
An Efficient Approach of GPU-accelerated Stochastic Gradient Descent Method for Matrix Factorization 1087 

 

An Efficient Approach of GPU-accelerated Stochastic Gradient 

Descent Method for Matrix Factorization 

Feng Li, Yunming Ye1, Xutao Li 

Shenzhen Key Laboratory of Internet Information Collaboration, Harbin Institute of Technology, Shenzhen, China 

lifeng@stu.hit.edu.cn, yeyunming@hit.edu.cn, lixutao@hit.edu.cn* 

                                                            
*Corresponding Author: Yunming Ye; E-mail: yeyunming@hit.edu.cn 

DOI: 10.3966/160792642019072004009 

Abstract 

Matrix Factorization (MF) is a very effective tool for 

Collaborative Filtering (CF) in recommender systems. As 

a popular solver, Stochastic Gradient Descent (SGD) is 

widely utilized to find MF solutions for CF. However, 

SGD solver often suffers from a very slow optimization 

process, due to its large computation burden. How to 

speed up it becomes a very important research topic. One 

of the main techniques to the problem is partitioning the 

matrix to factorize into blocks and calculate the 

factorization parallelly with these blocks. In this paper, 

we would like to use the most modern computation 

resource Graphics Processing Unit (GPU) to speed up the 

partition-based computation. Though there are some 

studies on partition-based SGD with GPUs, due to the 

sparsity of matrices in real-life scenarios, these methods 

produce too many blank blocks, which will waste the 

GPU computing resources. In this paper, we propose a 

new method, which can avoid the problem and make use 

of GPUs more efficiently to speed up the SGD based MF 

solver. 

Keywords: Collaborative filtering, Matrix factorization, 

Stochastic gradient descent, GPU 

1 Introduction 

Collaborative filtering (CF) [1], as an important tool 

in recommender system [2-3], has been widely applied 

to many Internet services. With the support of CF, 

Internet service providers can effectively improve their 

service quality. The basic idea of CF is to infer the 

users’ preferences from their historical behavior data, 

e.g., consuming a product, clicking a webpage, rating a 

movie, etc. Many methods have been put forward to 

address the CF problem, among which matrix 

factorization (MF) is one of the most widely used 

algorithms [4-5]. 

In CF based recommender system, R  is an 

incomplete matrix. We assume that Ω  is the observed 

entries of R . The entry ( ),u v ∈Ω  denotes that user u  

has given a rating 
uv
r  to item v , where 1,2, ,u m= �  

and 1,2, ,v n= � . Accordingly, each user u  is 

associated with a vector k

u
p ∈� , and each item v  is 

associated with a vector k

v
q ∈� . This approach maps 

both users and items into a k - dimension latent feature 

space, and each latent factor contains an abstract level 

of information. The resulting inner product, T

u v
p q , 

captures the interaction between user u  and item v , 

where a higher inner product score denotes a better 

recommendation candidate. 

To learn the factors (
u
p and 

v
q ), MF optimizes the 

following objective function: 

 ( ) ( )
( )

2 2 2

,

min
T

uv u v u v

u v

r p q p qλ

∈Ω

− + +∑  (1) 

where the parameter λ  controls the importance of 

regularization terms. To solve the optimization 

problem (1), it needs to randomly select a ( ),u v  and 

applies the gradient based rules: 

 
( )

( )

T

u u uv u v v u

T

v v uv u v u v

p p r p q q p

q q r p q p q

γ λ

γ λ

⎡ ⎤← + − −⎣ ⎦

⎡ ⎤← + − −⎣ ⎦

 (2) 

where γ  is the learning rate. This approach is called 

Stochastic Gradient Descent (SGD). Its time 

complexity is ( )O ktΩ  and Ω  denotes the cardinality 

of set Ω , where t  indicates the number of iterations, 

which can be costly if Ω  is too large.  

Simply paralleling the SGD procedure can lead to 

the loss of update problem, i.e., the latent factor of a 

user u  can be simultaneously updated by many pairs 

( ),u v  and some update will be lost because of 

asynchronization. The iterative process of (2) is 

inherently sequential. To parallelized SGD under 

parallel architecture for large-scale data sets, several 

parallel SGD approaches have been proposed. The core 

idea is of them is to address the loss of update problem. 

