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Abstract 

A multiprocessor system and an interconnection 

network have a underlying topology, which usually 

presented by a graphG . In 2016, Zhang et al. proposed 

the g -extra diagnosability of G , which restrains that 

every component of G S−  has at least ( 1)g +  vertices. 

As an important variant of the hypercube, the n -

dimensional crossed cube 
n

CQ  has many good properties. 

In this paper, we prove that 
n

CQ  is tightly (4 9)n −  

super 3-extra connected for 7n ≥  and the 3-extra 

diagnosability of 
n

CQ  is 4 6n −  under the PMC model 

( 5)n ≥  and MM
*

 model ( 7)n ≥ .  

Keywords: Interconnection network, Connectivity, 

Diagnosability, Crossed cube 

1 Introduction 

A multiprocessor system and an interconnection 

network (networks for short) have a underlying 

topology, which usually presented by a graph, where 

nodes represent processors and links represent 

communication links between processors. Some 

processors may be faulty when the system is in 

operation. The first step to deal with faults is to 

identify the faulty processors from the fault-free ones. 

The identification process is called the diagnosis of the 

system. A system G  is said to be t -diagnosable if all 

faulty processors can be identified without replacement, 

provided that the number of faults presented does not 

exceed .t  The diagnosability ( )t G  of G  is the 

maximum value of t  such that G  is t -diagnosable. 

In order to discuss the connectivity and diagnosability 

in different situations, people put forward the restricted 

connectivity and diagnosability in the system. In 1996, 

Fàbrega and Fiol [1] introduced the g -extra 

connectivity of a system ( ( ), ( ))G V G E G= , which is 

denoted by ( ) ( ).g
Gκ�  A vertex subset ( )S V G⊆  is 

called a g -extra vertex cut if G S−  is disconnected 

and every component of G S−  has at least ( 1)g +  

vertices. ( ) ( )g
Gκ�  is defined as the cardinality of a 

minimum g -extra vertex cut. For the hypercube ,
n

Q  

Yang et al. [2] determined (3) ( ) 4 9
n

Q nκ = −�  for 4.n ≥  

For the folded hypercubes ,
n

FQ  Chang et al. [3] 

determined (3) ( ) 4 5
n

FQ nκ = −�  for 6.n ≥  Gu et al. 

studied the 3-extra connectivity of 3-ary n -cubes [4] 

and k -ary n -cubes [5]. For the star graph 
n

S  and the 

bubble-sort graph ,
n

B  Li et al. [6] determined (3) ( )
n

Sκ�  

4 10n= −  for 4,n ≥  (3) ( )
n

Bκ =�  4 12n −  for 6n ≥ . 

Chang et al. [7] determined the n -dimensional 

hypercube-like networks 3-extra connectivity, (3) ( )
n

HLκ�  

4 9n= −  for 6n ≥ , and so on. 

In 2016, Zhang et al. [8] proposed the g -extra 

diagnosability of a system, which restrains that every 

fault-free component has at least ( 1)g +  fault-free 

vertices. They studied that the g -extra diagnosability 

of the n -dimensional hypercube under the PMC model 

and MM* model. In 2016, Wang et al. [9] studied the 

2 -extra diagnosability of the bubble-sort star graph 

n
BS  under the PMC model and MM* model. In 2017, 

Wang and Yang [10] studied the 2-good-neighbor (2-

extra) diagnosability of alternating group graph 

networks under the PMC model and MM *  model. In 

2017, Ren and Wang [11], studied the tightly super 2-

extra connectivity and 2-extra diagnosability of locally 

twisted cubes.  

Now, there are many topologies on the networks and 

systems. Hypercube as an important network model 

has good properties such as lower diameter and node 

degree, high connectivity, regular, symmetry, and so 

on. Efe and Member proposed crossed cube [12] by 

changing the links between some nodes of hypercubes, 

which have superior properties over hypercubes. For 

example, its diameter is about half of hypercube with 

the same dimension, which makes that the 

communication speed between any two nodes is 

increased by almost a half.  

Several models of diagnosis have been studied in 

system level diagnosis. Among these models, the most 

popular two models are the PMC and MM, which are 

proposed by Preparata et al. [13] and Maeng et al. [14], 
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respectively. Under the PMC model, only neighboring 

processors are allowed to test each other. Under the 

MM model, a node tests its two neighbors, and then 

compares their responses. Sengupta and Dahbura [15] 

suggested a special case of the MM model, namely the 

MM* model, and each node must test its any pair of 

adjacent nodes in the MM*.  

In this paper, we proved that (1) 
n

CQ  is tightly 

(4 9)n −  super 3-extra connected for 7n ≥ ; (2) the 3-

extra diagnosability of 
n

CQ  is 4 6n −  under the PMC 

model for 5n ≥ ; (3) the 3-extra diagnosability of 
n

CQ  

is 4 6n −  under the MM* model for 7n ≥ . 

2 Preliminaries 

2.1 Notations 

A multiprocessor system is modeled as an 

undirected simple graph ( , )G V E= , whose vertices 

(nodes) represent processors and edges (links) 

represent communication links. The degree ( )
G

d v  of a 

vertex v  in G  is the number of neighbors of v  in 

G .For a vertex v , ( )
G

N v  is the set of vertices 

adjacent to v  in .G  Let ( ).S V G⊆  ( )
G

N S = ∪  

( ) \
v S G

N v S
∈

 and [ ]G S  is the subgraph of G  induced 

by S . A cycle with length n  is called an n -cycle. We 

use 
1 2 n

P v v v= �  to denote a path that begins with 
1
v  

and ends with 
n
v . A path of the length n  is denoted by 

n -path. A bipartite graph is one whose vertex set can 

be partitioned into two subsets X  and Y , so that each 

edge has one end in X  and one end in Y ; such a 

partition ( , )X Y  is called a bipartition of the graph. A 

complete bipartite graph is a simple bipartite graph 

with bipartition ( , )X Y  in which each vertex of X  is 

joined to each vertex of Y ; If | |X m=  and | |Y n= , 

such a graph is denoted by 
,m n

K  The connectivity 

( )Gκ  of a connected graph G  is the minimum number 

of vertices whose removal results in a disconnected 

graph or only one vertex left when G  is complete. Let 

1
F  and 

2
F  be two distinct subsets of V , and let the 

symmetric difference 
1 2
F FΔ =

1 2
( )F F�  

2 1
( ).F F∪ �  

For graph-theoretical terminology and notation not 

defined here we follow [16].  

