
An Efficient Approach of GPU-accelerated Stochastic Gradient Descent Method for Matrix Factorization 1087

An Efficient Approach of GPU-accelerated Stochastic Gradient

Descent Method for Matrix Factorization

Feng Li, Yunming Ye1, Xutao Li

Shenzhen Key Laboratory of Internet Information Collaboration, Harbin Institute of Technology, Shenzhen, China

lifeng@stu.hit.edu.cn, yeyunming@hit.edu.cn, lixutao@hit.edu.cn*

*Corresponding Author: Yunming Ye; E-mail: yeyunming@hit.edu.cn

DOI: 10.3966/160792642019072004009

Abstract

Matrix Factorization (MF) is a very effective tool for

Collaborative Filtering (CF) in recommender systems. As

a popular solver, Stochastic Gradient Descent (SGD) is

widely utilized to find MF solutions for CF. However,

SGD solver often suffers from a very slow optimization

process, due to its large computation burden. How to

speed up it becomes a very important research topic. One

of the main techniques to the problem is partitioning the

matrix to factorize into blocks and calculate the

factorization parallelly with these blocks. In this paper,

we would like to use the most modern computation

resource Graphics Processing Unit (GPU) to speed up the

partition-based computation. Though there are some

studies on partition-based SGD with GPUs, due to the

sparsity of matrices in real-life scenarios, these methods

produce too many blank blocks, which will waste the

GPU computing resources. In this paper, we propose a

new method, which can avoid the problem and make use

of GPUs more efficiently to speed up the SGD based MF

solver.

Keywords: Collaborative filtering, Matrix factorization,

Stochastic gradient descent, GPU

1 Introduction

Collaborative filtering (CF) [1], as an important tool

in recommender system [2-3], has been widely applied

to many Internet services. With the support of CF,

Internet service providers can effectively improve their

service quality. The basic idea of CF is to infer the

users’ preferences from their historical behavior data,

e.g., consuming a product, clicking a webpage, rating a

movie, etc. Many methods have been put forward to

address the CF problem, among which matrix

factorization (MF) is one of the most widely used

algorithms [4-5].

In CF based recommender system, R is an

incomplete matrix. We assume that Ω is the observed

entries of R . The entry (),u v ∈Ω denotes that user u

has given a rating
uv
r to item v , where 1,2, ,u m= �

and 1,2, ,v n= � . Accordingly, each user u is

associated with a vector k

u
p ∈� , and each item v is

associated with a vector k

v
q ∈� . This approach maps

both users and items into a k - dimension latent feature

space, and each latent factor contains an abstract level

of information. The resulting inner product, T

u v
p q ,

captures the interaction between user u and item v ,

where a higher inner product score denotes a better

recommendation candidate.

To learn the factors (
u
p and

v
q), MF optimizes the

following objective function:

 () ()
()

2 2 2

,

min
T

uv u v u v

u v

r p q p qλ

∈Ω

− + +∑ (1)

where the parameter λ controls the importance of

regularization terms. To solve the optimization

problem (1), it needs to randomly select a (),u v and

applies the gradient based rules:

()

()

T

u u uv u v v u

T

v v uv u v u v

p p r p q q p

q q r p q p q

γ λ

γ λ

⎡ ⎤← + − −⎣ ⎦

⎡ ⎤← + − −⎣ ⎦

 (2)

where γ is the learning rate. This approach is called

Stochastic Gradient Descent (SGD). Its time

complexity is ()O ktΩ and Ω denotes the cardinality

of set Ω , where t indicates the number of iterations,

which can be costly if Ω is too large.

Simply paralleling the SGD procedure can lead to

the loss of update problem, i.e., the latent factor of a

user u can be simultaneously updated by many pairs

(),u v and some update will be lost because of

asynchronization. The iterative process of (2) is

inherently sequential. To parallelized SGD under

parallel architecture for large-scale data sets, several

parallel SGD approaches have been proposed. The core

idea is of them is to address the loss of update problem.

