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Abstract 

Many server-side applications require verifying a large 

number of digital signatures. In this paper, a practical 

problem of simultaneous verification of a large number of 

signatures (up to one hundred thousands) based on 

pairing-based cryptography is analysed. Based on three 

exemplary signature schemes, the options for outsourcing 

computationally intensive operations are presented 

together with a proposal of verification algorithms that 

outsource bilinear pairings computation and elliptic curve 

scalar multiplications. The experimental results from 

different scenarios of simultaneous verification of a large 

number of signatures are presented. The test scenarios 

include verification using a local server, using batch 

verification, by outsourcing computations to a trusted 

cloud and by secure outsourcing to possibly dishonest 

(untrusted) clouds. 

Keywords: Secure outsourcing, Bilinear pairing, 

Signature verification, Cloud, Certificateless 

signature 

1 Introduction 

Many services and applications require verifying a 

large number of a digital signatures. This mainly 

concerns server-side applications, where it is required 

to verify that input documents are digitally signed. In 

case of pairing-based signature’ schemes [1-5], time 

required to create or verify one signature is on 

acceptable level (on modern computers the time rarely 

exceed half a second for almost all schemes). The 

situation for server-side applications is different, 

sometimes a server must verify thousands of signatures 

per second. Additionally, a server workload is often 

uneven, sometimes the number of requests is low and 

the other time rises sharply. When a server workload is 

uneven, a server should have high performance, so a 

server-side application is able to deal with the highest 

possible number of requests. However, from an 

economical point of view this approach is highly 

inefficient. It would be better to outsource the most 

computational depending operations or to dynamically 

acquire new resources from a cloud. In such case, the 

privacy of data [6] and correctness of computations 

must be ensured.  

A cloud can be trusted or untrusted. A trusted cloud 

does not deviate from its advertised functionality (also 

it keeps data private). On the other hand, a cloud can 

be malicious. A malicious cloud is a corrupted cloud 

that can arbitrary deviate from its advertised 

functionality (is an active adversary). Additionally, it is 

possible to specify a semi-honest cloud (also called 

honest-but-curious) which do not deviate from its 

advertised property, but it records all the information 

that should remain private [7] (is a passive adversary). 

Thus, an untrusted cloud (also called possibly 

dishonest or potentially malicious) is a cloud that 

might or might not behave maliciously. Usually this 

type of cloud reflects public clouds that may lie and 

misreport about their service quality [8] and there are 

no guarantees that such a cloud is secure. 

The pairing-based signature schemes internally use 

some operations that might require several millisecond 

to complete, because of their complexity. The most 

time-consuming operations are elliptic curve scalar 

multiplication and bilinear pairing computation. 

Several solutions can be used to accelerate verification 

time, especially when a large number of signatures 

must be verified simultaneously. Firstly, it is possible 

to outsource entire verification algorithm to a cloud. 

Secondly, only a computationally intensive operation 

can be outsourced. However, outsourcing requires 

having a fully trusted cloud or using secure 

computation delegation techniques. The secure 

computation delegation techniques (secure outsourcing) 

enable an outsourcer to verify results (i.e. an 

outsourcer can verify if returned result is correct) and 

to obscure arguments that are sent to a cloud. 

1.1 Contribution and Motivation 

The motivation for this paper is to analyse methods 

that can be used to accelerate computation in pairing-

based signature schemes and provide conclusions 
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based on experimental results. Let’s imagine a real 

scenario when a tax office requires digital signatures 

based on pairings in every electronic tax form. 

Taxpayers send different forms during the year to the 

tax office. However, in every month there is a deadline 

for sending sales tax settlements. During that period, 

the number of tax forms received by the tax office per 

minute increases a hundredfold. The tax office’s 

system uses computation outsourcing to handle 

increased number of computations (mostly digital 

signature verifications). In that way, it is not necessary 

to have additional servers through idle periods. The 

office is using cryptographic techniques that guarantee 

information security, because of the sensitive nature of 

the tax forms. These techniques are described and 

tested further in this paper. Another scenario that 

requires fast verification of many signatures involves 

cryptocurrencies. In cryptocurrencies based on 

blockchains, digital signatures are used for 

transactions’ confirmation. Mining new coins involves 

verifications of all transactions that are a part of a 

current block. 

The main contributions are conclusions from several 

experiments that cover different outsourcing scenarios 

of pairing-based digital signatures. For the purpose of 

the experiments, three exemplary digital signature 

schemes were chosen: CLS scheme [4], CBS scheme II 

[2], IE-CBHS [5]. In the experiments, the execution 

time of verification algorithms was tested for various 

number of input digital signatures ranging from 10 to 

100 thousands. The schemes belong to the different 

categories of pairing-based digital signature schemes 

and are digital signatures with appendix. The schemes 

are secure in security models that require resistance 

against the most advanced adversaries. When 

implementation of pairing-based signature scheme is 

required, the schemes would be a first choice for 

system designers. The identity-based signature 

schemes [9] were not considered due to their inherent 

key escrow problem.  

The paper discussed different options for 

outsourcing time-consuming operations and proposes 

modified versions of verification algorithms (for CLS 

scheme, CBS scheme II, IE-CBHS scheme). In the 

modified versions of the algorithms, bilinear pairings 

and elliptic curve scalar multiplications are outsourced. 

