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Abstract 

A novel approach for building an Artificial Neural 

Network (ANN) to reconstruct experimental design data 

using Levenberg-Marquardt optimizer and validating 

obtained model based on K-fold cross-validation is 

implemented. In this approach it matters less how the 

data gets divided, every data point gets to be in test set 

precisely once and gets to be in a training set (k-1) times. 

Further, this helps to exclude overfitting of the model on 

training data and better predictions over unseen data. 

Moreover, this is the most significant strength and 

advantage of this approach. Also, by using this approach 

for validation and Levenberg-Marquardt optimizer two 

model layers, namely, the input layer consisting of 

multivariable nodes and the output layer consisting 

output node, will be conceptually created and validated. 

The internal layers will be incorporated based on the 

complexity of the problem. The performance of the 

obtained model is evaluated using the coefficient of 

determination. Besides, it is found to have excellent 

correspondence with experimental results. The method is 

also compared with existing methods based on model 

validation, and it shows the much-improved capability to 

predict optimal results. 

Keywords: Artificial Neural Network, K-fold cross-

validation, Response surface methodology, 

Levenberg-Marquardt optimizer 

1 Introduction 

As known, statistical experimental design with 

Response Surface Methodology (RSM) is popularly 

used in engineering for optimization. RSM was first 

mentioned by Box and Wilson [1] as a prediction tool 

for experimental design in engineering applications. 

However, RSM still has certain limitations as it needs a 

proper experimental design (e.g., well-distributed and 

non-biased factorial design) for modeling. Moreover, it 

could not possess learning capability via present 

experimental data. RSM models are usually accurate 

only for test range of input parameters (e.g., 

interpolation, but not extrapolation) Alternatively, the 

development of higher order of RSM models requires a 

significant number of experiments to be performed 

with sufficient calculation and computation; this also 

limits the use of RSM for highly non-linear systems. 

In consequence, to fit high non-linearity and to have 

better predictions by learning over data; Machine 

learning (ML) [2] is first used to have a wide range of 

applications. It provided the construction of algorithms 

to learn from and make predictions over databases. It is 

already employed in many computing tasks such as (i) 

ML web: A toolkit for machine learning on the web, 

which enables machine learning for web applications 

[3], (ii) Predicting dissolution kinetics of silicate 

glasses using machine learning [2], (iii) Machine 

Learning in medical imaging [4] for image-based 

diagnosis, disease prognosis and risk assessment, (iv) 

Machine learning for Gravity Spy: Glitch classification 

and dataset [5] that combines crowdsourcing with 

machine learning to help categorize the glitches v) A 

machine learning scheme to synchronization of 

automata [6], to predict reset word length for automata. 

Furthermore, there are several approaches in the field 

of machine learning to train the data such as Decision 

tree learning [7], Association rule learning [8], 

Artificial Neural Networks [9], Deep Learning [10], 

Inductive logic programming [11], Support Vector 

Machines [12], Clustering [13], Bayesian Networks 

[14], Reinforcement learning [15], Representation 

learning [16], Similarity and metric learning [17], 

Sparse Dictionary learning [18]. Among them, the 

Artificial Neural Network (ANN) is adopted herein for 

study as it can converge on a small set of data via 

Levenberg-Marquardt [19] learning optimizer. 

Also, Artificial Neural Network is the information 

processing chemo-metric technique created to model 

non-linear transformation, which simulates essential 

learning mechanisms of the human brain. Moreover, 

due to its ability to fit non-linear behavior, it is widely 

applied in many fields like (i) in Engineering for 

estimating Biogas Engine Performance [20] (ii) in 
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medical as a SpO2 measurement for clinical 

Management Systems [21] (iii) in Energy to predict the 

performance of Solar Collector Systems [22] (iv) in 

agriculture as modeling of extraction kinetics of 

essential oil from tarragon using ultrasound pre-

treatment [23] (v) in computational science as 

modeling of nanostructured memristor device 

characteristics [24]. 