In the past few years, Graphics Processing Unit 

(GPU) becomes a very flexible and powerful 

computing resources [6-8]. Jin et al. develop an SGD 
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method on a GPU, which is called GPUSGD [9]. To 

utilize the computing power of a GPU, the rating 

matrix is divided into l l×  blocks and every block is of 

size z z× . Within a block of the rating matrix, the 

rating element is also divided into several groups, and 

any two elements in the same group share neither the 

same row nor the same column. By doing so, every 

thread of the GPU will update a user vector and an 

item vector with no update loss. 

However, there is one important challenge to solve 

the problem. The partitioning method expands the 

original matrix into a square matrix with missing 

values. It may lead to many blank blocks when the 

number of users differs greatly from the number of 

items, which will cause a significant waste of GPU 

computing resources. 

In this paper, we follow the main idea of GPUSGD 

and propose a new method. In order to solve the 

problem of waste of computing resources, we design a 

new computing resource allocation scheme to 

effectively avoid the effects of blank blocks. The new 

method will no longer allocate computing resources for 

blank blocks. The contributions of this paper are 

summarized as follows: 

(1) We analyze the defects of GPUSGD from the 

perspective of hardware computing. 

(2) According to the analysis of the defects, a new 

scheduling scheme is proposed. The new method 

avoids blank blocks and can make more efficient use of 

the GPU. 

The rest of the paper is organized as follows: 

Section 2 presents the related works. Section 3 

introduces the GPUSGD. Section 4 describes the 

improved GPUSGD algorithm. The experimental 

results are presented in Section 5. Finally, Section 6 

concludes the paper. 

2 Related Work 

In this section, we will review the related works. 

First, we introduce the related studies of solving MF. 

Next, we analyze the losing update problem of SGD, 

and review two existing studies to overcome this 

problem. 

2.1 MF Methods 

The MF in CF is different from the conventional 

factorization method utilized in image or text analysis 

[10-13]. The key difference is that CF has to deal with 

an incomplete matrix. Hence, we cannot apply the 

conventional linear algebra methods, such as QR 

decomposition, to find its factorization. Many methods 

have been proposed to the problem, such as alternating 

least squares (ALS) [14], coordinate descent (CD) [15, 

16], and SGD. Among them, SGD is the most widely 

used for MF based CF. 

2.2 Parallel Stochastic Gradient Descent 

Algorithm 

From Figure 1, we can see that when the training 

data 
uv
r  is used, 

u
p , 

v
q , 

u
a  and 

v
b  will be updated 

simultaneously. If there is another processor to process 

the training data 
uv
r  at the same time, 

u
p  and 

u
a  will 

also be updated. It will create conflicts and lead to 

losing updates. In order to implement the SGD in 

parallel, we should solve this problem first. 
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Figure 1. Relationship between training rating data 

and update results. User associated vector, item 

associated vector will be updated simultaneously 

From Figure 2, we can see that if two elements in 

the rating matrix share neither the same row nor the 

same column, losing update will not happen. Hence, 

the key issue now is to make sure that the elements 

concurrently processed are not from the same row or 

the same column. There are two ways which are 

widely used. Now we will introduce them. 
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Figure 2. Relationship between training rating data 

and update results. If two elements in the rating matrix 

share neither the same row nor the same column, 

losing update will not occur 
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2.2.1 HogWild 

HogWild [17] is a method that makes use of high 

sparsity of the incomplete matrix to avoid the losing 

update problem. If the rating matrix to factorize is 

highly sparse, we can deduce that two randomly 

sampled ratings are unlikely from the same row or 

column. In other words, if the matrix is sparse enough, 

the losing update problem rarely happens, or can be 

ignored even it happens. Hence, HogWild drops the 

synchronization that prevents concurrent variable 

access via atomic operations, each of which is a series 

of instructions that cannot be interrupted. Though the 

losing update problem may still occur, the convergence 

of HogWild can be shown under some mild condition 

(e.g., the rating matrix is extremely sparse). 

