to store these 

information as illustrated in Figure 3 which 

corresponds to the NVD in Figure 2(b). 

b1
p1 dN(b1, p1)

b1
p2 dN(b1, p2)

b1 b2
dN(b1, b2)

b1 b3 dN(b1, b3)

... ... ..........

b6
p2 dN(b6, p2)

b6
p3 dN(b6, b3)

p1 b1, b2, b5, b7

p2 b1, b2, b3, b4, b6

p3 b3, b4, b5, b6, b7

p1 p2, p3

p2

p3

p1, p3

p1, p2

p1 NVP(p1)

p2

p3

NVP(p2)

NVP(p3)
Pre-calculate 

information of 

distances
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information of 

NVP's

Border points' 

information of 

NVP's

R-tree 

index

 

Figure 3. The data structure to store the pre-calculated 

information of NVDs 

4 Proposed CRSQ 

Algorithm 1 shows the pseudo codes of our DSPS 

strategy that used to process CRSQ (D-CRSQ). At the 

beginning, we divide path P (the given path in CRSQ) 

into several segments not containing any interest point 

or road network intersection (line 1). For each segment, 

we first acquire the candidate skyline points CSP by 

PINE*, then use our dynamic split points setting 

strategy to implement CRSQ on this segment (lines 2-

4). Lemma 1 shows the basic idea of acquiring the CSP 

of a segment. 

Lemma 1. Given a segment ninj of a road network G, 

the length of ninj is L, a query point q moves from ni to 

nj, distance range value dr, the set CSPninj is a collection 

of interest points, and dN(p, ni)<L+dr, p∈CSPninj. 

Wherever the query point q is located on ninj, if p' ∈ P

∩p' ∉ CSPninj, then, dN(p', q)>dr. 

Proof. Because p'∉CSPninj, so, dN (p', ni) > L+dr, we 

prove dN(p', q)>dr. There are two situations: 1). If dN(p', 

ni)≤ dN(p', nj), we have dN(p', q) = dN(p', ni) + dN(ni, q), 

because dN(p', ni)>L+dr, so dN(p', q)>dr. 2). If dN(p', 

ni)<dN(p', nj), so, dN(p', ni)=L+dN(p', nj). Because dN(p', 

ni) >L+dr, we can obtain dN(p', nj)>dr. dN(p', q)=dN(p', 

nj)+dN(nj, q). That is, dN(p', q)>dr. 

According to Lemma 1, when we acquire the CSP of 

segment ninj, we just find all the interest points p(p ∈ P) 

that, dN(p, ni)<L+dr, L is the length of ninj, dr is the 

distance range value.  

 

 

Algorithm 1. DSPS strategy of CRSQ queries  

(D-CRSQ) 

1. Divide Path PA into several segments each of 

which does not contain any interest point or road 

network intersections; 

2. for each segment Psegi of PA do 

3.     Find candidate skyline points of Psegi at the 

starting node of Psegi; 

4.     Dynamically acquire split points and update the 

RSQ according to the candidate skyline points of 

Psegi as the query point q moves. 

 

In the next two subsections, we first illustrate how to 

efficiently acquire the CSP of a segment by using 

PINE* technique, then introduce our proposed method 

to process dynamic continuous range skyline queries. 

4.1 Calculation of Candidate Skyline Point Set 

of a Segment 

Our PINE* approach to acquire candidate skyline 

points exploits the properties of the Network Voronoi 

Diagrams (NVDs) and the pre-computed distances for 

each cell of the NVD. Each candidate skyline interest 

point pi of segment ninj is in the form of (pi, dN(ni, pi)), 

and sorted according to dN(ni, pi) in ascending order. 

The main process to acquire candidate skyline point 

set of a segment can be summarized as performing 

network-segment expansion in the first polygon, and 

then bulk loading a set of NVPs recursively, until all 

objects of interest within the expected searching range 

are retrieved. 

Algorithm 2 shows the pseudocodes of acquiring the 

CSPninj of the segment ninj.  

 

Algorithm 2. Acquire CSPninj based on PINE* 

Input: ni, dr, length of segment ninj L. 