Regarding practical engineering applications, there 

are some papers mentioned technical feasibility of 

ANN and RSM interactive modeling on different 

processes for system optimization. For instance, Kartic 

et al. [25] studied the removal of high concentration of 

sulfate from the pigment industry using ANN and 

RSM modeling approaches. Sabour and Amiri [26] 

studied ANN and RSM modeling of simultaneous 

optimization of multiple targets in Fenton treatment of 

landfill leachate; Ohale et al. [27] showed Optimal 

factor evaluation for the dissolution of alumina from 

Azaraegbelu clay in acid solution using RSM and 

ANN modeling.  

Even these were proposed for use, data validation 

from model prediction remained open for further 

assessment to practicability. Among different 

validation approaches like Resubstitution, Random 

subsampling, holdout cross-validation approach is used 

to compare and validate models in studies mentioned 

above. The advantage of this approach is that it takes 

less time for computation, but its result can have 

colossal inconsistency. The evaluation may entirely 

depend on which experimental data points goes in 

training part and which goes in test part. Thus, the 

evaluation will significantly depend on how the 

division of train and test part is made. 

Regarding the improvement of model validation, K-

fold cross-validation [28] is a better approach over the 

holdout method for validation on experimental design 

data. The dataset is divided into k sub-parts, and the 

holdout method is iterated k times. Each time, out of k 

subparts of data one part is used for testing and the 

other (k-1) subparts go for training. The advantage of 

this method is every experimental design data point 

gets to be in a test subpart and train subpart; this helps 

to exclude overfitting of the model on training data. 

The shortcoming of this approach is that the model 

needs to iterate k times which involves much 

computation. Hence, more investigation is needed to 

build an ANN model on experimental design data 

using Levenberg-Marquardt optimizer and validating 

using K-fold cross-validation. Here, K is ranged from 

5-10 to compare performance with RSM models for 

correct evaluation of which model is better to predict 

the optimal experimental output(s)/condition(s). 

The significance of this first-attempt study is to 

show the promising predictive capability of an ANN 

over experimental design data while validating models 

using K-fold cross-validation. Moreover, propelled 

from biological sensory systems and mind structure, 

Artificial Neural Networks (ANN) could be viewed as 

data handling frameworks, which permit elaboration of 

numerous unique methods covering an expansive field 

of utilization for the proposed approach. Among their 

most engaging properties, one can cite their learning 

and speculation abilities. In the event that an expansive 

number of works are concerned with the theoretical 

and practical parts of the ANN, just a couple are 

accessible concerning their true modern application 

abilities to achieve better results. The RSM entitles to 

defining and forecasting the relationship prevailing 

between the response and explanatory variables. 

Enabling to use a continuous set of experiments 

leading to an optimal response. These models assist to 

efficiently determine and apply the actions depending 

on approximation though only a few information is 

available for the process. RSM along with ANN 

enables process optimization depicting the response 

variable which is influenced by various independence 

variables. It is found from simulations on 3 set of 

experimental design data that ANN has good capability 

in learning and making predictions on experimental 

design data. Also, system performance is also 

compared with RSM, and it is found that the ANN 

owns much better capability to predict experimental 

design data and to optimize the maximum efficiency of 

production. 

2 Materials and Methods 

2.1 Adopted Database 

Experimental design data developed by Hamid et al 

[29] for predicting capability of carboxylated cellulose 

nanowhiskers for the remediation of copper from water, 

Ohale et al [27] for dissolution of alumina from 

Azaraegbelu clay and Khatti et al [30] for modeling 

electrospinning process of polycaprolactone to predict 

fiber diameter are used in this study. 

2.2 Artificial Neural Network 

Multilayer perceptron ANN with one input layer, 

maximum of one hidden layer, and one output layer is 

used. Furthermore, to achieve the optimum topology of 

the network, different numbers of neurons in hidden 

layers are examined using a trial and error approach; 

while varying the number of neurons in the range 1-10. 

The learning is performed using Levenberg-Marquardt 

damped least-squares optimizer [19], this optimizer 

works on minimizing the least sum of squares function. 

