
Local and Outsourced Simultaneous Verification of Pairing-based Signatures 1177

Local and Outsourced Simultaneous Verification of

 Pairing-based Signatures

Tomasz Hyla

Faculty of Computer Science and Information Technology,

West Pomeranian University of Technology in Szczecin, Poland

thyla@zut.edu.pl*

*Corresponding Author: Tomasz Hyla; E-mail: thyla@zut.edu.pl

DOI: 10.3966/160792642019072004017

Abstract

Many server-side applications require verifying a large

number of digital signatures. In this paper, a practical

problem of simultaneous verification of a large number of

signatures (up to one hundred thousands) based on

pairing-based cryptography is analysed. Based on three

exemplary signature schemes, the options for outsourcing

computationally intensive operations are presented

together with a proposal of verification algorithms that

outsource bilinear pairings computation and elliptic curve

scalar multiplications. The experimental results from

different scenarios of simultaneous verification of a large

number of signatures are presented. The test scenarios

include verification using a local server, using batch

verification, by outsourcing computations to a trusted

cloud and by secure outsourcing to possibly dishonest

(untrusted) clouds.

Keywords: Secure outsourcing, Bilinear pairing,

Signature verification, Cloud, Certificateless

signature

1 Introduction

Many services and applications require verifying a

large number of a digital signatures. This mainly

concerns server-side applications, where it is required

to verify that input documents are digitally signed. In

case of pairing-based signature’ schemes [1-5], time

required to create or verify one signature is on

acceptable level (on modern computers the time rarely

exceed half a second for almost all schemes). The

situation for server-side applications is different,

sometimes a server must verify thousands of signatures

per second. Additionally, a server workload is often

uneven, sometimes the number of requests is low and

the other time rises sharply. When a server workload is

uneven, a server should have high performance, so a

server-side application is able to deal with the highest

possible number of requests. However, from an

economical point of view this approach is highly

inefficient. It would be better to outsource the most

computational depending operations or to dynamically

acquire new resources from a cloud. In such case, the

privacy of data [6] and correctness of computations

must be ensured.

A cloud can be trusted or untrusted. A trusted cloud

does not deviate from its advertised functionality (also

it keeps data private). On the other hand, a cloud can

be malicious. A malicious cloud is a corrupted cloud

that can arbitrary deviate from its advertised

functionality (is an active adversary). Additionally, it is

possible to specify a semi-honest cloud (also called

honest-but-curious) which do not deviate from its

advertised property, but it records all the information

that should remain private [7] (is a passive adversary).

Thus, an untrusted cloud (also called possibly

dishonest or potentially malicious) is a cloud that

might or might not behave maliciously. Usually this

type of cloud reflects public clouds that may lie and

misreport about their service quality [8] and there are

no guarantees that such a cloud is secure.

The pairing-based signature schemes internally use

some operations that might require several millisecond

to complete, because of their complexity. The most

time-consuming operations are elliptic curve scalar

multiplication and bilinear pairing computation.

Several solutions can be used to accelerate verification

time, especially when a large number of signatures

must be verified simultaneously. Firstly, it is possible

to outsource entire verification algorithm to a cloud.

Secondly, only a computationally intensive operation

can be outsourced. However, outsourcing requires

having a fully trusted cloud or using secure

computation delegation techniques. The secure

computation delegation techniques (secure outsourcing)

enable an outsourcer to verify results (i.e. an

outsourcer can verify if returned result is correct) and

to obscure arguments that are sent to a cloud.

1.1 Contribution and Motivation

The motivation for this paper is to analyse methods

that can be used to accelerate computation in pairing-

based signature schemes and provide conclusions

1178 Journal of Internet Technology Volume 20 (2019) No.4

based on experimental results. Let’s imagine a real

scenario when a tax office requires digital signatures

based on pairings in every electronic tax form.

Taxpayers send different forms during the year to the

tax office. However, in every month there is a deadline

for sending sales tax settlements. During that period,

the number of tax forms received by the tax office per

minute increases a hundredfold. The tax office’s

system uses computation outsourcing to handle

increased number of computations (mostly digital

signature verifications). In that way, it is not necessary

to have additional servers through idle periods. The

office is using cryptographic techniques that guarantee

information security, because of the sensitive nature of

the tax forms. These techniques are described and

tested further in this paper. Another scenario that

requires fast verification of many signatures involves

cryptocurrencies. In cryptocurrencies based on

blockchains, digital signatures are used for

transactions’ confirmation. Mining new coins involves

verifications of all transactions that are a part of a

current block.

The main contributions are conclusions from several

experiments that cover different outsourcing scenarios

of pairing-based digital signatures. For the purpose of

the experiments, three exemplary digital signature

schemes were chosen: CLS scheme [4], CBS scheme II

[2], IE-CBHS [5]. In the experiments, the execution

time of verification algorithms was tested for various

number of input digital signatures ranging from 10 to

100 thousands. The schemes belong to the different

categories of pairing-based digital signature schemes

and are digital signatures with appendix. The schemes

are secure in security models that require resistance

against the most advanced adversaries. When

implementation of pairing-based signature scheme is

required, the schemes would be a first choice for

system designers. The identity-based signature

schemes [9] were not considered due to their inherent

key escrow problem.

The paper discussed different options for

outsourcing time-consuming operations and proposes

modified versions of verification algorithms (for CLS

scheme, CBS scheme II, IE-CBHS scheme). In the

modified versions of the algorithms, bilinear pairings

and elliptic curve scalar multiplications are outsourced.

The outsourcing methods to untrusted (dishonest)

clouds have secrecy and verifiability properties, so the

cloud is not able to get any information from a

computation request and results can be verified by a

local server.

The proposed algorithms were implemented and

tested in several experiments. The experiments include

verification using a local server, batch verification,

generic outsourcing, by outsourcing computations to a

trusted cloud and by secure outsourcing of

computations to possibly dishonest clouds.

1.2 Paper Structure

The remainder of this paper is organized as follows.

Section 1.3 contains information about related work

concerning server-aided signatures, batch verification,

outsourcing of bilinear pairings and elliptic curve

scalar multiplications. Section 2 contains description of

verification algorithms from the three schemes and

describes different solutions that can accelerate

verification speed. Section 2 ends with discussion

about security of proposed solutions. Section 3

contains experimental results for algorithms described

in Section 2. The test were done on laboratory

computers that acted as a cloud and were extrapolated

to a high performance cloud. The paper ends with

conclusion about different solutions to the problem of

simultaneous verification of large pairing-based digital

signatures’ sets.