A connected graph G  is super g -extra connected if 

every minimum g -extra cut F  of G  isolates one 

connected subgraph of order 1g + . In addition, if 

G F−  has two components, one of which is the 

connected subgraph of order 1g + , then G  is tightly 

| |F  super g -extra connected. 

2.2 The Crossed Cube 
n

CQ  

Definition 2.1. ([17]) Let {(00,00),(10,10),R =  

(01,11),(11,01)}.  Two digit binary strings 
1 0

u u u=  and 

1 0
v v v=  are pair related, denoted as ~u v , if and only 

if ( , ) .u v R∈  

Definition 2.2. ([17]) The vertex set of a crossed cube 

n
CQ  is 

1 2 0
{ : 0 1, {0,1}}.

n n i
v v v i n v

− −

≤ ≤ − ∈�  Two 

vertices 
1 2 0n n

u u u u
− −

= �  and 
1 2 0n n

v v v v
− −

= �  are 

adjacent if and only if one of the following conditions 

is satisfied. 

1. There exists an integer (1 1)l l n≤ ≤ −  such that (1) 

1 2 1 2n n l n n l
u u u v v v

− − − −

=� � ;  

(2) 
1 1l l

u v
− −

≠ ; 

(3) if l  is even, 
2 2l l

u v
− −

= ; 

(4) 
2 1 2 2 1 2

~

i i i i
u u v v

+ +
, for 

1
0

2

l
i

−⎢ ⎥
≤ < ⎢ ⎥⎣ ⎦

. 

2.  

(1) 
1 1n n

u v
− −

≠ ;\\(2)if n  is even, 
2 2n n

u v
− −

= ; 

(3) 
2 1 2 2 1 2

~

i i i i
u u v v

+ +
 for 

1
0

2

n
i

−⎢ ⎥
≤ < ⎢ ⎥

⎣ ⎦
. 

Let 2n ≥ . We define two graphs 0

n
CQ  and 1

n
CQ  as 

follows. If 
2 3 0 1

( ),
n n n

u u u u V CQ
− − −

= ∈�  then 0
u =  

0

2 3 0
0 ( )

n n n
u u u V CQ

− −

∈�  and 1

2 3 0
1

n n
u u u u

− −

= �  

1( )
n

V CQ∈ . If 
1

( )
n

uv E CQ
−

∈ , then 0 0 0( )
n

u v E CQ∈  and 

1 1 1( )
n

u v E CQ∈ . Then 0

1n n
CQ CQ

−

≅  and 1

1n n
CQ CQ

−

≅ . 

Define the edges between the vertices of 0

n
CQ  and 

1

n
CQ  according to the following rules.  

The vertex 0

2 3 0
0 ( )

n n n
u u u u V CQ

− −

= ∈�  and the 

vertex 1

2 3 0
1 ( )

n n n
v v v v V CQ

− −

= ∈�  are adjacent if and 

only if 

1. 
2 2n n

u v
− −

=  if n  is even;  

2. 
2 1 2 2 1 2

( , )
i i i i

u u v v R
+ +

∈ , for 
1

0
2

n
i

−⎢ ⎥
≤ < ⎢ ⎥

⎣ ⎦
. 

The graphs 
2 3
,CQ CQ  and 

4
CQ  are depicted in 

Figure 1. The edges between the vertices of 0

n
CQ  and 

1

n
CQ  are said to be cross edges.  

Proposition 2.1. ([17]) Let 
n

CQ  be the crossed cube. 

Then all cross edges of 
n

CQ  is a perfect matching. 

By Proposition 2.1, 
n

CQ  can be recursively defined 

as follows. 

Definition 2.3. ([17]) Define that 
1 2

CQ K≅ . For 2n ≥ , 

n
CQ  is obtained by 0

n
CQ  and 1

n
CQ , and a perfect 

matching between the vertices of 0

n
CQ  and 1

n
CQ  

according to the following rules (see Figure 1).  
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Figure 1. 
2 3
,CQ CQ  and 

4
CQ  

The vertex 0

2 3 0
0 ( )

n n n
u u u u V CQ

− −

= ∈�  and the vertex 

1

2 3 0
1 ( )

n n n
v v v v V CQ

− −

= ∈�  are adjacent in 
n

CQ  if and 

only if 

1. 
2 2n n

u v
− −

=  if n  is even; 

2. 
2 1 2 2 1 2

( , )
i i i i

u u v v R
+ +

∈ , for 
1

0
2

n
i

−⎢ ⎥
≤ < ⎢ ⎥

⎣ ⎦
. 

3 The Connectivity of Crossed Cubes 

Lemma 3.1. ([12]) Let 
n

CQ  be the crossed cube. Then 

( )
n

CQ nκ =  for 1n ≥ . 

Lemma 3.2. ([17]) Let 
n

CQ  be the crossed cube and 

let ( )
n

F V CQ⊆  ( 3)n ≥  with | | 2 3.n F n≤ ≤ −  If 

n
CQ F−  is disconnected, then 

n
CQ F−  has exactly 

two components, one of which is an isolated vertex. 

Lemma 3.3. ([17]) Let 
n

CQ  be the crossed cube and 

let 
n

CQ  be the crossed cube and let ( )
n

F V CQ⊆  

( 5)n ≥  with 2 2 | | 3 6.n F n− ≤ ≤ −  If 
n

CQ F−  is 

disconnected, then 
n

CQ F−  satisfies one of the 

following conditions: 

(1) 
n

CQ F−  has two components, one of which is a 

2
K ; 

(2) 
n

CQ F−  has two components, one of which is 

an isolated vertex; 

(3) 
n

CQ F−  has three components, two of which 

are isolated vertices. 

Lemma 3.4. Let 
n

CQ  be the crossed cube and let 

{0 0000,0 0100,0 0110,0 0111}.A = � � � �  If F =  

( )
n

CQN A , then | | 4 9F n= −  and ( )
n

CQ A F− ∪  is 

connected for 4n ≥ . 

