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Abstract 

Since digital images are non-structure data, in order to 

apply some image processing techniques on digital 

images, we need high computing power. Nowadays, 

digital images have become an issue of Big Data, so we 

decide to implement an adaptive K-Medoids based on a 

popular Big Data analysis tool, Hadoop, in our research. 

Hadoop can provide high computing power to do 

processes of high computational complexity required by 

the algorithm of mosaic images, especially, in a Big Data 

environment where there are tons of images to be dealt. 

Our research focuses on three main goals. First, we use 

an unsupervised clustering method, K-Medoids, to cluster 

the image dataset and build a codebook, and then we can 

use the codebook to generate the mosaic image to reduce 

the processing time. Second, we use two feature selection 

metrics to develop an adaptive K-Medoids method, called 

feature-based K-Medoids (FKM), which can cluster the 

image dataset faster by the feature selection mechanism. 

Third, our method surely reduces the processing time of 

mosaic images by the codebook. Though the image 

quality by our method is slightly lower compared with 

Szul et al.’s method, our method retains an acceptable 

image quality. 

Keywords: Big data, Clustering, Digital image, Feature 

selection, K-Medoids, Mosaic image 

1 Introduction 

High-quality images can be rapidly generated by 

smartphones and cameras every minute. Image datasets 

have grown significantly. A computer perceives an 

image as non-structured, highly complex data, and thus, 

significant computer power is needed to process 

images. The distribution system called Hadoop [1] is a 

suitable solution to this issue. The users can develop 

their own distributed applications on Hadoop and 

processing big data even if they do not know the 

bottom-level details of the system. Many Hadoop 

applications are performed in the high-performed and 

high-availabilitycomputing and information systmes. 

Processing a large volume of image datasets requires 

high computer power and powerful image processing 

techniques. Image features can be as contents for 

image retrieval [2], image detection [3], image hiding 

[4], etc. Therefore, effective and accurate image 

feature extraction [5] will be useful for many practical 

applications. 

Our research focuses on the artwork of mosaic 

image.  

The first step in creating an artwork mosaic image is 

to split the source image into several small cells. Then, 

the image in the image dataset is cropped or resized to 

match the small cells of the source image. Finally, the 

algorithm finds the best matches from the image 

dataset for each cell of the source image and then 

outputs the mosaic image. 

In 2014, Szul and Bednarz proposed the use of 

Scalding to improve the productivity of mosaic images 

and the implementation [6] on Hadoop. Their 

experimental result achieved significant improvements. 

However, their proposed method is highly complex. 

Thus, we propose a method to reduce the computation 

complexity. This method preprocesses the original 

image dataset with the use of an unsupervised 

clustering algorithm called K-Medoids [7], which 

partitions data around their medoids. The 

preprocessing step takes time to cluster the image 

dataset. Thus we replace the Euclidean distance as the 

metric in the K-Medoids algorithm by two feature 

selection mechanisms, pixel difference (PD) and pixel 

coefficient of variation (PCV), to reduce the computing 

complexity. Our method further reduces the training 

cost. 

Our study has two objectives. First, the method 

proposed by Szul et al. [6] improved the efficiency of 

constructing the mosaic image. We want to improve 

the productivity further by using the codebook 

generated by the K-Medoids algorithm. Second, we 

aim to reduce the high computational complexity of K-

Medoids by using feature selection mechanisms. 
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2 Related Works 

In 2014, Szul and Bednarz proposed a method [6] 

using Scalding to improve image processing algorithm, 

which avoids the time consuming process to write 

massive amount of images during the output of the 

map phase. The method not only conserves the 

processing time but also shortens the lines of code and 

makes the source code more readable. In image 

processing, there is still scope for improvement. In this 

study, we combined the K-Medoids algorithm [7] to 

increase the efficiency. A mosaic image is created 

based on the developed feature-based K-Medoids 

(FKM for short) method with feature selection 

mechanism using a Hadoop framework in a more 

efficient way. 

2.1 MapReduce Framework 

MapReduce framework is one of important part of 

Hadoop and also is the key role that managing the 

computing power and distribute the job properly. The 

first generation MapReduce framework came with 

Hadoop version 0.20 series [1] which is inherently 

parallel to put very large-scale data analysis into 

practice as demonstrated as Figure 1. 

 

Figure 1. Workflow of Hadoop 

Step 1. The MapReduce jobs start from the client node 

to the job tracker node. The client will perform a series 

check (input and output paths exist or not, for example) 

and compute the input split. Finally, job tracker node 

returns the ID for the job to the client node. 

Step 2. The client nodes copy all the necessary 

resources to the shared file system (e.g., HDFS). The 

resources including job JAR file and input splits which 

the job tracker just computed. 

Step 3. The client jobs submit the job to job tracker 

node which means the job is ready to perform. 

Step 4. After receive the call of submit jobs, the job 

tracker creates equivalent map tasks to the numbers of 

input splits computed by client node and several reduce 

tasks. The number of reduce tasks is decided by 

mapred.reduce.tasks. 

Step 5. The job tracker will distribute the job to the 

task tracker. 

 

Step 6. The task tracker reports the task status to the 

job tracker by using heartbeat mechanism. 

2.2 Scalding Mosaic Image  

When the image dataset becomes increasingly larger 

or the resolution of the source image gets higher, the 

data will cause some problem during sharing, storing, 

analyzing, and capturing. Thus, the concept of big data 

is coming up. Hadoop is the most popular cloud 

computing technology with high scalability. 