1.3 Related Work

1.3.1 Server-aided Verification

Girault and Lefranc [10] introduced a Server-Aided

Verification (SAV) concept, which allows delegating a

substantial part of computations to an untrusted

powerful server (cloud). Informally, an untrusted

server is a server (or a cloud) under control of a third

party that provides computing services. The third party

can declare or not compliance to some security

standards. Generally, there are no guarantees that the

server will return correct results. Hence, in applications

that require high security levels, additional security

measures must be applied. SAV signature scheme

consists of a digital signature scheme and a server-

aided verification protocol. Wu et al. [11-12] defined

more advanced models for the security of server-aided

verification signatures and introduce existential

unforgeability of server-aided verification signatures

(EUF-SAV-Σ). Also, they proposed SAV schemes for

Waters [13] and BLS [14] signatures. Chow et al. [15]

proposed a new model to capture the collusion attack

and provided a generic construction of SAV applicable

on a wide class of pairing-based cryptosystems. For

example, Qin et al. [16] used server-aided verification

technique to speed up payment verification in a mobile

wallet.

1.3.2 Outsourcing of Bilinear Pairing Computation

The secure pairing delegation algorithms designed

for devices with limited capability was presented by

Chevallier-Mames et al. [17]. The algorithm achieves

unconditional security, but it requires calculating

several scalar multiplications and exponentiations

during preparation and verification phase. The total

computation time of those operations is longer than

pairing calculation. The main advantage of this

algorithm is lack of necessity to implement pairing

operation. Conard et al. [18] proposed efficient

Local and Outsourced Simultaneous Verification of Pairing-based Signatures 1179

versions of a pairing delegation algorithm which have

secrecy and verifiability properties. However, the best

estimated efficiency ratio when both pairing arguments

A and B are variable is 0.92 and 0.30 when one of them

is constant and public.

Chen et al. [19] presented algorithm Pair, which

does not require computationally expensive operations.

Algorithm Pair is secure in the one-malicious version

of two untrusted program (OMTUP) model [20]. In

this model computations must be split into two parts,

which are sent to two different servers U1 and U2. One

of the servers must be honest for the algorithm to be

secure. Moreover, some precomputation using

subroutine Rand is required. Tian et al. [21] proposed

two improved algorithms comparing to Pair. One of

the algorithm is more efficient (Algorithm A) and

second one has improved verifiability of results

(Algorithm B). Similarly, the algorithms require

precomputation using RandA and RandB subroutines.

In 2017, Dong et al. [22] proposed algorithm DBP that

is fully verifiable, but is less efficient that Pair and

Algorithm A [21]. Recently, in 2018 Dong and Ren [23]

proposed algorithm BPS that uses only single untrusted

cloud server with checkability (verifiability) close to

one, but with higher computational costs.

In some cases, it is not necessary for a secure

outsourcing scheme to have verifiability property, e.g.,

in encryption schemes where correctness of pairing

verification can be computed later using other means.

Guillevic and Vergnaud [24] proposed two efficient

protocols for secret pairing delegation without

verifiability. In 2016 Luo et al. [25] proposed a generic

scheme for securely outsourcing multi-bilinear pairings.

1.3.3 Outsourcing of Elliptic Curve Scalar

Multiplication

Hohenberger and Lysyanskaya [20] proposed secure

outsourcing schemes for scalar multiplication in the

one-malicious version of two untrusted program model.

More efficient scheme Exp in that security model with

higher verifiability was proposed by Chen et al. [26]

[27]. Wang et al. [28] proposed an efficient scheme for

securely outsourcing modular exponentiations in single

untrusted program model, but it is difficult to translate

this scheme into an elliptic curve scalar multiplication

problem (in some of the other schemes it is a trivial

task). In 2017, Ding et al. [29] proposed MExp

algorithm for secure outsourcing of simultaneous

modular exponentiations. Other works related to

modular exponentiation include [30-31].

In 2016, Zhou and Ren proposed SecMul scheme

[32] for secure outsourcing of elliptic curve scalar

multiplication. The SecMul is highly efficient, does not

require precomputation and its security is based on the

hardness of integer factorization problem. However, it

does not provide possibility to verify results returned

from the cloud and it assumes that p, one of an elliptic

curve parameters, is secret (p is an integer which

specify the finite field Fp on which elliptic curve E(Fp)

is built). In most of cryptographic applications, elliptic

curves with standardized and publicly known

parameters are used, e.g. [33], so SecMul cannot be

used in such cases.

1.3.4 Batch Verification

A batch verification algorithm verifies a set of

(message, signature) pairs as a group [34-38]. A batch

verification can reduce the number of computationally

intensive operations, but provides one result for all

signatures. If one of the signatures is invalid, the

procedure must be restarted using one of the strategies

[34] (e.g., using binary splitting, where basically a

signature set is divided into two parts and the algorithm

is restarted for each part). The first batch verification

algorithm was proposed by Fiat [39], followed by

works of Harn [40]. Batch verification for ID-based

signatures was proposed by Yoon et al. [41] and Shi et

al. [42]. Batch verification algorithms for certificateless

schemes was proposed by Geng and Zhang [43] and

Fan et al. [44].

2 Different Approaches to Simultaneous

Verification of Pairing-based Signatures

Verification algorithms for different schemes built

using pairings contain computationally expensive

operations, e.g., computation of a bilinear pairing,

computation of elliptic curve scalar multiplication and

exponentiations in multiplicative group. In many cases,

it is possible to do scalar multiplications instead of

exponentiation in multiplicative group GT using

properties of bilinear maps. Other operation like

modular addition and multiplication in Zp*, addition in

G1, multiplication in GT and hashing are several orders

of magnitude faster.

Acceleration of verification speed can be achieved

in several ways. The easiest and the most obvious way

is to use more powerful servers, but if high processing

power is not needed permanently, this approach is

economically inefficient. The second option is to use

parallel processing. The third option is to use batch

processing that provides one result for a set of

signatures. The next option is to outsource the

computation of verification algorithm or only the most

time consuming operations to a trusted cloud. If only

dishonest (untrusted) clouds are available, the

computationally intensive operations can be outsourced

using secure outsourcing techniques.

Three pairing-based signature schemes were chosen

for the purpose of this paper to test different options of

accelerating the verification algorithms, when a large

number of signatures must be verified in a short time.

The definitions and notations related to bilinear

1180 Journal of Internet Technology Volume 20 (2019) No.4

pairings can be found in [1]. The following schemes

were analysed:

－ a certificateless scheme: CLS scheme [4] (CLS) –

secure against Super AI and Super AII adversaries in

the random oracle model;

－ an implicit certificate based scheme: CBS scheme II

[2] (CBS) - secure in the random oracle model

against Super-CB-AI and Super-CB-AII adaptive

chosen message and chosen identity attacks;

－ an implicit and explicit certificate based: IE-CBHS

[5] (IE-CBHS) - existentially unforgeable against

adaptive CMA in the random oracle model with

Super Type I and Type II adversaries.

Also, Huang et al. [3] proposed a certificateless

scheme with the same security level as Zhang et al. [4].

However, a verification algorithm in that scheme is

mathematically identical to the algorithm in CBS

scheme [2], so the results will be identical to that from

CBS scheme.