Proof. By the definition of the crossed cube, [ ]
n

CQ A  

is a 3-path. We proof this lemma by induction on n . In 

4
CQ  (see Figure 1), {0000,0100,0110,0111}A =  and 

{0001,0010,0101,1000,1100,1110,1101}F = . It is easy 

to see that | | 4A = , | | 7F =  and 
4

( )CQ A F− ∪  is 

connected. We can decompose 
n

CQ  along dimension 

1n −  into 0

n
CQ  and 1

n
CQ . Then both 0

n
CQ  and 1

n
CQ  

are isomorphic to 
1n

CQ
−

. Let 0

0
( )

n
F F V CQ= ∩  and 

1

1
( )

n
F F V CQ= ∩ . Then 

0 1
| | | | | |F F F+ = . We assume 

that the lemma is true for 1n − , i.e., if 
1

( )
n

CQF N A
−

= , 

then | | 4( 1) 9 4 13F n n= − − = −  and 
1

( )
n

CQ A F
−

− ∪  

is connected. Now we proof that the lemma is also true 

for n  ( 5)n ≥ . Note that 0( )
n

A V CQ∈ . By the inductive 

hypothesis, we have 
0

| | 4 13F n= −  and 
0

0
( )

n
CQ A F− ∪  

is connected. By Proposition 2.1, 
1

| | 4.F =  Thus, 

0 1
| | | | | | 4 13 4 4 9F F F n n= + = − + = − . Now we prove 

that ( )
n

CQ A F− ∪  is connected for 5n ≥ . 

By Lemma 3.1, 1

1
( ) 1 4 | |

n
CQ n Fκ = − > =  for 6n ≥ . 

Thus, 1

1n
CQ F−  is connected for 6n ≥ . We consider 

that 5n = . Note that {00000,00100,00110,00111}A = . 

By Proposition 2.1, 
1

{10000,11100,11110,11101}F = . 

By the definition of the crossed cube, 11100 is adjacent 

to 11110. Note that 
1

| | 4 5 1F = = − . By Lemma 3.2, 

1

5 1
CQ F−  is connected or has two components, one of 

which is an isolated vertex. Suppose that 1

5 1
CQ F−  is 

disconnected. Let u  be the isolated vertex in 1

5 1
CQ F− . 

Since 1

5
1

( ) 4 | |
CQ

d u F= = , u  is connected to every 

vertex of 
1
F . So u  is adjacent to 11100 and 11110. 

Then we get that 1

5
[{ ,11100,11110}]CQ u  is a triangle, 

a contradiction. Thus, 1

5 1
CQ F−  is connected. So we 

can conclude that 1

1n
CQ F−  is connected for 5n ≥ . 

Note that 0

0
( )

n
CQ A F− ∪  is connected. Since 

12 (4 9) 1n

n
−

− − ≥  ( 5),n ≥  by Proposition 2.1, 

0 1

0 1
[ ( ( )) ( )] ( )

n n n n
CQ V CQ A F V CQ F CQ A F− ∪ ∪ − = − ∪

is connected for 5n ≥ .�  

Lemma 3.5. ([18]) Let 
n

CQ  be the crossed cube and 

let 
5

( ).F V CQ⊆  If | | 10F = , then 
5

CQ F−  satisfies 

one of the following conditions: 

(1) 
5

CQ F−  is connected; 

(2) 
5

CQ F−  has two components, one of which is a 

2
K ; 

(3) 
5

CQ F−  has two components, one of which is a 

2-path; 

(4) 
5

CQ F−  has two components, one of which is 

an isolated vertex; 

(5) 
5

CQ F−  has three components, two of which 

are isolated vertices; 

1011 

 

1010 

0001 

0000 
0010 

1001 0011 

0100 

0111 

0110 

0101 

1100 

1111 

1110 

1101 

1000 

011 

010 

100 

111 

110 

101 

000 

001 

10 00 

01 11 



1290 Journal of Internet Technology Volume 20 (2019) No.4 

(6) 
5

CQ F−  has four components, three of which 

are isolated vertices; 

(7) 
5

CQ F−  has three components, one of which is 

an isolated vertex and the other is a 
2

K . 

Lemma 3.6. Let 
n

CQ  be the crossed cube and let 

( )
n

F V CQ⊆  ( 5)n ≥ . If 3 5 | | 4 10n F n− ≤ ≤ − , then 

n
CQ F−  satisfies one of the following conditions: 

(1) 
n

CQ F−  is connected; 

(2) 
n

CQ F−  has two components, one of which is a 

2
K ; 

(3) 
n

CQ F−  has two components, one of which is a 

2-path; 

(4) 
n

CQ F−  has two components, one of which is 

an isolated vertex; 

(5) 
n

CQ F−  has three components, two of which 

are isolated vertices; 

(6) 
n

CQ F−  has four components, three of which 

are isolated vertices; 

(7) 
n

CQ F−  has three components, one of which is 

an isolated vertex and the other is a 
2

K . 

Proof. We prove the lemma by induction on n . By 

Lemma 3.5, the lemma is true for 5n = . We assume 

that the lemma is true for 1,n −  i.e., if 

3 8 | | 4 14n F n− ≤ ≤ − , then 
1n

CQ F
−

−  satisfies one of 

the conditions (1)-(7). Now we show that the lemma is 

also true for n  ( 6)n ≥ . We can decompose 
n

CQ  along 

dimension 1n −  into 0

n
CQ  and 1

n
CQ . Then both 0

n
CQ  

and 1

n
CQ  are isomorphic to 

1
.

n
CQ

−

 Let 
0

0
( )

n
F F V CQ= ∩  

and 1

1
( )

n
F F V CQ= ∩  with 

0 1
| | | |F F≤ . Let 

i
B  be the 

maximum component of i

n i
CQ F−  (If i

n i
CQ F−  is 

connected, then let i

i n i
B CQ F= − ) for {0,1}i∈ . Since 

3 5 | | 4 10,n F n− ≤ ≤ −  we have 
0

4 10
0 | | 2 5

2

n
F n

−
≤ ≤ = −  

and 
1

3 5
| | 4 10

2

n
n F n

−⎡ ⎤
≤ ≤ ≤ −⎢ ⎥
⎢ ⎥

 ( 6)n ≥ . We consider 

the following cases. 

Case 1. 
1

| | 2 5n F n≤ ≤ − . 