2.2.2 Partition Based Methods 

Another strategy to avoid the losing update problem 

is to partition the rating matrix into blocks, which are 

named as partition-based methods. As there always 

exist some blocks that share neither the same rows or 

columns, we can thus select these blocks to update in 

parallel. Specifically, partition-based methods 

uniformly grid the rating matrix R into many blocks 

and apply the SGD to some independent blocks (here 

‘independent’ means the blocks share no rows or 

columns). Based on this idea, SGD on different parallel 

platforms are proposed [9, 18-20]. 

Fast parallel SGD (FPSGD) is executed on a shared-

memory system with several concurrent threads. 

FPSGD exploits a strategy of keeping all threads busy 

in running. If the number of concurrent threads is t , R  

is partitioned into at least ( ) ( )1 1t t+ × +  blocks 

uniformly. Once a thread finishes processing a certain 

block, a new block that share neither same row nor 

column with the ( )1t −  block being processing will be 

assigned to this thread. Every block will be labelled 

with a tag, which records how many times they were 

processed. When a new task is assigned to a thread, 

FPSGD selects the blocks with the least times being 

processed in all blocks that meet the conditions share 

neither same row or same column with the block being 

processed by other threads. If R  is partitioned into 

only t t×  blocks, there is only one block that share 

neither same row nor column with the ( 1)t −  block 

being processing, and it is the block just being 

processed. In this way, other data blocks will never be 

calculated. FDSGD is an implement of SGD on 

distribute system, and it is similar as FPSGD. 

GPU is different from traditional shared-memory 

system that all the threads of GPU will execute 

concurrently. The tasks of all threads must end together 

and assign new tasks together. All threads will be 

assigned to a new task until they finish the previous 

task. Hence, there is no need to assign extra free blocks 

as FPSGD. Typical method of this category is 

GPUSGD, which is proposed by Jin et al. [9]. However, 

GPUSGD will produce blank blocks, which cause a 

significant waste of GPUs. 

3 GPUSGD Algorithm 

GPU has many threads, and these threads are 

organized into thread blocks. Based on the architecture 

of GPU, GPUSGD has two levels of parallelism. The 

first level is that the blocks of the rating matrix that 

share neither the same row nor the same column can be 

processed by different thread blocks GPU. The second 

level is that the elements in the same block that share 

neither the same row nor the same column can be 

processed by different threads in a thread block. 

In the following of this section, we will introduce 

the two levels of parallelism to implement GPUSGD. 

The core component to the implementation is labelling 

data blocks and data items with tags. Data blocks with 

the same tag can be processed at the same time by 

different thread blocks and data items in a data block 

with the same tag can also be processed at the same 

time by different threads in the same thread block. 

3.1 Task Assignment of Thread Blocks 

If we use t  thread blocks to process, the rating 

matrix is divided into t t×  blocks with size z z×  first 

and this produces !t  patterns, where t  patterns cover 

all blocks. For example, in Figure 3 the rating matrix 

divided into 3 3×  produces six patterns, and the three 

patterns in the first row can cover all blocks.  

 

Figure 3. Six rules of a matrix divided into 3 3×  

To exploit this feature, we could label every block 

with a tag. Every block has a 2-dimension ID, denoted 

by its index ( ),i j , where 1 i t≤ ≤  and 1 j t≤ ≤ . Hence, 

we can label block ( ),i j  by ( )% .j i t t− +  Thus, t  tags 

from 0 to 1t −  will label all the blocks. It can be 

proved that blocks with the same tag share neither the 

same rows or columns. In every round of iteration, the 

task of each thread block can be divided into t  stages. 

Each stage handles data blocks with one tag. After a 
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data block is processed, all thread blocks need to 

synchronize. 

3.2 Task Assignment of Threads 

In every stage, the threads in a thread block should 

process all the data in a block. In order to maximize the 

use of multi-threaded computing power, each piece of 

data in the data block also needs to be tagged with a 

tag. 

A rating ( ),u v  can be labelled with ( )% % %v z u z z z− + . 