2.1 Verification Algorithms for Chosen

Signature Schemes

The CBS scheme verification algorithm CB-Verify

is as follows [2]:

Input: params, a message/signature pair (m, σ = (u, v,

W)), ID’s public key PKID

Compute: �
2
(,)

ID
ID H ID PK=

Return true if:

�

�

1

0

(, , , ,

ˆ ˆ(,) (, ()))

≡ +
ID ID

u

u H m ID PK vp uPK

e W P e mpk H ID
 (1)

Notation: H0, H1, H2 – secure cryptographic hash

functions, ê – bilinear pairing, mpk – master public

key, P - a generator of *

1
G .

The CLS scheme verification algorithm CLS-Verify

is as follows [4]:

Input: params, identity IDi public key Pi, message mi,

signature σ = (R, V)

Compute:

 Qi=H1(IDi, P) (2)

 u = H2(R, Pi, mi) (3)

 v = H3(R, Pi, mi) (4)

Return true if:

 ˆ ˆ(,) (,)
i T i

e V P e uP vP R Q≡ + + (5)

Notation: H1, H2, H3 – secure cryptographic hash

functions, ê – bilinear pairing, PT – master public key,

P - a generator of *

1
G .

The IE-CBHS scheme verification algorithm Verify

is as follows [5]:

Input: params, AID, RID, PkID, certificate information

CIID, message/signature/certificate triple (m, σ = (h, w,

W), certID)

Compute:

 qID=H1(CIID, PkID, AID, RID) (6)

 QID=H2(CIID, PkID, AID, RID, qID) (7)

2

1

ˆ ˆ(,) (, ()

(1))

id ID ID

h

ID ID

U e W P e Q q cert P A

q R

−

−

′ = −

+ −

 (8)

1

(mod)
ID

k P wP hPK p= + (9)

Return true if:

3 1
(, , ,)

ID
h H m k P U Q′≡ (10)

0

()
ID ID ID ID ID

A cert P R q P q≡ − + (11)

Notation: H1, H2, H3 – secure cryptographic hash

functions, ê – bilinear pairing, P0 – master public key,

P - a generator of *

1
G , PkID – a public key of a user

with identity ID, AID, RID – public user parameters.

2.2 Batch Verification

The batch verification of signatures allows verifying

n signatures simultaneously. The batch verifier returns

true if all signatures are valid and false if one or more

is invalid (for formal definition of Batch Verification

of Signatures see Qin et al. [45]). According to Yoon et

al. [41], input of batch verification can be classified

into three types: (1) multiple signatures on a single

message generated by multiply signers, (2) multiple

signatures on multiple messages generated by a single

signer, (3) multiple signatures on multiple messages

generated by multiple signers, where a distinct user

signs each message.

Informally, security models for these three types of

input to batch verifiers capture scenarios where

adversaries are able to create two or more invalid

signatures that mutually cancel themselves out when

they are added or multiplied. If adversaries are able to

produce such signatures, then the result of batch

verification will be positive, instead of being negative.

The batch verification algorithm for CLS scheme [4]

was proposed by Geng and Zhang [43]. They use

technique introduced by Qin et al. [45] that uses

additional random exponents for batch pairing

verification. The scheme is slightly modified to support

batch verification of Type 3 (the strongest security

requirement) and is proven existentially unforgeable

against adaptive chosen-message attacks under the

standard computational Diffie-Hellman assumption.

Other tested schemes (CBS, IE-CBHS) do not have

batch verification algorithms. This mainly results from

Local and Outsourced Simultaneous Verification of Pairing-based Signatures 1181

the fact, that equations in the verification algorithms

are not linear, i.e. it is not possible to add or multiply

both sides of equations.

The algorithm CLS-Batch-Verify [43] is as follows:

Input: params, n tuples < public key Pi, message mi,

signature σi = (Ri, Vi) > Randomly choose a vector

1 2
(, , ...,)

n
δ δ δ δ= with each 1{0,1}

i
δ ∈ from *

q
Z , l is a

size of small exponent number;

(1) Compute:
1 4
(,) (),

i i
Q H ID P H= = Δ

2
(, ,),

i i i i
u H R P m=

3
(, ,)

i i i i
v H R P m= ;

(2) Verify whether the equation holds:

1

0

1 1

ˆ(,)

ˆ ˆ((,),) ()

n

i i

i

n n

i i i i i i i

i i

e V P

e u P R W e v Q P

δ

δ δ

=

= =

≡

≡ +

∑

∑ ∑

 (12)

Notation: H1, H2, H3, H4

– secure cryptographic hash

functions, ê – bilinear pairing, P0 – master public key,

P - a generator of *

1
G , Δ – any public parameter which

is the same for every signer.

2.3 Outsourced Versions

The signature verification algorithm might be

outsourced using two strategies. In the first one, an

entire verification algorithm is outsourced (also called

generic outsourcing). In the second one, only the most

time-consuming operations are outsourced

(computation outsourcing).

Computation outsourcing allows accelerating

computation with usage of external servers (or a cloud).

The client T sends data to server (cloud) U, which

performs computations and sends back results to T.

The security of computations depends on the status of

U, which can be trusted, untrusted (possibly dishonest)

or semi-honest. Formal security definitions and models

for secure outsourcing of cryptographic computation

are described by Hohenberger and Lysyanskaya [20]

and Lei et al. [7].

Secure computation outsourcing techniques requires

that T prepares (transforms) the data before sending it

to U and then after receiving result T verifies it. Hence,

U does not have possibility to recover original values

and T can verify if results are correct.

The following procedure was used for preparation of

outsourced versions of the verification algorithms.

Firstly, the most time-consuming operations were

identified, i.e. BP (Bilinear Pairing) and SM (elliptic

curve Scalar Multiplication). Secondly, the

computations were divided into phases (in a such way

that one T phase contains fast computations, the next

phase is outsourcing time-consuming operations from

T to U; if an input from BP or SM depends on output

of another BP or SM then more phases are necessary,).

The signatures are verified phase by phase (i.e., T

phase 1 is executed for all signatures, then U phase 1 is

executed for all signatures, then T phase 2 is executed,

etc.) instead of sequentially verifying signatures. This

enables to group computation outsourcing’ request to

U and send them as one request.

The following versions of algorithms for n

signatures simultaneous verification using outsourcing

(nO – n signatures Outsourcing) were created:

－ nO-CB-Verify for CBS scheme (Table 1);

－ nO-CLS-Verify for CLS scheme (Table 2);

－ nO- IE-CBHS-Verify for IE-CBHS scheme (Table

3).

The above algorithms are basically verifying n

signatures at once and are divided into phases with

extracted intensive operations. However, the

algorithms work the same as their original versions.

Hence, if they are executed in trusted environment

(using secure outsourcing or trusted cloud), their

security model will not change.

