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Abstract 

Feature selection is an indispensable preprocessing 

step in high-dimensional data classification, which has an 

effect on both the running time and the result quality of 

the subsequent classification processing steps. Most 

existing approaches use flat strategies, which treat each 

category or class separately and ignore hierarchical 

structure. In this paper, we propose a hierarchical feature 

selection algorithm with orthogonal transfer. We first 

compute the weight of the feature to the category by 

hierarchical SVM with orthogonal transfer. More 

specifically, we use an objective that is a convex function 

of the normal vectors to compute the weight. Then, we 

select features using the weight and predict the class label 

for a test sample according to classifier. Finally, 

extensive experimental results on various real-life 

datasets have demonstrated the superiority of the 

proposed algorithm. 

Keywords: Hierarchical classification, Feature selection, 

Orthogonal transfer 

1 Introduction 

In machine learning, pattern recognition and data 

mining [1], one is often confronted with multi-class 

classification problems [2]. Multi-class classification 

problems have a large number of classes and extremely 

marvelous number of features [3]. It significantly 

increases the time and space requirements for 

processing the data [4]. Classification problems are 

analytically or computationally manageable in high-

dimensional spaces which become completely 

intractable [5]. Feature selection is an indispensable 

preprocessing step in high-dimensional data 

classification, which has effects on both the running 

time and the result quality of the subsequent processing 

steps [6]. 

Feature selection is designed to find the relevant 

feature subset of the original features which can 

improve the predictive accuracy of a classification 

algorithm. Existing feature selection methods focus on 

“flattening” the class structure, ignoring the 

hierarchical structure which is popular in many real-

world knowledge systems [7]. Although many real 

world classification problems have complex 

hierarchical structures such as MeSH, U.S. Patents, 

Yahoo!, LookSmart and so on, few learning methods 

capitalize on the structure [8]. Testing every possible 

class can become computationally infeasible when 

there are a lot of classes in multi-class classification [9]. 

In each of these cases, the problem can be alleviated by 

imposing a hierarchical class structure. The class labels 

are naturally organized in the form of a hierarchical 

structure which defines an abstraction over class labels 

[10]. 

In this paper, we address open challenges in large-

scale classification, focusing on how to effectively 

leverage the hierarchical structure among class labels. 

We propose an approach hierarchical feature selection 

with orthogonal transfer, and deal with it through 

considering the weight of the feature to the category. 

One superiority for hierarchical feature selection 

exploiting the hierarchical structure is to decouple the 

problem into a set of independent problems. We first 

compute the weight of the feature to the category in the 

hierarchy by hierarchical Support Vector Machine 

(SVM) with orthogonal transfer. Second, we select 

features utilizing the weight and eliminate redundant 

features because tree nodes are closely connected in 

the hierarchy with similar semantic information. It’s 

easy to predict the class label for a test sample employ 

classifier according to selected features. Extensive 

experimental results on various real-life datasets have 

demonstrated the superiority of the proposed algorithm.  

The rest of the paper is organized as follows. Section 

2 presents feature selection algorithm to address this 

hierarchical classification problem. In Section 3, we 

discuss the experimental settings and results. Finally, 

Section 4, we conclude and suggest further research 

trend. 

2 Model 

Let 
1 1 2 2

{( , ),( , ), , ( , )}
n n

y y yx x x�  be a set of samples, 

where each 
i
∈x X  and each label 

i
y  refers to a unique 

category encoded as an integer. Each {1, , }
i
y q∈ =Y � , 
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where q is the total number of categories. A tree 

structured class represents class memberships at 

different levels of abstraction. The leaves of class 

indicate the most specific labels. The labels in Y are 

identified as leaf nodes in a category tree. Hierarchical 

SVM encourages the classifiers at each node of the tree 

to be different from the classifiers at its ancestors. 

More specifically, it is regularization that force the 

normal vector of the classifying hyperplane at each 

node of the tree to be orthogonal to those at its 

ancestors as much as possible [11]. 

The goal is to learn a classification function 

:f →X Y  that attains a small classification error. We 

define some of the symbols used in the text. For each 

node v∈Y , denote as ( )vA  the set of ancestors of v 

(excluding itself), ( )vS  the set of siblings of v, ( )vC  

the set of children of v, and ( )vD  the set of 

descendants of v (excluding itself). For convenience, 

we also define ( ) ( ) { }+

= ∪v v vA A  and ( )+

 vD  ( ) {}.v v= ∪D  

We associate each node v∈Y  with a vector n

v
R∈w , 

and focus on classifiers ( )f x  determined by recursive 

procedure. It is clear that the task of learning ( )f x  is 

reduced to learn the set of vectors { | }
v
v∈w Y , which 

corresponds to the normal vectors of the classifying 

hyperplanes. 

