
Mitigating DoS Attacks in SDN Using Offloading Path Strategies 1281

Mitigating DoS Attacks in SDN Using Offloading Path Strategies

Tai-Siang Huang, Po-Yang Hsiung, Bo-Chao Cheng

Department of Communications Engineering, National Chung-Cheng University, Taiwan

x030060@gmail.com, paul100dtj@gmail.com, bcheng@ccu.edu.tw *

*Corresponding Author: Bo-Chao Cheng; E-mail: bcheng@ccu.edu.tw

DOI: 10.3966/160792642019072004026

Abstract

Software-Defined Networks (SDNs) were created to

facilitate the management and control of the network.

However, the security problem is still unresolved. To

avoid the DoS attacks caused by links exceeding the

bandwidth load (such as traffic flooding and security

loopholes), the most simple mitigation solution is to

offload the data by transferring it to other links. However,

the transfer of information could lead to high bandwidth

loads on other links. To overcome this problem, this

paper proposes a method called “Avoid Passing High

Utilization Bandwidth (APHUB),” which aims to (1)

prevent the unloaded data putting additional load on the

links when passing through the high bandwidth and (2)

find a suitable new path. A comparison of the maximum

bandwidth utilization using the proposed method with

that of other algorithms showed that this method

consistently produced the smallest bandwidth utilization;

we thus consider it a better mitigation method than those

presented previously.

Keywords: Software defined network, Offload, Path

selection, Maximum utilization

1 Introduction

With the development of modern networks, software

defined network (SDN) technology is gradually being

developed to make it easier and more convenient for

managers to control and operate the networks.

However, security problems in the network are

growing so fast that the design and updates for the

defense strategies can hardly keep up due to the

physical limits of the security devices. As a result,

excessive congestion occurs in some links because of

DoS attacks, leading to the loss of data packets and

other problems. In the worst case, hackers might use

this defect to cause a transmission inefficiency in the

entire network 0. To avoid this problem, many studies

have developed various load-balancing methods.

To avoid high bandwidth utilization caused by

overuse in the same link, load-balancing methods

transfer data by passing links with high bandwidth

utilization to links with lower bandwidth utilization.

This method is used mainly in decentralized IP

networks. The disadvantage of this method is that it

cannot ensure that, after transferring to the links with

lower bandwidth utilization, the next switch still has

links with low bandwidth utilization available.

One load-balanced method uses SDNs to monitor

the switches and collect information about the usage of

all links in the entire network so that it can calculate

and reallocate the entire network bandwidth usage

between all links. The new balanced load is achieved

based on the results of the calculation.

Though the two methods mentioned above solve the

basic problem of high bandwidth utilization, they

cannot ensure that, in the path from the source to the

destination, the data always passes through the links

that have the smallest bandwidth utilization. Therefore,

this study aims to find a path that ensures the smallest

maximum bandwidth utilization (û) in all paths which

is demonstrated by the following formula:

 û { []}
i

Max P U= , i = 1, 2, …, n

 Find the P which û is minimum � Min û,

where P is the path, û is the maximum bandwidth

utilization, i is one of the possible paths from source to

destination, and []
i
P U is the set of bandwidth loads for

each link between the switches selected by this path

([]
i
P U = [u1, u2, …, um]).

The remainder of this article is structured as follows:

The following section reviews previous literature to

introduce existing flow control methods and compares

them with the method proposed in this study. The third

section presents the proposed method with an example

of its operation. The fourth section lists the

experimental results with the analysis and explanations,

and the fifth section presents a summary of this article

and discusses future developments.

2 Related Work

In 2016, Benjamin Baron et al. 0 used vehicle traffic

for the centralized control of quality data unloading

and used existing roads and road networks instead of

data networks to mitigate the delays in traffic flow.

This system takes advantage of the mobility of the

vehicle by transmitting delay-tolerant traffic through

1282 Journal of Internet Technology Volume 20 (2019) No.4

the road network and uses the daily routine of the

vehicle to reduce the traffic burden of the traditional

data network. The author proposed the SDN-based

structure in which a controller and a set of fixed

wireless data storage devices make up the unloading

point and are used as a forwarding engine. The

controller receives the request to offload all or part of

the data transmission and selects the vehicle flow for a

series of offloading points that meet the transmission

performance requirements in terms of bandwidth and

latency. The controller solves the traffic distribution

problem using Max-Min fairness allocation, calculates

the unloading point sequence, connects to the

unloading point, installs the forwarding state, and

configures the scheduling policy.