Table 1. nO-CB-Verify algorithm

nO-CB-Verify

Input
params, n tuples (a message mi, a signature

σi = (ui, vi, Wi), a public key PKi)

T phase 1 �

2
(||)l

i i
ID H ID PK= , where i=1...n

U phase 1

smi,1 = SM(P, vi)

smi,2 = SM(PKi, ui)

smi,3 = SM(�ID i, ui)

where i=1...n

T phase 2 ti = smi,1 + smi,2, where i=1...n

U phase 2

ei,1= BP(Wi, P)

ei,2= BP(mpki, smi,3)

where i=1...n

T phase 3

ti,2 = ei,1ei,2, where i=1...n

Return true if: �

1 ,1 ,2
(, , , ,)l

i i i i
H M ID PK t t ,

where i=1...n

Table 2. nO-CLS-Verify algorithm

nO-CLS-Verify

Input

params, n tuples <identity IDi, a public key

Pi, a message mi,

a signature σi = (Ri, Vi)

T phase 1

Qi=H1(IDi, P)
ui = H2(R, Pi, mi)
vi= H3(R, Pi, mi)
where i=1...n

U phase 1

smi,1 = SM(Pi, ui)

smi,2 = SM(PT, vi)

where i=1...n

T phase 2 ti = smi,1 +smi,2+R

U phase 2

,1
(,)

i i
e BP V P=

,2
(,)

i i i
e BP t Q=

where i=1...n

T phase 3 Return true if:
,1 ,2i i

e e≡ , where i=1...n

1182 Journal of Internet Technology Volume 20 (2019) No.4

Table 3. nO- IE-CBHS-Verify algorithm

nO- IE-CBHS-Verify

Input

params, n tuples <Ai, Ri, PKi, certificate

information CIi, message mi, signature σi =

(hi, wi, Wi), certificate certi>

T phase 1

qi=H2(CIi, PKi, Ai, Ri)

Qi=H2(CIi, PKi, Ai, Ri, qi)
1

,1i i
x q

−

=

2

,2i i
x q

−

=

1

,3
1

i i
x q

−

= −

where i=1...n

U phase 1

,1
(,)

i i
sm SM P cert=

,2
(,)

i i
sm SM P w=

,3
(,)

i i
sm SM PK h=

,4 0
(,)

i i
sm SM P q=

,5
(,)

i i i
sm SM Q h=

,6 ,3
(,)

i i i
sm SM R x=

where i=1...n

T phase 2

ti,1 = smi,2 +smi,3

ti,2 = Ri + smi,4

ti,3= smi,1 - Ai

where i=1...n

U phase 2

,7 ,2
(,)

i i i
sm SM t q=

,8 ,3 ,2
(,)

i i i
sm SM t x=

where i=1...n

T phase 3 ti,4= smi,8 + smi,6, where i=1...n

U phase 3

,1
(,)

i i
e BM W P=

,2 ,5 ,4
(,)

i i i
e BM sm t=

where i=1...n

T phase 4

Return true if:

1 3 ,1 ,1 ,2
(, , , , ,)

i i i i i i
h H CI m t e e Q=

1 ,1 ,7
,

i i
A sm sm=

where i=1...n

2.4 Security Discussion

The large number of signatures can be

simultaneously verified using several methods (Table

4). Locally, a set of signatures can be verified by

sequentially executing n time’s verification algorithm

or batch verification algorithms. The main drawback of

a batch verifier is lack of resistance to a denial of

signature verification attack, i.e. when an adversary

prepares some number of false signatures, a verifier

will have to use a standard verification algorithm and

verify signatures one by one to find those who are

correct.

The generic outsourcing (computing complete

verification algorithm on a remote cloud) requires a

fully trusted cloud environment. The intermediate

approach is to outsource only computationally

intensive operations. Such approach requires a trusted

cloud, but implementation in a cloud is simpler. If

trusted clouds are not available, the only option is to

use secure outsourcing techniques.

2.4.1 Using Secure Outsourcing of Computations.

The CLS, CBS, IE-CBHS schemes are secure

(according to their security models). The security of

algorithms: nO-CB-Verify, nO-CLS-Verify, nO-IE-

CBHS-Verify, that outsource BP and SM computation

from T, depend on outsource U status and on type of

used outsourcing algorithm. If U is a cloud that is

trusted (e.g., U is a private cloud that is under control

of T), then computations on U have the same security

level as computations on T. Hence, in case of a trusted

cloud the security properties of the schemes do not

change.

Table 4. Simultaneous signature verification methods

Computations
Method

local remote

Total

implementation

complexity

Cloud

implementation requirements

Cloud security

requirements

local verification Yes No low N/A N/A

batch verification Yes No medium N/A N/A

generic outsourcing No Yes low complete verification algorithm high

outsourcing of computationally intensive

operations
Yes Yes medium only some computations: BP, SM high

secure outsourcing of computationally

intensive operations
Yes Yes high only some computations: BP, SM low

secure outsourcing of computationally

intensive operations using One-malicious

version of two untrusted program model

Yes Yes high only some computations: BP, SM medium

However, if possibly dishonest (untrusted) public

clouds are used, a special algorithm for secure

outsourcing must be used. If secure outsourcing

algorithm is used, i.e. the algorithm is not only

efficient, but also it has a secrecy and verifiability

property. Because of that, it is assumed that the

outsourced computation has the same security level as

computation done on local server T.

It is difficult to build such an algorithm for BP or

SM that also accelerate computation by a few orders of

magnitude. The main difficulty lies in the fact that

transformation used by T to obscure arguments of BP

Local and Outsourced Simultaneous Verification of Pairing-based Signatures 1183

or SM before sending them to U are also

computationally intensive. Because of that, the one-

malicious version of two untrusted program model is

currently the only option for practical applications.

Informally, this model assumes that one of two servers

(clouds) U1 and U2 can be dishonest and U1 and U2

cannot communicate with each other.

2.4.2 One-malicious Version of Two Untrusted

Program model in Practical Applications

In the OMTUP model, it is necessary to add another

security assumptions to the schemes, so they will be

considered secure, i.e. the implicit assumption that

computed locally BP and SM operations are secure

must be replaced with the explicit assumption that BP

and SM operations are assumed to be secure, when

they are calculated using secure outsourcing algorithm

in OMTUP model. In case of digital signatures’

verification, using the OMTUP model might be

acceptable in practical applications. There are a few

reasons for that. Firstly, it is possible to choose two

different cloud providers (who claim high security

standards). Secondly, when only SM and BP are

outsourced (like in nO-CB-Verify, nO-CL-Verify, nO-

IE-CBHS Verify) and two cloud providers are

dishonest and cooperate (so security is compromised),

then they will have possibility to know only whose

signature is verified (e.g., by comparing the public key

values), but not the messages itself. Moreover, they

will have possibility to manipulate verification results.

It is not an easy task to manipulate verification

results, because outsourcing 100k BP requires

calculating 600k pairings (using AlgorithmA [21]) on

the U1 an U2. The BP computations requests are sent

using random order and it would be difficult to match

BP request from one signature (e.g., in nO-CLS-

Verify). Because of nO-CB-Verify and nO-IE-CBHS-

Verify algorithms construction, dishonest U1 and U2 do

not have enough data to generate BP results that could

cause T to verify positively a false signature. Of course,

dishonest U1 an U2 can send false results, that would

cause T to negatively verify a correct signature. In such

a case, T can restart the verification algorithm locally

for each negative result, when a small number of

negative verification is expected in the system.