These regularization terms force each normal vector 

to be orthogonal to those at its ancestors as much as 

possible. More specifically, we use the following 

minimize optimization objective function formulation 

[12]: 
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where the optimization variables are the normal vectors 

v
w  for all v∈Y  and the slack variables 

i
ξ  for all 

{ }1, , .i n∈ �  The pairwise function :k R
+

× →Y Y  (a 

nonnegative matrix). The classification margins at 

different levels in the hierarchy can be effectively 

differentiated by setting the diagonal coefficients 

( , )k u  v . The regularization terms | |
u v

T
w w  stands for 

the normal vector of the classifying hyperplane at each 

node of the tree to be orthogonal to those at its 

ancestors. We assume k is symmetric, i.e., 

( , ) ( , )k u  v  k v  u=  for all ,u v∈Y . The constant C is 

parameters that need to be selected before solving the 

above optimization problem. 

The nonnegative pairwise function k such as the 

formulation Eq. (1) is a convex optimization problem. 

If the symmetric pairwise function :k R
+

× →Y Y  

defined by 

 

( )

( , ) ( )

D v         if  u v  

k u v              if  u v

   0               else     

µ

+⎧ =
⎪⎪

= ∈⎨
⎪
⎪⎩

A , (2) 

where µ > 0 is a parameter. For many problems in 

practice, setting µ = 1 often gives a positive definite k, 

although it is certainly not always true. In any case, we 

can always reduce the value of µ, or increase the 

diagonal values ( , ),k v v  to make k positive definite. 

Then the objective function of Eq. (1) is convex. 

Therefore it has a unique solution *

w . Establishing 

convexity of an optimization problem does not always 

mean that it can be readily solved by existing 

algorithms and available software. 

Considering that the objective function has a 

constraint, we can find the solution to this optimization 

problem in dual variables by finding the saddle point of 

the Lagrangian. However, our Lagrangian formulation 

has difficulty in solving the difficult problem because 

of complex parameters. We transform the problem Eq. 

(1) into an equivalent unconstrained optimization 

problem 
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where w is the optimization variable (often called 

weights in learning problems). 

Theorem 1 If the symmetric pairwise function k is 

positive definite, then the solution to the optimization 

problem Eq. (5) admits a representation of the form 

1

n

v vi i

i

c

=

=∑w x  for any v∈Y . 

Here we develop a variant of the regularized dual 

averaging (RDA) method [13]. We consider regularized 

stochastic learning and optimization problems, where 

the objective function is the sum of two convex terms. 

Let 0
min

λ >  be its smallest eigenvalue. Then we 

decompose the objective function in Eq. (5) as 

( ) ( ) ( )θ φ ϕ= +w w w  into two separate terms: 
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where ( )φ w  is the loss function of using w and x to 

predict y. We also assume that ( )φ w  is convex in w for 
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each x and the other is a simple strongly convex 

function. 

  2 2( ) ,
2 2

min min

v

v

λ λ
ϕ

∈

= =∑
Y

w w w‖ ‖ ‖ ‖  (5) 

where ( )ϕ w  is a 
2
l -regularization term. When 

2
l -

regularization is used with the hinge loss function, we 

have the standard setup of support vector machines. 

We assume ( )ϕ w  is a simple strongly convex function, 

and its effective domain ( ) { ( ) }ϕ ϕ= ∈ < +∞∣nw w R w  

is closed. In addition, ( )ϕ w  is subdifferentiable (a 

subgradient always exists) on domain ( )ϕ w . 

The hierarchical feature selection algorithm with 

orthogonal transfer (HiFSOT) is designed in Algorithm 

1 to consider the class hierarchical structure. We take 

measures to selecting features or eliminates redundant 

features with the weight in the hierarchy. While we 

make a predict label for test data. We consider multi-

class classification problems in which the set of labels 

are organized hierarchically as a category tree, and the 

examples are classified recursively from the root to the 

leaves. 