Thus, z  tags from 0 to 1z −  will label all the blocks. It 

can be proved that the ratings with the same tag are 

from different rows or columns. They can be processed 

by different threads in a thread block. 

In GPU computing, continuous threads can read 

continuously stored data at once, which is called 

coalesced memory access. In order to speed up data 

accessing, GPUSGD also organizes the rating matrix 

and stores data with the same tag continuously. 

4 New Strategy of Data Partitioning 

In Section 3, we introduce the basic idea of 

GPUSGD and illustrate the algorithm with a few 

simple examples. However, in the actual 

recommendation system, there is a big challenge, that 

is, the number of users and the number of items are 

often very different. Sometimes, the number of users is 

thousands of times as the number of items, or vice 

versa. In other words, the rating matrix is not a square 

matrix. 

4.1 Data Partitioning and Problem 

GPUSGD divides R  into t t×  blocks, and it needs 

every block to be a square matrix. The missing value is 

used to expand R  into a square matrix and then 

partition it. For an m n×  matrix R , we should first 

select a relatively large one in m  and n , and denoted 

as k . Then we expand k  to the smallest integer that 

can be divisible by t , and denoted as K . Now, we can 

expand R  into a K K×  matrix using missing value. 

For example, a 7 3×  rating matrix is shown in 

Figure 4. The shaded elements in the figure represent 

observed entries, and the unshaded elements represent 

missing values. If we want to divide it into 3 3×  blocks, 

the matrix should be expanded to a 9 9×  square matrix 

as shown in Figure 5. 

When we divide the expanded rating matrix into 

3 3× , it will generate too many blank matrix. It will 

cause many threads to be idle and wait after 

distributing data to the threads of GPU based on this 

strategy. 

To illustrate the problem, we use the matrix in 

Figure 6 as an example. In this example, there are not 

as many filled elements as in Figure 5. If we use GPU 

to process this matrix as in GPUSGD, there is a thread 

block that handles empty matrix blocks in every round 

as shown in Figure 7. 

1 2 3

4 5 6

7 8 9

10 11 12

13 14 15

16 17 18

19 20 21
 

Figure 4. 7 3×  rating matrix that is not a square matrix 

1 2 3
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Figure 5. Expanding the 7 3×  rating matrix to square 

matrix with missing values 
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Figure 6. The expanded matrix is divided into 3 3×  
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Figure 7. An expanded rating matrix divided into 

4 4× . Dotted lines represent expanded blocks 

Once a task is launched, the GPU generates the 

corresponding grid of threads. As we discussed in 

previous section, these threads are assigned to 

execution resources on a block-by-block basis. In the 

current generation of GPU, the execution resources are 

organized into streaming multiprocessors (SMs). 

Multiple thread blocks can be assigned to each SM. 

With a limited number of SMs and a limited number 

of blocks that can be assigned to each SM, there is a 

limit on the number of blocks that can be actively 

executing in GPU. Most grids contain many blocks 

than this number. The runtime system maintains a list 

of blocks that need to execute and assigns new blocks 

to SMs as they complete executing the blocks 

previously assigned to them. 

Dealing with the blank blocks consumes SMs, which 

causes a waste. In order to further improve the 

computational efficiency, we must think of ways to 

skip these blank blocks during the calculation process. 

4.2 Improved Strategy 

The thread block’s tasks of GPUSGD is shown in 

Figure 8. We can reassemble the tasks, as shown in 

Figure 9. By doing this, we can effectively reduce the 

number of thread blocks. 

Now we introduce the new partitioning and 

assigning strategy. Given a block number t , the 

number of users m  and the number of items n . If 

m n> , the user can be divided into t  groups and the 

items can be divided into 
n t

s

m

×⎡ ⎤
= ⎢ ⎥
⎢ ⎥

 groups. Based on 

this strategy, the rating matrix can be divided into t s× , 

and every block is z z× , where 
t

z

m

⎡ ⎤
= ⎢ ⎥
⎢ ⎥

. 