MapReduce is a flexible framework [8-12] that can 

enhance the computing capability by scaling up the 

cluster. The MapReduce framework splits the job into 

several tasks, distributes those tasks to the work nodes 

of the cluster in the Map phase, collects the results of 

the tasks from the work nodes, and combines them in 

the Reduce phase. 

It requires two MapReduce jobs to process mosaic 

image using Hadoop API. First, MapReduce job 

divides the source image into several non-overlap 

blocks with same size. Second, MapReduce is 

responsible for calculating the similarity between the 

blocks of the source image and all the images in the 

image dataset. In the map phase, it will generate a heat 

map after calculating the similarity between each 

image belongs to the image dataset and all blocks of 

the source image. The heat map shows the similarities 

and also indicates the best matches corresponding to 

the blocks. For example, let us assume there is a 

W H×  source image, then divide it into several cell 

images, each size is q q× . There are 
q q

W H×  cell 

images, for which the similarity with every image in 

the image dataset needs to be calculated. If there are 

q q
W H×  images with sizes q q×  in the image dataset, 

we will get 
q q

W H×   heat maps after processing the 

calculations. Each heat map shows the best match 

image in the image dataset for the cell image. Next, we 

can construct the mosaic image by 
q q

W H×  heat maps. 

However, the method we just described is not a very 

efficient one. Because of the processing of MapReduce 

framework, it needs to copy all blocks of source image 

and image to the local disk drive. It consumes much 

time to read and write on the local hard disk. To 

improve the productivity, Szul and Bednarz proposed a 

method using Scalding in 2014. By sending the flags of 

images instead of the images, the new method 

conserves a lot of time. The method not only improves 

the efficiency but also adds some constraints to filter 

the specific images. There are some benefits if the 

MapReduce job is developed by Scalding, such as 

conserving the executing time, adding constraints, 

readable, and streamlined source code. The algorithm 

proposed by Szul and Bednarz has two steps, 

BestMatchesSelection Step and Join Step as shown in 

Figure 2. In the BestMatchesSelection step, the 

grayscale images are first filtered out and then the 
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distance between the images in the image dataset and 

the blocks of the source image is calculated. After the 

calculation, the closest id of image in the image dataset 

of each block is output to the Join Step. In the Join 

Step, the images are searched according to their ids, 

which are just received in the image dataset, and the 

most similar image is outputted to the corresponding 

blocks. 

 
 

Figure 2. Method proposed by Szul et al. [6] 

2.3 K-Medoids 

K-Medoids is one kind of clustering algorithm. In 

each cluster, the algorithm will swap the non-medoid 

elements as medoid and calculate the summation of 

distance to each non-medoid element in the cluster to 

find which non-medoid element has the smallest 

summation of distance. Then re-distribute the all the 

elements to the cluster and perform the medoidshift 

algorithm again. Until the medoids are not changing 

which means the clusters are stable. The detail 

description of K-Medoids algorithm is shown as 

follows [7]: 

Step 1. Initializing: Decide how many clusters the 

algorithm will generate. 

Step 2. Clustering: Calculate the Euclidean distance of 

each data and medoid, and distribute the data to the 

closest cluster. And calculate the Total Cost by 

calculate the summation of distance each non-medoid 

element to the corresponding medoid of cluster. 

 

1

n

i

i

Total Cost C

=

=∑  (1) 

 

| |

i

i

i i i

O Non Medoids set

M Corresponding Medoids set

C O M

∈⎧
⎪

∈⎨
⎪ = −⎩

 (2) 

Step 3. Adjusting: Swap every medoid by non-medoid 

elements, and calculate its total cost for current 

configuration which refers to Step 2. Compare the total 

costs of current configuration and previous 

configuration to find out which better configuration 

which has smaller total cost. 

Step 4. Inspecting: Keep repeating Steps 2 and 3 until 

the clustering configuration does not change anymore. 

3 Proposed Method 

This paper first presents an overview of the 

framework in the Figure 3, and then describes in detail 

how the FKM method and mosaic image processing 

are combined. The original K-Medoids algorithm has a 

high computational complexity because of two reasons: 

it uses Euclidean distance to judge which element in 

the dataset should be distributed to which cluster, and 

an image is an unstructured high-dimensional data. 

Two metrics for an image, namely, PD and PCV, 

which can measure the similarity of images, are used to 

replace the Euclidean distance and reduce the 

computational complexity. Second, we elaborate these 

two metrics. This paper also provides the pseudocode 

of feature-based K-Medoids and mosaic image 

algorithm.  

 

Figure 3. Framework of proposed method 

3.1 Framework of Proposed Method 

We propose a KFM method exploiting feature 

selection metrics on a Hadoop framework. Two 

MapReduce jobs exist in our proposed method, namely, 

FKM MapReduce and Mosaic MapReduce, which are 

performed sequentially. K-Medoids MapReduce is 

performed first to build the codebook, which can 

reduce the time consumed by Mosaic MapReduce job. 

Our proposed method focuses on the improvement of 

K-Medoids MapReduce in terms of reducing training 

cost and improving the codebook that can evaluate the 

image quality of the mosaic image. 

In the proposed FKM algorithm, two different 

feature selection mechanisms are designed 
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with/without threshold parameter respectively. The 

first mechanism is named as Pixel Difference (PD). 

First step, PD will partition a given image into blocks. 