 

Algorithm 1. Hierarchical Feature Selection with  

Orthogonal Transfer (HiFSOT)  

Input: Examples data 
1 1 2 2

{( , ),( , ), ,( , )}
n n

y y yx x x�  

1. for v∈Y  do 

2. Compute 
v

w  according to Eqs. (4) and (5); 

3. Sort each feature 
1

|d
i i
f

=

 according to 
v

w  in 

descending order; 

4. Select the top ranked features of node v; 

5. end for 

6. Return a union of the selected features from all 

nodes;  

 

We can select feature according to the weight of the 

class for each node using this algorithm. The features 

for the parent node is the union of the leaf nodes. The 

feature subset of the root node is obtained from bottom 

to top which is listed in Line 6 of Algorithm 1. We can 

obtain the selected feature subset using the hierarchical 

class structure. 

Because of utilizing the hierarchical structure, the 

classification problem can be decomposed into a set of 

smaller problems corresponding to hierarchical splits 

in the tree. For example, the frequency of the word 

sports is a very indicative feature when we classify 

movie and sport categories. However, the word parsing 

can be much more indicative than sports when we 

classify two subclasses basketball and shooting in 

sports category. In general, classification at different 

levels of the hierarchy may rely on very different 

features. 

We give an intuitive interpretation to understand the 

hierarchical feature selection with orthogonal transfer. 

We utilize protein DD which represents all major 

structural classes: α, β, α=β and α + β in Figure 1. We 

select the feature from the leaf node to the root node in 

Figure 1. The internal node has feature subset {438, 

425, 435, 432} and {438, 425} that is the union of its 

child nodes. We use the feature subset of root node as 

the final feature subset {438, 425, 435, 432} for 

protein DD dataset.  

 

Figure 1. Hierarchical feature selection of DD dataset 

3 Experiment 

In this section, we test the performance of 

hierarchical feature selection with orthogonal transfer. 

To evaluate performance, the algorithm is implemented 

in MATLAB language and tested on eight datasets. “#” 

represents the number of selecting features in these 

tables. 

3.1 Datasets 

Experiments employ text, protein and image datasets 

to verify the performance of the proposed algorithm. 

All these datasets are single labeled and have 

hierarchical class structures. Some basic statistics 

about these datasets are given in Table 1. 

Table 1. Dataset information 

No. Datasets |Sample| |Feature| |Label| |Node| |Leaf| |Depth| 

1 20Newsgroups 3,769 26,214 20 27 20 3 

2 DD 3,625 473 27 32 27 3 

3 F194 8,525 473 194 202 194 3 

4 Bridges 108 11 6 8 6 2 

5 Glass 214 9 7 12 7 3 

6 SUN 22,556 4,096 324 343 324 3 

7 AWAphog 9,607 252 10 17 10 3 

8 VOC2010 12,283 1,000 20 30 20 4  
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Experiments are carried on eight standard datasets 

obtained from the UCI repository [14]. The text dataset 

is 20Newsgroups [15]. We also test on two protein 

datasets including DD [16] and F194 [17]. Five real-

world image datasets are Bridges [14], Glass, SUN 

[18], AWAphog [19], and VOC2010 [20]. AWAphog 

is formed from Animals with Attributes. VOC2010 is a 

benchmark in visual object category recognition and 

detection. The hierarchical tree structure of protein, 

text, and image datasets are shown in Figure 1, Figure 

2, and Figure 3, respectively. The internal nodes and 

the root node have different colors which are used to 

distinguish leaf nodes. 

 

Figure 2. Hierarchical tree structure of 20Newsgroup 

text dataset 

 

Figure 3. Hierarchical tree structure of image dataset 

VOC2010 

3.2 Comparison Methods 

We compare our feature selection method (called as 

HiFSOT) with several popular feature selection 

methods using LibSVM [21]. 

Fisher Score [22]: Fisher score is one of the most 

widely used supervised feature selection methods. It 

selects each feature independently according to their 

scores under the Fisher criterion, which leads to a 

suboptimal subset of features. 

Relief [23]: Relief is a classical feature selection 

algorithm inspired by instance-based learning. 

mRMR: Minimal redundancy maximal-relevance 

criterion (mRMR) [24] is an effective feature selection 

scheme which avoids the difficult multivariate density 

estimation in maximizing dependency. 

RFS [25]: Feature selection via joint 
2,1
l -norm 

minimization which employs joint 
2,1
l -norm 

minimization on both loss function and regularization 

to realize feature selection across all data points. 
 

3.3 Parameter Setting 

In this section, we consider the parameters of 

different feature selection algorithms. For Fisher Score, 

Relief, mRMR, RFS, and HiFSOT, we select same 

percentage features for all algorithms in Table 2. 