As the amounts of users and data traffic on mobile

networks has grown in recent years, the 3G/4G base

station (BS) or access point (AP) network service

speed have declined, resulting in low QoS. To solve

this problem, Jang and Chang 0 proposed a new

approach called "Flow Management on Mobile Data

Using SDN (FMSDN)", which uses software to define

the characteristics of the network, depending on the

different circumstances, to manage the flow and

control of data, and compare the methods to the

enforced handover and horizontal handover theories.

The purpose of this method is to prevent information

loss from BS or AP, low QoS, or other issues caused

by the overly huge data flow. However, the question

remains whether a switch bandwidth can bear the huge

amount of data in the huge information flow when

passing from BS or AP down to SDN.

In the dynamic load balanced, the lack of strict

routing synchronization increases the tendency of

transient loops. In 2016, Lee et al. 0 attempted to make

the router achieve a dynamic load balance while

avoiding the occurrence of transient loops in the IP

network using two methods: Local Traffic Rerouting

(LTR) and Global Traffic Rerouting (GTR). The only

difference between the two methods is “Local” and

“Global”; the core algorithms are the same. The focus

is to prevent the link bandwidth usage from getting too

large and leading to network congestion and packet

loss. The use of LTR or GTR can dynamically adjust

the flow of information and achieve a balanced load. In

the algorithm, the way the links are connected to use

the directed acyclic graph (DAG) ensures that the

transient loops are avoided. In the path search, the

search takes the shortest path, and the selection of the

next node is relaxed. The threshold is used to

dynamically adjust the path selection.

Lan, Wang, and Hsu 0 proposed an algorithm called

Dynamic Load-balanced Path Optimization (DLPO).

This algorithm is optimized from LABERIO 0 and

contains two main stages. The first stage is the

initialization of the path in which the DLPO attempts

to find a temporary path based on the available

bandwidth of the bottleneck link for each path, and in

all possible paths between the source and target hosts.

The path with the largest available bandwidth on the

bottleneck link will be selected as a temporary path.

The second stage is the optimization of the dynamic

path in which the DLPO changes the traffic path during

traffic transmission to balance the link utilization and

solve the congestion problem in the data center

network. The DLPO load balancing consists of two

algorithms: the Multi-link DLPO algorithm and the

Single-link DLPO algorithm. The Multi-link DLPO

algorithm can quickly balance the link utilization in the

network to address some congestion paths, and the

Single-link DLPO algorithm can reroute the traffic to

avoid using high utilization links to solve the

congestion path that the Multi-link DLPO algorithm

cannot handle.

3 Approach

In this article, we propose an algorithm called

“APHBU,” which collects current information,

controls the status of the switch, and calculates an

appropriate path to offload data. This method follows

four steps:

Detection. The algorithm first detects whether the

original path has a link with a high bandwidth

utilization. The switch notifies the control layer, which

recalculates the new path and passes it back to the

switch.

Sorting. The algorithm recalculates the path and uses

the features of the SDN to collect the information

downstream of the switch, mainly for each link load

conditions, and to sort all of the links from small to

large. This sorting procedure is used to create the

Order List (L) in preparation for the next algorithm.

Connection path establishment. The algorithm

defines a Select List (S), which starts with NULL;

through the L, after DELETE the load link one by one

from the smallest, add INSERT it into the S, and

determine whether a path of S can be found between

the source and the destination; if not, repeat the action

of DELETE and INSERT to re-judge, until successful.

By connecting the S path, the connected tree is formed.

Assurance in the minimum bandwidth utilization in

the path. After forming the connected tree, there may

be plural paths between the source and the destination.

To improve the path, the shortest path algorithm is

applied to the connected tree.

4 Example

In this subsection, we take a basic network as an

example, to compare the path found by APHUB with

those found by other algorithms. First, as shown in the

diagram of the network, Figure 1, A is the source and

H is the destination, and the number associated with

the links are current link bandwidth utilizations. The

Mitigating DoS Attacks in SDN Using Offloading Path Strategies 1283

results of three algorithms—APHUB, Shortest Path

Smoothing (SPS), and Minimum First Smoothing

(MFS)—are compared.

Figure 1. Example network

4.1 APHUB

First, it removes all links from the network, and

sorts the links by current link bandwidth utilization to

create a sorted list L = [Link(C, D), Link(D, F), Link(E,

H), Link(A, B), Link(C, F), Link(A, C), Link(B, D),

Link(D, H), Link(F, G), Link(F, H), Link(A, E),

Link(C, G)].