In the past few years, Graphics Processing Unit

(GPU) becomes a very flexible and powerful

computing resources [6-8]. Jin et al. develop an SGD

1088 Journal of Internet Technology Volume 20 (2019) No.4

method on a GPU, which is called GPUSGD [9]. To

utilize the computing power of a GPU, the rating

matrix is divided into l l× blocks and every block is of

size z z× . Within a block of the rating matrix, the

rating element is also divided into several groups, and

any two elements in the same group share neither the

same row nor the same column. By doing so, every

thread of the GPU will update a user vector and an

item vector with no update loss.

However, there is one important challenge to solve

the problem. The partitioning method expands the

original matrix into a square matrix with missing

values. It may lead to many blank blocks when the

number of users differs greatly from the number of

items, which will cause a significant waste of GPU

computing resources.

In this paper, we follow the main idea of GPUSGD

and propose a new method. In order to solve the

problem of waste of computing resources, we design a

new computing resource allocation scheme to

effectively avoid the effects of blank blocks. The new

method will no longer allocate computing resources for

blank blocks. The contributions of this paper are

summarized as follows:

(1) We analyze the defects of GPUSGD from the

perspective of hardware computing.

(2) According to the analysis of the defects, a new

scheduling scheme is proposed. The new method

avoids blank blocks and can make more efficient use of

the GPU.

The rest of the paper is organized as follows:

Section 2 presents the related works. Section 3

introduces the GPUSGD. Section 4 describes the

improved GPUSGD algorithm. The experimental

results are presented in Section 5. Finally, Section 6

concludes the paper.

2 Related Work

In this section, we will review the related works.

First, we introduce the related studies of solving MF.

Next, we analyze the losing update problem of SGD,

and review two existing studies to overcome this

problem.

2.1 MF Methods

The MF in CF is different from the conventional

factorization method utilized in image or text analysis

[10-13]. The key difference is that CF has to deal with

an incomplete matrix. Hence, we cannot apply the

conventional linear algebra methods, such as QR

decomposition, to find its factorization. Many methods

have been proposed to the problem, such as alternating

least squares (ALS) [14], coordinate descent (CD) [15,

16], and SGD. Among them, SGD is the most widely

used for MF based CF.

2.2 Parallel Stochastic Gradient Descent

Algorithm

From Figure 1, we can see that when the training

data
uv
r is used,

u
p ,

v
q ,

u
a and

v
b will be updated

simultaneously. If there is another processor to process

the training data
uv
r at the same time,

u
p and

u
a will

also be updated. It will create conflicts and lead to

losing updates. In order to implement the SGD in

parallel, we should solve this problem first.

r1,1 ...

.
.
.

r1,v ...

.
.
.

ru,1 ...

.
.
.

ru,v ...

.
.
.

r1,n

.
.
.

ru,n

.
.
.

rm,1 ... rm,v ... rm,n

q1 ... qv ... qn

p1

...

pu

...

pm

Figure 1. Relationship between training rating data

and update results. User associated vector, item

associated vector will be updated simultaneously

From Figure 2, we can see that if two elements in

the rating matrix share neither the same row nor the

same column, losing update will not happen. Hence,

the key issue now is to make sure that the elements

concurrently processed are not from the same row or

the same column. There are two ways which are

widely used. Now we will introduce them.

r1,1 ...

.
.
.

r1,v ...

.
.
.

ru,1 ...

.
.
.

ru,v ...

.
.
.

r1,n

.
.
.

ru,n

.
.
.

rm,1 ... rm,v ... rm,n

q1 ... qv ... qn

q1

...

qu

...

qm

Figure 2. Relationship between training rating data

and update results. If two elements in the rating matrix

share neither the same row nor the same column,

losing update will not occur

An Efficient Approach of GPU-accelerated Stochastic Gradient Descent Method for Matrix Factorization 1089

2.2.1 HogWild

HogWild [17] is a method that makes use of high

sparsity of the incomplete matrix to avoid the losing

update problem. If the rating matrix to factorize is

highly sparse, we can deduce that two randomly

sampled ratings are unlikely from the same row or

column. In other words, if the matrix is sparse enough,

the losing update problem rarely happens, or can be

ignored even it happens. Hence, HogWild drops the

synchronization that prevents concurrent variable

access via atomic operations, each of which is a series

of instructions that cannot be interrupted. Though the

losing update problem may still occur, the convergence

of HogWild can be shown under some mild condition

(e.g., the rating matrix is extremely sparse).