3 Experimental Results

The time required to verify one hundred thousand

signatures was measured for three different pairing-

based schemes described in Section 2 (CBS [2], CLS

[4], IE-CBHS [5]). The tests cover: verification using 1

core and 4 core processing; batch verification (for CLS

scheme); generic outsourcing; outsourcing of BP and

SM computations to trusted servers (clouds) and

outsourcing of BP and SM computations using secure

outsourcing using one-malicious version of two

untrusted program model.

The test environment consists of a local server (Intel

Xeon W3520 2,66GHz, 12 GB RAM). The local server

is connected through 1Gbit/s connection to a private

cloud. The cloud consists of the server (two Intel Xeon

E5504 2GHz processors, 24GB RAM) responsible for

providing computing services, which is internally

connected to 12 computers with four core processors

(Intel Xeon W3520 2,66GHz, 12 GB RAM), which are

responsible for computing requested operations by the

server (further in this section this cloud is called Lab

Cloud). The tests were also simulated using the

Simulated Cloud, which is a simulation of the Lab

Cloud with 120 four core processors.

The schemes were implemented using MIRACL

library [46]. Type 1 symmetric pairing built on GF(p)

curve was used (MR_PAIRING_SSP, AES-128

security GF(p) in MIRACL library). Time was

measured using C++ chrono library. All results are the

average of three repetitions. The test results include

time required for data transfers. In the tests, a text file

(10KB) was used as an input message.

3.1 Local Verification

The purpose of the first test was to measure the

signature verification time of CBS, CLS and IE-CBHS

schemes using only the local server. The Figure 1

presents results for a single thread. The results are

presented using a logarithmic scale. The signature

verification time for all three schemes is below 0.4s.

The time required to verify 100k signatures is 6.6h

(23714s) for CBS, 6.0h (21667s) for CLS and 10.8h

(38865s) for IE-CBHS.

Figure 1. Time required for local signature verification

using one CPU core

The Figure 2 presents results for four threads using

four physical processor cores. The signature

verification is an independent operation, which does

1184 Journal of Internet Technology Volume 20 (2019) No.4

not relay on the results of other signatures’

verifications. Because of that, it is easy to create a

parallel verification algorithm with almost linear

acceleration (using OpenMP). The time required to

verify 100k signatures is 1.7h (6081s) for CBS, 1.5h

(5556 s) for CLS and 2.8h (9965 s) for IE-CBHS. The

results for 1 and 10 signature verifications do not have

such acceleration, because each signature verification

is run using one thread. Of course, it is possible to

accelerate verification of one signature by

parallelisation of operations inside each scheme

verification algorithms.

Figure 2. Time required for local signature verification

using four CPU cores

3.2 Batch Verification

The batch verification can lower the number of time-

consuming operations. However, the major drawback

is that the verification result is a binary 0 or 1 result for

all signatures together. The Figure 3 presents results (in

a logarithmic scale) of batch verification vs standard

verification (i.e. executing n times verification

algorithm) for CLS scheme (using a single thread). The

batch verification algorithm for CLS scheme was 3

times faster (2h (7303s) for 100k signatures’

verification instead of 6h (21667s)). It is less than one

might expect, but for each signature verification it is

still required to calculate two scalar multiplications

(SM) – standard verification algorithm must calculate

2BP and 2SM for each signature. Moreover, this was

calculated with the assumption that the verification of

all signatures is positive. In case of one or more errors,

the need to recalculate results, using one of a few

strategies (e.g., binary splitting), cause that the

advantage of batch verification diminishes fast.

Figure 3. Time required for signature verification

using batch verification

3.3 Generic Outsourcing

In a generic outsourcing scenario, the signed files

are sent to a cloud which executes verification

algorithm for each signed file and returns a result. The

test were done using Lab Cloud and 10KB and 1MB

files. It is necessary to send signed files to a cloud

(hashes are not enough), because hash functions in the

schemes use the signed file as one of its input

arguments.

The data transfer time for 100k signed 10KB files

was below 10s. However, for 1MB file size, transfer

time is obviously 100 times longer. Total verification

time for 100k signatures is from 7 to 13 min (456-819 s)

for 10KB file and from 21 to 26 min (1248-1611 s) for

1MB file (Figure 4 and Figure 5). This method allows

fast verification using a trusted cloud, but depends on

the signed file size, i.e. in case of large signed files,

most of the total computation time will be used for data

transfer.

The schemes could be modified (Sign and Verify

algorithms) by replacing a message with a hash of the

message to avoid long file transfers to a cloud. In such

cases a local server must have ability to calculate

hashes. Such modification probably will not change the

security of the schemes, but would require some

security analysis.

3.4 Outsourcing Verification to a Trusted

Cloud

In this test scenario scalar multiplication (SM) and

bilinear mapping (BP) operations were outsourced to

the trusted cloud. The total time required for

processing of n signatures consists of time required for

local processing tlocal (operations other than SM and

BP), time required for data transfer ttr (in case of 200k

simultaneous BP computations request, request sent to

a cloud has around 111MB and can be transmitted

Local and Outsourced Simultaneous Verification of Pairing-based Signatures 1185

Figure 4. Time required for signature verification

using generic outsourcing for 10KB signed file

Figure 5. Time required for signature verification

using generic outsourcing for 1MB signed file

using 1Gbit/s link in around 1s) and time required for

cloud computation tcloud.

The Figure 6 contains results for the Cloud and

Figure 7 for the Simulated Cloud (in a logarithmic

scale). The Figure 6 and Figure 7 contain also

information about non-cloud time (tlocal + ttr). The time

required for verification of 100k signatures for CBS

scheme is 13 min (787 s), for IE-CBHS is 27 min

(1593 s) and for CLS is 10 min (620 s) using the Lab

Cloud. The results for the Simulated Cloud are: 4 min

(237 s) for CBS, 12 min (734 s) for IE-CBHS, 4 min

(256 s) for CLS. They are close to non-cloud time.

This means that further increasing a number of CPU

cores in the cloud will not decrease total time

significantly.

Figure 6. Time required for signature verification

using outsourcing to Lab Cloud

Figure 7. Time required for signature verification

using outsourcing to Simulated Cloud

3.5 Verification Using Secure Outsourcing

In the secure outsourcing test scenario verification

algorithms were tested using AlgorithmA [21] for

secure outsourcing of BP operation and algorithm Exp

[26-27] for outsourcing of SM operation. Both

algorithms work in one-malicious version of two

untrusted program model. The total time required to

process n signatures consists of: local processing tlocal,

time required for problem transformation for BP and

SM tprep, time required for data transfer ttr, time

required for cloud computation tcloud, time required for

verification of cloud computation tverify. Moreover, the

AlgorithmA generates 6 BP request to clouds U1 and U2

and Exp generates 6 SM requests. Because of that, a

cloud must calculate a few times more operations than

in outsourcing to a trusted cloud.