The outsourcing methods to untrusted (dishonest) 

clouds have secrecy and verifiability properties, so the 

cloud is not able to get any information from a 

computation request and results can be verified by a 

local server. 

The proposed algorithms were implemented and 

tested in several experiments. The experiments include 

verification using a local server, batch verification, 

generic outsourcing, by outsourcing computations to a 

trusted cloud and by secure outsourcing of 

computations to possibly dishonest clouds. 

1.2 Paper Structure 

The remainder of this paper is organized as follows. 

Section 1.3 contains information about related work 

concerning server-aided signatures, batch verification, 

outsourcing of bilinear pairings and elliptic curve 

scalar multiplications. Section 2 contains description of 

verification algorithms from the three schemes and 

describes different solutions that can accelerate 

verification speed. Section 2 ends with discussion 

about security of proposed solutions. Section 3 

contains experimental results for algorithms described 

in Section 2. The test were done on laboratory 

computers that acted as a cloud and were extrapolated 

to a high performance cloud. The paper ends with 

conclusion about different solutions to the problem of 

simultaneous verification of large pairing-based digital 

signatures’ sets. 

1.3 Related Work 

1.3.1 Server-aided Verification 

Girault and Lefranc [10] introduced a Server-Aided 

Verification (SAV) concept, which allows delegating a 

substantial part of computations to an untrusted 

powerful server (cloud). Informally, an untrusted 

server is a server (or a cloud) under control of a third 

party that provides computing services. The third party 

can declare or not compliance to some security 

standards. Generally, there are no guarantees that the 

server will return correct results. Hence, in applications 

that require high security levels, additional security 

measures must be applied. SAV signature scheme 

consists of a digital signature scheme and a server-

aided verification protocol. Wu et al. [11-12] defined 

more advanced models for the security of server-aided 

verification signatures and introduce existential 

unforgeability of server-aided verification signatures 

(EUF-SAV-Σ). Also, they proposed SAV schemes for 

Waters [13] and BLS [14] signatures. Chow et al. [15] 

proposed a new model to capture the collusion attack 

and provided a generic construction of SAV applicable 

on a wide class of pairing-based cryptosystems. For 

example, Qin et al. [16] used server-aided verification 

technique to speed up payment verification in a mobile 

wallet. 

1.3.2 Outsourcing of Bilinear Pairing Computation 

The secure pairing delegation algorithms designed 

for devices with limited capability was presented by 

Chevallier-Mames et al. [17]. The algorithm achieves 

unconditional security, but it requires calculating 

several scalar multiplications and exponentiations 

during preparation and verification phase. The total 

computation time of those operations is longer than 

pairing calculation. The main advantage of this 

algorithm is lack of necessity to implement pairing 

operation. Conard et al. [18] proposed efficient 
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versions of a pairing delegation algorithm which have 

secrecy and verifiability properties. However, the best 

estimated efficiency ratio when both pairing arguments 

A and B are variable is 0.92 and 0.30 when one of them 

is constant and public. 

Chen et al. [19] presented algorithm Pair, which 

does not require computationally expensive operations. 

Algorithm Pair is secure in the one-malicious version 

of two untrusted program (OMTUP) model [20]. In 

this model computations must be split into two parts, 

which are sent to two different servers U1 and U2. One 

of the servers must be honest for the algorithm to be 

secure. Moreover, some precomputation using 

subroutine Rand is required. Tian et al. [21] proposed 

two improved algorithms comparing to Pair. One of 

the algorithm is more efficient (Algorithm A) and 

second one has improved verifiability of results 

(Algorithm B). Similarly, the algorithms require 

precomputation using RandA and RandB subroutines. 

In 2017, Dong et al. [22] proposed algorithm DBP that 

is fully verifiable, but is less efficient that Pair and 

Algorithm A [21]. Recently, in 2018 Dong and Ren [23] 

proposed algorithm BPS that uses only single untrusted 

cloud server with checkability (verifiability) close to 

one, but with higher computational costs. 

In some cases, it is not necessary for a secure 

outsourcing scheme to have verifiability property, e.g., 

in encryption schemes where correctness of pairing 

verification can be computed later using other means. 

Guillevic and Vergnaud [24] proposed two efficient 

protocols for secret pairing delegation without 

verifiability. In 2016 Luo et al. [25] proposed a generic 

scheme for securely outsourcing multi-bilinear pairings. 

1.3.3 Outsourcing of Elliptic Curve Scalar 

Multiplication 

Hohenberger and Lysyanskaya [20] proposed secure 

outsourcing schemes for scalar multiplication in the 

one-malicious version of two untrusted program model. 

More efficient scheme Exp in that security model with 

higher verifiability was proposed by Chen et al. [26] 

[27]. Wang et al. [28] proposed an efficient scheme for 

securely outsourcing modular exponentiations in single 

untrusted program model, but it is difficult to translate 

this scheme into an elliptic curve scalar multiplication 

problem (in some of the other schemes it is a trivial 

task). In 2017, Ding et al. [29] proposed MExp 

algorithm for secure outsourcing of simultaneous 

modular exponentiations. Other works related to 

modular exponentiation include [30-31].  

