
A High-performance Computing Method for Photographic Mosaics upon the Hadoop Framework 1343

A High-performance Computing Method for Photographic

Mosaics upon the Hadoop Framework

Chin-Feng Lee1, Jau-Ji Shen2*, Kun-Liang Hou2, Fang-Wei Hsu2

1 Department of Information Management, Chaoyang University of Technology, Taiwan
2 Department of Management Information Systems, National Chung Hsing University, Taiwan

lcf@cyut.edu.tw, jjshen@nchu.edu.tw, kunliang.hou@gmail.com, davidhsu1115@gmail.com*

*Corresponding Author: Jau-Ji Shen; E-mail: jjshen@nchu.edu.tw

DOI: 10.3966/160792642019092005003

Abstract

Since digital images are non-structure data, in order to

apply some image processing techniques on digital

images, we need high computing power. Nowadays,

digital images have become an issue of Big Data, so we

decide to implement an adaptive K-Medoids based on a

popular Big Data analysis tool, Hadoop, in our research.

Hadoop can provide high computing power to do

processes of high computational complexity required by

the algorithm of mosaic images, especially, in a Big Data

environment where there are tons of images to be dealt.

Our research focuses on three main goals. First, we use

an unsupervised clustering method, K-Medoids, to cluster

the image dataset and build a codebook, and then we can

use the codebook to generate the mosaic image to reduce

the processing time. Second, we use two feature selection

metrics to develop an adaptive K-Medoids method, called

feature-based K-Medoids (FKM), which can cluster the

image dataset faster by the feature selection mechanism.

Third, our method surely reduces the processing time of

mosaic images by the codebook. Though the image

quality by our method is slightly lower compared with

Szul et al.’s method, our method retains an acceptable

image quality.

Keywords: Big data, Clustering, Digital image, Feature

selection, K-Medoids, Mosaic image

1 Introduction

High-quality images can be rapidly generated by

smartphones and cameras every minute. Image datasets

have grown significantly. A computer perceives an

image as non-structured, highly complex data, and thus,

significant computer power is needed to process

images. The distribution system called Hadoop [1] is a

suitable solution to this issue. The users can develop

their own distributed applications on Hadoop and

processing big data even if they do not know the

bottom-level details of the system. Many Hadoop

applications are performed in the high-performed and

high-availabilitycomputing and information systmes.

Processing a large volume of image datasets requires

high computer power and powerful image processing

techniques. Image features can be as contents for

image retrieval [2], image detection [3], image hiding

[4], etc. Therefore, effective and accurate image

feature extraction [5] will be useful for many practical

applications.

Our research focuses on the artwork of mosaic

image.

The first step in creating an artwork mosaic image is

to split the source image into several small cells. Then,

the image in the image dataset is cropped or resized to

match the small cells of the source image. Finally, the

algorithm finds the best matches from the image

dataset for each cell of the source image and then

outputs the mosaic image.

In 2014, Szul and Bednarz proposed the use of

Scalding to improve the productivity of mosaic images

and the implementation [6] on Hadoop. Their

experimental result achieved significant improvements.

However, their proposed method is highly complex.

Thus, we propose a method to reduce the computation

complexity. This method preprocesses the original

image dataset with the use of an unsupervised

clustering algorithm called K-Medoids [7], which

partitions data around their medoids. The

preprocessing step takes time to cluster the image

dataset. Thus we replace the Euclidean distance as the

metric in the K-Medoids algorithm by two feature

selection mechanisms, pixel difference (PD) and pixel

coefficient of variation (PCV), to reduce the computing

complexity. Our method further reduces the training

cost.

Our study has two objectives. First, the method

proposed by Szul et al. [6] improved the efficiency of

constructing the mosaic image. We want to improve

the productivity further by using the codebook

generated by the K-Medoids algorithm. Second, we

aim to reduce the high computational complexity of K-

Medoids by using feature selection mechanisms.

1344 Journal of Internet Technology Volume 20 (2019) No.5

2 Related Works

In 2014, Szul and Bednarz proposed a method [6]

using Scalding to improve image processing algorithm,

which avoids the time consuming process to write

massive amount of images during the output of the

map phase. The method not only conserves the

processing time but also shortens the lines of code and

makes the source code more readable. In image

processing, there is still scope for improvement. In this

study, we combined the K-Medoids algorithm [7] to

increase the efficiency. A mosaic image is created

based on the developed feature-based K-Medoids

(FKM for short) method with feature selection

mechanism using a Hadoop framework in a more

efficient way.

2.1 MapReduce Framework

MapReduce framework is one of important part of

Hadoop and also is the key role that managing the

computing power and distribute the job properly. The

first generation MapReduce framework came with

Hadoop version 0.20 series [1] which is inherently

parallel to put very large-scale data analysis into

practice as demonstrated as Figure 1.

Figure 1. Workflow of Hadoop

Step 1. The MapReduce jobs start from the client node

to the job tracker node. The client will perform a series

check (input and output paths exist or not, for example)

and compute the input split. Finally, job tracker node

returns the ID for the job to the client node.

Step 2. The client nodes copy all the necessary

resources to the shared file system (e.g., HDFS). The

resources including job JAR file and input splits which

the job tracker just computed.

Step 3. The client jobs submit the job to job tracker

node which means the job is ready to perform.

Step 4. After receive the call of submit jobs, the job

tracker creates equivalent map tasks to the numbers of

input splits computed by client node and several reduce

tasks. The number of reduce tasks is decided by

mapred.reduce.tasks.

Step 5. The job tracker will distribute the job to the

task tracker.

Step 6. The task tracker reports the task status to the

job tracker by using heartbeat mechanism.

2.2 Scalding Mosaic Image

When the image dataset becomes increasingly larger

or the resolution of the source image gets higher, the

data will cause some problem during sharing, storing,

analyzing, and capturing. Thus, the concept of big data

is coming up. Hadoop is the most popular cloud

computing technology with high scalability.