2.2.2 Partition Based Methods

Another strategy to avoid the losing update problem

is to partition the rating matrix into blocks, which are

named as partition-based methods. As there always

exist some blocks that share neither the same rows or

columns, we can thus select these blocks to update in

parallel. Specifically, partition-based methods

uniformly grid the rating matrix R into many blocks

and apply the SGD to some independent blocks (here

‘independent’ means the blocks share no rows or

columns). Based on this idea, SGD on different parallel

platforms are proposed [9, 18-20].

Fast parallel SGD (FPSGD) is executed on a shared-

memory system with several concurrent threads.

FPSGD exploits a strategy of keeping all threads busy

in running. If the number of concurrent threads is t , R

is partitioned into at least () ()1 1t t+ × + blocks

uniformly. Once a thread finishes processing a certain

block, a new block that share neither same row nor

column with the ()1t − block being processing will be

assigned to this thread. Every block will be labelled

with a tag, which records how many times they were

processed. When a new task is assigned to a thread,

FPSGD selects the blocks with the least times being

processed in all blocks that meet the conditions share

neither same row or same column with the block being

processed by other threads. If R is partitioned into

only t t× blocks, there is only one block that share

neither same row nor column with the (1)t − block

being processing, and it is the block just being

processed. In this way, other data blocks will never be

calculated. FDSGD is an implement of SGD on

distribute system, and it is similar as FPSGD.

GPU is different from traditional shared-memory

system that all the threads of GPU will execute

concurrently. The tasks of all threads must end together

and assign new tasks together. All threads will be

assigned to a new task until they finish the previous

task. Hence, there is no need to assign extra free blocks

as FPSGD. Typical method of this category is

GPUSGD, which is proposed by Jin et al. [9]. However,

GPUSGD will produce blank blocks, which cause a

significant waste of GPUs.

3 GPUSGD Algorithm

GPU has many threads, and these threads are

organized into thread blocks. Based on the architecture

of GPU, GPUSGD has two levels of parallelism. The

first level is that the blocks of the rating matrix that

share neither the same row nor the same column can be

processed by different thread blocks GPU. The second

level is that the elements in the same block that share

neither the same row nor the same column can be

processed by different threads in a thread block.

In the following of this section, we will introduce

the two levels of parallelism to implement GPUSGD.

The core component to the implementation is labelling

data blocks and data items with tags. Data blocks with

the same tag can be processed at the same time by

different thread blocks and data items in a data block

with the same tag can also be processed at the same

time by different threads in the same thread block.

3.1 Task Assignment of Thread Blocks

If we use t thread blocks to process, the rating

matrix is divided into t t× blocks with size z z× first

and this produces !t patterns, where t patterns cover

all blocks. For example, in Figure 3 the rating matrix

divided into 3 3× produces six patterns, and the three

patterns in the first row can cover all blocks.

Figure 3. Six rules of a matrix divided into 3 3×

To exploit this feature, we could label every block

with a tag. Every block has a 2-dimension ID, denoted

by its index (),i j , where 1 i t≤ ≤ and 1 j t≤ ≤ . Hence,

we can label block (),i j by ()% .j i t t− + Thus, t tags

from 0 to 1t − will label all the blocks. It can be

proved that blocks with the same tag share neither the

same rows or columns. In every round of iteration, the

task of each thread block can be divided into t stages.

Each stage handles data blocks with one tag. After a

1090 Journal of Internet Technology Volume 20 (2019) No.4

data block is processed, all thread blocks need to

synchronize.