Output: CSPninj 

1.    CSPninj = φ , H =φ ; 

2.    NVP(pi) is the cell containing ni in NVD; 

3.    bi1, bi2, ..., bik is the borders point of NVP(pi) 

4.    calculate the road network distance from ni to pi 

and bi1, bi2, ..., bik; 

5.    insert (pi, dN(ni, pi)) into CSPninj; 

6.    insert (bi1, dN(ni, bi1)),( bi2, dN(ni, bi2)), ..., (bin, 

dN(ni, bin)) into H; 

7.    remove first entry (b, dN(ni, b)) from H; 

8.    while dN(ni, b) < dr + L do 

9.         pk is the other generator point of border point b; 

10.      dN(ni, pk)= dN(ni, b)+ dN(b, pk); 

11.      if dN(ni, pk) < dr + L then 

12.          insert (pk, dN(ni, pk)) into CSPninj; 

13.      for each border point bj of NVP(pk) do 

14.          dN(ni, bj)= dN(ni, b)+ dN(b, bj); 

15.          insert (bj, dN(ni, bj)) into H; 

16.      if H is not empty then 

17.          remove first entry (b, dN(ni, b)) from H; 

18.  return CSPninj. 
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4.2 Processing DSPS for CRPQ on a Segment 

In this section, we discuss dynamic split points 

setting (DSPS) strategy for CRSQ queries (D-CRSQ) 

in segment ninj. The result of D-CRSQ for a query 

point q in segment ninj includes the skyline result set 

and a split point. Table 2 summarizes the mathematical 

notations frequently used in the rest of this paper. 

Table 2. Summary of notations 

Notation Definition 

pi ≺  pj 
pi dominates pj in terms of static and dynamic 

attributes 

pi≺ static pj 
pi dominates pj only in terms of static 

attributes 

pi � pj pi cannot dominates pj 

RSP range skyline points set q 

RSPup increasing group of RSP 

RSPdown decreasing group of RSP 

CSPninj the candidate skyline points of segment ninj 

CSP
up 

ninj increasing group of CSPninj 

CSP
down 

ninj  decreasing group of CSPninj 

CSP
R 

ninj 
interest points group within a distance range 

dr of CSPninj 

 

After acquiring the CSPninj of segment ninj, for each 

point pi in CSPninj, we need to monitor the changing 

trend of the network distance between pi and the query 

point q. We divide the interest points in CSPninj into 

increasing and decreasing groups [23]. The increasing 

group (decreasing group) of CSPninj is represented as 

CSP
up 

ninj (CSP
down 

ninj ). If p∈CSP
up 

ninj (CSP
down 

ninj ), as the query 

point q moves from ni to nj, the network distance dN(p, 

q) is increasing (decreasing). And when we get CSPninj 

utilizing the approach that introduced in previous 

section, we can easily find the shortest path between ni 

and each point in CSPninj. For an interest point pi ∈ 
CSPninj, if the shortest path from pi to ni passes through 

nj, we insert it into CSP
up 

ninj. Otherwise, we add it into 

CSP
down 

ninj . Hence, we can directly determine whether a 

point belongs to increasing or decreasing groups. 

Similarly, RSP is classified into two sets RSPup and 

RSPdown. 

When obtaining the changing trend for each interest 

point from CSPninj, we can further delete the interest 

points that will not belong to the skyline result set 

when the query point is located on the segment ninj 

from CSPninj according to Lemma 2 and Theorem 2. 

Lemma 2. If pi ∈CSP
up 

ninj and dN(pi, ni) > dr, pi will 

never become skyline point. 

Proof. As the query point q moves from ni, dN(pi, q) = 

dN(pi, ni) + dN(pi, q). For dN(pi, ni) > dr, dN(pi, q) > dr is 

hold all the time. Hence, pi will not become skyline 

point. 

Theorem 2. The points in CSP
up 

ninj and CSP
down 

ninj  being 

dominated will never become skyline points. 