Next, PD calculates the pixel differences within the 

block and applies a predefined threshold to determine 

if the pixel differences can be a feature block. Only a 

feature block can be stored into a feature set. Each 

image associates with a feature set 
PD

FS . Afterwards, 

every two feature sets can be manipulated by an 

intersect operation to obtain a result set and the number 

of elements in the result set will be kept into a 

similarity matrix. A similarity matrix, SM, is an N by N 

matrix containing all the pairwise similarities between 

the objects being considered. PD approach is simple; 

however, it needs a proper threshold. So we derive 

another mechanism called pixel coefficient of variation, 

PCV for short. PCV is more generally than pixel 

difference for any case. PCV approach will calculate 

the coefficient of variation for each block. So each 

block has one coefficient of variation. In this approach, 

we will store the average pixel value of the block and 

the coefficient of variation in the feature set. Each 

image also corresponding to a feature set 
PCV

FS . 

Besides, PCV approach uses a range table RT =  

{ [ , ] | 1, 2, ..., }
r r r

R l u r n= =  to measure the similarity of 

two images by judging the coefficients of variation of 

two different sets of image blocks are in the same 

interval or not. The similarity is defined as the number 

of blocks from two images falling in the same interval. 

Please refer to the K-Medoids MapReduce part in 

the Figure 3. K-Medoids MapReduce consists of three 

steps, as shown in the Figure 3. In the first step, Step a, 

the similarity matrix of each image in the image dataset 

to the other images in the image dataset is generated. 

Step b, MapReduce uses the distance table to perform 

the K-Medoids algorithm. Third, after the K-Medoids 

algorithm is completed, MapReduce builds the 

codebook to the Hadoop Distributed File System 

(HDFS) in Step c. 

3.2 Feature-based K-Medoids (FKM) Process 

The diagram shows the process of K-Medoids as 

shown in Figure 4. Initially, the original dataset is 

clustered. The proposed method preprocesses the 

original image dataset to downsize the original dataset 

to the codebook. Then, the codebook is used to 

compose the mosaic image; this approach is faster than 

Szul et al.’s method. To avoid recomputing the same 

distance repeatedly, the proposed method computes the 

similarity between each image and the others in the 

original dataset, and then it fills the similarity in the 

similarity matrix according to its corresponding index. 

The index is given when the entire dataset has been 

read during the initial process of the feature-based K-

Medoids (FKM) process and then stored in the 

HashMap in the form of a key-value pair, and when the 

distances on the diagonal are zeros, which indicates the 

distance from the image to itself. After the distance 

table is generated, K-Medoids begins to cluster the 

image dataset by using the distance table. Finally, at 

the end of the process, a codebook is built. Next, we 

are going to introduce the FKM algorithm. For the sake 

of convenience, all the notations are listed in the Table 

1. 

 

Figure 4. Process of FKM MapReduce 

Table 1. Notations for FKM algorithm 

Notations Description 

I Image 

SM Similarity Matrix 

M Medoids 

O Non-Medoids 

DT Similarity matrix 

CB Built codebook 

_ os
prev

TOTAL nC t Total number of Cost of previous 

configuration 

_ os
cur

TOTAL nC t  Total number of Cost of current 

configuration 

 

3.2.1 Procedure Feature-based K-Medoids 

Algorithm 

Input: similarity matrix SM 

Initial: K medoids M where M∈{1, 2, …, K}, and the 

set of non-medoids O= .

FS
DB M−  Set _

prev
TOTAL nCost  

and _

prev
TOTAL nCost  as zeros. 

Step 1: Calculate the Euclidean distance between each 

image in 
FS

DB  to the others in 
FS

DB  and fill the result 

in the similarity matrix DT by the corresponding 

indices. 

Step 2: Distribute all the non-medoid images to the 

closest cluster by looking up the similarity matrix DT 

and calculate the summation of distance for each 

cluster. Let the summation denote as _

prev
TOTAL nCost . 

Step 3: Swap each m in M with each non-medoids 
i
o  in 

O and calculate the _

prev
TOTAL nCost . 
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Step 4: If _

cur
TOTAL nCost − _ 0

prev
TOTAL nCost >  

then configure the medoids. 

Step 5: Repeat the Step 2 and Step 4 until all the 

_

cur
TOTAL nCost  of each permutation combination of 

medoids and non-medoids. 

Step 6: Let codebook denote as CB. Set all the medoids 

to the CB then return CB. 

 

The following K-Medoids MapReduce procedure 

contains tree classes to expound how the MapReduce 

job of K-Medoids works. 

3.2.2 Procedure Feature-based K-Medoids 

MapReduce 

‧The Driver Phase: 

1. Initialize similarity matrix SM. 

2. Initialize HashMap Medoids for medoids. 

3. Load the input image dataset DS. 

4. Store each image in the DS into HashMaps HM. 

(Key: Index of image, Value: pixels of image) 

5.  

6. Perform feature selection mechanism by PD or 

PCV for each image I in the HM. 

7. Replace the value of each key-value pair by the 

feature. (Key: Index of image, Value: features 

of image) 

8. Input HM to the Map Phase to calculate the 

image to the others. 

9. Collect the sequence file of result from the 

Reduce Phase and fill all similarities in the 

similarity matrix SM  by the corresponding 

index. 

10. Start K-Medoids algorithm to find the medoids 

for each cluster and store in the Medoids . 

11. Return the Medoids  as codebook CB to the 

Hadoop Distributed File System. 

12. End procedure 

 

‧The Map Phase: 

13. Initialize HashMap HMinput for input data. 

14. Load the input image dataset DS. 

15. Initialize HashMap HMDS for image dataset. 

16. for each HMDS  

17. for each HMInput  

18. Calculate the similarity for the element in 

HMDS and HMinput . 