MapReduce is a flexible framework [8-12] that can

enhance the computing capability by scaling up the

cluster. The MapReduce framework splits the job into

several tasks, distributes those tasks to the work nodes

of the cluster in the Map phase, collects the results of

the tasks from the work nodes, and combines them in

the Reduce phase.

It requires two MapReduce jobs to process mosaic

image using Hadoop API. First, MapReduce job

divides the source image into several non-overlap

blocks with same size. Second, MapReduce is

responsible for calculating the similarity between the

blocks of the source image and all the images in the

image dataset. In the map phase, it will generate a heat

map after calculating the similarity between each

image belongs to the image dataset and all blocks of

the source image. The heat map shows the similarities

and also indicates the best matches corresponding to

the blocks. For example, let us assume there is a

W H× source image, then divide it into several cell

images, each size is q q× . There are
q q

W H× cell

images, for which the similarity with every image in

the image dataset needs to be calculated. If there are

q q
W H× images with sizes q q× in the image dataset,

we will get
q q

W H× heat maps after processing the

calculations. Each heat map shows the best match

image in the image dataset for the cell image. Next, we

can construct the mosaic image by
q q

W H× heat maps.

However, the method we just described is not a very

efficient one. Because of the processing of MapReduce

framework, it needs to copy all blocks of source image

and image to the local disk drive. It consumes much

time to read and write on the local hard disk. To

improve the productivity, Szul and Bednarz proposed a

method using Scalding in 2014. By sending the flags of

images instead of the images, the new method

conserves a lot of time. The method not only improves

the efficiency but also adds some constraints to filter

the specific images. There are some benefits if the

MapReduce job is developed by Scalding, such as

conserving the executing time, adding constraints,

readable, and streamlined source code. The algorithm

proposed by Szul and Bednarz has two steps,

BestMatchesSelection Step and Join Step as shown in

Figure 2. In the BestMatchesSelection step, the

grayscale images are first filtered out and then the

A High-performance Computing Method for Photographic Mosaics upon the Hadoop Framework 1345

distance between the images in the image dataset and

the blocks of the source image is calculated. After the

calculation, the closest id of image in the image dataset

of each block is output to the Join Step. In the Join

Step, the images are searched according to their ids,

which are just received in the image dataset, and the

most similar image is outputted to the corresponding

blocks.

Figure 2. Method proposed by Szul et al. [6]

2.3 K-Medoids

K-Medoids is one kind of clustering algorithm. In

each cluster, the algorithm will swap the non-medoid

elements as medoid and calculate the summation of

distance to each non-medoid element in the cluster to

find which non-medoid element has the smallest

summation of distance. Then re-distribute the all the

elements to the cluster and perform the medoidshift

algorithm again. Until the medoids are not changing

which means the clusters are stable. The detail

description of K-Medoids algorithm is shown as

follows [7]:

Step 1. Initializing: Decide how many clusters the

algorithm will generate.

Step 2. Clustering: Calculate the Euclidean distance of

each data and medoid, and distribute the data to the

closest cluster. And calculate the Total Cost by

calculate the summation of distance each non-medoid

element to the corresponding medoid of cluster.

1

n

i

i

Total Cost C

=

=∑ (1)

| |

i

i

i i i

O Non Medoids set

M Corresponding Medoids set

C O M

∈⎧
⎪

∈⎨
⎪ = −⎩

 (2)

Step 3. Adjusting: Swap every medoid by non-medoid

elements, and calculate its total cost for current

configuration which refers to Step 2. Compare the total

costs of current configuration and previous

configuration to find out which better configuration

which has smaller total cost.

Step 4. Inspecting: Keep repeating Steps 2 and 3 until

the clustering configuration does not change anymore.

3 Proposed Method

This paper first presents an overview of the

framework in the Figure 3, and then describes in detail

how the FKM method and mosaic image processing

are combined. The original K-Medoids algorithm has a

high computational complexity because of two reasons:

it uses Euclidean distance to judge which element in

the dataset should be distributed to which cluster, and

an image is an unstructured high-dimensional data.

Two metrics for an image, namely, PD and PCV,

which can measure the similarity of images, are used to

replace the Euclidean distance and reduce the

computational complexity. Second, we elaborate these

two metrics. This paper also provides the pseudocode

of feature-based K-Medoids and mosaic image

algorithm.

Figure 3. Framework of proposed method

3.1 Framework of Proposed Method

We propose a KFM method exploiting feature

selection metrics on a Hadoop framework. Two

MapReduce jobs exist in our proposed method, namely,

FKM MapReduce and Mosaic MapReduce, which are

performed sequentially. K-Medoids MapReduce is

performed first to build the codebook, which can

reduce the time consumed by Mosaic MapReduce job.

Our proposed method focuses on the improvement of

K-Medoids MapReduce in terms of reducing training

cost and improving the codebook that can evaluate the

image quality of the mosaic image.

In the proposed FKM algorithm, two different

feature selection mechanisms are designed

1346 Journal of Internet Technology Volume 20 (2019) No.5

with/without threshold parameter respectively. The

first mechanism is named as Pixel Difference (PD).

First step, PD will partition a given image into blocks.

Next, PD calculates the pixel differences within the

block and applies a predefined threshold to determine

if the pixel differences can be a feature block. Only a

feature block can be stored into a feature set. Each

image associates with a feature set
PD

FS . Afterwards,

every two feature sets can be manipulated by an

intersect operation to obtain a result set and the number

of elements in the result set will be kept into a

similarity matrix. A similarity matrix, SM, is an N by N

matrix containing all the pairwise similarities between

the objects being considered. PD approach is simple;

however, it needs a proper threshold. So we derive

another mechanism called pixel coefficient of variation,

PCV for short. PCV is more generally than pixel

difference for any case. PCV approach will calculate

the coefficient of variation for each block. So each

block has one coefficient of variation. In this approach,

we will store the average pixel value of the block and

the coefficient of variation in the feature set. Each

image also corresponding to a feature set
PCV

FS .

Besides, PCV approach uses a range table RT =

{ [,] | 1, 2, ..., }
r r r

R l u r n= = to measure the similarity of

two images by judging the coefficients of variation of

two different sets of image blocks are in the same

interval or not. The similarity is defined as the number

of blocks from two images falling in the same interval.