By interpolating between Gauss-Newton [31] and 

Gradient Descent approach [32], the (non-negative) 

damping factor λ in the equation given by Levenberg-

Marquardt (Eq.1) is adjusted at each iteration. If the 

reduction in “least sum of square function” is rapid, a 

smaller value of λ can be used, bringing optimizer 

closer to Gauss-Newton method. If an iteration gives 
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an insufficient reduction in residual (i.e., deviation 

from experimental data), λ can be augmented, giving a 

stride closer to the gradient-descent route. The transfer 

function used for hidden layers and the output layer are 

assumed to be log-sigmoid and linear, the performance 

index is chosen through Eq.2. Figure 1(a) represents 

the general ANN model diagram. The detailed 

procedure for training and validating the neural 

network can be seen in the flowchart in Figure 1(b). 

The software used for Simulation is MATLAB 

(R2017b) a multi-paradigm numerical computing 

environment developed by MathWorks Inc. 

 

(a) A general ANN model diagram 

 

(b) Flowchart for ANN with K-fold cross-validation 

Figure 1. Traditional ANN model and Flowchart for training ANN model along with K-fold cross-validation 
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Levenberg-Marquardt: 

 [ diag( )] [ ( )]T T TJ J J J J y fλ δ β+ = −   (1) 

Mean Squared Error (MSE):  

 

2

0

1

( )n

P

i

y y

n
=

−

∑  (2) 

where 
P
y  = predicted value 

           
0
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           n  = no of observations 

J  = Jacobian Matrix whose i -th row is equal to 
i
J , 

where f  and y  are vectors with i -th component 

( , )
i

f x β  and 
i
y  respectively, the equation is a set of 

linear equations, which is solved for δ(epoch). 

In point of fact, transfer functions are a significant 

part of an Artificial Neural Network to introduce non-

linear behavior to the network. Various transfer 

functions are Sigmoid, Tanh and Relu (Rectified 

Linear Units), the advantages and disadvantages are 

listed in Table 1. List of training parameters in the study 

is illustrated in Table 2. 

Table 1. List of advantages and disadvantages of 

activation functions 

Activation 

Function 
Advantage Disadvantage 

Sigmoid 

Easy to understand 

and apply, Easy to 

train on small dataset 

[26] 

Vanishing Gradient 

Problem, the output is 

not zero centered. 

Tanh 

The output is zero 

centered 

Vanishing Gradient 

Problem, hard to train 

on small datasets. 

Relu 

Avoids and rectifies 

vanishing gradient 

problems. 

Can only be used with a 

hidden layer, hard to 

train on small datasets 

need much data for 

learning non-linear 

behavior. 

Table 2. List of training parameters in the study 

Parameter Value 

Train Function ‘trainlm’ 

Max Epochs 50 

Performance goal 0.000000000000001 

Transfer Function ‘log-sigmoid’ 

Learning rate 0.1 

 

In this study, sigmoid activation function will be 

used for hidden layer as it is easy to get the train on a 

small dataset and experimental design data involves 

less data, as shown by Khatti et al. [30]. Also, this 

study involves solving regression problem where 

outputs are in continuous form; a linear function is 

used in the output layer for this purpose as shown by 

Khatti et al. [30]. 

3 Results and Discussion 

3.1 Case A - Modeling Remediation of Copper 

from Water Using Carboxylated Cellulose 

Nanowhiskers [29] 

In this study, the capability of carboxylated cellulose 

nanowhiskers for remediation of copper from water is 

evaluated [29]. Input parameters include temperature 6 

to 25℃, Initial Cu (II) ion concentration 10 to 60 mg/L 

and sorbent dosage 0.2 to 10 g/L. The output parameter 

is Cu (II) removal percentage. All values are coded in 

the dimensionless range of -2 to 2 as experimental 

design set. An ANN-based model with K-fold cross 

validation is developed for describing the removal of 

Cu (II) by modified CNWs [29]. Model is trained on a 

total of 20 experimental points, with Levenberg-

Marquardt damped least square optimizer and K-fold 

cross-validation for validation purpose. To reduce 

deviations of predictions from experimental results, K 

was designated from 6-10. Since the values of K<, 6 

generally offer high variance and value of K above 10 

offers less bias on datasets, having less experimental 

design data. For each K, a number of neurons in the 

hidden layer is varied from 1 to 10. The correct value 

of K chosen for validation relies upon variance 

estimate of the dataset. High K reduces the variance 

estimate of the dataset. In contrast, in a lower value of 

K sufficient data is not included in the training set by 

the learner. Thus, the value of K chosen entirely 

depends on the design data. Average validation error 

for each configuration is noted (as shown in Table 3) 

and for this case, K=8 gives the best variance estimate. 