19. Emit the result to the Reduce Phase. 

20. end for 

21. end for 

 

 

 

 

 

 

 

‧The Reduce Phase: 

1. Initialize the HashMap HM for the results 

collecting from the Map Phase. 

2. Extract the result and write in the sequence file 

of result. 

3. Output the sequence file to the Hadoop 

Distributed File System. 

 

In order to reduce the computing complexity of K-

Medoids MapReduce job, we proposed two metrics, 

pixel difference (PD) and pixel coefficient of variation 

(PCV), to evaluate the similarity of two images with 

the image feature selection. The result of evaluation 

can be filled into the similarity matrix and instead of 

the Euclidean distance. The following two feature 

selection mechanisms are proposed using pixel 

difference (PD) and pixel coefficient of variation (PCV) 

metrics. 

Pixel difference (PD) feature-based mechanism. 

This PD function performs in a block-wise manner. 

First, PD divides an image into a series of non-

overlapping block with 1×3 pixels in a block. Then PD 

calculates two difference values 
1i

d  and 
2i

d  for each 

block i according to Formula 3. 

 
1 2 1

2 2 3

| |

| |

i i i

i i i

d p p

d p p

= −⎧
⎨

= −⎩
 (3) 

The differences are checked if they are both greater 

than a predetermined threshold value TH. If the 

condition was hold, PD stores the block index i into the 

image feature set FS. Repeat to deal with all blocks of 

a given image and the process of Image Feature 

Selection Mechanism based on PD metric is depicted 

in Figure 5. 

The primary purpose of PD mechanism is to 

compute an effective similarity measure between any 

input pair of images, say 
i
I  and 

j
I . Let image feature 

sets ( )
i

FS I  and ( )
j

FS I  correspond to the image pair 

i
I  and 

j
I , respectively. According to and ( )

j
FS I , we 

calculate the similarity matrix SM. Each matrix 

element can be expressed as SM(
i
I ,

j
I ) which can be 

calculated from the number of an intersection of two 

feature sets ( )
i

FS I  and ( )
j

FS I . With the similarity 

matrix SM we can apply the feature-based K-Medoids 

algorithm to train a good codebook for clustering 

images to reach a higher performance in big data 

photomosaic computation on Hadoop-based 

Framework. 

The process of Image Feature Selection Mechanism 

based on PD metric is clearly depicted in Figure 5. 
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Figure 5. PD feature selection process 

 

Figure 6. PD feature selection 

Refer to Figure 6, The first scanned block in image 

1
I  contains three pixels 

1
p , 

2
p  and 

3
p , respectively. 

Example 3.1: 

Please refer to Figure 6 and Figure 7. A simple 

example is illustrated for this Pixel difference (PD) 

feature selection mechanism. Each image contains 3 

blocks. In this case, we set the threshold to 70. Each 

block differences are calculated as follows, where 

 

Figure 7. PD example 

11 12 11 12
( , ) (95, 96), ( , ) (155,120),d d d d= =   

and 
11 12

( , ) (227, 84).d d =  

Since every pair of block differences are larger than 

TH=70, the indices of blocks 
1 2
, ,B B  and 

3
B  are put 

into the image feature set 
1

( )FS I  of image 
1
I , i.e., 

1
( ) {1, 2, 3}.FS I = Similarly, 

2
( ) {1, 2}.FS I =  We 

perform a set intersection on two feature sets and get a 

similarity value which is 2 because the number of 

1 2
( ) ( ) {1, 2}FS I FS I∩ =  is two. 

Pixel coefficient of variation (PCV) feature-based 

mechanism. The following we proposed another 

feature selection metric called pixel coefficient of 

variation, also called PCV for short. PCV is proposed 

for parameter-less purpose. Generally, it is hard to 

predetermine a proper threshold. Unlike PD 

mechanism, the advantage of PCV does not need to set 

a threshold for the image. First, PCV calculates the 

average and the coefficient of variation for every block 

of a given image. Coefficient of variation (CV) is a 

statistical measure of the dispersion of data points in a 

data series around the mean. It is a measure of relative 

variability and is the ratio of the standard deviation to 

the mean (average). 

For each block k with three pixels of a grayscale 

image 
i
I . Let

ik
p  and 

ik
θ  denote for the average of 

pixels and the coefficient of variation of block k. 

ik
p and 

ik
θ  will be stored in a feature set ( )

i
FS I  

corresponding to image 
i
I . ( )

i
FS I  is an ordered set, 

and is defined as follows. ( ) [( , ) |1 ],
i ik ik

W H
FS I p k

m
θ

×
= ≤ ≤  

W and H stand for image width and height, and m 

denotes the number pixels in each block. 

According to the research, human visual system is 

hard to tell the pixel differences which is smaller than 

8. That means if the difference ,ijk ik ikd p p= −  1≤k ≤ m, 

is not greater than 8, the difference was hard to tell by 

human visual system. 

Besides, PCV approach predetermined a range table 

{ [ , ] | , , 1, 2, ..., },
r r r r r

RT R l u l u r n= = < =  where 
r r r

w u l= −  

and 
r

w  is defined as follows. 
1

r

m

w

n

−

= , here m 

denotes the number pixels in each block. In our 

example, there are three pixels in each block, thus 

3m = . So, the value of coefficient is within the range 

of [0, 1.414]. We choose n=10 and have 0.14
r

w =  in 

the experiments. The first condition is checking the 

average of three pixels, and the second condition needs 

satisfy the coefficient of variation 
ik

θ  and jkθ  fall 

within the same 
r

R , i.e., | | .r jk jkw θ θ≤ −  

Thus, the similarity of the two images is measured 

by whether the coefficient of variation of two different 

blocks falls within the same interval. The similarity is 

determined from the total number of blocks in which 

both images fall in the same interval. That means the 

similarity is the total number of blocks from two 

images which are falling in the same interval. The 

similarity value between images 
1
I  and 

j
I  is set as one, 
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i.e., ( , ) 1SM i j =  otherwise, ( , ) 0.SM i j =  Repeat to 

deal with all the blocks and the process of Image 

Feature Selection Mechanism based on PCV metric is 

depicted in Figure 8 and Figure 9. 