Please refer to the K-Medoids MapReduce part in

the Figure 3. K-Medoids MapReduce consists of three

steps, as shown in the Figure 3. In the first step, Step a,

the similarity matrix of each image in the image dataset

to the other images in the image dataset is generated.

Step b, MapReduce uses the distance table to perform

the K-Medoids algorithm. Third, after the K-Medoids

algorithm is completed, MapReduce builds the

codebook to the Hadoop Distributed File System

(HDFS) in Step c.

3.2 Feature-based K-Medoids (FKM) Process

The diagram shows the process of K-Medoids as

shown in Figure 4. Initially, the original dataset is

clustered. The proposed method preprocesses the

original image dataset to downsize the original dataset

to the codebook. Then, the codebook is used to

compose the mosaic image; this approach is faster than

Szul et al.’s method. To avoid recomputing the same

distance repeatedly, the proposed method computes the

similarity between each image and the others in the

original dataset, and then it fills the similarity in the

similarity matrix according to its corresponding index.

The index is given when the entire dataset has been

read during the initial process of the feature-based K-

Medoids (FKM) process and then stored in the

HashMap in the form of a key-value pair, and when the

distances on the diagonal are zeros, which indicates the

distance from the image to itself. After the distance

table is generated, K-Medoids begins to cluster the

image dataset by using the distance table. Finally, at

the end of the process, a codebook is built. Next, we

are going to introduce the FKM algorithm. For the sake

of convenience, all the notations are listed in the Table

1.

Figure 4. Process of FKM MapReduce

Table 1. Notations for FKM algorithm

Notations Description

I Image

SM Similarity Matrix

M Medoids

O Non-Medoids

DT Similarity matrix

CB Built codebook

_ os
prev

TOTAL nC t Total number of Cost of previous

configuration

_ os
cur

TOTAL nC t Total number of Cost of current

configuration

3.2.1 Procedure Feature-based K-Medoids

Algorithm

Input: similarity matrix SM

Initial: K medoids M where M∈{1, 2, …, K}, and the

set of non-medoids O= .

FS
DB M− Set _

prev
TOTAL nCost

and _

prev
TOTAL nCost as zeros.

Step 1: Calculate the Euclidean distance between each

image in
FS

DB to the others in
FS

DB and fill the result

in the similarity matrix DT by the corresponding

indices.

Step 2: Distribute all the non-medoid images to the

closest cluster by looking up the similarity matrix DT

and calculate the summation of distance for each

cluster. Let the summation denote as _

prev
TOTAL nCost .

Step 3: Swap each m in M with each non-medoids
i
o in

O and calculate the _

prev
TOTAL nCost .

A High-performance Computing Method for Photographic Mosaics upon the Hadoop Framework 1347

Step 4: If _

cur
TOTAL nCost − _ 0

prev
TOTAL nCost >

then configure the medoids.

Step 5: Repeat the Step 2 and Step 4 until all the

_

cur
TOTAL nCost of each permutation combination of

medoids and non-medoids.

Step 6: Let codebook denote as CB. Set all the medoids

to the CB then return CB.

The following K-Medoids MapReduce procedure

contains tree classes to expound how the MapReduce

job of K-Medoids works.

3.2.2 Procedure Feature-based K-Medoids

MapReduce

‧The Driver Phase:

1. Initialize similarity matrix SM.

2. Initialize HashMap Medoids for medoids.

3. Load the input image dataset DS.

4. Store each image in the DS into HashMaps HM.

(Key: Index of image, Value: pixels of image)

5.

6. Perform feature selection mechanism by PD or

PCV for each image I in the HM.

7. Replace the value of each key-value pair by the

feature. (Key: Index of image, Value: features

of image)

8. Input HM to the Map Phase to calculate the

image to the others.

9. Collect the sequence file of result from the

Reduce Phase and fill all similarities in the

similarity matrix SM by the corresponding

index.

10. Start K-Medoids algorithm to find the medoids

for each cluster and store in the Medoids .

11. Return the Medoids as codebook CB to the

Hadoop Distributed File System.

12. End procedure

‧The Map Phase:

13. Initialize HashMap HMinput for input data.

14. Load the input image dataset DS.

15. Initialize HashMap HMDS for image dataset.

16. for each HMDS

17. for each HMInput

18. Calculate the similarity for the element in

HMDS and HMinput .

19. Emit the result to the Reduce Phase.

20. end for

21. end for

‧The Reduce Phase:

1. Initialize the HashMap HM for the results

collecting from the Map Phase.

2. Extract the result and write in the sequence file

of result.

3. Output the sequence file to the Hadoop

Distributed File System.

In order to reduce the computing complexity of K-

Medoids MapReduce job, we proposed two metrics,

pixel difference (PD) and pixel coefficient of variation

(PCV), to evaluate the similarity of two images with

the image feature selection. The result of evaluation

can be filled into the similarity matrix and instead of

the Euclidean distance. The following two feature

selection mechanisms are proposed using pixel

difference (PD) and pixel coefficient of variation (PCV)

metrics.

Pixel difference (PD) feature-based mechanism.

This PD function performs in a block-wise manner.

First, PD divides an image into a series of non-

overlapping block with 1×3 pixels in a block. Then PD

calculates two difference values
1i

d and
2i

d for each

block i according to Formula 3.

1 2 1

2 2 3

| |

| |

i i i

i i i

d p p

d p p

= −⎧
⎨

= −⎩
 (3)

The differences are checked if they are both greater

than a predetermined threshold value TH. If the

condition was hold, PD stores the block index i into the

image feature set FS. Repeat to deal with all blocks of

a given image and the process of Image Feature

Selection Mechanism based on PD metric is depicted

in Figure 5.