Note that | | 2 5 2( 1) 3
i

F n n≤ − = − −  for {0,1}i∈ . By 

Lemma 2.1, i

n i
CQ F−  is connected or has two 

components, one of which is an isolated vertex. Since 
12 (4 10) 2 1n

n
−

− − − ≥  ( 6)n ≥ , by Proposition 2.1, 

0 1
[ ( ) ( )]

n
CQ V B V B∪  is connected. Thus, 

n
CQ F−  

satisfies one of the conditions (1)-(7).  

Case 2. 
1

2 4 | | 3 9n F n− ≤ ≤ − . 

In this case, 
0

| | 4 10 (2 4) 2 6 2 5.F n n n n≤ − − − = − < −  

By Lemma 3.2, 0

0n
CQ F−  is connected or has two 

components, one of which is an isolated vertex. By 

Lemma 3.3, 1

1n
CQ F−  satisfies one of the following 

conditions: 

(a) 1

1n
CQ F−  has two components, one of which is a 

2
K ; 

(b) 1

1n
CQ F−  has two components, one of which is 

an isolated vertex; 

(c) 1

1n
CQ F−  has three components, two of which 

are isolated vertices. 

Since 12 (4 10) 3 1n

n
−

− − − ≥  ( 6)n ≥ , by Proposition 

2.1, 
0 1

[ ( ) ( )]
n

CQ V B V B∪  is connected. Thus, 
n

CQ F−  

satisfies one of the conditions (1)-(7).  

Case 3. 
1

3 8 | | 4 14n F n− ≤ ≤ − . 

By the inductive hypothesis, 1

1n
CQ F−  satisfies one 

of the conditions (1)-(7). In this case, 

0
| | 4 10 (3 8) 2F n n n≤ − − − = − . By Lemma 3.1, 

0

0n
CQ F−  is connected. Since 12 (4 10) 3 1n

n
−

− − − ≥  

( 6)n ≥ , by Proposition 2.1, 
0 1

[ ( ) ( )]
n

CQ V B V B∪  is 

connected. Thus, 
n

CQ F−  satisfies one of the 

conditions (1)-(7).  

Case 4. 
1

4 13 | | 4 10n F n− ≤ ≤ − . 

In this case, 
0

| | 4 10 (4 13) 3.F n n≤ − − − =  By Lemma 

3.1, 0

0n
CQ F−  is connected. Suppose that 1

1n
CQ F−  is 

connected. Since 
12 (4 10) 1n

n
−

− − ≥ ( 6),n≥  by Proposition 

2.1, 0 1

0 1
[ ( ) ( )]

n n n n
CQ V CQ F V CQ F CQ F− ∪ − = −  is 

connected. Then we suppose that 1

1n
CQ F−  is 

disconnected. Let the components of 1

1n
CQ F−  be 

1
C , 

2
C , … , 

k
C  ( 2)k ≥ . Note that 

0
| | 3F ≤ . If every 

component 
i

C  of 1

1n
CQ F−  such that | ( ) | 4

i
V C ≥  for 

{1, , },i k∈ …  then 
0

0 1
[ ( ) ( ) ( )]

n n k
CQ V CQ F V C V C− ∪ ∪ ∪�  

n
CQ F= −  is connected. Suppose that there is a 

components 
i

C  such that | ( ) | 3
i

V C ≤  for {1, , }i k∈ … . 

If 0

0
( ( )) ( ) ,

n
CQ i nN V C V CQ F∩ ⊆  then 

i
C  is a 

component of 
n

CQ F−  with | ( ) | 3.
i

V C ≤  Combining 

0
| | 3F ≤ , we get that 

n
CQ F−  satisfies one of the 

conditions (1)-(7).  

Theorem 3.1. ([19]) Let 
n

CQ  be the crossed cube. 

Then (3) ( ) 4 9
n

CQ nκ = −�  for 5n ≥ . 

Lemma 3.7. ([18]) Let 
4

( )F V CQ⊆ . If | | 6F = , then 

4
CQ F−  satisfies one of the following conditions: 

(1) 
4

CQ F−  is connected; 

(2) 
4

CQ F−  has two components, one of which is a 

2
K ; 

(3) 
4

CQ F−  has two components, one of which is 

an isolated vertex; 

(4) 
4

CQ F−  has three components, two of which 
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are isolated vertices; 

(5) 
4

CQ F−  has two components, which are two 

components of order 5.  

Theorem 3.2. Let 
4

CQ  be the crossed cube. Then the 

3-extra connectivity of 
4

CQ  is not 7. 

Proof. Let F  be the minimum 3-extra cut of 
4

CQ . If 

| | 6F = , by Lemma 3.7, then 
4

CQ F−  satisfies one of 

the conditions (1)-(5) in Lemma 3.7. If 
4

CQ F−  

satisfies the condition (5), then F  is a 3-extra cut. By 

the definition of 3-extra connectivity, (3)
4( )CQκ�  

| | 6F≤ = . Thus, the 3-extra connectivity of 
4

CQ  is not 

7.  

We give an example such that the 3-extra 

connectivity of 
4

CQ  is not 7. In 
4

CQ  (see Figure 1), let 

{0100,0111,0011,1000,1110,1011}.F =  Then 
4

CQ F−  

has two components A  and ,B  where ( ) {0001,V A =  

0000,0010,0110,1010}  and ( ) {0101,1111,1001,V B =  

1101,1100} . 

It is easy to see that | | 6F =  and | ( ) | | ( ) | 5.V A V B= =  

Thus, F  is a 3-extra cut of 
4

CQ . By the definition 

of 3-extra connectivity, (3)
4( ) | | 6CQ Fκ ≤ =� . In other 

words, the 3-extra connectivity of 
4

CQ  is not 7.  

Lemma 3.8. ([18]) Let ( )
n

F V CQ⊆  ( 6)n ≥ . If 

3 4 | | 4 9n F n− ≤ ≤ − , then 
n

CQ F−  satisfies one of the 

following conditions: 

(1) 
n

CQ F−  is connected; 

(2) 
n

CQ F−  has two components, one of which is a 

2
K ; 

(3) 
n

CQ F−  has two components, one of which is a 

1,3K ; 

(4) 
n

CQ F−  has two components, one of which is a 

2-path; 

(5) 
n

CQ F−  has two components, one of which is a 

3-path; 

(6) 
n

CQ F−  has two components, one of which is 

an isolated vertex; 

(7) 
n

CQ F−  has three components, two of which 

are isolated vertices; 

(8) 
n

CQ F−  has four components, three of which 

are isolated vertices; 

(9) 
n

CQ F−  has three components, one of which is 

an isolated vertex and the other is a 
2

K ; 

(10) 
n

CQ F−  has three components, one of which 

is an isolated vertex and the other is a 2-path. 