Table 2. The number of selected features 

No. Number Percentage 

1 {28,49,69,86,108} {0.1,0.2,0.3,0.33,0.4}  

2 {11,19,27,35,50} {2,4,6,7,10}  

3 {27,32,38,41,44} {6,7,8,8.7,9}  

4 {2,4,6,9} {18,36,54,81}  

5 {2,5,7,8} {22,55,77,88}  

6 {268,500,701,1069,1925} {6,12,17,26,47}  

7 {37,62,103,117,154} {15,25,40,46,61}  

8 {10,30,67,104,164} {1,3,7,10,15} 

 

As we know, C R∈  is the weight adjusting the 

importance between the regularization term and the 

loss term. We also tried different values of C varying 

from 1 to 100 and did not notice any significant 

difference in classification performance. Thus, we set 

C = 1. We set µ = 1 in Eq. (2) and λ = 1 in Eq. (5). We 

employ SVM classifier that individually performed on 

all datasets using 5-fold cross-validation. We utilize 

the linear kernel with the parameter b = 1. In our 

experiment, we repeat 5 times and report the average 

results for each dataset. 

3.4 Experimental Results 

To evaluate the performance of our hierarchical 

feature selection algorithms, we illustrate the 

classification effect from classification performance 

and statistical perspectives. Demsar advised to 

statistically compare algorithms on multiple datasets 

using Friedman test followed by Bonferroni-Dunn test 

[26]. The best results are enlightened in bold in these 

tables. 

3.5 Results on Text Dataset 

Table 3 presents the classification accuracy results 

on 20Newsgroups dataset. We select feature subset 

with different number as {28, 49, 69, 86, 108}. We can 

observe that the accuracy of hierarchy method is better 

than the flat methods. Only when we select 108 

features, the proposed algorithm falls behind Fisher 

score. The 20Newsgroups dataset is a sparse dataset. 

The mRMR algorithm is not suitable for this type 
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dataset. 

3.6 Results on Protein Datasets 

The comparison results of feature selection 

algorithms on protein datasets are listed in Tables 4 

and 5. The classification results of SVM classifier 

using different feature selection methods are listed in 

Table 4. Protein structural class information plays an 

important role in several aspects. For example, tertiary 

structure prediction, protein folds prediction, and 

protein function analysis [27]. It is evidence that our 

algorithm performs better than other approaches on 

different number features {11, 19, 27, 35, 50} in most 

cases. The mRMR feature selection algorithm performs 

better than other compared approaches. 

We select different number features {27, 32, 38, 41, 

44} on F194 dataset. It is clear that the proposed 

method performs better than other approaches on 

different number features. Moreover, 5-fold cross-

validation tests on F194 updated large-scale datasets 

with varying sequence similarities further confirm that 

our method is a promising tool for predicting low-

similarity protein structural classes.  

3.7 Results on Image Datasets 

Table 6 and Table 7 show the comparison result 

using different numbers of selected features on two 

small datasets Bridges and Glass. On Bridges, the 

performance of our hierarchy method is better than flat 

feature selection methods, and it is almost close to the 

performance with all features when we select nine 

features. It means that we can obtain the good 

performance of classification only using representative 

features. On Glass, the performance of our algorithm is 

the best result among these methods. The average 

classification accuracy of our method is 58.46% better 

than other algorithms. 

Table 8, Table 9, and Table 10 show the results on 

SUN, AWAphog, and VOC2010, respectively. On 

SUN, the classification results on different features of 

the HiFSOT algorithm are generally better than that of 

other flat feature selection algorithms. On AWAphog 

and VOC2010 datasets, our method converges to a 

stable value using random initialization different 

number of selected features. Moreover, the larger 

number of feature we selected, the less standard 

deviation of the objective function value. 

3.8 Statistical Comparison of Classification 

Accuracy 

The Friedman test reports a significant difference 

but the post-hoc test fails to detect it. In our 

experiments the procedure is illustrated by the data 

from Table 11, which compares four algorithms. It 

ranks the algorithms for each dataset separately, the 

best performing algorithm getting the rank of 1, the 

second best rank 2, and so on. Then, the average ranks 

of all algorithms on all datasets are calculated and 

compared. 