The primary purpose of PD mechanism is to

compute an effective similarity measure between any

input pair of images, say
i
I and

j
I . Let image feature

sets ()
i

FS I and ()
j

FS I correspond to the image pair

i
I and

j
I , respectively. According to and ()

j
FS I , we

calculate the similarity matrix SM. Each matrix

element can be expressed as SM(
i
I ,

j
I) which can be

calculated from the number of an intersection of two

feature sets ()
i

FS I and ()
j

FS I . With the similarity

matrix SM we can apply the feature-based K-Medoids

algorithm to train a good codebook for clustering

images to reach a higher performance in big data

photomosaic computation on Hadoop-based

Framework.

The process of Image Feature Selection Mechanism

based on PD metric is clearly depicted in Figure 5.

1348 Journal of Internet Technology Volume 20 (2019) No.5

Figure 5. PD feature selection process

Figure 6. PD feature selection

Refer to Figure 6, The first scanned block in image

1
I contains three pixels

1
p ,

2
p and

3
p , respectively.

Example 3.1:

Please refer to Figure 6 and Figure 7. A simple

example is illustrated for this Pixel difference (PD)

feature selection mechanism. Each image contains 3

blocks. In this case, we set the threshold to 70. Each

block differences are calculated as follows, where

Figure 7. PD example

11 12 11 12
(,) (95, 96), (,) (155,120),d d d d= =

and
11 12

(,) (227, 84).d d =

Since every pair of block differences are larger than

TH=70, the indices of blocks
1 2
, ,B B and

3
B are put

into the image feature set
1

()FS I of image
1
I , i.e.,

1
() {1, 2, 3}.FS I = Similarly,

2
() {1, 2}.FS I = We

perform a set intersection on two feature sets and get a

similarity value which is 2 because the number of

1 2
() () {1, 2}FS I FS I∩ = is two.

Pixel coefficient of variation (PCV) feature-based

mechanism. The following we proposed another

feature selection metric called pixel coefficient of

variation, also called PCV for short. PCV is proposed

for parameter-less purpose. Generally, it is hard to

predetermine a proper threshold. Unlike PD

mechanism, the advantage of PCV does not need to set

a threshold for the image. First, PCV calculates the

average and the coefficient of variation for every block

of a given image. Coefficient of variation (CV) is a

statistical measure of the dispersion of data points in a

data series around the mean. It is a measure of relative

variability and is the ratio of the standard deviation to

the mean (average).

For each block k with three pixels of a grayscale

image
i
I . Let

ik
p and

ik
θ denote for the average of

pixels and the coefficient of variation of block k.

ik
p and

ik
θ will be stored in a feature set ()

i
FS I

corresponding to image
i
I . ()

i
FS I is an ordered set,

and is defined as follows. () [(,) |1],
i ik ik

W H
FS I p k

m
θ

×
= ≤ ≤

W and H stand for image width and height, and m

denotes the number pixels in each block.

According to the research, human visual system is

hard to tell the pixel differences which is smaller than

8. That means if the difference ,ijk ik ikd p p= − 1≤k ≤ m,

is not greater than 8, the difference was hard to tell by

human visual system.

Besides, PCV approach predetermined a range table

{ [,] | , , 1, 2, ..., },
r r r r r

RT R l u l u r n= = < = where
r r r

w u l= −

and
r

w is defined as follows.
1

r

m

w

n

−

= , here m

denotes the number pixels in each block. In our

example, there are three pixels in each block, thus

3m = . So, the value of coefficient is within the range

of [0, 1.414]. We choose n=10 and have 0.14
r

w = in

the experiments. The first condition is checking the

average of three pixels, and the second condition needs

satisfy the coefficient of variation
ik

θ and jkθ fall

within the same
r

R , i.e., | | .r jk jkw θ θ≤ −

Thus, the similarity of the two images is measured

by whether the coefficient of variation of two different

blocks falls within the same interval. The similarity is

determined from the total number of blocks in which

both images fall in the same interval. That means the

similarity is the total number of blocks from two

images which are falling in the same interval. The

similarity value between images
1
I and

j
I is set as one,

A High-performance Computing Method for Photographic Mosaics upon the Hadoop Framework 1349

i.e., (,) 1SM i j = otherwise, (,) 0.SM i j = Repeat to

deal with all the blocks and the process of Image

Feature Selection Mechanism based on PCV metric is

depicted in Figure 8 and Figure 9.

Figure 8. PVC feature selection process

Figure 9. PVC feature selection

Example 3.2:

Two given grayscale images
1
I and

2
I are shown in

Figure 10. According to the PCV feature selection

mechanism, two feature sets
1

()FS I and
2

()FS I are as

follows.

Figure 10. PCV example

1
() [(158, 0.3), (68,1.1), (122, 0.9),FS I = and

2
() [(151, 0.3), (88, 0.7), (78, 0.7)].FS I =

Afterward, the differences of average pixels

12 1 2k k k
d p p= − are calculated. Only the difference 158-

151=7 less than 8, so the mechanism of PCV further

examines if both coefficients of variation falling within

the same interval. Since
1 1 2 1

() () 0.3,FS I FS Iθ θ⋅ = ⋅ =

the first blocks corresponding two images have high

similarity. Repeat to examine the remainder two

feature elements in
1

()FS I and
2
I , and we have the

similarity value SM(1, 2) =1 corresponding to two

images.

3.3 Mosaic MapReduce Job

In the process of mosaic image, Figure 11, it will

divide the source image into several small pieces of

cells and the sizes of all the cells are the same. Then

the mosaic comparison MapReduce job will

respectively find the best match image in the codebook

for each cell. At the end of comparison MapReduce job,

it will output the index of the best match cell for each

cell of source image to compose the mosaic image. The

following procedure will elaborate the Mosaic

MapReduce job in detail.

Figure 11. Process of mosaic image

3.3.1 Procedure Moasic MapReduce

‧The Driver Phase:

1. Initialize codebook CB.

2. Load source image SI.

3. Split SI into several cell images and store each

cell image into HashMap CI.

4. Start Map Phase and use CI as input.

5. Receive the distance between each codeword in

the codebook and the CI.

6. Start Reduce Phase.

7. Receive the mosaic image and output to the

Hadoop Distributed File System.