 

Figure 8. PVC feature selection process 

 

Figure 9. PVC feature selection 

Example 3.2: 

Two given grayscale images 
1
I  and 

2
I  are shown in 

Figure 10. According to the PCV feature selection 

mechanism, two feature sets 
1

( )FS I  and 
2

( )FS I  are as 

follows. 

 

Figure 10. PCV example 

1
( ) [(158, 0.3), (68,1.1), (122, 0.9),FS I =  and 

2
( ) [(151, 0.3), (88, 0.7), (78, 0.7)].FS I =  

Afterward, the differences of average pixels 

12 1 2k k k
d p p= −  are calculated. Only the difference 158-

151=7 less than 8, so the mechanism of PCV further 

examines if both coefficients of variation falling within 

the same interval. Since 
1 1 2 1

( ) ( ) 0.3,FS I FS Iθ θ⋅ = ⋅ =  

the first blocks corresponding two images have high 

similarity. Repeat to examine the remainder two 

feature elements in 
1

( )FS I  and 
2
I , and we have the 

similarity value SM(1, 2) =1 corresponding to two 

images. 

3.3 Mosaic MapReduce Job 

In the process of mosaic image, Figure 11, it will 

divide the source image into several small pieces of 

cells and the sizes of all the cells are the same. Then 

the mosaic comparison MapReduce job will 

respectively find the best match image in the codebook 

for each cell. At the end of comparison MapReduce job, 

it will output the index of the best match cell for each 

cell of source image to compose the mosaic image. The 

following procedure will elaborate the Mosaic 

MapReduce job in detail. 
 

 

Figure 11. Process of mosaic image 

3.3.1 Procedure Moasic MapReduce 

‧The Driver Phase: 

1. Initialize codebook CB. 

2. Load source image SI. 

3. Split SI into several cell images and store each 

cell image into HashMap CI. 

4. Start Map Phase and use CI as input. 

5. Receive the distance between each codeword in 

the codebook and the CI. 

6. Start Reduce Phase. 

7. Receive the mosaic image and output to the 

Hadoop Distributed File System. 
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‧The Map Phase: 

1. Load codebook CB. 

2. for each HMinput 

3. Calculate the distance between each codeword 

in the CB for each element in HMinput. 

4. Emit the result of distance. 

5. end for 

 

‧The Reduce Phase: 

1. Load codebook CB. 

2. Find the best match codeword for each cell 

image by the id of cell image. 

3. Compose the mosaic image by the codebook CB.

4. Emit the mosaic image to the Hadoop 

Distributed File System. 

4 Experimental Results and Discussions 

In this chapter, we first compare the training cost of 

feature-based K-Medoids with different sizes of dataset. 

In our experiment, we prepare four different sizes of 

image datasets collected from Flickr. The size of each 

color image in our datasets is 75 75× . In the second 

part of our experiment, the image quality of the mosaic 

image made up of six different source images is 

presented. Three of the source images were obtained 

from the research of Szul et al., and the others were 

selected from Flickr which is an image- and video-

hosting website and web services suite. The other three 

source images were selected to test the method under 

different conditions. Few articles have been written 

about this matter. Thus, we compare the training time 

and mosaic image quality with the results obtained by 

Szul et al. and with the two methods that use PD and 

PCV. 

The environment of our experiment is based on 

VMware, and virtual machine is available on 

Cloudera’s official website. The version of our virtual 

machine is CDH 5.5.0, and the version of Hadoop is 

2.6.0. The hardware specifications of our virtual 

machine are shown as Table 2. 

Table 2. Hardware specification 

Component Specification 

Memory 8GB 

Processors 4 

Hard Disk WD Black label 1TB 

 

The first section of this chapter reveals the 

consumed training time and the time consumed to 

construct the mosaic image. The main contribution of 

this research is the reduction of the time consumed 

when constructing a mosaic image. The second section 

compares the image quality. The method proposed by 

Szul et al. composes the best-quality mosaic image by 

using an exhaustive search of the image dataset. Our 

research aims to reduce the time of constructing the 

mosaic image and to retain the good quality of the 

mosaic image. 

4.1 Time Comparison 

Three datasets, with different quantity of images, are 

“Tiny,” “Small,” and “Medium.” The quantity of 

images of each dataset and the size are clearly note in 

the Table 3. 

Table 3. Dataset information 

Dataset Information  

Tiny Small Medium 

Image quantity  5679 27921 111645 

Dataset size  11MB 319MB 1.3GB 

 

The Figure 12 shows the training cost (Time) of 

different codebook sizes with different image datasets. 

In this experiment, we use Euclidean Distance as a 

metric to measure the image similarity. Each line with 

different color stands for different training time to 

generate a codebook corresponding to different image 

dataset. Blue line represents “Tiny” image dataset. 