Next, it joins the links one by one and decide

whether A can be connected to H successfully. When

the link comes to Step 7, as shown in Figure 2, the

connection is successful, and the formed structure is

recorded as a connected tree. A multiple path is found,

and the shortest path is applied to the connected tree.

The best path is found as A → C → D → H, and the

maximum link utilization is the last link, namely, Link

(D, H), whose value is 7.

Figure 2. APHUB outcomes

4.2 Shortest Path Smoothing (SPS)

SPS is a typical path search algorithm, which selects

the route by finding all the paths connecting A → H

and by summing the utilizations in all paths shown in

Table 1. The path with the smallest utilization is

selected, as shown in Figure 3. The selected path is A

→ E → H, but the maximum utilization is Link (A, E),

whose value is 10.

Table 1. The results of the three algorithms

Algorithm Path û

APHUB [Link (A, C), Link (C, D), Link (D, H), Link (G, H)] Link (D, H) = 7

Shortest Path Smoothing (SPS) [Link (A, E), Link (E, H)] Link (A, E) = 10

Minimum First Smoothing (MFS)
[Link (A, B), Link (B, D), Link (D, C), Link (C, F),

Link (F, G), Link (G, H)]
Link (F, G) = 8

Figure 3. SPS outcome

4.3 Minimum First Smoothing (MFS)

MFS is an intuitive algorithm that directly selects

the minimum utilization of the link to forward; the time

complexity is low and can quickly determine the path.

Step 1. Of the three links after A, the minimum

bandwidth link, Link (A, B), is selected.

Step 2. After reaching B, as the connection cannot

move backward, only one link is available, namely,

Link (B, D), so the connection continues here.

Step 3. After reaching D, there are three links, and the

minimum bandwidth link, (D, C), is selected.

Step 4. After reaching C, there are three links, the

minimum bandwidth link, Link (C, F), is selected.

Step 5. After reaching F, there are three links, the

minimum bandwidth link is (C, D). However, as D has

already been visited, the second smallest Link (F, G) is

selected.

Step 6. After reaching C, there are two links, the

minimum bandwidth link, Link (G, H), is selected.

To arrive at the destination, the selected path is

A→B→D→C→F→G→H. In the path, the maximum

link bandwidth utilization is Link (F, G), whose value

is 8 (as shown in Figure 4).

1284 Journal of Internet Technology Volume 20 (2019) No.4

Figure 4. Step-by-step diagram of MFS

Consolidating the results of the three algorithms

results in Table 1. The path found by APHUB has the

minimum value of û.

5 Experiment

This section compares the algorithms presented in

the examples to compare the simulations in terms of

the maximum link utilization of each û and the average

size of the bandwidth. To make the simulation easier,

this article uses C language to perform the experiment

(as sown in Table 2). Table 3 shows the pre-set

parameters before the experiment is carried out.

Table 2. Experimental simulation environment

SW/HW Description

Processor Intel Core i7 3.40 GHz

RAM 4GB

Operating System Microsoft Windows 7

Programming Language C Language

Table 3. Parameters in the experiments

Parameter Quantity

Number of switches 100~500

Offload 5~35 (%)

Output Link 1~10

Utilization 0~99 (%)

Average bandwidth utilization in the network 30~70 (%)

In this lab, the assumed specification for each switch

is the same, but output link and bandwidth utilization

are different. The topology of the network is a random

connection, and the value of bandwidth utilization is

given by the Gaussian discrete method, so that the

value belongs to the normal distribution. In this

experiment, we discuss how different averages will

lead to the relation between the average and the

maximum bandwidth utilization. In the experiment,

three path search methods, APHBU, MFS, and SPS are

discussed.

The relation between the maximum link bandwidth

load rate and the average bandwidth of the entire

network link bandwidth is shown in Figure 5. It can be

seen from the figure that APHUB can effectively keep

the maximum link bandwidth utilization in the path

below the average value of the network link bandwidth

utilization. For MFS and SPS, the situation is as

follows:

Figure 5. The relation between the average bandwidth

utilization and the maximum bandwidth utilization

(1) As mentioned above, the maximum utilization of

the MFS maximum load is the largest among the three,

much larger than the average, or is unable to let the

data offload connect to the link with maximum

utilization, thus resulting in failure.