In 2016, Zhou and Ren proposed SecMul scheme 

[32] for secure outsourcing of elliptic curve scalar 

multiplication. The SecMul is highly efficient, does not 

require precomputation and its security is based on the 

hardness of integer factorization problem. However, it 

does not provide possibility to verify results returned 

from the cloud and it assumes that p, one of an elliptic 

curve parameters, is secret (p is an integer which 

specify the finite field Fp on which elliptic curve E(Fp) 

is built). In most of cryptographic applications, elliptic 

curves with standardized and publicly known 

parameters are used, e.g. [33], so SecMul cannot be 

used in such cases. 

1.3.4 Batch Verification 

A batch verification algorithm verifies a set of 

(message, signature) pairs as a group [34-38]. A batch 

verification can reduce the number of computationally 

intensive operations, but provides one result for all 

signatures. If one of the signatures is invalid, the 

procedure must be restarted using one of the strategies 

[34] (e.g., using binary splitting, where basically a 

signature set is divided into two parts and the algorithm 

is restarted for each part). The first batch verification 

algorithm was proposed by Fiat [39], followed by 

works of Harn [40]. Batch verification for ID-based 

signatures was proposed by Yoon et al. [41] and Shi et 

al. [42]. Batch verification algorithms for certificateless 

schemes was proposed by Geng and Zhang [43] and 

Fan et al. [44]. 

2 Different Approaches to Simultaneous 

Verification of Pairing-based Signatures 

 

Verification algorithms for different schemes built 

using pairings contain computationally expensive 

operations, e.g., computation of a bilinear pairing, 

computation of elliptic curve scalar multiplication and 

exponentiations in multiplicative group. In many cases, 

it is possible to do scalar multiplications instead of 

exponentiation in multiplicative group GT using 

properties of bilinear maps. Other operation like 

modular addition and multiplication in Zp*, addition in 

G1, multiplication in GT and hashing are several orders 

of magnitude faster. 

Acceleration of verification speed can be achieved 

in several ways. The easiest and the most obvious way 

is to use more powerful servers, but if high processing 

power is not needed permanently, this approach is 

economically inefficient. The second option is to use 

parallel processing. The third option is to use batch 

processing that provides one result for a set of 

signatures. The next option is to outsource the 

computation of verification algorithm or only the most 

time consuming operations to a trusted cloud. If only 

dishonest (untrusted) clouds are available, the 

computationally intensive operations can be outsourced 

using secure outsourcing techniques. 

Three pairing-based signature schemes were chosen 

for the purpose of this paper to test different options of 

accelerating the verification algorithms, when a large 

number of signatures must be verified in a short time. 

The definitions and notations related to bilinear 
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pairings can be found in [1]. The following schemes 

were analysed: 

－ a certificateless scheme: CLS scheme [4] (CLS) – 

secure against Super AI and Super AII adversaries in 

the random oracle model; 

－ an implicit certificate based scheme: CBS scheme II 

[2] (CBS) - secure in the random oracle model 

against Super-CB-AI and Super-CB-AII adaptive 

chosen message and chosen identity attacks; 

－ an implicit and explicit certificate based: IE-CBHS 

[5] (IE-CBHS) - existentially unforgeable against 

adaptive CMA in the random oracle model with 

Super Type I and Type II adversaries. 

Also, Huang et al. [3] proposed a certificateless 

scheme with the same security level as Zhang et al. [4]. 

However, a verification algorithm in that scheme is 

mathematically identical to the algorithm in CBS 

scheme [2], so the results will be identical to that from 

CBS scheme. 

2.1 Verification Algorithms for Chosen 

Signature Schemes  

The CBS scheme verification algorithm CB-Verify 

is as follows [2]: 

Input: params, a message/signature pair (m, σ = (u, v, 

W)), ID’s public key PKID 

Compute: �
2
( , )

ID
ID H ID PK=   

Return true if: 

 
�

�

1

0

( , , , ,

ˆ ˆ( , ) ( , ( )) )

≡ +
ID ID

u

u H m ID PK vp uPK

e W P e mpk H ID
 (1) 

Notation: H0, H1, H2 – secure cryptographic hash 

functions, ê  – bilinear pairing, mpk – master public 

key, P - a generator of *

1
G . 

The CLS scheme verification algorithm CLS-Verify 

is as follows [4]: 

Input: params, identity IDi public key Pi, message mi, 

signature σ = (R, V) 

Compute:  

 Qi=H1(IDi, P) (2) 

 u = H2(R, Pi, mi) (3) 

 v = H3(R, Pi, mi) (4) 

Return true if: 

 ˆ ˆ( , ) ( , )
i T i

e V P e uP vP R Q≡ + +  (5) 

Notation: H1, H2, H3 – secure cryptographic hash 

functions, ê  – bilinear pairing, PT – master public key, 

P - a generator of *

1
G .  

The IE-CBHS scheme verification algorithm Verify 

is as follows [5]: 

Input: params, AID, RID, PkID, certificate information 

CIID, message/signature/certificate triple (m, σ = (h, w, 

W), certID) 

Compute: 

 qID=H1(CIID, PkID, AID, RID) (6) 

 QID=H2(CIID, PkID, AID, RID, qID) (7) 

 

 

2

1

ˆ ˆ( , ) ( , ( )

(1 ) )

id ID ID

h

ID ID

U e W P e Q q cert P A

q R

−

−

′ = −

+ −

 (8) 

 
1

(mod )
ID

k P wP hPK p= +  (9) 

Return true if: 

 
3 1
( , , , )

ID
h H m k P U Q′≡  (10) 

 
0

( )
ID ID ID ID ID

A cert P R q P q≡ − +  (11) 

Notation: H1, H2, H3 – secure cryptographic hash 

functions, ê  – bilinear pairing, P0 – master public key, 

P - a generator of *

1
G , PkID – a public key of a user 

with identity ID, AID, RID – public user parameters. 
 