In which 8 different combinations of 16 train and 4 test 

sets, provide an intense check on 8 different test sets of 

the network with an optimal configuration of (4:8:1) 

MLP architecture. RSM and ANN model developed by 

Hamid et  al .  [29] shows good agreement on 

experimental data points. In order to have a comparison, 

accurate evaluation of models performance for 14 

unseen experimental design data points of Cu (II) 

removal is evaluated by all three models in terms of R
2 

(Figure 2) .  Corresponding residuals  of  each 

experimental data point by each model is calculated for 

comparison as shown in Table 4. From the results on 

unseen experiments, apparently residuals obtained 

from ANN chosen by K-fold cross-validation is the 

least. For example, on the first experimental point, it is 

1.53 from the actual value which is better than other 

models (i.e., 7.14 from RSM and 4.81 from ANN by 

Hamid et al. [29]). In addition, R2 for RSM model is 

calculated to be 0.73, whereas for ANN by Hamid et al. 

[29] evaluates to be 0.93 and for ANN after K-fold 

cross-validation on K=8 as 0.95 (Figure 2). These 

results confirmed that ANN models selected by K-fold 

cross-validation approach, unseen experimental design 

data are better than those made by RSM and ANN by  
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Table 3. Simulated results on experimental design data by Hamid et al. [29], where N1=input neuron, NH=Hidden 

Neuron, NO=Output neuron, K=Different combination of train and test sets, MSE=Average Mean-Square Error on 

the validation set 

Runs K N1-NH-NO MSE 

1 6 4-2-1 10.5 

2 6 4-4-1 7.2 

3 6 4-6-1 4.3 

4 6 4-8-1 3.6 

5 6 4-10-1 3.6 

6 8 4-2-1 7.3 

7 8 4-4-1 6.2 

8 8 4-6-1 2.2 

9 8 4-8-1 0.9 

10 8 4-10-1 0.9 

11 10 4-2-1 9.3 

12 10 4-4-1 4.8 

13 10 4-6-1 3.9 

14 10 4-8-1 2.1 

15 10 4-10-1 1.9 

 

   

(a) R2=0.73 (b) R2=0.9 

 

(c) R2=0.95 

Figure 2. Comparison of model validation from (a) Prediction from RSM, (b) Prediction from ANN (developed by 

Hamid et al. [29]), and (c) Prediction from ANN (K-fold) 
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Table 4. Comparison of simulated results for 14 unseen Experiments, where T=Temperature in °C, C=Initial Cu (II) 

ion concentration, m=Sorbent dosage (g/L), Residual=Different between the predicted and actual value 

No. of 

runs 
T C m 

Cu (II) 

removal (%) 

% removed

(RSM) 
Residual

% removed 

ANN (Hamid 

et al. [29]) 

Residual 

% removed 

ANN  

(K-fold validated)