Theorem 3.3. For 7n ≥ , the crossed cube 
n

CQ  is 

tightly (4 9)n −  super 3-extra connected. 

Proof. Let F  be a minimum 3-extra cut of 
n

CQ . By 

Theorem 3.1, | | 4 9F n= − . We can decompose 
n

CQ  

along dimension 1n −  into 0

n
CQ  and 1

n
CQ . Then both 

0

n
CQ  and 1

n
CQ  are isomorphic to 

1
.

n
CQ

−

 Let 

0

0
( )

n
F F V CQ= ∩  and 1

1
( )

n
F F V CQ= ∩  with 

0 1
| | | |F F≤ . 

Then 
1

4 9
| | 2 4.

2

n
F n

−⎡ ⎤
≥ = −⎢ ⎥
⎢ ⎥

 We consider the 

following cases.  

Case 1. 
1

2 4 | | 3 9n F n− ≤ ≤ − .  

In this case, 
0

| | 4 9 (2 4) 2 5.F n n n≤ − − − = −  By 

Lemma 3.2, 0

0n
CQ F−  is connected or has two 

components, one of which is an isolated vertex. 

By Lemma 3.3, 1

1n
CQ F−  satisfies one of the 

following conditions: 

(1) 1

1n
CQ F−  is connected; 

(2) 1

1n
CQ F−  has two components, one of which is a 

2
K ; 

(3) 1

1n
CQ F−  has two components, one of which is 

an isolated vertex; 

(4) 1

1n
CQ F−  has three components, two of which 

are isolated vertices. 

Let 
i

B  be the maximum component of i

n i
CQ F−  for 

{0,1}i∈  (if i

n i
CQ F−  is connected, then 

i

i n i
B CQ F= − ). 

Since 12 (4 9) 3 1n

n
−

− − − ≥  ( 7)n ≥ , by Proposition 2.1, 

0 1
[ ( ) ( )]

n
CQ V B V B∪  is connected. Thus, F  is not a 3-

extra cut of 
n

CQ . This is a contradiction to that F  is a 

minimum 3-extra cut of 
n

CQ . 

Case 2. 
1

3 8 | | 4 14n F n− ≤ ≤ − . 

In this case, 
0

| | 4 9 (3 8) 1.F n n n= − − − = −  By 

Lemma 3.2, 0

0n
CQ F−  is connected or has two 

components, one of which is an isolated vertex. Note 

that 
1

3( 1) 5 3 8 | | 4 14 4( 1) 10.n n F n n− − = − ≤ ≤ − = − −  

By Lemma 3.6, 1

1n
CQ F−  satisfies one of the following 

conditions: 

(1) 1

1n
CQ F−  is connected; 

(2) 1

1n
CQ F−  has two components, one of which is a 

2
K ; 

(3) 1

1n
CQ F−  has two components, one of which is a 

2-path; 

(4) 1

1n
CQ F−  has two components, one of which is 

an isolated vertex; 

(5) 1

1n
CQ F−  has three components, two of which 

are isolated vertices; 

(6) 1

1n
CQ F−  has four components, three of which 

are isolated vertices; 

(7) 1

1n
CQ F−  has three components, one of which is 

an isolated vertex and the other is a 
2

K . 
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If 0

0n
CQ F−  is connected, by Proposition 2.1, then 

F  is not a 3-extra cut of 
n

CQ . We suppose that 

0

0n
CQ F−  is disconnected. Let u  be the isolated vertex 

and 
0

B  be the other component in 0

0
.

n
CQ F−  If 

1

1n
CQ F−  satisfies the condition (3), then let P  be the 

2-path and 
1

B  be the other component in 1

1n
CQ F− . 

Since 12 (4 9) 4 1n

n
−

− − − ≥  ( 7)n ≥ , by Proposition 2.1, 

0 1
[ ( ) ( )]

n
CQ V B V B∪  is connected. If u  is connected 

to P , then 
n

CQ F−  has two components, one of 

which is 
0 1

[ ( ) ( )]
n

CQ V B V B∪  and the other is 

[{ } ( )]
n

CQ u V P∪  with |{ } ( ) | 1 3 4.u V P∪ = + =  If 

1

1n
CQ F−  satisfies one of the conditions (1)-(7) except 

(3), then F  is not a minimum 3-extra cut of 
n

CQ , a 

contradiction. 

Case 3. 
1

| | 4 13F n= − . 

In this case, 
0

| | 4 9 (4 13) 4F n n= − − − = . By Lemma 

3.1, 0

0n
CQ F−  is connected. Note that 

1
| | 4 13F n= − =  

4( 1) 9n − − . By Lemma 3.8, 1

1n
CQ F−  satisfies one of 

the following conditions: 

(1) 1

1n
CQ F−  is connected; 

(2) 1

1n
CQ F−  has two components, one of which is a 

2
K ; 

(3) 1

1n
CQ F−  has two components, one of which is a 

1,3K ; 

(4) 1

1n
CQ F−  has two components, one of which is a 

2-path; 

(5) 1

1n
CQ F−  has two components, one of which is a 

3-path; 

(6) 1

1n
CQ F−  has two components, one of which is 

an isolated vertex; 

(7) 1

1n
CQ F−  has three components, two of which 

are isolated vertices; 

(8) 1

1n
CQ F−  has four components, three of which 

are isolated vertices; 

(9) 1

1n
CQ F−  has three components, one of which is 

an isolated vertex and the other is a 
2

K ; 

(10) 1

1n
CQ F−  has three components, one of which 

is an isolated vertex and the other is a 2-path. 

Suppose that 1

1n
CQ F−  satisfies the condition (3), 

then 1

1n
CQ F−  has two components, one of which is a 

1,3.K  Note that 1,3| ( ) | 4.V K =  If 1,3( ( ))
n

CQN V K ∩  

0

0
( )

n
V CQ F= , then 

n
CQ F−  has two components, one 

of which is a 1,3K . Similarly, if 1

1n
CQ F−  satisfies the 

condition (5), then 
n

CQ F−  has two components, one 

of which is a subgraph H  of 
n

CQ  with | ( ) | 4V H = . If 

1

1n
CQ F−  satisfies one of the conditions (1)-(10) except 

(3) and (5), then F  is not a minimum 3-extra cut of 

n
CQ , a contradiction.  