3.2 Task Assignment of Threads

In every stage, the threads in a thread block should

process all the data in a block. In order to maximize the

use of multi-threaded computing power, each piece of

data in the data block also needs to be tagged with a

tag.

A rating (),u v can be labelled with ()% % %v z u z z z− + .

Thus, z tags from 0 to 1z − will label all the blocks. It

can be proved that the ratings with the same tag are

from different rows or columns. They can be processed

by different threads in a thread block.

In GPU computing, continuous threads can read

continuously stored data at once, which is called

coalesced memory access. In order to speed up data

accessing, GPUSGD also organizes the rating matrix

and stores data with the same tag continuously.

4 New Strategy of Data Partitioning

In Section 3, we introduce the basic idea of

GPUSGD and illustrate the algorithm with a few

simple examples. However, in the actual

recommendation system, there is a big challenge, that

is, the number of users and the number of items are

often very different. Sometimes, the number of users is

thousands of times as the number of items, or vice

versa. In other words, the rating matrix is not a square

matrix.

4.1 Data Partitioning and Problem

GPUSGD divides R into t t× blocks, and it needs

every block to be a square matrix. The missing value is

used to expand R into a square matrix and then

partition it. For an m n× matrix R , we should first

select a relatively large one in m and n , and denoted

as k . Then we expand k to the smallest integer that

can be divisible by t , and denoted as K . Now, we can

expand R into a K K× matrix using missing value.

For example, a 7 3× rating matrix is shown in

Figure 4. The shaded elements in the figure represent

observed entries, and the unshaded elements represent

missing values. If we want to divide it into 3 3× blocks,

the matrix should be expanded to a 9 9× square matrix

as shown in Figure 5.

When we divide the expanded rating matrix into

3 3× , it will generate too many blank matrix. It will

cause many threads to be idle and wait after

distributing data to the threads of GPU based on this

strategy.

To illustrate the problem, we use the matrix in

Figure 6 as an example. In this example, there are not

as many filled elements as in Figure 5. If we use GPU

to process this matrix as in GPUSGD, there is a thread

block that handles empty matrix blocks in every round

as shown in Figure 7.

1 2 3

4 5 6

7 8 9

10 11 12

13 14 15

16 17 18

19 20 21

Figure 4. 7 3× rating matrix that is not a square matrix

1 2 3

4 5 6

7 8 9

10 11 12

13 14 15

16 17 18

19 20 21

Figure 5. Expanding the 7 3× rating matrix to square

matrix with missing values

1 2 3

4 5 6

7 8 9

10 11 12

13 14 15

16 17 18

19 20 21

Figure 6. The expanded matrix is divided into 3 3×

An Efficient Approach of GPU-accelerated Stochastic Gradient Descent Method for Matrix Factorization 1091

(1,1)

0

(1,2)

1

(1,3)

2

(2,1)

3

(2,2)

0

(2,3)

1

(3,1)

2

(3,2)

3

(3,3)

0

(4,1)

1

(4,2)

2

(4,3)

3

(1,4)

3

(2,4)

2

(3,4)

1

(4,4)

0

Figure 7. An expanded rating matrix divided into

4 4× . Dotted lines represent expanded blocks

Once a task is launched, the GPU generates the

corresponding grid of threads. As we discussed in

previous section, these threads are assigned to

execution resources on a block-by-block basis. In the

current generation of GPU, the execution resources are

organized into streaming multiprocessors (SMs).

Multiple thread blocks can be assigned to each SM.

With a limited number of SMs and a limited number

of blocks that can be assigned to each SM, there is a

limit on the number of blocks that can be actively

executing in GPU. Most grids contain many blocks

than this number. The runtime system maintains a list

of blocks that need to execute and assigns new blocks

to SMs as they complete executing the blocks

previously assigned to them.

Dealing with the blank blocks consumes SMs, which

causes a waste. In order to further improve the

computational efficiency, we must think of ways to

skip these blank blocks during the calculation process.