2.2 Batch Verification  

The batch verification of signatures allows verifying 

n signatures simultaneously. The batch verifier returns 

true if all signatures are valid and false if one or more 

is invalid (for formal definition of Batch Verification 

of Signatures see Qin et al. [45]). According to Yoon et 

al. [41], input of batch verification can be classified 

into three types: (1) multiple signatures on a single 

message generated by multiply signers, (2) multiple 

signatures on multiple messages generated by a single 

signer, (3) multiple signatures on multiple messages 

generated by multiple signers, where a distinct user 

signs each message. 

Informally, security models for these three types of 

input to batch verifiers capture scenarios where 

adversaries are able to create two or more invalid 

signatures that mutually cancel themselves out when 

they are added or multiplied. If adversaries are able to 

produce such signatures, then the result of batch 

verification will be positive, instead of being negative. 

The batch verification algorithm for CLS scheme [4] 

was proposed by Geng and Zhang [43]. They use 

technique introduced by Qin et al. [45] that uses 

additional random exponents for batch pairing 

verification. The scheme is slightly modified to support 

batch verification of Type 3 (the strongest security 

requirement) and is proven existentially unforgeable 

against adaptive chosen-message attacks under the 

standard computational Diffie-Hellman assumption. 

Other tested schemes (CBS, IE-CBHS) do not have 

batch verification algorithms. This mainly results from 
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the fact, that equations in the verification algorithms 

are not linear, i.e. it is not possible to add or multiply 

both sides of equations. 

The algorithm CLS-Batch-Verify [43] is as follows: 

Input: params, n tuples < public key Pi, message mi, 

signature σi = (Ri, Vi) > Randomly choose a vector 

1 2
( , , ..., )

n
δ δ δ δ=  with each 1{0,1}

i
δ ∈  from *

q
Z , l is a 

size of small exponent number; 

(1) Compute: 
1 4
( , ) ( ),

i i
Q H ID P H= = Δ  

2
( , , ),

i i i i
u H R P m=  

3
( , , )

i i i i
v H R P m= ; 

(2) Verify whether the equation holds: 

 
1

0

1 1

ˆ( , )

ˆ ˆ( ( , ), ) ( )

n

i i

i

n n

i i i i i i i

i i

e V P

e u P R W e v Q P

δ

δ δ

=

= =

≡

≡ +

∑

∑ ∑

 (12) 

Notation: H1, H2, H3, H4 

– secure cryptographic hash 

functions, ê  – bilinear pairing, P0 – master public key, 

P - a generator of *

1
G , Δ  – any public parameter which 

is the same for every signer. 

2.3 Outsourced Versions 

The signature verification algorithm might be 

outsourced using two strategies. In the first one, an 

entire verification algorithm is outsourced (also called 

generic outsourcing). In the second one, only the most 

time-consuming operations are outsourced 

(computation outsourcing).  

Computation outsourcing allows accelerating 

computation with usage of external servers (or a cloud). 

The client T sends data to server (cloud) U, which 

performs computations and sends back results to T. 

The security of computations depends on the status of 

U, which can be trusted, untrusted (possibly dishonest) 

or semi-honest. Formal security definitions and models 

for secure outsourcing of cryptographic computation 

are described by Hohenberger and Lysyanskaya [20] 

and Lei et al. [7]. 

Secure computation outsourcing techniques requires 

that T prepares (transforms) the data before sending it 

to U and then after receiving result T verifies it. Hence, 

U does not have possibility to recover original values 

and T can verify if results are correct.  

The following procedure was used for preparation of 

outsourced versions of the verification algorithms. 

Firstly, the most time-consuming operations were 

identified, i.e. BP (Bilinear Pairing) and SM (elliptic 

curve Scalar Multiplication). Secondly, the 

computations were divided into phases (in a such way 

that one T phase contains fast computations, the next 

phase is outsourcing time-consuming operations from 

T to U; if an input from BP or SM depends on output 

of another BP or SM then more phases are necessary,). 

The signatures are verified phase by phase (i.e., T 

phase 1 is executed for all signatures, then U phase 1 is 

executed for all signatures, then T phase 2 is executed, 

etc.) instead of sequentially verifying signatures. This 

enables to group computation outsourcing’ request to 

U and send them as one request. 

The following versions of algorithms for n 

signatures simultaneous verification using outsourcing 

(nO – n signatures Outsourcing) were created: 

－ nO-CB-Verify for CBS scheme (Table 1); 

－ nO-CLS-Verify for CLS scheme (Table 2); 

－ nO- IE-CBHS-Verify for IE-CBHS scheme (Table 

3). 

The above algorithms are basically verifying n 

signatures at once and are divided into phases with 

extracted intensive operations. However, the 

algorithms work the same as their original versions. 

Hence, if they are executed in trusted environment 

(using secure outsourcing or trusted cloud), their 

security model will not change. 