Case 4. 
1

4 12 | | 4 9n F n− ≤ ≤ − . 

In this case, 
0

| | 4 9 (4 12) 3F n n≤ − − − = . By Lemma 

3.1, 0

0n
CQ F−  is connected. Suppose that 1

1n
CQ F−  is 

connected. Since 12 (4 9) 1n

n
−

− − ≥  ( 7),n ≥  by 

Proposition 2.1, 0 1

0 1
[ ( ) ( )]

n n n
CQ V CQ F V CQ F− ∪ −  

n
CQ F= −  is connected. Then we suppose that 

1

1n
CQ F−  is disconnected. Let the components of 

1

1n
CQ F−  be 

1
C , 

2
C , … , 

k
C  ( 2)k ≥ . Note that 

0
| | 3F ≤ . If every component 

i
C  of 1

1n
CQ F−  such that 

| ( ) | 4
i

V C ≥  for {1, , },i k∈ …  then 0

0
[ ( )

n n
CQ V CQ F− ∪  

1
( ) ( )]

k
V C V C∪ ∪�

n
CQ F= −  is connected. Suppose 

that there is a components 
i

C  such that | ( ) | 3
i

V C ≤  for 

{1, , }i k∈ … . If 0

0
( ( )) ( )

n
CQ i nN V C V CQ F∩ ⊆ , then 

i
C  

is a component of 
n

CQ F−  with | ( ) | 3
i

V C ≤ . Thus, F  

is not a 3-extra cut of 
n

CQ . This is a contradiction to 

that F  is a minimum 3-extra cut of 
n

CQ . 

4 The 3-extra Diagnosaility of Crossed 

Cubes Under the PMC and MM *  Model 

Theorem 4.1. ([8, 20-21]) A system ( , )G V E=  is g -

extra t -diagnosable under the PMC model if and only 

if there is an edge uv E∈  with 
1 2

( )u V F F∈ ∪�  and 

1 2
v F F∈ �  for each distinct pair of g -extra faulty 

subsets 
1
F  and 

2
F  of ( )

n
V CQ  with 

1
| |F t≤  and 

2
| |F t≤  (see Figure 2).  

 

                    
1
F       

2
F                      

1
F         

2
F  

 

 

 

 

 

Figure 2. u diagnosis v under the PMC model 

 

Theorem 4.2. ([8, 20-21]) A system ( , )G V E=  is g -

extra t -diagnosable under the MM *  model if and only 

if each distinct pair of g -extra faulty subsets 
1
F  and 

2
F  of V  with 

1
| |F t≤  and 

2
| |F t≤  satisfies one of the 

following conditions (see Figure 3): 

 

 

 

v 
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Figure 3. w diagnosis u and v under the *

MM  model 

(1) There exist two vertices 
1 2

, ( ) ( )u w V G F F∈ ∪�  

and there exists a vertex 
1 2

v F F∈ �  such that 

, ( )uw vw E G∈ . 

(2) There exist two vertices 
1 2

,u v F F∈ �  and there 

exists a vertex 
1 2

( ) ( )w V G F F∈ ∪�  such that ,uw  

( )vw E G∈ . 

(3) There exist two vertices 
2 1

,u v F F∈ �  and there 

exists a vertex 
1 2

( ) ( )w V G F F∈ ∪�  such that ,uw  

( )vw E G∈ . 

Lemma 4.1. Let 4n ≥ . Then the 3-extra diagnosability 

of the crossed cube 
n

CQ  under the PMC and MM* 

model is less than or equal to 4 6,n −  i.e., 

�

3
( ) 4 6

n
t CQ n≤ − . 

Proof. Let A  be defined in Lemma 3.4, 
1

( )
n

CQF N A=  

and 
2 1

.F A F= ∪  By Lemma 3.4, 
1

| | 4 9F n= − , 

2
| | 4 5F n= −  and 

2n
CQ F−  is connected. Thus, 

1n
CQ F−  has two components 

2n
CQ F−  and [ ]

n
CQ A . 

Note that | | 4A =  and 
2

| ( ) | 2 (4 5) 4n

n
V CQ F n− = − − ≥  

for 4n ≥ . By the definition of 3-extra connectivity, 
1
F  

is a 3-extra cut of 
n

CQ . Thus, 
1
F  and 

2
F  are both 3-

extra faulty sets of 
n

CQ  with 
1

| | 4 9F n= −  and 

2
| | 4 5F n= − . Since 

1 2
A F F= �  and 

1 2
( )

n
CQN A F F= ⊂ , 

there is no edge of 
n

CQ  between 
1 2

( ) ( )
n

V CQ F F∪�  

and 
1 2
F F� . By Theorems 4.1 and 4.2, 

n
CQ  is not 3-

extra (4 5)n − -diagnosable under PMC and MM* 

model, respectively. By the definition of 3-extra 

diagnosability, we can deduce that the 3-extra 

diagnosability of 
n

CQ  is less than or equal to 4 6n − , 

i.e., �
3
( ) 4 6

n
t CQ n≤ − .  

Lemma 4.2. Let 5n ≥ . Then the 3-extra diagnosability 

of the crossed cube 
n

CQ  under the PMC model is 

more than or equal to 4 6n − , i.e., �
3
( ) 4 6

n
t CQ n≥ − . 

Proof. By the definition of the 3-extra diagnosability, 

it is sufficient to show that 
n

CQ  is 3-extra (4 6)n − -

diagnosable. By Theorem 4.1, we need to prove that 

there is an edge uv E∈  with 
1 2

( ) ( )
n

u V CQ F F∈ ∪�  

and 
1 2

v F F∈ �  for each distinct pair of 3-extra faulty 

subsets 
1
F  and 

2
F  of ( )

n
V CQ  with 

1
| | 4 6F n≤ −  and 

2
| | 4 6F n≤ − . 

Suppose, on the contrary, that there are two distinct 

3-extra faulty subsets 
1
F  and 

2
F  of ( )

n
V CQ  with 

1
| | 4 6F n≤ −  and 

2
| | 4 6F n≤ − , but there is no edge 

between 
1 2

( ) ( )
n

V CQ F F∪�  and 
1 2
F F� . Without loss 

of generality, assume that 
2 1

F F ≠ ∅� .  