1186 Journal of Internet Technology Volume 20 (2019) No.4

The Figure 8 contains results for the Lab Cloud and

Figure 9 for the Simulated Cloud (in a logarithmic

scale). The time required for verification of 100k

signatures for CBS scheme is 38 min (2291 s), for IE-

CBHS is 54 min (3279 s) and for CLS is 33 min (2015

s) using the Lab Cloud. The results for the Simulated

Cloud are 10 min (618 s) for CBS, 22 min (1306 s) for

IE-CBHS and 9 min (522 s) for CLS. It is not possible

to decrease much more the total time using more

powerful cloud than the Simulated Cloud, because the

non-cloud time (tlocal + tprep + ttr + tverify) part of

operations takes most of the time.

Figure 8. Time required for signature verification

using secure outsourcing to Lab Cloud

Figure 9. Time required for signature verification using

secure outsourcing to Simulated Cloud

Algorithms AlgorithmA and Exp require

precomputations that can be done using offline mode.

The time required for precomputations on the local

server for AlgorithmA using RandA generator is 86ms

and for Exp using BPV generator - 5.7ms.

3.6 Comparisons

The acceleration ratio between verification with one

CPU core on the local server and verification using

secure outsourcing of BP and SM operation is around

10 for Lab Cloud (Table 5) and from 24.4 to 41.5 for

Simulated Cloud (Table 6). This ratio is even higher

for outsourcing BM and SM computation to a trusted

cloud – between 29.8 and 35.0 for Lab Cloud (Table 5)

and between 52.9 and 99.8 for Simulated Cloud (Table

6). This is caused by the fact that local server does not

need to prepare and verify computation requests that

are sent to the cloud.

Table 5. Acceleration ratio for Lab Cloud (100k

signatures verification)

from one core server computation

to computation using:
CBS CLS IE-CBHS

secure outsourcing 10.4 10.8 11.9

outsourcing to a trusted cloud 30.1 35.0 29.8

Table 6. Acceleration ratio for Simulated Cloud (100k

signatures verification)

from one core server computation

to computation using:
CBS CLS IE-CBHS

secure outsourcing 38.4 41.5 24.4

outsourcing to a trusted cloud 99.8 84.7 52.9

Due to the operations that must be computed locally

(mainly because of the preparation and verification of

computation request sent to cloud), it is not possible to

reduce total time for verification of 100k signatures

much more than using Simulated Cloud. Only about

20% of total time (Figure 10) was spent on

computations in the cloud using secure outsourcing to

Simulated Cloud. The 80% of the time was spent on

local computations and data transfers. The local

computation speed, using secure outsourcing for each

BP or SM request, does not depend on a cloud

computation power. Other computation in tested

schemes and data transfer time do not depend on the

cloud as well. This is the reason that using secure

outsourcing it is not possible to reduce the total time

below a threshold (non-cloud time).

4 Conclusion

The simultaneous verification of a large number of

signatures requires a lot of processing power. The total

time could be decreased tenfold by using more

powerful processors with ten or more processor cores.

The same acceleration was achieved in test

environment using secure outsourcing of BP and SM

operations, which can accelerate computation around

Local and Outsourced Simultaneous Verification of Pairing-based Signatures 1187

Figure 10. Division of total computation time in secure

outsourcing

10 to 40 times depending on the signature scheme and

cloud configuration. Using the same cloud

configuration, it is possible to achieve 100 acceleration

ratio when the local server is 2-3 times more powerful.

The batch verification is an easy method to

implement solution for verification of many signatures

at once in cases where all verified signatures are

expected to be correct. In tested cases, it allows to

calculate a scalar multiplication instead of a bilinear

pairing for each signature and to reduce the total

computation time three times. However, in practice to

create a batch verification algorithm, a signature

verification algorithm must have a linear structure of

an equitation that contains a bilinear pairing or a scalar

multiplication computations.

Outsourcing only the most time-intensive operations

simplifies the creation process of outsourced versions

of verification algorithms. In comparison to SAV

protocols designed especially for each scheme, the

security of outsourced scheme will depend on the

security model used for computations outsourcing.

When only some operations are outsourced to a trusted

cloud, then in case of some signature schemes like

CBS [2] and IE-CBHS [5], the final verification is

done locally. Schemes’ constructions make it

practically impossible for a dishonest cloud to send

false results that will cause positive verification of the

signature. However, errors from the cloud will cause

negative verification results.

Even with outsourcing to a trusted cloud, it will be

still difficult to reduce total time for verification of

100k signatures to a few seconds, because of

computations that must be done locally and data

transfer times. Even if entire verification algorithms is

outsourced to a cloud, it will be difficult to decrease

total verification time to a few seconds when signed

files are large. However, it should be possible to

change slightly the schemes (i.e. replace a message

with a hash of a message), what will reduce the total

transfer time, but requires to calculate hashes locally.

After such modifications the schemes will be similar to

signatures schemes used currently in a public key

infrastructure, where in most of the cases it is only

required to send a hash of a file to the cloud for

outsourced verification.

The experiments show that using secure outsourcing

(in one-malicious version of two untrusted program

model) is only around 1.8 to 3.3 times slower

(depending on the scheme) than outsourcing to a

trusted cloud. The further acceleration of secure

outsourcing algorithms would require secure

outsourcing algorithms with minimal time for a local

verification. Existing algorithms with efficiency ratio

around 0.30 require hours to verify of 100k signatures.

The software implemented for the purpose of the

experiments contain several simplifications that would

have to be implemented in the production version (e.g.,

errors handling and boundary cases were not

implemented as they were no needed in the

experiments). Secure outsourcing accelerates

computations, but also increases the total code

complexity as expected. This is main practical

drawback of that approach. However, when only

computations of some operations (like BP and SM) are

(securely) outsourced, then the additional code can be

easily divided into software components that are easily

manageable and reusable between different

applications (e.g., one component for BP computation

on a server can be easily reused between applications).

The future work include analysis of possibilities to

speed up simultaneous verification of signatures

created using schemes that use chameleon hashing, e.g.,

scheme SIGN [47]. Also, it would be interesting to

investigate how techniques mentioned in this paper can

be used to improve efficiency of verifiable searchable

encryption schemes [48].

References

[1] S. S. Al-Riyami, K. G. Paterson, Certificateless public key

cryptography, in: C.-S. Laih (Ed.), ASIA CRYPT 2003,

Lecture Notes in Computer Science, Vol. 2894, Springer,

2003, pp. 452-473.

[2] W. Wu, Y. Mu, W. Susilo, X. Huang, Certificate-based

Signatures Revisited, Journal of Universal Computer Science,

Vol. 15, No. 8, pp. 1659-1684, April, 2009.

[3] X. Huang, Y. Mu, W. Susilo, D. S. Wong, W. Wu,

Certificateless Signature Revisited, in: J. Pieprzyk, H.