1350 Journal of Internet Technology Volume 20 (2019) No.5

‧The Map Phase:

1. Load codebook CB.

2. for each HMinput

3. Calculate the distance between each codeword

in the CB for each element in HMinput.

4. Emit the result of distance.

5. end for

‧The Reduce Phase:

1. Load codebook CB.

2. Find the best match codeword for each cell

image by the id of cell image.

3. Compose the mosaic image by the codebook CB.

4. Emit the mosaic image to the Hadoop

Distributed File System.

4 Experimental Results and Discussions

In this chapter, we first compare the training cost of

feature-based K-Medoids with different sizes of dataset.

In our experiment, we prepare four different sizes of

image datasets collected from Flickr. The size of each

color image in our datasets is 75 75× . In the second

part of our experiment, the image quality of the mosaic

image made up of six different source images is

presented. Three of the source images were obtained

from the research of Szul et al., and the others were

selected from Flickr which is an image- and video-

hosting website and web services suite. The other three

source images were selected to test the method under

different conditions. Few articles have been written

about this matter. Thus, we compare the training time

and mosaic image quality with the results obtained by

Szul et al. and with the two methods that use PD and

PCV.

The environment of our experiment is based on

VMware, and virtual machine is available on

Cloudera’s official website. The version of our virtual

machine is CDH 5.5.0, and the version of Hadoop is

2.6.0. The hardware specifications of our virtual

machine are shown as Table 2.

Table 2. Hardware specification

Component Specification

Memory 8GB

Processors 4

Hard Disk WD Black label 1TB

The first section of this chapter reveals the

consumed training time and the time consumed to

construct the mosaic image. The main contribution of

this research is the reduction of the time consumed

when constructing a mosaic image. The second section

compares the image quality. The method proposed by

Szul et al. composes the best-quality mosaic image by

using an exhaustive search of the image dataset. Our

research aims to reduce the time of constructing the

mosaic image and to retain the good quality of the

mosaic image.

4.1 Time Comparison

Three datasets, with different quantity of images, are

“Tiny,” “Small,” and “Medium.” The quantity of

images of each dataset and the size are clearly note in

the Table 3.

Table 3. Dataset information

Dataset Information

Tiny Small Medium

Image quantity 5679 27921 111645

Dataset size 11MB 319MB 1.3GB

The Figure 12 shows the training cost (Time) of

different codebook sizes with different image datasets.

In this experiment, we use Euclidean Distance as a

metric to measure the image similarity. Each line with

different color stands for different training time to

generate a codebook corresponding to different image

dataset. Blue line represents “Tiny” image dataset.

Orange line stands for “Small” image dataset. Gray

line indicates the experiment result of “Medium”

dataset. In the Figure 12, we can found that codebook

training time with “Medium” image dataset takes most

time. In contrast, training codebook with “Tiny”

dataset is the fastest. We can also find that all the

curves for the training time of codeword sized from 64

to 1024 are not dramatically increases. For

convenience, we will denote the codebooks with size

of 1024, 512, 256 and 64 as codebook_1024,

codebook_512, codebook_256 and codebook_64,

respectively in the following discussion.

Figure 12. Training cost

Figure 13 shows the correlation between the training

time and three metrics, which are Euclidean, PD, and

PCV. We would like to observe which metric will

reduce the most time of training cost. We pick the

“Small” dataset as an experiment test set to see which

method has the best improvement of training cost.

Different color of lines in the Figure 13 stands for

A High-performance Computing Method for Photographic Mosaics upon the Hadoop Framework 1351

different feature selection metrics, Euclidean Distance,

PD and PVC, we used in the experiment. The blue line

shows the performance of PD and result shows it has

the best performance with smallest training time. The

orange line and gray line demonstrate the result of

PCV and Euclidean distance respectively.

Figure 13. Feature selection metrics comparison of

training cost

Figure 14 displays the time of consuming time of a

mosaic image creation in different methods. Despite

the image dataset will become bigger day by day, our

method will cluster the image dataset into several

groups. Thus the even the dataset gets bigger; however,

our consuming time in creating a mosaic image does

not change. Although the method proposed by the Szul

et al. [6] can construct the best, but along with the

image dataset getting bigger and bigger, the computing

complexity becomes a serious problem.

Figure 14. Szul et al.’s method

Figure 15 is the experiment result of constructing a

mosaic image by using the proposed method in

different codebook sizes. The consumed time in

constructing a mosaic image increases with the size of

the codebook. The most important advantage of the

proposed method is that most of the time is transferred

to the preprocessing step of the K-Medoids algorithm.

Preprocessing can take place whenever the user does

not require computing power or whenever the server

does not need to deal with a heavy load from many

users. Therefore, constructing a mosaic image does not

require a considerable amount of time. Comparing the

result to that of Szul et al.’s method [6] with small

dataset, it takes 46 seconds to create a mosaic image by

using the 1024-sized codebook.

Figure 15. Performance of mosaic MapReduce in

proposed method

It is easy to find out by the charts of the consuming

time proposed by Szul et al.’s method and our

proposed method in Figure 14 and Figure 15

respectively, In the Szul et al. method, it takes

approximately 1112/27921 = 0.04 seconds to check

whether each image in the dataset is similar to each

cell image of the source image; However, our method

takes only 46/27921=0.0016 second. Obviously, the

time for constructing a mosaic image of our method is

almost one twenty-fourth of Szul et al.’s result. It

means our proposed method has a great progress in

computing time on big data mosaic images.

This paper is inspired from the literatures with

parallel K-Medoids algorithms and designs a feature-

based K-Medoids (FKM) algorithm and integrates the

algorithm into a framework for creating photo mosaics

on Hadoop-based computing infrastructure.

Unlike the exhaustive search to find the best match

for photographic mosaics, the feature-based K-

Medoids (FKM) algorithm works well in reducing the

time of constructing mosaic images and retains good

quality of mosaic images.