Every block has a 2-dimension ID, represented by 

( ),i j , where 1 i t≤ ≤  and 1 .j s≤ ≤  Every block 

should be labelled by ( )%j i t t− + . We can assign s  

thread blocks to process this rating matrix, and every 

thread block will process t  blocks. 

With this method, the new partitioning strategy will 

not produce blank block. As a result, the method can 

avoid completely waiting thread blocks. We note that, 

within a thread block, the data should be labelled with 

a tag as GPSUGD. We named the improved method as 

efficient GPUSGD (eGPUSGD). The overall workflow 

of eGPUSGD can be seen in Figure 10 which is 

composed three key steps, namely, data partitioning, 

data organization and task assignment. The shaded 

elements in the figure represent observed values as 

Figure 4. 
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Figure 8. The task of every thread block when using GPUSGD 
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Figure 9. The reassembled task of every thread block 
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Figure 10. The overall workflow of eGPUSGD 
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5 Experiment 

This section tests the proposed method on real 

dataset and analyze the experimental results. The 

performance of the proposed GPUSGD method is 

evaluated on four datasets: MovieLens10M(M10M), 

M100k, Netflix, and BDMovie. These datasets are all 

publicly available on the Internet. The statistics of 

these datasets are summarized in Table 1. 

Table 1. The statistics of datasets 

 M10M M100k Netflix BDMovie 

#users 71567 943 475749 9721 

#items 65133 1682 17770 7889 

#rating 9301274 80000 9301274 1199604 

 

The experiments are performed on a computer with 

an NVIDIA GX1080TI and CUDA-SDK 9.0. In the 

following, the performance of the proposed SGD on 

GTX1080Ti is first presented, and the computation 

time is then compared to GPUSGD on the same 

platform. 

We fix 100 as the maximum number of iterations, γ  

is set to 0.005 and λ  is set to 0.03. The observed 

experimental results are from two precisions, single 

and double. 

First, we test the convergence of the iterations when 

the number of blocks is different. For evaluation, we 

adopt the widely utilized root-mean-square error 

(RMSE):  

 ( )
( )

2

,

1

ûv uv

u v V

RMSE r r
V

∈

= −∑  (3) 

where V  is the validation set. RMSE is reported as the 

number of iterations is increased in Figure 10. We fix 

the latent dimensions at 16 and block the rating matrix 

into 32 32× . We observe the experimental results from 

both single-precision and double-precision perspectives. 

From Figure 11, we can see that the convergence of the 

proposed eGPUSGD is convergent, which is the same 

as the existing GPUSGD method.  
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Figure 11. The RMSE trend

Next, we evaluate the efficiency of the proposed 

method. We fix the latent dimensions at 16 and 32. The 

rating matrix is block into 32 32× , 64 64× , 128 128×  

and 256 256×  separately. Figure 12 reports the time 

consumptions when different sizes of blocks are 

utilized.  
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Figure 12. Time consumption of different sizes of blocks 

From Figure 12, we can see that the efficiency of the 

new method is better than the old method in almost all 

cases. When the M10M is blocked into 32 32× , there 

is no blank blocks, so the method has the same time 

consumption as the old method. For the dataset Netflix, 

the blank blocks is more so the new method is much 

better than the old method. 

Finally, we block the matrix into 32 32×  and 

256 256×  and test how the number of latent 

dimensions affects the time consumption. The number 

of latent dimensions ranges in 16,32,64 and 128. 

Figure 13 depicts the results. 
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Figure 13. Time consumption of different latent dimensions 

From Figure 13, we can see that the efficiency of 

eGPUSGD is better than GPUSGD in the case of the 

same parameters. 
6 Conclusion 

Matrix Factorization based Collaborative Filtering 

has been widely used in many recommender systems. 
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SGD is one of the most popular algorithms for solving 

matrix factorization with missing value. However, the 

large computational burden required by SGD poses a 

significant efficiency challenge. In this paper, we 

improve the existing GPUSGD method to further 

improve its efficiency. The results on four real-world 

data sets show that the proposed algorithm eGPUSGD 

can make a very good use of the massively parallel 

GPU architecture and improve the efficiency of 

GPUSGD significantly. 
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