Orange line stands for “Small” image dataset. Gray 

line indicates the experiment result of “Medium” 

dataset. In the Figure 12, we can found that codebook 

training time with “Medium” image dataset takes most 

time. In contrast, training codebook with “Tiny” 

dataset is the fastest. We can also find that all the 

curves for the training time of codeword sized from 64 

to 1024 are not dramatically increases. For 

convenience, we will denote the codebooks with size 

of 1024, 512, 256 and 64 as codebook_1024, 

codebook_512, codebook_256 and codebook_64, 

respectively in the following discussion. 

 

Figure 12. Training cost 

Figure 13 shows the correlation between the training 

time and three metrics, which are Euclidean, PD, and 

PCV. We would like to observe which metric will 

reduce the most time of training cost. We pick the 

“Small” dataset as an experiment test set to see which 

method has the best improvement of training cost. 

Different color of lines in the Figure 13 stands for 
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different feature selection metrics, Euclidean Distance, 

PD and PVC, we used in the experiment. The blue line 

shows the performance of PD and result shows it has 

the best performance with smallest training time. The 

orange line and gray line demonstrate the result of 

PCV and Euclidean distance respectively. 

 

Figure 13. Feature selection metrics comparison of 

training cost 

Figure 14 displays the time of consuming time of a 

mosaic image creation in different methods. Despite 

the image dataset will become bigger day by day, our 

method will cluster the image dataset into several 

groups. Thus the even the dataset gets bigger; however, 

our consuming time in creating a mosaic image does 

not change. Although the method proposed by the Szul 

et al. [6] can construct the best, but along with the 

image dataset getting bigger and bigger, the computing 

complexity becomes a serious problem.  

 

Figure 14. Szul et al.’s method 

Figure 15 is the experiment result of constructing a 

mosaic image by using the proposed method in 

different codebook sizes. The consumed time in 

constructing a mosaic image increases with the size of 

the codebook. The most important advantage of the 

proposed method is that most of the time is transferred 

to the preprocessing step of the K-Medoids algorithm. 

Preprocessing can take place whenever the user does 

not require computing power or whenever the server 

does not need to deal with a heavy load from many 

users. Therefore, constructing a mosaic image does not 

require a considerable amount of time. Comparing the 

result to that of Szul et al.’s method [6] with small 

dataset, it takes 46 seconds to create a mosaic image by 

using the 1024-sized codebook. 

 

Figure 15. Performance of mosaic MapReduce in 

proposed method 

It is easy to find out by the charts of the consuming 

time proposed by Szul et al.’s method and our 

proposed method in Figure 14 and Figure 15 

respectively, In the Szul et al. method, it takes 

approximately 1112/27921 = 0.04 seconds to check 

whether each image in the dataset is similar to each 

cell image of the source image; However, our method 

takes only 46/27921=0.0016 second. Obviously, the 

time for constructing a mosaic image of our method is 

almost one twenty-fourth of Szul et al.’s result. It 

means our proposed method has a great progress in 

computing time on big data mosaic images. 

This paper is inspired from the literatures with 

parallel K-Medoids algorithms and designs a feature-

based K-Medoids (FKM) algorithm and integrates the 

algorithm into a framework for creating photo mosaics 

on Hadoop-based computing infrastructure.  

Unlike the exhaustive search to find the best match 

for photographic mosaics, the feature-based K-

Medoids (FKM) algorithm works well in reducing the 

time of constructing mosaic images and retains good 

quality of mosaic images. 

4.2 Image Quality of Mosaic Image 

Our experiment picks 6 images from Flickr website 

as source images and it is shown as follow. Firstly, 3 

source images, Figure 16(a), Figure 20(b) and Figure 

23(c), which are chosen as source images by Szul et al. 

and we also have these three images as test images in 

our experiment. In addition, we also choose another 

three images which are Figures 27(a), Figure 31(a) and 

Figure 35(a) in our experiment. These images all have 

significant image characteristics; for example, complex 

details, pixel distribution, brightness. Next we are 

going to observe the mosaic photos and give brief 

analysis for each image. 

According to Figure 16(b), Green pixels are spread 

widely. Blue pixels are belongs to the dark tone. The 

amount of red pixels is not greater than blue pixels and 

green pixels. The next three butterfly mosaic images. 
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Figure 17 is generated by the Szul et al.’s method with 

different size of dataset. From left to right, there are 

Tiny, Small and Medium. In Figure 18, mosaic images 

are generated by the proposed method using Euclidean 

distance with different size of codebook. From left to 

right, there are Tiny, Small and Medium. Figures 19(a) 

and Figure 19(b) are the butterfly mosaic images 

generated by proposed method using PD and PCV 

mechanisms, respectively with Codebook_512 and the 

codebook is trained by the small-sized dataset. 

 

(a) Source image - butterfly (b) Histogram of butterfly

Figure 16. Source image - butterfly 

  

(a) Tiny - butterfly  (b) Small - butterfly 

 

(c) Medium - butterfly 

Figure 17. Mosaic images created by Szul et al.’s 

method with different size of dataset 

 

(a) codebook_256 -butterfly (b) codebook_512 - butterfly 

 

(c) codebook_1024 - butterfly 

Figure 18. Mosaic images created by original K-

Medoids with different codebook size 

  

(a) PD - butterfly (b) PCV - butterfly 

Figure 19. Mosaic images created by feature-based K-

Medoids with two feature selection mechanisms 

The next source image is dove, Figure 20. The blue 

pixels of the dove image are located in the dark tone 

which is similar to the image of butterfly. But the 

biggest difference between dove and butterfly is that 

the peaks of green pixels and red pixels are located in 

the midtones. Figure 21 demonstrates the mosaic 

image created by Szul et al.’s method with different 

size of dataset. In Figure 22, there are three mosaic 

image created by different codebook size which is 

training by original K-Medoids algorithm. In Figure 23 

are two Mosaic images created by feature-based K-

Medoids with two feature selection mechanisms. 