Residual 

1 21.3 50.3 5.1 62.21 69.35 -7.14 66.82 -4.81 63.74 -1.53 

2 9.7 19.6 5.1 84.06 89.45 -5.39 92.57 -8.51 87.22 -3.16 

3 15.5 35.0 8.1 82.39 86.72 -4.33 89.09 -6.7 86.88 -4.49 

4 18 55.0 8.1 74.19 79.50 -5.37 77.83 -3.64 77.32 -3.13 

5 10 55.0 4.0 60.41 53.97 6.44 53.96 6.45 57.54 2.87 

6 20 35.0 9.5 82.64 87.77 -5.13 86.87 -4.23 85.62 -2.98 

7 20 15.0 5.1 88.31 92.67 -4.36 93.27 -4.96 92.37 -4.06 

8 6 10.0 8.1 91.37 99.98 -8.61 99.99 -8.62 88.92 2.45 

9 25 60.0 8.1 70.43 83.33 -12.9 79.34 -8.91 68.24 2.19 

10 25 60.0 4.0 57.20 56.01 1.19 52.72 4.48 54.73 2.47 

11 10 10.0 4.0 92.23 92.73 -0.50 99.99 -7.77 89.88 2.35 

12 6 35.0 2.1 55.75 54.14 1.61 63.49 -7.74 58.27 -2.52 

13 6 20.0 2.1 86.24 70.22 16.02 88.62 -2.38 88.71 -2.47 

14 10 10.0 2.1 90.02 79.30 10.72 94.30 -4.28 87.88 2.14 

 

Figure 3. Response surface of interactive behavior of Concentration and Sorbent dosage on Cu (II) removal 

Hamid et al. [29]. This is due to the fact of intense 

check on test cases performed in k-fold cross 

validation before selecting an appropriate model. By 

varying initial concentration from 10 to 60 (mg/L) and 

sorbent dosage from 0.2 to10 at fixed temperature 

15.5°C, predicted results by ANN is shown in Figure 3. 

The percentage removal of Cu (II) increased on 

increase of sorbent dosage up to 7 g/L and then 

remains constant with an increase of sorbent dosage. 

This shows the high removal of Cu (II) at the high 

amount of sorbent dosage and low initial Cu (II) ion 

concentration. The results obtained by ANN are similar 

with findings reported in the literature [36]. A 

prediction of 100% removal matches well with that 

shown by Hamid et al. [29]. Hence, K-fold cross-

validated ANN using Levenberg-Marquardt optimizer 

can be efficiently used in process modeling for 

experimental design [37]. 

3.2 Case B-Modeling Alumina Dissolution 

from Azaraegbelu Clay [27] 

As Ohale et al. [27] studied, input variables of 

experimental data included temperature 55-100 ℃ , 

stirring speed 150-900 rpm, clay to acid dosage 0.01-

0.1 g/ml, leaching time 40-250 min and leachant 

concentration 0.5-5.5 M. Alumina yield in % was the 

response variable. All input parameters are 

dimensionless encoded between the level of -2 to 2 

according to experimental design. The process aims for 

optimal factor evaluation upon the dissolution of 

alumina from Azaraegbelu clay in acid solution. ANN 

with Levenberg-Marquardt optimizer and K-fold cross-

validation technique is used to validate for the optimal 

model. Furthermore, to reduce deviations of prediction 

from experimental values, simulations are performed 

from K= 6 to 10. On every value of K (6-10) neurons 

are varied in the range from 1 to 10 to determine which 

configuration gives minimum deviations from 
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experimental results on validation data according to 

Kohavi [33]. To select the optimal configuration of 

ANN, number of neurons in the hidden layer is varied 

from 1 to 10 on each value of K. The best value of K 

obtained is K=10, in which network is trained and 

tested extensively on 10 different combinations of 29 

train and 3 test sets, with obtained (5:8:1) optimal MLP 

architecture. The comparison of the results obtained by 

K-fold cross-validated ANN, RSM and ANN 

developed by Ohale at al [27] on a validation set of 8 

experiments is shown in Figure 4. Regression plots of 

all three models show better correspondence with 

experimental data.  

  

(a) R2=0.89 (b) R2=0.92 

 

(c) R2=0.94 

Figure 4. Comparison of model validation from (a) Prediction from RSM (b) Prediction from ANN by Ohale et al. 