Proof. We first prove the situation that the points in 

CSP
up 

ninj. For two points pi, pj ∈CSP
up 

ninj, suppose pj ≺ pi, 

so dN(pi, q) > dN(pj, q). As the query point q moves, the 

distances between pi, pj and q have the same changing 

trend, and the static attributes of them keep the same. 

That pi is dominated by pj all the time. Thus, pi will 

never become skyline point. Proof for the points in 

CSP
down 

ninj  is similar. 

Based on the above Lemma 2 and Theorem 2, we 

delete corresponding interesting points from CSP
up 

ninj and 

CSP
down 

ninj . This step could improve the efficiency of 

CRSQ queries processing. 

Now, we could acquire the initial skyline points (ISP) 

of q (starting moving at the node ni). We take skyline 

domination test in CSP
R 

ninj, where CSP
R 

ninj ⊂ CSPninj, for 

each p ∈CSP
R 

ninj, dN(p, q) < dr, and if p′∈ (CSPninj – 

CSP
R 

ninj), dN(p′, q) > dr. The non-dominated interesting 

points of CSP
R 

ninj is ISP. 

When ISP to q (moving starts at node ni) from 

CSPninj is obtained, we could return RSP=ISP to the 

user. Next, we apply Dynamic Split Points Setting 

(DSPS) strategy for CRSQ queries. Before this, we 

introduce the generation rules for four types of split 

points. 

exitp. Select interest point pmax, pmax∈RSPup and 

dN(pmax, q) > dN(p′, q). ∀p′, p′∈ (RSPup – pmax), if dr – 

dN(pmax, q) < L, then pmax generates split point: (exitpmax, 

dr – dN(pmax, q)). 

inp. Select interest point pmin, pmin∈((CSPninj – CSP
R 

ninj) 

∩CSP
down 

ninj ) and dN(pmin, q) < dN(p′, q), ∀p′, p′∈((CSPninj 

– CSP
R 

ninj)∩CSP
down 

ninj  – pmin). If dN(pmin, q) – dr < L, pmin 

generates split point: (inpmin, dN(pmin, q) – dr). 

exitpj/pi. For each point pi in RSPup and pj in RSPdown, 

if pi ≺static pj, (dN(pj, q) – dN(pi, q))/2 < L. Then, pi and 

pj generate split point: (exitpj/pi, (dN(pj, q) – dN(pi, q))/2). 

inpi/pj. For each point pi in RSPup and pj ∈(CSP
R 

ninj ∩ 

CSP
down 

ninj ) but pj ∉RSP, if pi ≺pj, (dN(pj, q) –dN(pi, q))/2 < 

L, then, pi and pj generate split point: (inpi/pj, (dN(pj, q) –

dN(pi, q))/2). 

We use the split point generation rules mentioned 

above to find the locations of split points that the query 

point (start at ni) will arrive at in the future. We use a 

priority queue SPQ to store the split points calculated 

and the split points in SPQ are stored in the form of: 

(sp, dN(sp, q)) where sp denotes the type of split points 

with their generating points (e.g. inpi/pj, the type is in 

and the generating points are pi, pj) and dN(sp, q) is the 

distance between sp and the query point q. At this time, 

we should calculate the four types of candidate split 

points respectively according to the updated CSPninj and 

RSP. After acquiring each type split point sp, if dN(sp, 

ni)<L, then we insert it into split point priority queue 

SPQ. Note that at the process of determining first type 

of split points, we only select interest point pmax, pmax ∈ 

RSPup and dN(pmax, q)>dN(p', q), ∀ p', p′∈(RSPup – pmax) 

to generate exitpmax. This is because the query point q 

will always arrive exitpmax before exitp'. Similarly, when 

determining second type of split points we only select 
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interest point pmin, pmin ∈ ((CSPninj – CSP
R 

ninj) ∩ CSP
down 

ninj ) 

and dN(pmin, q) < dN(p′, q), ∀p′, p′∈ ((CSPninj – CSP
R 

ninj) 

∩ CSP
down 

ninj  – pmin). In this way, we could reduce the 

calculation of split points as far as possible. After RSP 

and SPQ are obtained, we take DSPS strategy for 

processing CRSQ queries and the details are shown in 

Algorithm 3. 