(2) The maximum utilization of the SPS is

significantly smaller compared to that of MFS, but the

maximum link bandwidth utilization of its path is still

not comparable to that of APHUB, and the minimum

value cannot be achieved.

6 Conclusion

The purpose of this paper is to prevent links to high

bandwidth utilization when the data path is reproduced

and to ensure that the path is optimized so that the

highest link utilization is the smallest of all paths. In

addition, the new data path can ensure that all links in

the path of the data flow are low load links, thus

balancing the load. As the link in the path of the largest

utilization joins last, it can be clearly and quickly

known which link requires further analysis.

Acknowledgements

This research is partially supported by Ministry of

Science and Technology, Taiwan under Grant no.

MOST 105-2221-E-194-014-MY2 and MOST 106-

3114-E-006-003.

Mitigating DoS Attacks in SDN Using Offloading Path Strategies 1285

References

[1] R. Kandoi, M. Antikainen, Denial-of-service Attacks in

OpenFlow SDN Networks, IFIP/IEEE International

Symposium on Integrated Network Management, Ottawa,

Canada, 2015, pp. 1322-1326.

[2] B. Baron, P. Spathis, H. Rivano, M. D. de Amorim, Y.

Viniotis, M. Ammar, Centrally-Controlled Mass Data

Offloading Using Vehicular Traffic, IEEE Transactions on

Network and Service Management, Vol. 14, No. 2, pp. 401-

415, June, 2017.

[3] H.-C. Jang, C.-H. Chang, Context Aware Mobile Data

Offload Using SDN, Telecommunication Networks and

Applications Conference (ITNAC), Dunedin, New Zealand,

2016, pp. 185-190.

[4] K.-Y. Li, C.-W. Chen, S. S. W. Lee, Dynamic Load Balanced

Routing in IP Networks, 6th International Conference on

Information Communication and Management, Hertfordshire,

UK, 2016, pp. 216-221.

[5] Y.-L. Lan, K. Wang, Y.-H. Hsu, Dynamic Load-balanced

Path Optimization in SDN-based Data Center Networks, 10th

International Symposium on Communication Systems,

Networks and Digital Signal Processing (CSNDSP), Prague,

Czech Republic, 2016, pp. 1-6.

[6] H. Long, Y. Shen, M. Guo, F. Tang, LABERIO: Dynamic

Load-balanced Routing in OpenFlow-enabled Networks,

IEEE Advanced Information Networking and Applications

Conference, Barcelona, Spain, 2013, pp. 290-297.

Biographies

Tai-Siang Huang received a M.S.

degree in degree in Communications

Engineering at National Chung-Cheng

University in 2017. His research

interests include network security and

path planning algorithms.

 Po-Yang Hsiung received B.S. (2015)

from Yuan Ze University, Taiwan,

and M.S. (2017) from National Chung

Cheng University, Taiwan. His

research focuses on cell phone

security, fog computing, energy

consumption and aims at collusion

attacks.

Bo-Chao Cheng is a Professor of

Department of Communications

Engineering at National Chung-Cheng

University. Cheng received a Ph.D.

degree in CIS from New Jersey

Institute of Technology in 1996. After

graduations, he also worked for

Transtech Network (2000-2002), Bellcore (1998-2000)

and Racal DataCom (1996-1998) respectively. His

broad interests include network security, network

management and real-time embedded system design.

1286 Journal of Internet Technology Volume 20 (2019) No.4

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (Japan Color 2001 Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJDFFile false
 /CreateJobTicket true
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHT <FEFF005B683964DA300C005000440046002800310032003000300064007000690029300D005D0020>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
 <<
 /AddBleedMarks true
 /AddColorBars false
 /AddCropMarks true
 /AddPageInfo true
 /AddRegMarks false
 /BleedOffset [
 8.503940
 8.503940
 8.503940
 8.503940
]
 /ConvertColors /NoConversion
 /DestinationProfileName (sRGB IEC61966-2.1)
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /ClipComplexRegions true
 /ConvertStrokesToOutlines false
 /ConvertTextToOutlines false
 /GradientResolution 400
 /LineArtTextResolution 1200
 /PresetName <FEFF005B9AD889E367905EA6005D>
 /PresetSelector /HighResolution
 /RasterVectorBalance 1
 >>
 /FormElements true
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MarksOffset 0
 /MarksWeight 0.283460
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PageMarksFile /JapaneseWithCircle
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [1200 1200]
 /PageSize [612.000 792.000]
>> setpagedevice