4.2 Improved Strategy

The thread block’s tasks of GPUSGD is shown in

Figure 8. We can reassemble the tasks, as shown in

Figure 9. By doing this, we can effectively reduce the

number of thread blocks.

Now we introduce the new partitioning and

assigning strategy. Given a block number t , the

number of users m and the number of items n . If

m n> , the user can be divided into t groups and the

items can be divided into
n t

s

m

×⎡ ⎤
= ⎢ ⎥
⎢ ⎥

 groups. Based on

this strategy, the rating matrix can be divided into t s× ,

and every block is z z× , where
t

z

m

⎡ ⎤
= ⎢ ⎥
⎢ ⎥

.

Every block has a 2-dimension ID, represented by

(),i j , where 1 i t≤ ≤ and 1 .j s≤ ≤ Every block

should be labelled by ()%j i t t− + . We can assign s

thread blocks to process this rating matrix, and every

thread block will process t blocks.

With this method, the new partitioning strategy will

not produce blank block. As a result, the method can

avoid completely waiting thread blocks. We note that,

within a thread block, the data should be labelled with

a tag as GPSUGD. We named the improved method as

efficient GPUSGD (eGPUSGD). The overall workflow

of eGPUSGD can be seen in Figure 10 which is

composed three key steps, namely, data partitioning,

data organization and task assignment. The shaded

elements in the figure represent observed values as

Figure 4.

(3,3)

0

(2,3)

1

(4,1)

1

(3,1)

2

(4,2)

2

(1,2)

1

(1,3)

2

Thread Block

1

Thread Block

2

Thread Block

3

Thread Block

4

(2,1)

3

(3,2)

3

(4,3)

3

(1,1)

0
(2,2)

0

(4,4)

0

(3,4)

1

(2,4)

2

(1,4)

3

Figure 8. The task of every thread block when using GPUSGD

1092 Journal of Internet Technology Volume 20 (2019) No.4

(3,3)

0

(2,3)

1

(4,1)

1

(3,1)

2

(4,2)

2

(1,2)

1

(1,3)

2

Thread Block

1

Thread Block

2

Thread Block

3

(2,1)

3

(3,2)

3

(4,3)

3

(1,1)

0
(2,2)

0

Figure 9. The reassembled task of every thread block

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

17 18 19 20

21 22 23 24

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

17 18 19 20

21 22 23 24

(1,1) (1,2)

(2,1) (2,2)

1 6 11

1215

16

(1,1) (2,2)

1

19

6

23

16

20

9

11

1215

16

Block 1

Thread 1

Thread 2

Block 2

Thread 1

Thread 2

Data

Partitioning

Data

Organization

Task

Assignment

(3,1) (3,2)

(1,3)

(2,3)

(3,3)

9 19

2023

16

(2,1) (3,2)

17

21 18

3

7

(3,1) (1,2)

3

7

17

21 18

Block 2

Thread 1

Thread 2

Figure 10. The overall workflow of eGPUSGD

An Efficient Approach of GPU-accelerated Stochastic Gradient Descent Method for Matrix Factorization 1093

5 Experiment

This section tests the proposed method on real

dataset and analyze the experimental results. The

performance of the proposed GPUSGD method is

evaluated on four datasets: MovieLens10M(M10M),

M100k, Netflix, and BDMovie. These datasets are all

publicly available on the Internet. The statistics of

these datasets are summarized in Table 1.

Table 1. The statistics of datasets

 M10M M100k Netflix BDMovie

#users 71567 943 475749 9721

#items 65133 1682 17770 7889

#rating 9301274 80000 9301274 1199604

The experiments are performed on a computer with

an NVIDIA GX1080TI and CUDA-SDK 9.0. In the

following, the performance of the proposed SGD on

GTX1080Ti is first presented, and the computation

time is then compared to GPUSGD on the same

platform.