4.2 Image Quality of Mosaic Image

Our experiment picks 6 images from Flickr website

as source images and it is shown as follow. Firstly, 3

source images, Figure 16(a), Figure 20(b) and Figure

23(c), which are chosen as source images by Szul et al.

and we also have these three images as test images in

our experiment. In addition, we also choose another

three images which are Figures 27(a), Figure 31(a) and

Figure 35(a) in our experiment. These images all have

significant image characteristics; for example, complex

details, pixel distribution, brightness. Next we are

going to observe the mosaic photos and give brief

analysis for each image.

According to Figure 16(b), Green pixels are spread

widely. Blue pixels are belongs to the dark tone. The

amount of red pixels is not greater than blue pixels and

green pixels. The next three butterfly mosaic images.

1352 Journal of Internet Technology Volume 20 (2019) No.5

Figure 17 is generated by the Szul et al.’s method with

different size of dataset. From left to right, there are

Tiny, Small and Medium. In Figure 18, mosaic images

are generated by the proposed method using Euclidean

distance with different size of codebook. From left to

right, there are Tiny, Small and Medium. Figures 19(a)

and Figure 19(b) are the butterfly mosaic images

generated by proposed method using PD and PCV

mechanisms, respectively with Codebook_512 and the

codebook is trained by the small-sized dataset.

(a) Source image - butterfly (b) Histogram of butterfly

Figure 16. Source image - butterfly

(a) Tiny - butterfly (b) Small - butterfly

(c) Medium - butterfly

Figure 17. Mosaic images created by Szul et al.’s

method with different size of dataset

(a) codebook_256 -butterfly (b) codebook_512 - butterfly

(c) codebook_1024 - butterfly

Figure 18. Mosaic images created by original K-

Medoids with different codebook size

(a) PD - butterfly (b) PCV - butterfly

Figure 19. Mosaic images created by feature-based K-

Medoids with two feature selection mechanisms

The next source image is dove, Figure 20. The blue

pixels of the dove image are located in the dark tone

which is similar to the image of butterfly. But the

biggest difference between dove and butterfly is that

the peaks of green pixels and red pixels are located in

the midtones. Figure 21 demonstrates the mosaic

image created by Szul et al.’s method with different

size of dataset. In Figure 22, there are three mosaic

image created by different codebook size which is

training by original K-Medoids algorithm. In Figure 23

are two Mosaic images created by feature-based K-

Medoids with two feature selection mechanisms.

(a) Source image - dove (b) Histogram of dove

Figure 20. Source image - dove

(a) Tiny - dove (b) Small - dove

(c) Medium - dove

Figure 21. Mosaic image created by Szul et al.’s

method with different size of dataset

A High-performance Computing Method for Photographic Mosaics upon the Hadoop Framework 1353

(a) codebook_256 - dove (b) codebook_512 - dove

(c) codebook_1024 - dove

Figure 22. Mosaic image created by original K-

Medoids with different codebook size

(a) PD - dove (b) PCV - dove

Figure 23. Mosaic images created by feature-based K-

Medoids with two feature selection mechanisms

Figure 24 is face image which is the smoothest

image of 6 source images. This image is pretty easy to

judge the quality of codebook. The blue, green and red

pixels are located in the highlight tone. The red pixels

are the brightest pixels to the others. Figure 25 and

Figure 26 show that the image qualities of mosaic

images composed by smaller dataset and smaller

codebook worse than the bigger one. Figure 27 are

mosaic images created by feature-based K-Medoids

with two feature selection mechanisms.

(a) Source image - face (b) PCV - dove

Figure 24. Source image - face

(a) Tiny - face (b) Small - face

(c) Medium - face

Figure 25. Mosaic images created by Szul et al.’s

method with different size of dataset

(a) codebook_256 - face (b) codebook_512 - face

(c) codebook_1024 - face

Figure 26. Mosaic images created by original K-

Medoids with different codebook size

(a) PD - face (b) PCV - face

Figure 27. Mosaic images created by feature-based K-

Medoids with two feature selection mechanisms

1354 Journal of Internet Technology Volume 20 (2019) No.5

In the Figure 28(b), we found that the most of blue,

green and red pixels are located in the zone of shadows.

This source image is used to test the codebook whether

can deal with dim image or not. There are also some

complex details on the body of the cat. In Figure 29

and Figure 30, the cat image has really high

complexity and each mosaic image show clear

silhouette of cat. Bigger dataset or codebook size can

deal with the detail of the cat’s fur well. Figure 31 are

Mosaic images created by feature-based K-Medoids

with two feature selection mechanisms.

(a) Source image - cat (b) Histogram of cat

Figure 28. Source image – cat

(a) Tiny - cat (b) Small - cat

(c) Medium - cat

Figure 29. Mosaic images created by Szul et al.’s

method with different size of dataset

(a) codebook_256 - cat (b) codebook_512 - cat

(c) codebook_1024 - cat

Figure 30. Mosaic images created by original K-

Medoids with different codebook size

(a) PD - cat (b) PCV - cat

Figure 31. Mosaic images created by feature-based K-

Medoids with two feature selection mechanisms

In the Figure 32(b), the pixels of each color, red,

green and blue are averagely spreading. Each aspect is

balance. The part of grass reveals abundant

complicated details. Otherwise, the part of sky is really

smooth. In Figure 33, Figure 34 and Figure 35. None

of the method could handle the detail of grass well.

(a) Source image - grass (b) Histogram of grass

Figure 32. Source image – grass

(a) Tiny - grass (b) Small - grass

(c) Medium - grass

Figure 33. Mosaic images created by Szul et al.’s

method with different size of dataset

A High-performance Computing Method for Photographic Mosaics upon the Hadoop Framework 1355

(a) codebook_256 - grass (b) codebook_512 - grass

(c) codebook_1024 - grass

Figure 34. Mosaic images created by feature-based K-

Medoids with two feature selection mechanisms

(a) PD - grass (b) codebook_512 - grass

Figure 35. Mosaic images created by feature-based K-

Medoids with two feature selection mechanisms

Here’s where it gets interesting that in our brain

along the three channels, Red, Green and Blue, seeing

blue is what you experience when low-wavelength

light excites the blue cones more than the green and

red. In our algorithm, blue pixels are ignored due to the

lower sensitivity of the human eye to the blue light

[14], therefore making great reduction in the

computing complexity. Apparently, when we choose

Figure 36(a) as a source image which is a lake

comprising more blue pixels as shown in Figure 36(b),

the mosaic images created by feature-based K-Medoids

with two feature selection mechanisms as seen in

Figure 38 and Figure 39 are quite similar to that of

Figure 37 created by Szul et al.’s method.