Claim 1. 
1 2

( )
n

V CQ F F≠ ∪ .  

On the contrary, we suppose that 
1 2

( )
n

V CQ F F= ∪ . 

We get 
1 2 1 2 1

2 | ( ) | | | | | | | |n

n
V CQ F F F F F= = ∪ = + − ∩  

2 1 2
| | | | | 2(4 6) 8 12F F F n n≤ + ≤ − = − , a contradiction to 

5n ≥ . Therefore, 
1 2

( )
n

V CQ F F≠ ∪ . The proof of 

Claim 1 is complete. 

Since there is no edge between 
1 2

( ) ( )
n

V CQ F F∪�  

and 
1 2
F F� , 

1n
CQ F−  has two parts 

1 2
( )

n
CQ F F∪�  

and 
2 1

[ ]
n

CQ F F� . Note that 
1
F  is a 3-extra faulty set. 

Thus, every component 
i

B  of 
1 2

( )
n

CQ F F∪�  such 

that | ( ) | 4
i

V B ≥  and every component 
i

C  of 

2 1
[ ]

n
CQ F F�  such that | ( ) | 4

i
V C ≥ . If 

1 2
F F =∅� , 

then 
1 2 1
F F F∩ = . Thus, 

1 2
F F∩  is also a 3-extra 

faulty set. If 
1 2
F F ≠ ∅� , similarly, every component 

i
D  of 

1 2
[ ]

n
CQ F F�  such that | ( ) | 4

i
V D ≥ . Thus, 

1 2
F F∩  is also a 3-extra faulty set. Since there is no 

edge between 
1 2

( ) ( )
n

V CQ F F∪�  and 
1 2
F F� , 

1 2
F F∩  is a 3-extra cut of 

n
CQ . By Theorem 3.1, 

1 2
| | 4 9.F F n∩ ≥ − Thus, 

2 2 1 1 2
| | | | | |F F F F F= + ∩�  

4 4 9 4 5n n≥ + − = − . This is a contradiction to that 

2
| | 4 6F n≤ − . Therefore, 

n
CQ  is 3-extra (4 6)n − -

diagnosable, i.e., �
3
( ) 4 6

n
t CQ n≥ − . 

Combining Lemmas 4.1 and 4.2, we have the 

following theorem. 

Theorem 4.3. Let 5.n ≥  Then the 3-extra 

diagnosability of the crossed cube 
n

CQ  under the PMC 

model is 4 6n − , i.e., �
3
( ) 4 6

n
t CQ n= − . 

A component of a graph G  is odd according as it 

has an odd number of vertices. We denote by ( )o G  the 

number of odd components of G . 

Lemma 4.3. ([16]) A graph ( , )G V E=  has a perfect 

matching if and only if ( ) | |o G S S− ≤  for all S V⊆ . 

Lemma 4.4. Let 7n ≥ . Then the 3-extra diagnosability 

of the crossed cube 
n

CQ  under the MM* model is 

more than or equal to 4 6n − , i.e., �
3
( ) 4 6

n
t CQ n≥ − . 

Proof. By the definition of 3-extra diagnosability, it is 

sufficient to show that 
n

CQ  is 3-extra (4 6)n − -

diagnosable. On the contrary, there are two distinct 3-

extra faulty subsets 
1
F  and 

2
F  of 

n
CQ  with 

1
| | 4 6F n≤ −  and 

2
| | 4 6F n≤ − , but the vertex set pair 

1 2
( , )F F  is not satisfied with any one condition in 

(3) 
w 

u 

u 

u v v v v 

u 
w w w 

(1) (1) (2) 
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Theorem 4.2. Without loss of generality, assume that 

2 1
F F ≠ ∅� . 

By Claim 1 in Lemma 4.2, we get 
1 2

( )
n

V CQ F F≠ ∪ . 

Claim 1. 
1 2

( )
n

CQ F F− ∪  has no isolated vertex. 

On the contrary, we suppose that 
1 2

( )
n

CQ F F− ∪  

has at least one isolated vertex w . Since 
1
F  is one 3-

extra faulty set, there is a vertex 
2 1

u F F∈ �  such that 

u  is adjacent to w . Note that the vertex set pair 

1 2
( , )F F  is not satisfied with any one condition in 

Theorem 4.2. By the condition (3) of Theorem 4.2., 

there is at most one vertex 
2 1

u F F∈ �  such that u  is 

adjacent to w . Thus, there is just a vertex 
2 1

u F F∈ �  

such that u  is adjacent to w . If 
1 2
F F =∅� , then 

1 2
F F⊆ . Since 

2
F  is a 3-extra faulty set, every 

component 
i

G  of 
2n

CQ F−  has | ( ) | 4
i

V G ≥ . Note that 

2 1 2
( )

n n
CQ F CQ F F− = − ∪ . So 

1 2
( )

n
CQ F F− ∪  has 

no isolated vertex. It is contradict with the hypothesis. 

Thus, 
1 2
F F ≠ ∅� . Similarly, we can deduce that 

there is just a vertex 
1 2

v F F∈ �  such that v  is 

adjacent to w . Let 
1 2

( ) ( )
n

W V CQ F F⊆ ∪�  be the set 

of isolated vertices in 
1 2

[ ( ) ( )]
n n

CQ V CQ F F∪� , and 

let H  be the induced subgraph by the vertex set 

1 2
( ) ( )

n
V CQ F F W∪ ∪� . Then for any vertex w W∈ , 

we can get that w  has ( 2)n −  neighbors in 
1 2
F F∩ . 

By Lemma 4.3 and Proposition 2.1, | |W o≤  

1 2 1 2 1 2 1 2
( ( )) | | | | | | | |

n
CQ F F F F F F F F− ∪ ≤ ∪ = + − ∩

 2(4 6) ( 2) 7 10.n n n≤ − − − = −  We assume that 

( ) .V H =∅ Then 
1 2 1

2 | ( ) | | | | | | |n

n
V CQ F F W F= = ∪ + = +  

2 1 2
| | | | | | 2(4 6) ( 2) (7 10)F F F W n n n− ∩ + ≤ − − − + −  

14 20n= − , a contradiction to that 7.n ≥  Therefore, 

( )V H ≠ ∅ .  