 

Algorithm 3. DSPS strategy for processing CRSQ 

queries on segment ninj 

Input: dr, ninj, L, CSPninj, q(located at ni), RSP, SPQ 

Output: Processing CSPQ queries of segment ninj 

1.    MD=0; 

2.    while MD<L && SPQ is not empty do 

3.       remove the top entry sp from SPQ; 

4.    return (RSP, sp.dis); 

5.    MD = sp.dis; 

6.    add sp.dis to pairs of CSP
up 

ninj and subtract sp.dis 

from pairs of CSP
down 

ninj ; 

7.    subtract sp.dis from each split point of SPQ; 

8.    switch sp do 

9.             case exitp 

10.                   delete the interest point p from RSP  

                   and CSPninj; 

11.                   delete sp' which generated by p from 

                   SPQ; 

12.                   determine exitp’ and insert it into SPQ; 

13.           case inp 

14.              for each interest point pi in RSPup do 

15.                      if pi ≺  p then 

16.                           determine split point inpi/p; 

17.                      if dN(p, q)–dN(pi, q)/2<L then 

18.                           insert (inpi/p, dN(p, q)–dN(pi, q)/2) 

                           into SPQ; 

19.                 if there is no interest point p*, P*∈RSP  

                 and p* ≺  p then 

20.                   insert the interest point p into RSP; 

21.                       determine split point exitpj/p and  

                       insert it into SPQ; 

22.              determine inp* and insert it into SPQ; 

23.           case exitpj/pi 

24.                 delete the interest point pi from RSP 

and CSPninj; 

25.                 delete sp’ which generated by pi from  

                 SPQ; 

26.           case inpi/pj 

27.                if there is no inpk/pj exist in SPQ then 

28.                    insert the interest point pj into RSP; 

29.                    for each interest point p in RSPup do 

30.                         if pj ≺ static p then 

31.                              determine split exitpj/p; 

32.                              if dN(pj, q) – dN(p, q)/2 < L then

33.                                       insert (exitpj/p, dN(pj, q) – 

                                       dN(p, q)/2) into SPQ; 

34.       end switch 

34.    end while; 

 

We use the segment ninj of Figure 4 to describe the 

walkthrough of processing continuous range skyline 

queries where the query point q moves from ni to nj. 

The length of ninj is 5, and the value of dr is 4. The 

static attributes of each interest point in Figure 6 are 

shown in Table 3. 

 

Figure 4. Example of dynamic CRSQ 

Table 3. Attributes of interest points 

Hotels Price Ranking Distance 

p1 5 4 2.0 

p2 4 4 0.5 

p3 6 3 2.0 

p4 8 6 7.0 

p5 7 2 5.5 

p6 4 3 8.0 

p7 3 5 6.0 

p8 4 4 8.0 

 

First, we get the CSPninj of segment ninj and ensure if 

each point of CSPninj is an increasing or decreasing 

point. The sequence is as follows: {(p2, 0.5, ↑), (p1, 

2.0, ↑), (p3, 2.0, ↑), (p5, 5.5, ↓), (p7, 6.0, ↓), (p4, 7.0, 

↓), (p6, 8.0, ↓), (p8, 8.0, ↑)}. 

According to Lemma 2 and Theorem 2, we delete 

the interest points which will not be the skyline points 

when the query point q is moving along with the 

segment ninj from CSPninj. After this step, the CSPninj 

are {(p2, 0.5, ↑), (p3, 2.0, ↑), (p5, 5.5, ↓), (p7, 6.0, 

↓), (p4, 7.0, ↓), (p6, 8.0, ↓)}. 

After that, when q’s moving starts at ni, CSP
R 

ninj = {p2, 

p3}, combining the distance with static attributes of 

Table 3, we can see that they cannot dominate each 

other. So, the initial skyline result set is {p2, p3}. 