(a) Source image - lake (b) Histogram of lake

Figure 36. Source image lake

(a) Tiny - lake (b) Small - lake

(c) Medium - lake

Figure 37. Lake mosaic images created by Szul et al.’s

method with different size of dataset

(a) codebook_256 - lake (b) codebook_512 - lake

(c) codebook_1024 - lake

Figure 38. Lake mosaic images created by original K-

Medoids with different codebook size

(a) PD - lake (b) PCV - lake

Figure 39. Mosaic images created by feature-based K-

Medoids with two feature selection mechanisms

The first experiment compares the mosaic image

quality between Szul et al.’s method and the proposed

method. It also aims to prove that the proposed method

considerably reduced the time consumed in

1356 Journal of Internet Technology Volume 20 (2019) No.5

constructing the mosaic image but is still able to retain

a good mosaic image quality. This experiment uses the

medium-sized image dataset for both K-Medoids and

Szul et al.’s method. In this experiment, we aim to

determine whether K-Medoids with Euclidean distance

could preserve the image quality.

We use structural similarity, SSIM [13], to evaluate

the quality of our proposed mosaic image. SSIM is a

perception-based model to simulate human visual

system to assess the similarity between two images.

The SSIM value is calculated by the following

Equation 4:

 (,) [1(,)] [(,)] [(,)]SSIM x y x y c x y s x y
α β γ

= (4)

where
1 2

2 2 2 2

1 2

2 2
(,) , (,)

x y x y

x y x y

c c
l x y c x y

c c

μ μ σ σ

μ μ σ σ

+ +

= =

+ +

 and

3

3

(,)
x y

x y

c
s x y

c

σ

σ σ

+

=

+

According to Figure 40, the mosaic image

application has a great performance on smooth image.

The following experiment is going to find out the best

trade-off the training cost and quality of mosaic image.

Larger size of codebook gives you better quality of

mosaic image, but it cost more time to perform the K-

Medoids algorithm. In Figure 40, the lines in yellow

colors stand for the SSIM of Szul et al.’s method.

Figure 40 also has the lines in gray color, orange color,

and blue color stand for the proposed methods with

codebook_1024, codebook_512, and codebook_256,

respectively. Comparing the result of mosaic image

quality (SSIM) of codebook_1024 to codebook_512,

the largest difference in SSIM isn’t greater than 0.09. It

is obvious that the mosaic image quality generated by

512-sized codebook is pretty closed to 1024-sized

codebook and it also has ideal training cost.

Figure 40. Quality of mosaic image

In the next experiment, Figure 41 shows the quality

comparison between two new metrics, PD and PCV,

adopt in K-Medoids. In our research, these two metrics

are used to reduce the computing complexity of K-

Medoids algorithm. In the comparison of consuming

time between using different metrics, Euclidean

distance, PD and PCV, respectively, we could find that

PD and PCV absolutely conserve the training time.

Let’s compare the tradeoff between image quality and

the codebook training cost. In Figure 41, we

demonstrate the mosaic image quality by the proposed

PCV feature selection mechanism since PCV feature

selection mechanism has the best mosaic image quality

in four source images, “dove,” “face”, “grass,” and

“lake.” Their SSIM values are higher.

Figure 41. Quality comparison among various feature

selection by Euclidean, PD and PCV

First refer to Figure 42, mosaic image quality and

the codebook training cost is shown in the figure with

line charts. The SSIM values of image “face” with the

256-sized codebook and 512-sized codebook are

0.5437 and 0.6843, respectively. The different of

mosaic image quality of two different codebooks is

0.1406 in SSIM. We can use extra 62 minutes to train a

512-sized codebook for a better mosaic image quality.

Let’s compare the performance of 512-sized codebook

and 1024-sized codebook. The training cost increases

118 minutes but the image quality only increases

0.0928.

Figure 42. Trade-off between training cost and image

quality for “face”

A High-performance Computing Method for Photographic Mosaics upon the Hadoop Framework 1357

Figure 43 shows the charts of mosaic image quality

with different databases. In this figure, we can see a

bigger dataset like the medium dataset in our

experiment does not imply it exactly deserve better

mosaic image quality. According to Figure 43, the

mosaic image quality of small dataset is better than that

of the medium dataset. Both the mosaic images of tiny

dataset and medium dataset could be seen the

silhouette easily.

Figure 43. Quality comparison using different

codebooks trained by different dataset sizes

In Figure 44, the charts demonstrate the mosaic

image quality comparison of different thresholds of PD

feature selection mechanism. The cases of smooth

source images, face and lake, have better mosaic image

quality with the codebook using smaller threshold. The

source images with more details fit well with high

threshold. If the threshold greater than 180, some

clustering algorithm will end up with some errors on

the configuration of clustering algorithm.

Figure 44. Quality comparison of PD threshold

5 Conclusion and Future Work

A photographic mosaics computing method upon a

hadoop framework is proposed in this work. The

mosaic technique has seldom been discovered in a

hadoop environment except for the research of Szul et

al. Based on the hadoop framework. The experimental

results show that the method using the feature-based

K-Medoids (FKM) and the mosaic image algorithms

performs well in terms of image quality or processing

performance. FKM requires considerable time to

cluster an image dataset. Mosaic MapReduce can

improve efficiency, thereby enhancing the user

experience.

A smooth source image is needed to ensure a

recognizable mosaic image. Also a smooth source

image could be used to judge the quality of a codebook.