Ghodosi, E. Dawson (Eds.), Australasian Conference on

Information Security and Privacy 2007, Lecture Notes in

Computer Science, Vol. 4586, Springer, 2007, pp. 308-322.

[4] L. Zhang, F. Zhang, A New Provably Secure Certificateless

Signature Scheme, 2008 IEEE International Conference on

Communications, Beijing, China, 2008, pp. 1685-1689.

[5] T. Hyla, J. Pejaś, A Hess-Like Signature Scheme Based on

Implicit and Explicit Certificates, Computer Journal, Vol. 60,

No. 4, pp. 457-475, March, 2017.

[6] H. Hacigumus, B. Iyer, S. Mehrotra, Providing Database As a

Service, Proceeding of the 18th International Conference on

Data Engineering, San Joes, CA, USA, 2002, pp. 29-38.

1188 Journal of Internet Technology Volume 20 (2019) No.4

[7] X. Lei, X. Liao, T. Huang, F. Heriniaina, Achieving Security,

Robust Cheating Resistance, and High-Efficiency for

Outsourcing Large Matrix Multiplication Computation to a

Malicious Cloud, Information Sciences, Vol. 280, pp. 205-

217, October, 2014.

[8] J. Abawajy, Determining Service Trustworthiness in

Intercloud Computing Environments, 2009 10th International

Symposium on Pervasive Systems, Algorithms, and Networks,

Kaohsiung, Taiwan, 2009, pp. 784-788.

[9] F. Hess, Efficient Identity Based Signature Schemes Based on

Pairings, Proceeding of the International Workshop on

Selected Areas in Cryptography 2002, pp. 310-324, Springer,

Berlin, Heidelberg, 2003.

[10] M. Girault, D. Lefranc, Server-Aided Verification: Theory

and Practice, in: B. Roy (Ed.), ASIA CRYPT 2005, Lecture

Notes in Computer Science, Vol. 3788, IACR, 2005, pp. 605-

623.

[11] W. Wu, Y. Mu, W. Susilo, X. Huang, Provably Secure

Server-aided Verification Signatures, Computers and

Mathematics with Applications, Vol. 61, No. 7, pp. 1705-

1723, April, 2011.

[12] W. Wu, Y. Mu, W. Susilo, X. Huang, Server-Aided

Verification Signatures: Definitions and New Constructions,

in: J. Baek, F. Bao, K. Chen, X. Lai (Eds.), International

Conference on Provable Security ProvSec 2008, Lecture

Notes in Computer Science, Vol. 5324, Springer-Verlag,

2008, pp. 141-155.

[13] B. Waters, Efficient Identity-based Encryption without

Random Oracles, in: R. Cramer (Ed.), Advances in

Cryptology – EUROCRYPT 2005, Lecture Notes in Computer

Science, Vol. 3494, Springer-Verlag, 2005, pp. 114-127.

[14] D. Boneh, G. Lynn, H. Shacham, Short Signature from The

Weil Pairing, in: C. Boyd (Ed.), Advances in Cryptology -

ASIACRYPT 2001, Lecture Notes in Computer Science, Vol.

2248, Springer-Verlag, 2001, pp. 514-532.

[15] S. S. M. Chow, M. H. Au, W. Susilo, Server-aided Signatures

Verification Secure against Collusion Attack, Information

Security Technical Report, Vol. 17, No. 3, pp. 46-57,

February, 2013.

[16] Z. Qin, J. Sun, A. Wahaballa, W. Zheng, H. Xiong, Z. Qin, A

Secure and Privacy-Preserving Mobile Wallet with

Outsourced Verification in Cloud Computing, Computer

Standards & Interfaces, Vol. 54, Part 1, pp. 55-60, November,

2017.

[17] B. Chevallier-Mames, J. S. Coron, N. McCullagh, D.

Naccache, M. Scott, Secure Delegation of Elliptic-Curve

Pairing, in: D. Gollmann, J.-L. Lanet, J. Iguchi-Cartigny

(Eds.), Smart Card Research and Advanced Application

Conference 2010, Lecture Notes in Computer Science, Vol.

6035, Springer, 2010, pp. 24-35.

[18] S. Canard, Delegating a Pairing Can Be both Secure and

Efficient, in: I. Boureanu, P. Owesarski, S. Vaudenay (Eds.),

International Conference on Applied Cryptography and

Network Security 2014, Lecture Notes in Computer Science,

Vol. 8479, Springer International Publishing, 2014, pp. 549-

565.

[19] X. Chen, W. Susilo, J. Li, D. S. Wong, J. Ma, S. Tang, Q.

Tang, Efficient algorithms for Secure Outsourcing of Bilinear

Pairings, Theoretical Computer Science, Vol. 562, No. C, pp.

112-121, January, 2015.

[20] S. Hohenberger, A. Lysyanskaya, How To Securely

Outsource Cryptographic Computations, in: J. Kilian (Ed.),

Second Theory of Cryptography Conference, Lecture Notes in

Computer Science, Vol. 3378, Springer, 2005, pp. 264-282.

[21] H. Tian, F. Zhang, K. Ren, Secure Bilinear Pairing

Outsourcing Made More Efficient and Flexible, Proceedings

of the 10th ACM Symposium on Information, Computer and

Communications Security, Singapore, Republic of Singapore,

2015, pp. 417-426.

[22] M Dong, Y. Ren, X. Zhang, Fully Verifiable Algorithm for

Secure Outsourcing of Bilinear Pairing in Cloud Computing,

KSII Transactions on Internet and Information Systems, Vol.

11, No. 7, pp. 3648-3663, July, 2017.

[23] M. Dong, Y. L. Ren, Efficient and Secure Outsourcing of

Bilinear Pairings with Single Server, Science China

Information Sciences, Vol. 61, No. 3, 039104, 2018.

[24] A. Guillevic, D. Vergnaud, Algorithms for Outsourcing

Pairing Computation, in: M. Joye, A. Moradi (Eds.),

International Conference on Smart Card Research and

Advanced Applications 2014, Lecture Notes in Computer

Science, Vol. 8968, Springer, 2014, pp. 193-21.

[25] Y. Luo, S. Fu, K. Huang, D. Wang, M. Xu, Securely

Outsourcing of Bilinear Pairings with Untrusted Servers for

Cloud Storage, IEEE TrustCom/BigDataSE/ISPA, Tianjin,

China, 2016, pp. 623-629.

[26] X. Chen, J. Li, J. Ma, Q. Tang, W. Lou, New Algorithms for

Secure Outsourcing of Modular Exponentiations, in: S.

Foresti, M. Yung, F. Martinelli (Eds.), European Symposium

on Research in Computer Security 2012, Lecture Notes in

Computer Science, Vol. 7459, Springer, 2012, pp. 541-556.