  

(a) Source image - dove (b) Histogram of dove 

Figure 20. Source image - dove 

  

(a) Tiny - dove (b) Small - dove 

 

(c) Medium - dove 

Figure 21. Mosaic image created by Szul et al.’s 

method with different size of dataset 
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(a) codebook_256 - dove (b) codebook_512 - dove 

 

(c) codebook_1024 - dove 

Figure 22. Mosaic image created by original K-

Medoids with different codebook size 

 

(a) PD - dove (b) PCV - dove 

Figure 23. Mosaic images created by feature-based K-

Medoids with two feature selection mechanisms 

Figure 24 is face image which is the smoothest 

image of 6 source images. This image is pretty easy to 

judge the quality of codebook. The blue, green and red 

pixels are located in the highlight tone. The red pixels 

are the brightest pixels to the others. Figure 25 and 

Figure 26 show that the image qualities of mosaic 

images composed by smaller dataset and smaller 

codebook worse than the bigger one. Figure 27 are 

mosaic images created by feature-based K-Medoids 

with two feature selection mechanisms. 

 

(a) Source image - face (b) PCV - dove 

Figure 24. Source image - face 

  

(a) Tiny - face (b) Small - face 

 

(c) Medium - face 

Figure 25. Mosaic images created by Szul et al.’s 

method with different size of dataset 

  

(a) codebook_256 - face (b) codebook_512 - face 

 

(c) codebook_1024 - face 

Figure 26. Mosaic images created by original K-

Medoids with different codebook size 

(a) PD - face (b) PCV - face 

Figure 27. Mosaic images created by feature-based K-

Medoids with two feature selection mechanisms 
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In the Figure 28(b), we found that the most of blue, 

green and red pixels are located in the zone of shadows. 

This source image is used to test the codebook whether 

can deal with dim image or not. There are also some 

complex details on the body of the cat. In Figure 29 

and Figure 30, the cat image has really high 

complexity and each mosaic image show clear 

silhouette of cat. Bigger dataset or codebook size can 

deal with the detail of the cat’s fur well. Figure 31 are 

Mosaic images created by feature-based K-Medoids 

with two feature selection mechanisms. 

 

(a) Source image - cat (b) Histogram of cat 

Figure 28. Source image – cat 

 

(a) Tiny - cat (b) Small - cat 

 

(c) Medium - cat 

Figure 29. Mosaic images created by Szul et al.’s 

method with different size of dataset 

 

(a) codebook_256 - cat (b) codebook_512 - cat 

 

(c) codebook_1024 - cat 

Figure 30. Mosaic images created by original K-

Medoids with different codebook size 

  

(a) PD - cat (b) PCV - cat 

Figure 31. Mosaic images created by feature-based K-

Medoids with two feature selection mechanisms 

In the Figure 32(b), the pixels of each color, red, 

green and blue are averagely spreading. Each aspect is 

balance. The part of grass reveals abundant 

complicated details. Otherwise, the part of sky is really 

smooth. In Figure 33, Figure 34 and Figure 35. None 

of the method could handle the detail of grass well. 

  

(a) Source image - grass (b) Histogram of grass 

Figure 32. Source image – grass 

  

(a) Tiny - grass (b) Small - grass 

 

(c) Medium - grass 

Figure 33. Mosaic images created by Szul et al.’s 

method with different size of dataset 
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(a) codebook_256 - grass (b) codebook_512 - grass

 

(c) codebook_1024 - grass 

Figure 34. Mosaic images created by feature-based K-

Medoids with two feature selection mechanisms 

  

(a) PD - grass (b) codebook_512 - grass

Figure 35. Mosaic images created by feature-based K-

Medoids with two feature selection mechanisms 

Here’s where it gets interesting that in our brain 

along the three channels, Red, Green and Blue, seeing 

blue is what you experience when low-wavelength 

light excites the blue cones more than the green and 

red. In our algorithm, blue pixels are ignored due to the 

lower sensitivity of the human eye to the blue light 

[14], therefore making great reduction in the 

computing complexity. Apparently, when we choose 

Figure 36(a) as a source image which is a lake 

comprising more blue pixels as shown in Figure 36(b), 

the mosaic images created by feature-based K-Medoids 

with two feature selection mechanisms as seen in 

Figure 38 and Figure 39 are quite similar to that of 

Figure 37 created by Szul et al.’s method. 

  

(a) Source image - lake (b) Histogram of lake 

Figure 36. Source image lake 

  

(a) Tiny - lake (b) Small - lake 

 

(c) Medium - lake 

Figure 37. Lake mosaic images created by Szul et al.’s 

method with different size of dataset 

  

(a) codebook_256 - lake (b) codebook_512 - lake 

 

(c) codebook_1024 - lake 

Figure 38. Lake mosaic images created by original K-

Medoids with different codebook size 

  

(a) PD - lake  (b) PCV - lake 

Figure 39. Mosaic images created by feature-based K-

Medoids with two feature selection mechanisms 

The first experiment compares the mosaic image 

quality between Szul et al.’s method and the proposed 

method. It also aims to prove that the proposed method 

considerably reduced the time consumed in 
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constructing the mosaic image but is still able to retain 

a good mosaic image quality. This experiment uses the 

medium-sized image dataset for both K-Medoids and 

Szul et al.’s method. In this experiment, we aim to 

determine whether K-Medoids with Euclidean distance 

could preserve the image quality. 