Next, we calculate the split points that q will 

encounter first. In the initial skyline result set: {p2, p3}, 

p3 has the maximum distance to ni and p3 ∈ CSP
up 

ninj. 

exitp3 is generated by p3 at a distance of 4.0-2.0=2.0 

from q (at the beginning, q is located at ni). In CSPninj –

CSP
R 

ninj ={(p5, 5.5, ↓), (p7, 6.0, ↓), (p4, 7.0, ↓), (p6, 

8.0, ↓)}, p5 has the minimum distance to ni and p5 ∈ 

CSP
down 

ninj . inp5 is generated by p5, at a distance of 5.5–

4.0=1.5 from q. Insert (inp5, 1.5), (exitp3, 1.75) into the 

candidate split point priority queue SPQ. In RSP and 

(CSP
R 

ninj –RSP), there is no decreasing point. So q will 
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not encounter the third and fourth types of the split 

points until arriving at inp5. 

When the query point q moves, the candidate 

skyline point set CSPninj, split point priority queue SPQ 

and skyline result set S(Q) are maintained as follows 

(shown in Table 4, the first column is the distance that 

q moves). 

Table 4. DSPS strategy for the example in Figure 4 

Moving CSPninj SPQ S(Q) 

0 
{(p2, 0.5,↑), (p3, 2.0,↑), (p5, 5.5,↓), (p7, 6.0, ↓),  

(p4, 7.0,↓), (p6, 8.0,↓)} 
{( inp5, 1.5), (exitp3, 2.0)} {p2, p3} 

1.5 
{(p2, 2.0,↑), (p3, 3.5,↑), (p5, 4.0,↓), (p7, 4.5, ↓),  

(p4, 5.5,↓), (p6, 6.5,↓)} 

{( inp3/p5, 0.25), (exitp3, 0.5),  

(inp7, 0.5), (inp2/p5, 1.0)} 
{p2, p3} 

0.25 
{(p2, 2.25,↑), (p3, 3.75,↑), (p5, 3.75,↓), (p7, 4.25, ↓),  

(p4, 5.25,↓), (p6, 6.25,↓)} 

{(exitp3, 0.25), (inp7, 0.25),  

(inp2/p5, 0.75)} 
{p2, p3} 

0.25 
{(p2, 2.5,↑), (p5, 3.5,↑), (p7, 4.0,↓), (p4, 5.0,↓),  

(p6, 6.0,↓)} 

{( inp2/p5, 0.5), (exitp7/p2, 0.75), 

(inp4, 1.0), (exitp2, 1.5)} 
{p2, p7} 

0.5 
{(p2, 3.0,↑), (p5, 3.0,↑), (p7, 3.5,↓), (p4, 4.5,↓),  

(p6, 5.5,↓)} 

{(exitp7/p2, 0.25), (inp4, 0.5),  

(exitp2, 1.0)} 
{p2, p5, p7} 

0.25 {(p5, 2.75,↑), (p7, 3.25,↓), (p4, 4.25,↓), (p6, 5.25,↓)} {(inp4, 0.25)} {p5, p7} 

0.25 {(p5, 2.5,↑), (p7, 3.0,↓), (p4, 4.0,↓), (p6, 5.0,↓)} {(inp6, 1.0)} {p4, p5, p7} 

1.0 {(p5, 1.5,↑), (p7, 2.0,↓), (p4, 3.0,↓), (p6, 4.0,↓)} Ф {p4, p5, p6, p7} 

 

‧ Get the first split point inp5 from SPQ, and the 

distance from this split point to ni is 1.5. 

‧ q moves 1.5 forward and reaches the split point inp5, 

the skyline result set will change. 

‧ Update the distances of CSPninj and SPQ. 

‧ Take skyline domination test between p5 with 

ISP={p2, p3} (the static attributes of them show in 

Table 3), we can see that p5 ≺ p2, p3, S(Q) remains 

unchanged. 

‧ Determine new split points (inp7, 0.5), (inp3/p5, 0.25), 

(inp2/p5, 1.0) and insert them into SPQ. 

‧ Repeat above process, as the movement of the query 

point q, the changes of CSPninj, SPQ and S(Q) are 

shown in Table 4. 