Table 3. Classification accuracy (%) on 20Newsgroups dataset with different number of features 

Algorithm #28 #49 #69 #86 #108 

Fisher 34.23±1.12 43.81±1.32 47.23±1.28 51.74±1.33 53.81±1.76 

Relief 14.88±1.86 20.88±2.71 22.66±2.88 23.32±2.04 24.36±1.65 

RFS 6.630±0.59 7.700±0.47 9.150±0.52 9.840±0.84 11.14±1.05 

HiFSOT 35.90±1.61 45.08±0.98 49.64±1.08 51.79±1.71 53.78±1.41 

Table 4. Classification accuracy (%) on DD dataset with different number of features 

Algorithm #11 #19 #27 #35 #50 

Fisher 39.61±1.15 47.87±1.57 49.30±2.44 53.27±2.71 58.07±1.99 

Relief 48.11±1.25 53.76±1.95 63.28±1.20 65.60±1.22 77.49±2.02 

mRMR 56.72±2.01 68.16±1.71 74.37±1.22 76.77±1.74 79.56±0.80 

RFS 47.94±1.59 65.90±1.20 74.12±2.29 76.41±1.54 79.78±1.46 

HiFSOT 53.71±1.63 65.13±2.32 74.96±1.32 77.13±1.12 79.92±1.35 

Table 5. Classification accuracy (%) on F194 dataset with different number of features 

Algorithm #27 #32 #38 #41 #44 

Fisher 32.99±1.62 33.49±1.52 36.39±1.90 40.25±2.30 42.51±2.77 

Relief 46.44±1.91 51.46±1.09 57.31±0.81 59.45±0.83 61.54±0.73 

mRMR 57.07±1.21 59.48±1.21 60.75±1.33 61.35±1.24 61.99±1.01 

RFS 46.98±0.68 54.15±1.37 58.77±1.15 60.36±1.32 61.71±0.83 

HiFSOT 57.78±0.92 60.12±1.01 61.56±1.37 61.86±1.34 62.59±1.24 
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Table 6. Classification accuracy (%) on Bridges dataset with different number of features 

Algorithm #2 #4 #6 #9 Average 

Fisher 51.69±10.0 59.05±11.1 61.77±13.4 63.68±11.5 59.05±11.5 

Relief 44.54±11.7 54.67±9.75 62.94±9.36 61.04±9.97 55.80±10.2 

mRMR 40.65±5.15 48.96±9.33 49.00±9.61 60.26±7.82 49.72±7.98 

RFS 54.50±10.9 59.18±12.4 62.90±11.6 58.22±7.32 58.70±10.5 

HiFSOT 55.63±6.29 56.62±9.39 63.07±7.97 64.89±11.1 60.05±8.69 

Table 7. Classification accuracy (%) on Glass dataset with different number of features 

Algorithm #2 #5 #7 #8 Average 

Fisher 40.22±11.2 58.89±8.39 58.89±6.16 59.37±6.53 54.34±8.08 

Relief 49.99±5.93 54.68±7.72 56.57±7.60 57.51±7.77 54.69±29.0 

mRMR 48.13±4.16 58.90±4.56 59.83±3.55 59.83±3.55 56.64±15.8 

RFS 43.95±8.48 59.32±6.24 61.65±6.34 60.72±6.26 56.41±6.83 

HiFSOT 44.40±8.56 64.01±6.95 64.92±6.23 64.52±4.80 58.46±6.63 

Table 8. Classification accuracy (%) on SUN dataset with different number of features 

Algorithm #268 #500 #701 #1069 #1925 

Fisher 58.52±0.45 64.68±0.42 66.31±0.45 67.61±0.37 68.54±0.52 

Relief 59.60±1.33 64.21±0.62 66.07±0.64 67.56±0.62 68.31±0.72 

mRMR 61.83±0.44 65.07±0.38 66.27±0.41 67.51±0.80 68.31±0.45 

HiFSOT 62.39±0.80 65.52±0.30 66.95±0.61 67.79±0.77 68.63±0.63 

Table 9. Classification accuracy (%) on AWAphog dataset with different number of features 

Algorithm #37 #62 #103 #117 #154 

Fisher 23.95±1.28 27.36±0.96 30.23±0.83 30.76±1.09 31.10±1.39 

Relief 23.61±1.38 26.53±1.08 29.42±1.30 30.03±1.18 30.51±0.93 

mRMR 23.54±0.98 26.20±1.24 28.91±1.03 29.43±1.16 30.73±0.55 

RFS 24.93±1.10 28.42±0.91 30.01±0.70 30.53±0.72 31.34±0.92 

HiFSOT 26.10±0.68 28.33±1.37 30.26±1.37 31.03±0.71 31.58±1.46 

Table 10. Classification accuracy (%) on VOC2010 dataset with different number of features 