A source image with high complexity does not provide

a great effect on the mosaic image. The main

contribution of this research is its use of the FKM

algorithm to cluster an image dataset into several

groups to reduce the time for constructing the mosaic

image. Moreover, an acceptable mosaic image quality

is achieved. Another key contribution is the use of PD

and PCV, as well as the distance table, to reduce the

training cost of the FKM algorithm. The mosaic image

quality differed minimally, but both metrics reduce the

computational complexity considerably. The

experiment on the tradeoff between training cost and

mosaic image quality indicates that the codebook with

a size of 512 achieves the best balance of these two

aspects.

This study has several future research directions.

First, the FKM algorithm is implemented by Java and

performed on a single PC. A significant improvement

can be achieved if Mahout is used for implementation

because it can fully upgrade the proposed framework

in the Hadoop environment. Moreover, this approach

can deal with more images and compose a larger

mosaic image. Second, the proposed method aims to

reduce the training cost and preserve and achieve an

acceptable mosaic image quality. The use of different

image processing technologies may eliminate the

tradeoff between the training cost and the mosaic

image quality. Third, the two metrics, PD and PCV, are

still not simple enough to be implemented on different

domains; this subject is another future research

direction.

Acknowledgments

This research was partially supported by the

Ministry of Science and Technology of the Republic of

China under the Grants MOST106-2221-E-324-006 -

MY2.

References

[1] T. White, Hadoop: The Definitive Guide, O’Reilly Media,

1358 Journal of Internet Technology Volume 20 (2019) No.5

Inc., 4th ed., 2015.

[2] C. C. Chang, C. F. Lee, Relative Coordinates Oriented

Symbolic String for Spatial Relationship Retrieval, Pattern

Recognition, Vol. 28, No. 4, pp. 563-570, April, 1995.

[3] M. H. Aghdam, P. Kabiri, Feature Selection for Intrusion

Detection System Using Ant Colony Optimization,

International Journal of Network Security, Vol. 18, No. 3, pp.

420-432, May, 2016.

[4] J. J. Li, Y. H. Wu, C. F. Lee, C. C. Chang, Generalized PVO-

K Embedding Technique for Reversible Data Hiding,

International Journal of Network Security, Vol. 20, No. 1, pp.

65-77, January, 2018.

[5] S. P. Luttrell, An Adaptive Bayesian Network for Low-Level

Image Processing, 1993 Third International Conference on

Artificial Neural Networks, Brighton, UK, 1993, pp. 61-65.

[6] P. Szul, T. Bednarz, Productivity Frameworks in Big Data

Image Processing Computations - Creating Photographic

Mosaics with Hadoop and Scalding, Procedia Computer

Science, Vol. 29, pp. 2306-2314, June, 2014.

[7] L. Kaufman, P. J. Rousseeuw, Finding Groups in Data: An

Introduction to Cluster Analysis, Wiley Series in Probability

and Statistics, John Wiley & Sons, Inc., 2008.

[8] J. Wei, S. Wang, L. Zhang, A. Zhou, F. Yang, Virtual

Machine Placement to Minimize Data Transmission Latency

in MapReduce, Journal of Internet Technology, Vol. 18, No.

6, pp. 1379-1391, November, 2017.

[9] H. S. Kim, D. I. Shin, Y. J. Yu, H. Eom, H. Y. Yeom,

Systematic Approach of Using Power Save Mode for Cloud

Data Processing Service, International Journal of Ad Hoc

and Ubiquitous Computing, Vol. 10, No. 2, pp. 63-73, July,

2012.

[10] K. Ma, B. Yang, Introducing Extreme Data Storage

Middleware of Schema-Free Document Stores Using

MapReduce, International Journal of Ad Hoc and Ubiquitous

Computing, Vol. 20, No. 4, pp. 274-284, December, 2015.

[11] S. E. P. Hernandez, J. E. Ramirez, L. A. M. Rosales, G. R.

Gomez, An Intermedia Synchronisation Mechanism for

Multimedia Distributed Systems, International Journal of

Internet Protocol Technology, Vol. 4, No. 3, pp. 207-218,

January, 2009.

[12] V. G. Nguyen, A. Brunstrom, K. J. Grinnemo, J. Taheri, SDN

Helps Velocity in Big Data, in: J. Taheri (Ed.), Big Data and

Software Defined Networks, IET, 2018, pp. 207-227.

[13] Z. Wang, L. Lu, A. Bovik, Video Quality Assessment Based

on Structural Distortion Measurement, Signal Processing:

Image Communication, Vol. 19, No. 2, pp.121-132, February,

2004.

[14] T. Lamb, J. Bourriau, Colour: Art and Science, Cambridge

University Press, Cambridge, UK, 1995.

Biographies

Chin-Feng Lee received her Ph.D. in

Computer Science and Information

Engineering from National Chung

Cheng University, Taiwan in 1998.

She is currently a professor of

Information Management at

Chaoyang University of Technology,

Taiwan. Her research interests include steganography,

image processing, information retrieval and data

mining.

Jau-Ji Shen received his Ph.D. in

Computer Science and Information

Engineering from National Taiwan

University, Taiwan in 1988. He is

currently a professor of Information

Management at Chung Hsing

University, Taiwan. His research

interests include image techniques, data techniques and

software engineering.

Kun-Liang Hou received his master

degree of Management Information

Systems from National Chun Hsing

University, Taiwan in 2016. He is

currently a java developer who focus

on developing backend software. He

is specialized in Object-Oriented

analysis & design, software architecture and pattern

design. He has hands-on experience of software

implementation.

Fang-Wei Hsu received his Bachelor

of Business Administration (B.B.A),

Department of Information Management

from Tamkang University, Taiwan in

2017. He is currently a graduate

student of Information Management at

Chung Hsing University, Taiwan. His

research interests include image techniques, and image

authentication.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (Adobe RGB \0501998\051)
 /CalCMYKProfile (Japan Color 2001 Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHT <FEFF005b683964da300c9ad86a94002851fa8840002b89d27dda0029300d005d0020005b683964da300c8f3851fa0033003000300064002851fa88400029300d005d00204f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks true
 /AddPageInfo false
 /AddRegMarks false
 /BleedOffset [
 8.503940
 8.503940
 8.503940
 8.503940
]
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MarksOffset 9.354330
 /MarksWeight 0.141730
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed true
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