Table 1. nO-CB-Verify algorithm 

nO-CB-Verify 

Input 
params, n tuples (a message mi, a signature 

σi = (ui, vi, Wi), a public key PKi) 

T phase 1 �

2
( || )l

i i
ID H ID PK= , where i=1...n 

U phase 1 

smi,1 = SM(P, vi) 

smi,2 = SM(PKi, ui) 

smi,3 = SM( �ID i, ui) 

where i=1...n 

T phase 2 ti = smi,1 + smi,2, where i=1...n 

U phase 2 

ei,1= BP(Wi, P) 

ei,2= BP(mpki, smi,3) 

where i=1...n 

T phase 3 

ti,2 = ei,1ei,2, where i=1...n 

Return true if: �

1 ,1 ,2
( , , , , )l

i i i i
H M ID PK t t , 

where i=1...n 

Table 2. nO-CLS-Verify algorithm 

nO-CLS-Verify 

Input 

params, n tuples <identity IDi, a public key 

Pi, a message mi,  

a signature σi = (Ri, Vi) 

T phase 1 

Qi=H1(IDi, P) 
ui = H2(R, Pi, mi) 
vi= H3(R, Pi, mi) 
where i=1...n 

U phase 1 

smi,1 = SM(Pi, ui) 

smi,2 = SM(PT, vi) 

where i=1...n 

T phase 2 ti = smi,1 +smi,2+R 

U phase 2 

,1
( , )

i i
e BP V P=  

,2
( , )

i i i
e BP t Q=  

where i=1...n 

T phase 3 Return true if: 
,1 ,2i i

e e≡ , where i=1...n 

 



1182 Journal of Internet Technology Volume 20 (2019) No.4 

 

Table 3. nO- IE-CBHS-Verify algorithm 

nO- IE-CBHS-Verify 

Input 

params, n tuples <Ai, Ri, PKi, certificate 

information CIi, message mi, signature σi = 

(hi, wi, Wi), certificate certi> 

T phase 1 

qi=H2(CIi, PKi, Ai, Ri) 

Qi=H2(CIi, PKi, Ai, Ri, qi) 
1

,1i i
x q

−

=  

2

,2i i
x q

−

=   

1

,3
1

i i
x q

−

= −  

where i=1...n 

U phase 1 

,1
( , )

i i
sm SM P cert=  

,2
( , )

i i
sm SM P w=  

,3
( , )

i i
sm SM PK h=  

,4 0
( , )

i i
sm SM P q=  

,5
( , )

i i i
sm SM Q h=  

,6 ,3
( , )

i i i
sm SM R x=  

where i=1...n 

T phase 2 

ti,1 = smi,2 +smi,3 

ti,2 = Ri + smi,4 

ti,3= smi,1 - Ai  

where i=1...n 

U phase 2 

,7 ,2
( , )

i i i
sm SM t q=  

,8 ,3 ,2
( , )

i i i
sm SM t x=   

where i=1...n 

T phase 3 ti,4= smi,8 + smi,6, where i=1...n 

U phase 3 

,1
( , )

i i
e BM W P=  

,2 ,5 ,4
( , )

i i i
e BM sm t=  

where i=1...n 

T phase 4 

Return true if: 

1 3 ,1 ,1 ,2
( , , , , , )

i i i i i i
h H CI m t e e Q=  

1 ,1 ,7
,

i i
A sm sm=  

where i=1...n 

2.4 Security Discussion 

The large number of signatures can be 

simultaneously verified using several methods (Table 

4). Locally, a set of signatures can be verified by 

sequentially executing n time’s verification algorithm 

or batch verification algorithms. The main drawback of 

a batch verifier is lack of resistance to a denial of 

signature verification attack, i.e. when an adversary 

prepares some number of false signatures, a verifier 

will have to use a standard verification algorithm and 

verify signatures one by one to find those who are 

correct. 

The generic outsourcing (computing complete 

verification algorithm on a remote cloud) requires a 

fully trusted cloud environment. The intermediate 

approach is to outsource only computationally 

intensive operations. Such approach requires a trusted 

cloud, but implementation in a cloud is simpler. If 

trusted clouds are not available, the only option is to 

use secure outsourcing techniques. 

2.4.1 Using Secure Outsourcing of Computations. 

The CLS, CBS, IE-CBHS schemes are secure 

(according to their security models). The security of 

algorithms: nO-CB-Verify, nO-CLS-Verify, nO-IE-

CBHS-Verify, that outsource BP and SM computation 

from T, depend on outsource U status and on type of 

used outsourcing algorithm. If U is a cloud that is 

trusted (e.g., U is a private cloud that is under control 

of T), then computations on U have the same security 

level as computations on T. Hence, in case of a trusted 

cloud the security properties of the schemes do not 

change. 

 

Table 4. Simultaneous signature verification methods 

Computations 
Method 

local remote

Total 

implementation 

complexity 

Cloud  

implementation requirements 

Cloud security 

requirements 

local verification Yes No low N/A N/A 

batch verification Yes No medium N/A N/A 

generic outsourcing No Yes low complete verification algorithm high 

outsourcing of computationally intensive 

operations 
Yes Yes medium only some computations: BP, SM high 

secure outsourcing of computationally 

intensive operations 
Yes Yes high only some computations: BP, SM low 

secure outsourcing of computationally 

intensive operations using One-malicious 

version of two untrusted program model

Yes Yes high only some computations: BP, SM medium 

 

However, if possibly dishonest (untrusted) public 

clouds are used, a special algorithm for secure 

outsourcing must be used. If secure outsourcing 

algorithm is used, i.e. the algorithm is not only 

efficient, but also it has a secrecy and verifiability 

property. Because of that, it is assumed that the 

outsourced computation has the same security level as 

computation done on local server T.  