We use structural similarity, SSIM [13], to evaluate 

the quality of our proposed mosaic image. SSIM is a 

perception-based model to simulate human visual 

system to assess the similarity between two images. 

The SSIM value is calculated by the following 

Equation 4: 

 ( , ) [1( , )] [ ( , )] [ ( , )]SSIM x y x y c x y s x y
α β γ

=  (4) 
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1 2
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According to Figure 40, the mosaic image 

application has a great performance on smooth image. 

The following experiment is going to find out the best 

trade-off the training cost and quality of mosaic image. 

Larger size of codebook gives you better quality of 

mosaic image, but it cost more time to perform the K-

Medoids algorithm. In Figure 40, the lines in yellow 

colors stand for the SSIM of Szul et al.’s method. 

Figure 40 also has the lines in gray color, orange color, 

and blue color stand for the proposed methods with 

codebook_1024, codebook_512, and codebook_256, 

respectively. Comparing the result of mosaic image 

quality (SSIM) of codebook_1024 to codebook_512, 

the largest difference in SSIM isn’t greater than 0.09. It 

is obvious that the mosaic image quality generated by 

512-sized codebook is pretty closed to 1024-sized 

codebook and it also has ideal training cost. 

 

Figure 40. Quality of mosaic image 

In the next experiment, Figure 41 shows the quality 

comparison between two new metrics, PD and PCV, 

adopt in K-Medoids. In our research, these two metrics 

are used to reduce the computing complexity of K-

Medoids algorithm. In the comparison of consuming 

time between using different metrics, Euclidean 

distance, PD and PCV, respectively, we could find that 

PD and PCV absolutely conserve the training time. 

Let’s compare the tradeoff between image quality and 

the codebook training cost. In Figure 41, we 

demonstrate the mosaic image quality by the proposed 

PCV feature selection mechanism since PCV feature 

selection mechanism has the best mosaic image quality 

in four source images, “dove,” “face”, “grass,” and 

“lake.” Their SSIM values are higher. 

 

Figure 41. Quality comparison among various feature 

selection by Euclidean, PD and PCV 

First refer to Figure 42, mosaic image quality and 

the codebook training cost is shown in the figure with 

line charts. The SSIM values of image “face” with the 

256-sized codebook and 512-sized codebook are 

0.5437 and 0.6843, respectively. The different of 

mosaic image quality of two different codebooks is 

0.1406 in SSIM. We can use extra 62 minutes to train a 

512-sized codebook for a better mosaic image quality. 

Let’s compare the performance of 512-sized codebook 

and 1024-sized codebook. The training cost increases 

118 minutes but the image quality only increases 

0.0928. 

 

Figure 42. Trade-off between training cost and image 

quality for “face” 
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Figure 43 shows the charts of mosaic image quality 

with different databases. In this figure, we can see a 

bigger dataset like the medium dataset in our 

experiment does not imply it exactly deserve better 

mosaic image quality. According to Figure 43, the 

mosaic image quality of small dataset is better than that 

of the medium dataset. Both the mosaic images of tiny 

dataset and medium dataset could be seen the 

silhouette easily. 

 

Figure 43. Quality comparison using different 

codebooks trained by different dataset sizes 

 

In Figure 44, the charts demonstrate the mosaic 

image quality comparison of different thresholds of PD 

feature selection mechanism. The cases of smooth 

source images, face and lake, have better mosaic image 

quality with the codebook using smaller threshold. The 

source images with more details fit well with high 

threshold. If the threshold greater than 180, some 

clustering algorithm will end up with some errors on 

the configuration of clustering algorithm. 

 

Figure 44. Quality comparison of PD threshold 

5 Conclusion and Future Work 

A photographic mosaics computing method upon a 

hadoop framework is proposed in this work. The 

mosaic technique has seldom been discovered in a 

hadoop environment except for the research of Szul et 

al. Based on the hadoop framework. The experimental 

results show that the method using the feature-based 

K-Medoids (FKM) and the mosaic image algorithms 

performs well in terms of image quality or processing 

performance. FKM requires considerable time to 

cluster an image dataset. Mosaic MapReduce can 

improve efficiency, thereby enhancing the user 

experience. 

A smooth source image is needed to ensure a 

recognizable mosaic image. Also a smooth source 

image could be used to judge the quality of a codebook. 

A source image with high complexity does not provide 

a great effect on the mosaic image. The main 

contribution of this research is its use of the FKM 

algorithm to cluster an image dataset into several 

groups to reduce the time for constructing the mosaic 

image. Moreover, an acceptable mosaic image quality 

is achieved. Another key contribution is the use of PD 

and PCV, as well as the distance table, to reduce the 

training cost of the FKM algorithm. The mosaic image 

quality differed minimally, but both metrics reduce the 

computational complexity considerably. The 

experiment on the tradeoff between training cost and 

mosaic image quality indicates that the codebook with 

a size of 512 achieves the best balance of these two 

aspects. 

This study has several future research directions. 

First, the FKM algorithm is implemented by Java and 

performed on a single PC. A significant improvement 

can be achieved if Mahout is used for implementation 

because it can fully upgrade the proposed framework 

in the Hadoop environment. Moreover, this approach 

can deal with more images and compose a larger 

mosaic image. Second, the proposed method aims to 

reduce the training cost and preserve and achieve an 

acceptable mosaic image quality. The use of different 

image processing technologies may eliminate the 

tradeoff between the training cost and the mosaic 

image quality. Third, the two metrics, PD and PCV, are 

still not simple enough to be implemented on different 

domains; this subject is another future research 

direction.  
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