We fix 100 as the maximum number of iterations, γ

is set to 0.005 and λ is set to 0.03. The observed

experimental results are from two precisions, single

and double.

First, we test the convergence of the iterations when

the number of blocks is different. For evaluation, we

adopt the widely utilized root-mean-square error

(RMSE):

 ()
()

2

,

1

ûv uv

u v V

RMSE r r
V

∈

= −∑ (3)

where V is the validation set. RMSE is reported as the

number of iterations is increased in Figure 10. We fix

the latent dimensions at 16 and block the rating matrix

into 32 32× . We observe the experimental results from

both single-precision and double-precision perspectives.

From Figure 11, we can see that the convergence of the

proposed eGPUSGD is convergent, which is the same

as the existing GPUSGD method.

0 50 100 150 200 250 300 350
0.84

0.86

0.88

0.9

0.92

0.94

Time(s)

R
M
S
E

M10M

eGPUSGD(s)

eGPUSGD(d)

GPUSGD(s)

GPUSGD(d)

0 5 10 15
0.9

0.95

1

1.05

1.1

1.15

1.2

1.25

Time(s)

R
M
S
E

M100k

eGPUSGD(s)

eGPUSGD(d)

GPUSGD(s)

GPUSGD(d)

0 200 400 600 800
0.9

0.95

1

1.05

1.1

1.15

Time(s)

R
M
S
E

Netflix

eGPUSGD(s)

eGPUSGD(d)

GPUSGD(s)

GPUSGD(d)

0 20 40 60 80 100
0.65

0.7

0.75

0.8

0.85

0.9

Time(s)

R
M
S
E

BDMovie

eGPUSGD(s)

eGPUSGD(d)

GPUSGD(s)

GPUSGD(d)

Figure 11. The RMSE trend

Next, we evaluate the efficiency of the proposed

method. We fix the latent dimensions at 16 and 32. The

rating matrix is block into 32 32× , 64 64× , 128 128×

and 256 256× separately. Figure 12 reports the time

consumptions when different sizes of blocks are

utilized.

1094 Journal of Internet Technology Volume 20 (2019) No.4

0 50 100 150 200 250 300
100

200

300

400

500

600

Block Number

E
x
e
c
u
ti
o
n
 t

im
e
 (

s
)

M10M(Single Precision)

eGPUSGD(16)

eGPUSGD(32)

GPUSGD(16)

GPUSGD(32)

0 50 100 150 200 250 300
100

200

300

400

500

600

700

Block Number

E
x
e
c
u
ti
o
n
 t

im
e
 (

s
)

M10M(Double Precision)

eGPUSGD(16)

eGPUSGD(32)

GPUSGD(16)

GPUSGD(32)

0 50 100 150 200 250 300
0

5

10

15

20

25

30

Block Number

E
x
e
c
u
ti
o
n
 t

im
e
 (

s
)

M100k(Single Precision)

eGPUSGD(16)

eGPUSGD(32)

GPUSGD(16)

GPUSGD(32)

0 50 100 150 200 250 300
0

5

10

15

20

25

30

Block Number

E
x
e
c
u
ti
o
n
 t

im
e
 (

s
)

M100k(Double Precision)

eGPUSGD(16)

eGPUSGD(32)

GPUSGD(16)

GPUSGD(32)

0 50 100 150 200 250 300
100

200

300

400

500

600

Block Number

E
x
e
c
u
ti
o
n
 t

im
e
 (

s
)

Netflix(Single Precision)

eGPUSGD(16)

eGPUSGD(32)

GPUSGD(16)

GPUSGD(32)

0 50 100 150 200 250 300
100

200

300

400

500

600

700

Block Number

E
x
e
c
u
ti
o
n
 t

im
e
 (

s
)

Netflix(Double Precision)

eGPUSGD(16)

eGPUSGD(32)

GPUSGD(16)

GPUSGD(32)

0 50 100 150 200 250 300
20

40

60

80

100

120

140

160

Block Number

E
x
e
c
u
ti
o
n
 t

im
e
 (

s
)