It is difficult to build such an algorithm for BP or 

SM that also accelerate computation by a few orders of 

magnitude. The main difficulty lies in the fact that 

transformation used by T to obscure arguments of BP 
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or SM before sending them to U are also 

computationally intensive. Because of that, the one-

malicious version of two untrusted program model is 

currently the only option for practical applications. 

Informally, this model assumes that one of two servers 

(clouds) U1 and U2 can be dishonest and U1 and U2 

cannot communicate with each other. 

2.4.2 One-malicious Version of Two Untrusted 

Program model in Practical Applications 

In the OMTUP model, it is necessary to add another 

security assumptions to the schemes, so they will be 

considered secure, i.e. the implicit assumption that 

computed locally BP and SM operations are secure 

must be replaced with the explicit assumption that BP 

and SM operations are assumed to be secure, when 

they are calculated using secure outsourcing algorithm 

in OMTUP model. In case of digital signatures’ 

verification, using the OMTUP model might be 

acceptable in practical applications. There are a few 

reasons for that. Firstly, it is possible to choose two 

different cloud providers (who claim high security 

standards). Secondly, when only SM and BP are 

outsourced (like in nO-CB-Verify, nO-CL-Verify, nO-

IE-CBHS Verify) and two cloud providers are 

dishonest and cooperate (so security is compromised), 

then they will have possibility to know only whose 

signature is verified (e.g., by comparing the public key 

values), but not the messages itself. Moreover, they 

will have possibility to manipulate verification results. 

It is not an easy task to manipulate verification 

results, because outsourcing 100k BP requires 

calculating 600k pairings (using AlgorithmA [21]) on 

the U1 an U2. The BP computations requests are sent 

using random order and it would be difficult to match 

BP request from one signature (e.g., in nO-CLS-

Verify). Because of nO-CB-Verify and nO-IE-CBHS-

Verify algorithms construction, dishonest U1 and U2 do 

not have enough data to generate BP results that could 

cause T to verify positively a false signature. Of course, 

dishonest U1 an U2 can send false results, that would 

cause T to negatively verify a correct signature. In such 

a case, T can restart the verification algorithm locally 

for each negative result, when a small number of 

negative verification is expected in the system. 

3 Experimental Results 

The time required to verify one hundred thousand 

signatures was measured for three different pairing-

based schemes described in Section 2 (CBS [2], CLS 

[4], IE-CBHS [5]). The tests cover: verification using 1 

core and 4 core processing; batch verification (for CLS 

scheme); generic outsourcing; outsourcing of BP and 

SM computations to trusted servers (clouds) and 

outsourcing of BP and SM computations using secure 

outsourcing using one-malicious version of two 

untrusted program model. 

The test environment consists of a local server (Intel 

Xeon W3520 2,66GHz, 12 GB RAM). The local server 

is connected through 1Gbit/s connection to a private 

cloud. The cloud consists of the server (two Intel Xeon 

E5504 2GHz processors, 24GB RAM) responsible for 

providing computing services, which is internally 

connected to 12 computers with four core processors 

(Intel Xeon W3520 2,66GHz, 12 GB RAM), which are 

responsible for computing requested operations by the 

server (further in this section this cloud is called Lab 

Cloud). The tests were also simulated using the 

Simulated Cloud, which is a simulation of the Lab 

Cloud with 120 four core processors. 

The schemes were implemented using MIRACL 

library [46]. Type 1 symmetric pairing built on GF(p) 

curve was used (MR_PAIRING_SSP, AES-128 

security GF(p) in MIRACL library). Time was 

measured using C++ chrono library. All results are the 

average of three repetitions. The test results include 

time required for data transfers. In the tests, a text file 

(10KB) was used as an input message. 
 

3.1 Local Verification 

The purpose of the first test was to measure the 

signature verification time of CBS, CLS and IE-CBHS 

schemes using only the local server. The Figure 1 

presents results for a single thread. The results are 

presented using a logarithmic scale. The signature 

verification time for all three schemes is below 0.4s. 

The time required to verify 100k signatures is 6.6h 

(23714s) for CBS, 6.0h (21667s) for CLS and 10.8h 

(38865s) for IE-CBHS. 

 

Figure 1. Time required for local signature verification 

using one CPU core 

The Figure 2 presents results for four threads using 

four physical processor cores. The signature 

verification is an independent operation, which does 
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not relay on the results of other signatures’ 

verifications. Because of that, it is easy to create a 

parallel verification algorithm with almost linear 

acceleration (using OpenMP). The time required to 

verify 100k signatures is 1.7h (6081s) for CBS, 1.5h 

(5556 s) for CLS and 2.8h (9965 s) for IE-CBHS. The 

results for 1 and 10 signature verifications do not have 

such acceleration, because each signature verification 

is run using one thread. Of course, it is possible to 

accelerate verification of one signature by 

parallelisation of operations inside each scheme 

verification algorithms. 