[27] (c) Prediction from ANN (K-fold) 
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Figure 5. Response surface for the interactive behavior of temperature and dosage on alumina yield 

Table 5. Simulated results for experimental design data by Ohale et al. [27], where N1=input neuron, NH=Hidden 

Neuron, NO=Output neurons, K= combinations of the train and test sets, MSE=Average Mean-Square Error on the 

validation set 

Runs K N1-NH-NO MSE 

1 6 5-2-1 6.6 

2 6 5-4-1 4.7 

3 6 5-6-1 4.1 

4 6 5-8-1 3.9 

5 6 5-10-1 3.9 

6 8 5-2-1 5.4 

7 8 5-4-1 3.6 

8 8 5-6-1 3.2 

9 8 5-8-1 2.2 

10 8 5-10-1 1.7 

11 10 5-2-1 2.4 

12 10 5-4-1 2.2 

13 10 5-6-1 1.8 

14 10 5-8-1 0.6 

15 10 5-10-1 0.6 

 

It can be seen from the plots that ANN obtained 

after K-fold (Figure 4(c)) cross-validation is capable of 

generalizing data more suitable with R2=0.94 than 

ANN approach established by Ohale et al. [27] with 

R2=0.92. Moreover, this is because ten different train 

and test sets produced in K-fold validation process help 

to check the model in a better way. However, Ohale et 

al. [27] only considered 1 set of train and test 

combination. In fact, the deviation can differ by 

changing train and test. Hence 1 set is of course not 

sufficient to generalize data in the better way. Thus, the 

optimal point in design space for getting maximum 

alumina yield % by analyzing interactive parameters is 

also studied, as shown in Figure 5. As literature [35] 

also pointed out, the consistency that increases in 

temperature substantially increases the dissolution rates 

of alumina solutes is indicated. A similar variation is 

observed in the case of ANN with K-fold cross-

validation. By varying temperature and dosage and 

keeping other factors at the mean coded value of 0. 

Optimal solution predicted by developed ANN is at 

temperature=92.06 and dosage=0.08, for maximum 

yield of 87.18% (Figure 5). These results show 

excellent correspondence with the results as shown by 

Ohale at al [27] at temperature=92.5 and dosage=0.085 

for maximum yield of 87%. Moreover, process 

response is maximized as temperature and dosage ratio 

is increased. A crucial observation in the analysis by 

ANN shows a continuous increase in alumina yield % 

as the temperature is increased. ANN can maximize 

alumina yield in the same and much better way as 

shown by RSM developed by Ohale et al. [27]. That is, 

this approach shows the better learning performed by 

ANN on significant temperature changes affecting the 

alumina yield. Table 5 shows the simulated results for 

experimental design data by Ohale et al. [27] 
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3.3 Case C-Modeling Electrospinning the 

Process of Polycaprolactone [30] 

In this study, modeling of the electrospinning 

process of polycaprolactone is carried out for 

prediction of produced fiber diameter. The input 

parameters consists of polymer concentration from 

8(%w/v) to 12(%w/v), voltage from 15(kV) to 21(kV) 

and Tip to collector distance from 8 cm to 12 cm. All 

dimensionless values are encoded from -1 to +1 

according to experimental design data by Khatti et al. 

[30]. An ANN-based model while validating using K-

fold cross validation is developed for predicting the 

fiber diameter produced through electrospinning 

process. Model is trained on a total of 17 experimental 

points as described by Khatti et al. [30] in the 

experimental design, with Levenberg-Marquardt 

damped least square optimizer and K-fold cross-

validation. For validation purpose, K is ranged from 6-

10 and for each K number of neurons in the hidden 

layer is varied from 1 to 10 to reduce deviations of 

predictions from experimental results. Average 

validation error for each configuration is noted in 

Table 6, and for this case, K=8 provides the most 

significant variance estimate. In which eight different 

combinations of 13 train and 4 test sets, make an 

appropriate check of ANN over eight different train 

and test sets with an optimal configuration of (3:8:1) 

MLP. Further, this helps to check ANN non-linearity 

over dataset in a generalized manner.  