Since the vertex set pair 
1 2

( , )F F  is not satisfied with 

the condition (1) of Theorem 4.2 and any vertex of 

( )V H  is not isolated in H , we induce that there is no 

edge between ( )V H  and 
1 2
F F� . If 

1 2
F F∩ =∅ , then 

1 2 1 2
.F F F F= ∪�  Since there is no edge between 

( )V H  and 
1 2

,F F�  
n

CQ  is disconnected, a contradiction 

to that 
n

CQ  is connected. Thus, 
1 2
F F∩ ≠∅ . Note 

that 
1 2

( )
n

CQ F F− ∩  has two parts: H  and 

1 2 2 1
[( ) ( ) ].

n
CQ F F F F W∪ ∪� �  Thus, 

1 2
F F∩  is a 

vertex cut of 
n

CQ . Since 
1
F  is a 3-extra faulty set of 

n
CQ , we have that every component 

i
H  of H  has 

| ( ) | 4
i

V H ≥  and every component 2

i
B  of 

n
CQ  

2 1
[( ) ]F F W∪�  has 2| ( ) | 4

i
V B ≥ . Similarly, every 

component 1

i
B  of 

1 2
[( ) ]

n
CQ F F W∪�  has 1| ( ) | 4

i
V B ≥ . 

By the definition of 3-extra cut, 
1 2
F F∩  is a 3-extra 

cut of .

n
CQ  By Theorem 3.1, 

1 2
| |F F∩  4 9n≥ − .  

Note that any vertex w W∈  has two neighbors u  

and v  such that 
1 2

( )u V F F∈ �  and 
2 1

( )v V F F∈ � . 

If there is not a vertex w  such that 2( )
i

w V B∈ , then 

2

i
B  is a component of 

2 1
.F F�  We get that 

2

2 1
| | | ( ) | 4

i
F F V B≥ ≥� . If there is a vertex w  such that 

2( )
i

w V B∈ , then 2

i
B w−  is a component of 

2 1
F F� . 

We get that 2

2 1
| | | ( ) { }| 3.

i
F F V B u≥ ≥� �  Thus, 

2 1
| | 3.F F ≥�  Similarly, 

1 2
| | 3.F F ≥�  Since 

1 2
| |F F∩ =  

2 2 1
| | | | (4 6) 3 4 9,F F F n n− ≤ − − = −�  we have 

1 2
| |F F∩  

4 9n= − . Then we get that 
2 1

| | 3F F =�  and 

2
| | 4 6F n= − . Similarly, we have 

1 2
| | 3F F =�  and 

1
| | 4 6F n= − . By Theorem 3.3, the crossed cube 

n
CQ  

is tightly (4 9)n −  super 3-extra connected, i.e., 

1 2
( )

n
CQ F F− ∩  has two components, one of which is 

a subgraph of order 4. Thus, 
1 2

( )
n

CQ F F− ∩  has two 

components, one of which is 
1 2 2 1

[( ) ( ) ]
n

CQ F F F F W∪ ∪� �  

and the other one is H  with | ( ) | 4V H =  and 

1 2 2 1
| ( ) ( ) | 3 3 1 7.F F F F W∪ ∪ ≥ + + =� �  Note that 

| | 7 10W n≤ − . 

1 2 2 1 1 2
2 | ( ) | | | | | | |n

n
V CQ F F F F F F= = + + ∩ +� �  

| | | ( ) | 3 3 (4 9) (7 10) 4 11 9W V H n n n+ ≤ + + − + − + = − , 

a contradiction to 6.n ≥  The proof of Claim 1 is 

complete. 

Let 
1 2

( ) ( )
n

u V CQ F F∈ ∪� . By Claim 1 in Lemma 

4.4, u  has at least one neighbor in 
1 2

( )
n

CQ F F− ∪ . 

Since 
1 2

( , )F F  is not satisfied with any one condition in 

Theorem 4.2, u  has no neighbor in 
1 2
F F� . By the 

arbitrariness of u , there is no edge between 

1 2
( ) ( )

n
V CQ F F∪�  and 

1 2
F F� . Since 

1
F  and 

2
F  are 

two 3-extra faulty set, every component 
i

H  of 

1 2
( )

n
CQ F F− ∪  has | ( ) | 4

i
V H ≥ , every component 

i
B  

of 
2 1

([ ])
n

CQ F F�  has | ( ) | 4,
i

V B ≥  and every 

component 
i

C  of 
1 2

([ ])
n

CQ F F�  has | ( ) | 4
i

V C ≥  

when 
1 2
F F ≠ ∅� . Thus, 

1 2
F F∩  is also a 3-extra 

faulty set. Since there is no edge between 

1 2
( ( ))

n
V CQ F F∪�  and 

1 2
F F� , we have 

1 2
F F∩  is a 

3-extra cut of 
n

CQ . By Theorem 3.1, we have 

1 2
| | 4 9.F F n∩ ≥ −  Since 

i
B  is a component of 

2 1
([ ])

n
CQ F F�  with | ( ) | 4.

i
V B ≥  we have 

2 1
| | | ( ) | 4.

i
F F V B≥ ≥�  Therefore, 

2 2 1
| | | |F F F= +�  

1 2
| | 4 (4 9) 4 5,F F n n∩ ≥ + − = −  which contradicts 

2
| | 4 6.F n≤ −  Thus, 

n
CQ  is 3-extra (4 6)n − -diagnosable, 

i.e., �
3
( ) 4 6

n
t CQ n≥ − . The proof is complete. 

Combining Lemmas 4.1 and 4.4, we can get the 

following theorem.  
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Theorem 4.4. Let 7.n ≥  Then the 3-extra 

diagnosability of the crossed cube 
n

CQ  under the 

MM* model is 4 6n − , i.e., �
2
( ) 4 6

n
t CQ n= − . 

4 Conclusion 

We prove that the 3-extra connectivity of 
n

CQ  is 

4 9n −  for 5n ≥ . Moreover, 
n

CQ  is tightly (4 9)n −  

super 3-extra connected for 7n ≥ . Then we determine 

that the 3-extra diagnosability of 
n

CQ  is 4 6n −  under 

the PMC model ( 5)n ≥  and MM* model ( 7)n ≥ . On 

the basis of this study, the researchers can continue to 

study the g -extra connectivity and diagnosability of 

networks [22]. 
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