 

Figure 2. Time required for local signature verification 

using four CPU cores 

3.2 Batch Verification 

The batch verification can lower the number of time-

consuming operations. However, the major drawback 

is that the verification result is a binary 0 or 1 result for 

all signatures together. The Figure 3 presents results (in 

a logarithmic scale) of batch verification vs standard 

verification (i.e. executing n times verification 

algorithm) for CLS scheme (using a single thread). The 

batch verification algorithm for CLS scheme was 3 

times faster (2h (7303s) for 100k signatures’ 

verification instead of 6h (21667s)). It is less than one 

might expect, but for each signature verification it is 

still required to calculate two scalar multiplications 

(SM) – standard verification algorithm must calculate 

2BP and 2SM for each signature. Moreover, this was 

calculated with the assumption that the verification of 

all signatures is positive. In case of one or more errors, 

the need to recalculate results, using one of a few 

strategies (e.g., binary splitting), cause that the 

advantage of batch verification diminishes fast.  

 

Figure 3. Time required for signature verification 

using batch verification 

3.3 Generic Outsourcing 

In a generic outsourcing scenario, the signed files 

are sent to a cloud which executes verification 

algorithm for each signed file and returns a result. The 

test were done using Lab Cloud and 10KB and 1MB 

files. It is necessary to send signed files to a cloud 

(hashes are not enough), because hash functions in the 

schemes use the signed file as one of its input 

arguments. 

The data transfer time for 100k signed 10KB files 

was below 10s. However, for 1MB file size, transfer 

time is obviously 100 times longer. Total verification 

time for 100k signatures is from 7 to 13 min (456-819 s) 

for 10KB file and from 21 to 26 min (1248-1611 s) for 

1MB file (Figure 4 and Figure 5). This method allows 

fast verification using a trusted cloud, but depends on 

the signed file size, i.e. in case of large signed files, 

most of the total computation time will be used for data 

transfer. 

The schemes could be modified (Sign and Verify 

algorithms) by replacing a message with a hash of the 

message to avoid long file transfers to a cloud. In such 

cases a local server must have ability to calculate 

hashes. Such modification probably will not change the 

security of the schemes, but would require some 

security analysis. 

3.4 Outsourcing Verification to a Trusted 

Cloud 

In this test scenario scalar multiplication (SM) and 

bilinear mapping (BP) operations were outsourced to 

the trusted cloud. The total time required for 

processing of n signatures consists of time required for 

local processing tlocal (operations other than SM and 

BP), time required for data transfer ttr (in case of 200k 

simultaneous BP computations request, request sent to 

a cloud has around 111MB and can be transmitted  
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Figure 4. Time required for signature verification 

using generic outsourcing for 10KB signed file  

 

Figure 5. Time required for signature verification 

using generic outsourcing for 1MB signed file 

using 1Gbit/s link in around 1s) and time required for 

cloud computation tcloud.  

The Figure 6 contains results for the Cloud and 

Figure 7 for the Simulated Cloud (in a logarithmic 

scale). The Figure 6 and Figure 7 contain also 

information about non-cloud time (tlocal + ttr). The time 

required for verification of 100k signatures for CBS 

scheme is 13 min (787 s), for IE-CBHS is 27 min 

(1593 s) and for CLS is 10 min (620 s) using the Lab 

Cloud. The results for the Simulated Cloud are: 4 min 

(237 s) for CBS, 12 min (734 s) for IE-CBHS, 4 min 

(256 s) for CLS. They are close to non-cloud time. 

This means that further increasing a number of CPU 

cores in the cloud will not decrease total time 

significantly. 

 

Figure 6. Time required for signature verification 

using outsourcing to Lab Cloud 

 

Figure 7. Time required for signature verification 

using outsourcing to Simulated Cloud 

3.5 Verification Using Secure Outsourcing 

In the secure outsourcing test scenario verification 

algorithms were tested using AlgorithmA [21] for 

secure outsourcing of BP operation and algorithm Exp 

[26-27] for outsourcing of SM operation. Both 

algorithms work in one-malicious version of two 

untrusted program model. The total time required to 

process n signatures consists of: local processing tlocal, 

time required for problem transformation for BP and 

SM tprep, time required for data transfer ttr, time 

required for cloud computation tcloud, time required for 

verification of cloud computation tverify. Moreover, the 

AlgorithmA generates 6 BP request to clouds U1 and U2 

and Exp generates 6 SM requests. Because of that, a 

cloud must calculate a few times more operations than 

in outsourcing to a trusted cloud. 
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The Figure 8 contains results for the Lab Cloud and 

Figure 9 for the Simulated Cloud (in a logarithmic 

scale). The time required for verification of 100k 

signatures for CBS scheme is 38 min (2291 s), for IE-

CBHS is 54 min (3279 s) and for CLS is 33 min (2015 

s) using the Lab Cloud. The results for the Simulated 

Cloud are 10 min (618 s) for CBS, 22 min (1306 s) for 

IE-CBHS and 9 min (522 s) for CLS. It is not possible 

to decrease much more the total time using more 

powerful cloud than the Simulated Cloud, because the 

non-cloud time (tlocal + tprep + ttr + tverify) part of 

operations takes most of the time. 

 

Figure 8. Time required for signature verification 

using secure outsourcing to Lab Cloud 

 

Figure 9. Time required for signature verification using 

secure outsourcing to Simulated Cloud 

Algorithms AlgorithmA and Exp require 

precomputations that can be done using offline mode. 

The time required for precomputations on the local 

server for AlgorithmA using RandA generator is 86ms 

and for Exp using BPV generator - 5.7ms. 