4.3 Discussion 

When we answer CRSQ queries in segment ninj, 

there are two differences between our proposed method 

and Grid index method in [5] which can improve the 

efficiency greatly. 

The first difference lies in the calculation of 

candidate skyline points. In [5], in order to acquire 

candidate skyline points, they need to process range 

queries at ni and nj respectively. Then the union of the 

query results will be the candidate skyline points. 

However, our method only needs to process range 

queries at ni to obtain candidate skyline points by 

utilizing PINE* technique and guaranteed by Lemma 1. 

It is obvious that [5] needs more time to determine the 

candidate skyline points. Furthermore, we adopt 

Voronoi diagram instead of Grid index to search 

candidate skyline points in road networks. We can see 

that even in a simple example [5, Figure 4], CRSQ 

query needs to access 5 Grid cells while in our method 

we only access one NVP cell by R-tree index and 

extend accessed network nodes to maintain the skyline 

results. Because all related information of each NVP 

cell is pre-calculated and stored, the efficiency is 

improved to a great extent.  

The other main difference of [5] and our proposed 

method is the calculation of split points on a segment. 

In [4], split points are all calculated beforehand which 

is time-consuming. Instead, we compute the split 

points dynamically with the moving of query point by 

DSPS strategy. Furthermore, our DSPS strategy 

ensures that when the query point moves at two 

adjacent split points, the skyline results remain 

unchanged which also works well to process CRSQ 

queries by avoiding repeated computation (guaranteed 

by Lemma 2 and Theorem 2).  

5 Experiments 

We conduct three sets of experiments for the 

proposed approaches in this section. Firstly, we study 

the effect of the CPU cost on the performance of range 

queries that used to acquire the candidate skyline result 

set. The second one investigates the performance of the 

D-CRSQ by measuring the CPU time. Finally, the last 

set of experiments studies the performance of our 

approach for larger road networks. 

5.1 Calculation of Candidate Skyline Point Set 

of a Segment 

Experiments are implemented in Visual C++ 2010, 

and all algorithms are executed on a Windows 7 

Service Pack 1 PC with 3.3 GHz Intel Core i5-4590 
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CPU and 4GB memory. We use two different graphs1 

on which skyline queries are performed: (1) the road 

map of California Road Network that consists of 

21,048 nodes and 21,693 edges. (2) the road map of 

San Francisco that consists of 174,956 vertices and 

223,001 edges. The first two sets of experiments 

conducted on California road network. The moving 

query point follows a random path, e.g. when a query 

point moves on an edge with a given speed to the end 

node, it randomly selects a neighbor edge and 

continues to move on it. 

Table 5 shows the system parameters used in our 

experiments: interest points (varying from 0.5K to 10K) 

are generated from the road network edges randomly, 

the percentage of query range is set from 1% to 10% of 

the entire space. Each interest point has several static 

attributes (varying from 2 to 6), whose values satisfy 

Gaussian distribution (μ=5, σ2=3). The numbers of 

segments of each path are from 1 to 20. Bold values 

are the default used in our experiments. 

Table 5. Parameters and values 

Parameters Values 

Number of interest points(K) 0.5, 1, 2, 5, 10 

Percentage of query range 1%, 2%, 3%, 5%, 10% 

Number of static attributes 2, 3, 4, 5, 6 

Segments of every query path 1, 5, 10, 15, 20 

 

5.2 Performance of Range Query to Acquire 

the Candidate Skyline Result Set 

We first evaluate the efficiency of three approaches 

for range queries to acquire the candidate skyline 

interest points of a segment: our PINE* approach, Grid 

Index based (GI) approach that proposed in [5] for 

network distance computation of Cdε-SQ and the 

further improved version of GI named GI+ of Cdε-SQ+. 