Algorithm #10 #30 #67 #104 #164 

Fisher 28.80±0.34 29.15±0.40 32.30±0.44 33.44±0.36 34.29±0.24 

Relief 28.19±0.63 28.80±0.58 31.24±0.92 33.55±0.75 35.39±0.65 

mRMR 28.71±0.94 30.17±1.04 33.26±1.16 33.85±0.85 36.71±1.05 

RFS 28.22±0.62 29.11±0.52 32.60±0.71 33.70±0.38 36.90±1.00 

HiFSOT 28.93±0.70 30.54±0.80 32.56±1.49 34.20±0.79 36.28±0.60 

Table 11. Comparison of classification accuracy between various feature selection and several datasets 

No. Datasets Fisher Relief mRMR RFS HiFSOT 

1 20Newsgroups 46.16(2) 21.22(3) ---(5) 8.890(4) 47.24(1) 

2 DD 49.62(5) 61.65(4) 71.12(1) 68.83(3) 70.17(2) 

3 F194 37.19(5) 55.24(4) 60.13(2) 56.39(3) 60.78(1) 

4 Bridges 59.05(2) 55.80(4) 49.72(5) 58.70(3) 60.05(1) 

5 Glass 53.34(5) 54.69(4) 56.64(2) 56.41(3) 58.46(1) 

6 SUN 65.13(4) 65.15(3) 65.79(2) ---(5) 66.26(1) 

7 AWAphog 28.88(3) 28.02(4) 27.76(5) 29.04(2) 29.46(1) 

8 VOC2010 31.60(4) 31.43(5) 32.54(1) 32.11(3) 32.50(2) 

9 Avg.rank 3.75 3.875 2.875 3.25 1.25 

 

The number of parentheses represents the average 

classification performance. The last line is average 

rank in the table. Average ranks by themselves provide 

a fair comparison of the algorithms. On average, 

mRMR and RFS rank the second and third (with ranks 

2.875 and 3.25, respectively), and Fisher and Relief 

rank the four and five (3.75 and 3.875). As shown in 

Table 11. The Friedman test checks whether the 

measured average ranks are significantly different from 

the mean rank 2.5
j

R =  expected under the null-
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hypothesis: 2
14.3χ =

F
 and 7.59.=

F
F  

We find α = 0.005 according to 2
14.3

F
χ =  from any 

statistical book. With five algorithms and eight datasets, 

F
F  is distributed according to the F distribution with 4 

and 28 degrees of freedom. The critical value of F(4, 

28) for α = 0.005 is 4.74. The test result is p = 0 from 

standard normal distribution. All the five feature 

selection algorithms are different in terms of 

proportion of selected features. So we reject the null-

hypothesis. 

In order to further explore feature selection 

algorithms whose reduction rates have statistically 

significant differences, we performed a Nemenyi test 

[28]. Considering that it belongs to a statistical 

nonsense since a subject cannot come from two 

different populations. The other possible hypothesis 

made before collecting the data could be that it is 

possible to improve on HiFSOT performance by tuning 

its parameters. The easiest way to verify this is to 

compute the CD with the test, and CD = 1.80. The 

ranks in the parentheses are used in computation of the 

Friedman test.  

We connect the groups of algorithms that are not 

significantly different in Figure 4. We can mark the 

interval of one CD to the left and right of the average 

rank of the control algorithm. The results indicate that 

the hierarchical HiFSOT is statistically better than 

those of Fisher, Relief, mRMR and RFS. There is no 

consistent evidence to indicate statistical classification 

accuracy different among HiFSOT and mRMR. 

 

Figure 4. Comparison of classification accuracy for 

various feature selection algorithms against each other 

with the Nemenyi test 

4 Conclusions and Future Work 

Although many real-world classification systems 

have complex hierarchical structures, few learning 

methods capitalize on this structure. In this paper, we 

have proposed a hierarchical feature selection 

algorithm with orthogonal transfer method. It has 

decreased the size of the structure without significantly 

decreasing prediction precision of the classifier built 

using only the selected features. Experimental results 

indicate the efficiency of the proposed algorithm. With 

regard to future research, much work needs to be 

undertaken. First, the current implementation of the 

algorithm deals only with the tree class structure. 

Secondly, the current implementation of the algorithm 

deals only with the weight of the feature to the 

category problems that is the principal limitation. In 

the future, the extending algorithm needs to be 

proposed to cope with DAG class structure. The 

extending algorithm needs to be proposed to cope with 

multivariate class problems. In summary, this study 

suggests new research trends concerning hierarchical 

classification, feature selection problem and relative 

dependency learning. 
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