3.6 Comparisons 

The acceleration ratio between verification with one 

CPU core on the local server and verification using 

secure outsourcing of BP and SM operation is around 

10 for Lab Cloud (Table 5) and from 24.4 to 41.5 for 

Simulated Cloud (Table 6). This ratio is even higher 

for outsourcing BM and SM computation to a trusted 

cloud – between 29.8 and 35.0 for Lab Cloud (Table 5) 

and between 52.9 and 99.8 for Simulated Cloud (Table 

6). This is caused by the fact that local server does not 

need to prepare and verify computation requests that 

are sent to the cloud. 

Table 5. Acceleration ratio for Lab Cloud (100k 

signatures verification) 

from one core server computation 

to computation using: 
CBS CLS IE-CBHS 

secure outsourcing 10.4 10.8 11.9 

outsourcing to a trusted cloud 30.1 35.0 29.8 

Table 6. Acceleration ratio for Simulated Cloud (100k 

signatures verification) 

from one core server computation 

to computation using: 
CBS CLS IE-CBHS 

secure outsourcing 38.4 41.5 24.4 

outsourcing to a trusted cloud 99.8 84.7 52.9 

 

Due to the operations that must be computed locally 

(mainly because of the preparation and verification of 

computation request sent to cloud), it is not possible to 

reduce total time for verification of 100k signatures 

much more than using Simulated Cloud. Only about 

20% of total time (Figure 10) was spent on 

computations in the cloud using secure outsourcing to 

Simulated Cloud. The 80% of the time was spent on 

local computations and data transfers. The local 

computation speed, using secure outsourcing for each 

BP or SM request, does not depend on a cloud 

computation power. Other computation in tested 

schemes and data transfer time do not depend on the 

cloud as well. This is the reason that using secure 

outsourcing it is not possible to reduce the total time 

below a threshold (non-cloud time). 

4 Conclusion 

The simultaneous verification of a large number of 

signatures requires a lot of processing power. The total 

time could be decreased tenfold by using more 

powerful processors with ten or more processor cores. 

The same acceleration was achieved in test 

environment using secure outsourcing of BP and SM 

operations, which can accelerate computation around  
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Figure 10. Division of total computation time in secure 

outsourcing 

10 to 40 times depending on the signature scheme and 

cloud configuration. Using the same cloud 

configuration, it is possible to achieve 100 acceleration 

ratio when the local server is 2-3 times more powerful. 

The batch verification is an easy method to 

implement solution for verification of many signatures 

at once in cases where all verified signatures are 

expected to be correct. In tested cases, it allows to 

calculate a scalar multiplication instead of a bilinear 

pairing for each signature and to reduce the total 

computation time three times. However, in practice to 

create a batch verification algorithm, a signature 

verification algorithm must have a linear structure of 

an equitation that contains a bilinear pairing or a scalar 

multiplication computations. 

Outsourcing only the most time-intensive operations 

simplifies the creation process of outsourced versions 

of verification algorithms. In comparison to SAV 

protocols designed especially for each scheme, the 

security of outsourced scheme will depend on the 

security model used for computations outsourcing. 

When only some operations are outsourced to a trusted 

cloud, then in case of some signature schemes like 

CBS [2] and IE-CBHS [5], the final verification is 

done locally. Schemes’ constructions make it 

practically impossible for a dishonest cloud to send 

false results that will cause positive verification of the 

signature. However, errors from the cloud will cause 

negative verification results.  

Even with outsourcing to a trusted cloud, it will be 

still difficult to reduce total time for verification of 

100k signatures to a few seconds, because of 

computations that must be done locally and data 

transfer times. Even if entire verification algorithms is 

outsourced to a cloud, it will be difficult to decrease 

total verification time to a few seconds when signed 

files are large. However, it should be possible to 

change slightly the schemes (i.e. replace a message 

with a hash of a message), what will reduce the total 

transfer time, but requires to calculate hashes locally. 

After such modifications the schemes will be similar to 

signatures schemes used currently in a public key 

infrastructure, where in most of the cases it is only 

required to send a hash of a file to the cloud for 

outsourced verification.  

The experiments show that using secure outsourcing 

(in one-malicious version of two untrusted program 

model) is only around 1.8 to 3.3 times slower 

(depending on the scheme) than outsourcing to a 

trusted cloud. The further acceleration of secure 

outsourcing algorithms would require secure 

outsourcing algorithms with minimal time for a local 

verification. Existing algorithms with efficiency ratio 

around 0.30 require hours to verify of 100k signatures. 

The software implemented for the purpose of the 

experiments contain several simplifications that would 

have to be implemented in the production version (e.g., 

errors handling and boundary cases were not 

implemented as they were no needed in the 

experiments). Secure outsourcing accelerates 

computations, but also increases the total code 

complexity as expected. This is main practical 

drawback of that approach. However, when only 

computations of some operations (like BP and SM) are 

(securely) outsourced, then the additional code can be 

easily divided into software components that are easily 

manageable and reusable between different 

applications (e.g., one component for BP computation 

on a server can be easily reused between applications). 

The future work include analysis of possibilities to 

speed up simultaneous verification of signatures 

created using schemes that use chameleon hashing, e.g., 

scheme SIGN [47]. Also, it would be interesting to 

investigate how techniques mentioned in this paper can 

be used to improve efficiency of verifiable searchable 

encryption schemes [48].  
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