Figure 5(a) shows the average CPU time under 

different numbers of interest points (varying from 0.5K 

to 10K), and for each experiment, the query range is 

set as 3% of the total road map. We can see that PINE* 

need much less CPU time than GI and GI+. When the 

number of interest points is 2K, the numbers of 

network nodes expanded are 28, 69 and 98 for PINE*, 

GI+ and GI, respectively. For our PINE* approach, 

from the experiment results, we can find that when the 

distribution of the interest points become denser, the 

CPU time of PINE* decreases at the beginning, and 

then increases as the number of interest points is larger  

than 2K. This is because when the density of interest 

points is sparse, the size of each Voronoi polygon 

(NVP) is large. At the beginning of PINE* approach, it 

will spend much time to calculate the distances 

between the query point and the generated points, the 

border points of the NVP that including query point.  

                                                           
1 http://www.cs.utah.edu/~lifeifei/SpatialDataset.htm 
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(b) Query range 

Figure 5. Efficiency of range queries 

When the number of interest points is more than 2K, 

the density of NVP is large, the processing time of 

expanding NVP will increase. When the number of 

interest points is 2K, the average CPU time is 

minimum. 

Figure 5(b) shows the average CPU time under the 

different query range (varying from 1% to 10%) in 

road networks and the number of interest points is set 

to 2K. It is obvious that as the query range increase, 

every approach will expand more nodes and interest 

points. Therefore, the processing time will increase. 

When the percentage of the query is set to 3%, the 

numbers of networks nodes expanded are 21, 60 and 

97 for PINE*, GI+ and GI, respectively. And the 

experiment results show that our PINE*-based 

approach significantly outperforms Grid index based 

GI and GI+ approaches. 

5.3 Performance of D-CRSQ Method 

In this subsection, we compare the D-CRSQ method 

with the approaches introduced in [9] in terms of the 

CPU time. Five experiments are conducted to 

investigate the effects of five important factors on the 

performance of processing CRSQ queries. These 

important factors are the number of interest points, the 

size of query range, the number of static attributes, the 

length of query path and the distribution of interest 

points in the road map. 

Figure 6(a) shows the average processing time under 

different number of interest points (varying from 0.5K 

to 10K). We can see that as the number of the interest 

points increases, the processing time of D-CRSQ 
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increases slightly. When there are a large number of 

interest points, D-CRSQ is much better than Cdε-SQ 

and Cdε-SQ+ algorithms. When the number of interest 

points is 2K, the numbers of network nodes expanded 

are 327, 439 and 645 for D-CRSQ, cd-SQ+ and cd-SQ, 

respectively. This is because our D-CRSQ method 

reduces expensive shortest path computations greatly. 

As the increasing number of interest points, our DSPS 

strategy also decreases the number of calculation of 

split points to a large extent. 

Figure 6(b) shows the average processing time under 

different ranges (varying from 1% to 10%). When the 

percentage of query range is 3%, the number of 

network nodes expanded are 345, 357 and 368 for D-

CRSQ, cd-SQ+ and cd-SQ, respectively. As the query 

range increases, our PINE* technique to answer D-

CRSQ queries could acquire CSP efficiently. Thus, the 

query range has little influence on our DSPS strategy. 

Figure 6(c) shows the average CPU time under static 

attributes (varying from 2 to 6). When the number of 

static attributes is 4, the number of network nodes 

expanded are 301, 325 and 722 for D-CRSQ, cd-SQ+ 

and cd-SQ, respectively. More attributes of each 

interest point result in more skyline points so that more 

dominance tests are performed. D-CRSQ method can 

reduce the number of skyline domination test and the 

settings of split points. So the efficiency of D-CRSQ is 

better than Cdε-SQ and Cdε-SQ+. 

Figure 6(d) shows that the average processing time 

under different query paths. It is obvious that as the 

query path number increases, the processing time will 

increase. When the number of segments is 10, the 

numbers of network nodes expanded are 348, 362 and 

674 for D-CRSQ, cd-SQ+ and cd-SQ, respectively. For 

the same reason mentioned above, our DSPS strategy 

for CRSQ queries is also much better than Grid index 

based methods. 

Finally in this subsection, we study how the 

distribution of interest points in the road map affects 

the performance of the Cdε-SQ algorithm, Cdε-SQ+ 

algorithm and D-CRSQ, by considering two types of 

interest point distributions. The two interest point 

distributions are the uniform distributions and Gaussian 

distribution. As shown in Figure 6(e), the CPU time of 

three approaches for the Uniform distribution is 

slightly lower than that for the Gaussian distribution. 