Table 6. Simulated results for experimental design 

data by Khatti et al. [30], where N1=input neuron, 

NH=Hidden Neuron, NO=Output neurons K= different 

combinations of the train and test sets, MSE=Average 

Mean-Square Error on the validation set 

Runs K N1-NH-NO MSE 

1 6 3-2-1 6.2 

2 6 3-4-1 5.8 

3 6 3-6-1 5.8 

4 6 3-8-1 4.3 

5 6 3-10-1 3.2 

6 8 3-2-1 4.4 

7 8 3-4-1 3.6 

8 8 3-6-1 2.2 

9 8 3-8-1 1.1 

10 8 3-10-1 1.1 

11 10 3-2-1 5.1 

12 10 3-4-1 3.9 

13 10 3-6-1 3.8 

14 10 3-8-1 1.8 

15 10 3-10-1 1.3 

 

Apparently, RSM and ANN models developed by 

Khatti et al. [30] shows good correspondence with 

experimental data. Figure 6 shows a comparison of 

regression data of different obtained models. The R2 of 

0.94 by ANN validated by using K-fold cross-

validation shows good correspondence on experimental 

design data. The advantage of this ANN model 

developed over that developed by Khatti et al. [30] is 

that this model is trained and tested in more 

combinations before simulations. As compared by 

ANN developed by Khatti et al. [30], training and 

testing different combination of dataset model can test 

model for non-linearity in data in a much better way. 

That is, results in better predictions by the model can 

be obtained. However, the disadvantage is that it 

involves much of computation as compared to the 

hold-out validation approach, as training and testing 

are completed on different combinations. In this case, 

ANN model developed by Khatti et al. [30] shows 

validation error of 0.88, and this can be improved by 

choosing a model with K-fold cross-validation, as 

shown in the regression results (Figure 6). The analysis 

of single-level effects produced by developed ANN on 

produced fiber diameter can be seen in Figure 7. As 

indicated in Figure 7, a linear behavior between 

concentration and produced fiber diameter is predicted 

by ANN. Also, this shows concentration as a useful 

and significant parameter in determining the diameter 

of the produced fiber. This linear behavior predicted by 

ANN matches well with experimental behavior shown 

by Khatti et al. [30]. That is, ANN can capture the 

behavior of experimental design data well and can be 

used for further modeling of this process. 

4 Conclusion 

This work presents case-study on using Levenberg-

Marquardt optimizer with K-fold cross-validation for 

training and validating ANN. These three sets of 

experimental design data are adopted from literature 

for evaluation and predictions. It is found that ANN 

with Levenberg-Marquardt optimizer while validating 

u s i n g  K - f o l d  c r o s s - v a l i d a t i o n  s h o w s  g o o d 

correspondence with experimental design data. 

Moreover, increasing number of hidden neurons in the 

hidden layer overall error decreases in parallel. K-fold 

cross-validation allows using the entire dataset to train 

and test the obtained model. Although other modeling 

methodologies like RSM and ANN with hold-out 

validation can provide quality predictions(R2) for the 

parameters within the design space, the ANN with 

Levenberg-Marquardt using K-fold cross-validation 

showed clear superiority over both in data fitting and 

estimation capabilities on data validation. Moreover, 

K-fold can split data into several train and test 

combinations which makes a model to get trained and 

tested on each experimental point. Meanwhile, having 

an average on K different test sets, it also helps to 

select a better optimal model which has better 

capability to generalize unseen data. Also, hold-out 

validation evaluation depends on which part of the data 

goes into the training set and which part goes in the test 

set. Performance evaluation will depend on the 

division of data which cannot guarantee generalization  
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(a) R2=0.90 (b) R2=0.88 

 

(c) R2=0.94 

Figure 6. Comparison of model validation from (a) Prediction from RSM (b) Prediction from ANN (hold-out) (c) 

Prediction from ANN (K-fold) 

 

Figure 7. The effect of concentration on fiber diameter 
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on unseen data. Therefore, in this study the Levenberg-

Marquart optimizer shows the superior capability of 

getting optimization over a small set of data. This 

approach is advantageous and novel for applications in 

experimental design data as they usually have limited 

data for training of neural network. In the future, the 

genetic programming [38-39] can be used for process 

optimization, since they can determine the optimized 

scenario for difficult multidimensional problems and it 

also makes use of nominal resources. The approaches 

based on genetic programming can determine several 

optimal solutions instead of a unitary solution. 
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