[27] X. Chen, J. Li, J. Ma, Q. Tang, W. Lou, New Algorithms for

Secure Outsourcing of Modular Exponentiations, IEEE

Transactions on Parallel and Distributed Systems, Vol. 25,

No. 9, pp. 2386-2396, September, 2014.

[28] Y. Wang, Q. Wu, D. S. Wong, B. Qin, S. S. M. Chow, Z. Liu,

X. Tan, Securely Outsourcing Exponentiations with Single

Untrusted Program for Cloud Storage, in: M. Kutyłowski, J.

Waidya (Eds.), European Symposium on Research in

Computer Security 2014, Lecture Notes in Computer Science,

Vol. 8712, Springer, 2014, pp. 326-343.

[29] Y. Ding, Z. Xu, J. Ye, K.-K. Raymond Choo, Secure

Outsourcing of Modular Exponentiations under Single

Untrusted Programme Model, Journal of Computer and

System Sciences, Vol. 90, pp. 1-13, December, 2017.

[30] P. Q. Nguyen, I. E. Shparlinski, J. Stern, Distribution of

Modular Sums and the Security of the Server Aided

Exponentiation, in: K. Y. Lam, I. Shparlinski, H. Wang, C.

Xing (Eds.), Cryptography and Computational Number

Theory. Progress in Computer Science and Applied Logic,

Vol. 20, Birkhauser Verlag, 2001, pp. 331-342.

[31] M.V. Dijk, D. Clarke, B. Gassend, G. E. Suh, S. Devadas,

Speeding up Exponentiation Using an Untrusted

Local and Outsourced Simultaneous Verification of Pairing-based Signatures 1189

Computational Resource, Designs, Codes and Cryptography,

Vol. 39, No. 2, pp. 253-273, May, 2006.

[32] K. Zhou, J. Ren, Secure Outsourcing of Scalar Multiplication

on Elliptic Curves, IEEE ICC 2016 Communication and

Information Systems Security Symposium, Kuala Lumpur,

Malaysia, 2016, pp. 1-5.

[33] Certicom Research, SEC 2: Recommended Elliptic Curve

Domain Parameters, Version 2.0, http://www.secg.org/sec2-

v2.pdf, 2010.

[34] G. M. Zaverucha, D. R. Stinson, Group Testing and Batch

Verification, in: K. Kurosawa (Ed.), International Conference

on Information Theoretic Security 2009, Lecture Notes in

Computer Science, Vol. 5973, Springer-Verlag, 2010, pp.

140-157.

[35] J. Camenisch, S. Hohenberger, M. Pedersen, Batch

Verification of Short Signatures, in: M. Naor (Ed.), EURO

CRYPT 2007, Lecture Notes in Computer Science, Vol. 4515,

International Association for Cryptology Research, 2007, pp.

246-263.

[36] A. L. Ferrara, Practical Short Signature Batch Verification, in:

M. Fischlin (Ed.), Cryptographers Track RSA Conference

2009, Lecture Notes in Computer Science, Vol. 5473,

Springer-Verlag, 2009, pp. 309-324.

[37] C.I. Fan, P.-H. Ho, J.-J. Huang, Y.-F. Tseng, Secure

Certificateless Signature Scheme Supporting Batch

Verification, 2013 Eighth Asia Joint Conference on

Information Security, Seoul, South Korea, 2013, pp. 8-11.

[38] T. Cao, D. Lin, R. Xue, Security Analysis of Some Batch

Verifying Signatures from Pairings, International Journal of

Network Security, Vol. 3, No. 2, pp. 138-143, September,

2006.

[39] A. Fiat, Batch RSA, Journal of Cryptology, Vol. 10, No. 2, pp.

75-88, March, 1997.

[40] L. Harn, Batch Verifying Multiple RSA Digital Signatures,

Electronics Letters, Vol. 34, No. 12, pp. 1219-1220, June,

1998.

[41] H. Yoon, J. H. Cheon, Y. Kim, Batch Verifications with ID-

Based Signatures, Proceedings of International Conference

on Information Security and Cryptology 2004, Seoul, Korea,

2004, pp. 233-248.

[42] C. Shi, D. Pu, W. C. Choong, An Efficient Identity-Based

Signature Scheme with Batch Verifications, InfoScale '06

Proceedings of the 1st international conference on Scalable

information systems, Hong Kong, China, 2006, pp. 1-6.

[43] M. Geng, F. Zhang, Batch Verification for Certificateless

Signature Schemes, Proceedings of the International

Conference on Computational Intelligence and Security 2009,

Beijing, China, 2009, pp. 288-292.

[44] C.-I. Fan, P.-H. Ho, Y.-F. Tseng, Strongly Secure

Certificateless Signature Scheme Supporting Batch

Verification, Mathematical Problems in Engineering, Vol.

2014, Article ID 854135, doi:10.1155/2014/854135, 2014.

[45] X. Qin, S. Zhang, L. Jia, Research on Pairing-Based Batch

Verification, 2010 International Conference on

Communications and Mobile Computing, Shenzhen, China,

2010, pp. 46-50.

[46] CertiVox/MIRACL, https://github.com/CertiVox/MIRACL.

[47] X. Chen, F. Zhang, W. Susilo, H. Tian, J. Li, K. Kim,

Identity-based Chameleon Hashing and Signatures without

Key Exposure, Information Sciences, Vol. 265, pp. 198-210,

May, 2014.

[48] Z. Liu, T. Li, P. Li, C. Jia, J. Li, Verifiable Searchable

Encryption with Aggregate Keys for Data Sharing System,

Future Generation Computer Systems, Vol. 78, pp. 778-788,

January, 2018.

Biography

Tomasz Hyla received Ph.D. degree

in Computer Science, Cryptography in

2011 from West Pomeranian

University of Technology in Szczecin,

Poland. Currently, he is employed as

Assistant Professor and Head of

Information Security Research Group. His main

research theme is pairing-based cryptography with an

emphasis on new digital signature schemes.

1190 Journal of Internet Technology Volume 20 (2019) No.4

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (Japan Color 2001 Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJDFFile false
 /CreateJobTicket true
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHT <FEFF005B683964DA300C005000440046002800310032003000300064007000690029300D005D0020>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
 <<
 /AddBleedMarks true
 /AddColorBars false
 /AddCropMarks true
 /AddPageInfo true
 /AddRegMarks false
 /BleedOffset [
 8.503940
 8.503940
 8.503940
 8.503940
]
 /ConvertColors /NoConversion
 /DestinationProfileName (sRGB IEC61966-2.1)
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /ClipComplexRegions true
 /ConvertStrokesToOutlines false
 /ConvertTextToOutlines false
 /GradientResolution 400
 /LineArtTextResolution 1200
 /PresetName <FEFF005B9AD889E367905EA6005D>
 /PresetSelector /HighResolution
 /RasterVectorBalance 1
 >>
 /FormElements true
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MarksOffset 0
 /MarksWeight 0.283460
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PageMarksFile /JapaneseWithCircle
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [1200 1200]
 /PageSize [612.000 792.000]
>> setpagedevice