For uniform distribution, the numbers of network 

nodes expanded are 147, 345 and 714 for D-CRSQ, cd-

SQ+ and cd-SQ, respectively. While for Gaussian 

distribution the numbers of network nodes expanded 

are 213, 378 and 732 for D-CRSQ, cd-SQ+ and cd-SQ, 

respectively. This is because for the Gaussian 

distribution, the interest points are closer to each other 

(comparing to the uniform distribution). Therefore, 

more NVPs need to be expanded for D-CRSQ, and 

more landmarks need to be examined in the split point 

determination phase for all approaches, so that it takes 

more CPU time to process the CRSQ queries. 

 0.1

 1

 10

 100

0.5 1 2 5 10

A
ve

ra
ge

 T
im

e(
S

ec
)

Number of interest points(K)

D-CRSQ
cd-SQ

cd-SQ+

 

(a) Number of interest points 

 0.1

 1

 10

 100

1% 2% 3% 5% 10%

A
ve

ra
ge

 T
im

e(
S

ec
)

Query range

D-CRSQ
cd-SQ

cd-SQ+

 

(b) Query range 

 0

 5

 10

 15

 20

2 3 4 5 6

A
ve

ra
ge

 T
im

e(
S

ec
)

Static attributes

D-CRSQ
cd-SQ

cd-SQ+

 

(c) Static attributes 

 0

 5

 10

 15

 20

1 5 10 15 20

A
ve

ra
ge

 T
im

e(
S

ec
)

Query path length

D-CRSQ
cd-SQ

cd-SQ+

 

(d) Query range length 

 0

 2

 4

 6

 8

 10

Uniform Gaussian

C
P

U
 T

im
e(

se
c)

Number of interest points(K)

D-CRSQ
cd-SQ

cd-SQ+

 

(e) Interest points distribution 

Figure 6. CRSQ performance 
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5.4 Performance for Larger Road Networks 

In this subsection, we conduct two experiments to 

study how well the proposed D-CRSQ work for a 

larger road network. The road maps of San Francisco 

which consists of 174,956 vertices and 223,001 edges. 

Figure 7(a) and Figure 7(b) measures the CPU time 

for our CRSQ applied in the larger road networks, as 

functions of the number of interest points and query 

range. When the number of interest points is 2K, the 

numbers of network nodes expanded are 478, 573 and 

658 for D-CRSQ, cd-SQ+ and cd-SQ, respectively. 

While when the percentage of query range is 3%, the 

number of network nodes expanded are 438, 514 and 

537 for D-CRSQ, cd-SQ+ and cd-SQ, respectively. 

Compared to the experimental results in Figure 6(a) 

and Figure 6(b) (which shows the performance for a 

small road network, California Road), the CPU time 

overhead for the three approaches is increasing. The 

reason for this is the road connectivity of the larger 

road networks is more complicated so that more time is 

required for computing the road distance. 
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Figure 7. CRSQ performance for the larger road 

networks 

6 Conclusion 

In this paper, we address continuous range skyline 

queries in road networks. Due to the network distance 

computation is expensive, we utilize PINE* technique 

based on NVDs to calculate candidate skyline interest 

points. Further, we propose DSPS strategy to set the 

split points for efficient processing continuous range 

skyline queries. Experiments show that our proposed 

method to answer CRSQ queries is efficient for 

calculating and maintaining skyline in road networks. 

Possible future work includes two aspects. The first is 

to consider skyline paths [7, 8, 19] instead of skyline 

points in road networks. The idea adopting PINE* to 

deal with CRSQ queries can be modified and extended 

to deal with skyline path queries in road networks. The 

other aspect is to concern dynamic road networks and 

changing data objects. For real-world applications in 

road networks, data object attributes and road 

conditions vary inevitably with time [24, 25], 

extending our proposed method or developing novel 

techniques to satisfy the requirements to process CRSQ 

queries is an important issue in the future. 
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