BDMovie(Single Precision)

eGPUSGD(16)

eGPUSGD(32)

GPUSGD(16)

GPUSGD(32)

0 50 100 150 200 250 300
20

40

60

80

100

120

140

160

180

Block Number

E
x
e
c
u
ti
o
n
 t

im
e
 (

s
)

BDMovie(Double Precision)

eGPUSGD(16)

eGPUSGD(32)

GPUSGD(16)

GPUSGD(32)

Figure 12. Time consumption of different sizes of blocks

From Figure 12, we can see that the efficiency of the

new method is better than the old method in almost all

cases. When the M10M is blocked into 32 32× , there

is no blank blocks, so the method has the same time

consumption as the old method. For the dataset Netflix,

the blank blocks is more so the new method is much

better than the old method.

Finally, we block the matrix into 32 32× and

256 256× and test how the number of latent

dimensions affects the time consumption. The number

of latent dimensions ranges in 16,32,64 and 128.

Figure 13 depicts the results.

An Efficient Approach of GPU-accelerated Stochastic Gradient Descent Method for Matrix Factorization 1095

0 20 40 60 80 100 120 140
0

500

1000

1500

2000

2500

Latent Dimenision

E
x
e
c
u
ti
o
n
 t

im
e
 (

s
)

M10M(Single Precision)

eGPUSGD(32)

eGPUSGD(256)

GPUSGD(32)

GPUSGD(256)

0 20 40 60 80 100 120 140
0

500

1000

1500

2000

2500

Latent Dimenision

E
x
e
c
u
ti
o
n
 t

im
e
 (

s
)

M10M(Double Precision)

eGPUSGD(32)

eGPUSGD(256)

GPUSGD(32)

GPUSGD(256)

0 20 40 60 80 100 120 140
0

20

40

60

80

100

120

Latent Dimenision

E
x
e
c
u
ti
o
n
 t

im
e
 (

s
)

M100k(Single Precision)

eGPUSGD(32)

eGPUSGD(256)

GPUSGD(32)

GPUSGD(256)

0 20 40 60 80 100 120 140
0

20

40

60

80

100

120

Latent Dimenision

E
x
e
c
u
ti
o
n
 t

im
e
 (

s
)

M100k(Double Precision)

eGPUSGD(32)

eGPUSGD(256)

GPUSGD(32)

GPUSGD(256)

0 20 40 60 80 100 120 140
0

1000

2000

3000

4000

5000

6000

7000

8000

Latent Dimenision

E
x
e
c
u
ti
o
n
 t

im
e
 (

s
)

Netflix(Single Precision)

eGPUSGD(32)

eGPUSGD(256)

GPUSGD(32)

GPUSGD(256)

0 20 40 60 80 100 120 140
0

2000

4000

6000

8000

10000

Latent Dimenision

E
x
e
c
u
ti
o
n
 t

im
e
 (

s
)

Netflix(Double Precision)

eGPUSGD(32)

eGPUSGD(256)

GPUSGD(32)

GPUSGD(256)

0 20 40 60 80 100 120 140
0

20

40

60

80

100

120

Latent Dimenision

E
x
e
c
u
ti
o
n
 t

im
e
 (

s
)

BDMovie(Single Precision)

eGPUSGD(32)

eGPUSGD(256)

GPUSGD(32)

GPUSGD(256)

0 20 40 60 80 100 120 140
0

20

40

60

80

100

120

Latent Dimenision

E
x
e
c
u
ti
o
n
 t

im
e
 (

s
)

BDMovie(Double Precision)

eGPUSGD(32)

eGPUSGD(256)

GPUSGD(32)

GPUSGD(256)

Figure 13. Time consumption of different latent dimensions

From Figure 13, we can see that the efficiency of

eGPUSGD is better than GPUSGD in the case of the

same parameters.
6 Conclusion

Matrix Factorization based Collaborative Filtering

has been widely used in many recommender systems.

1096 Journal of Internet Technology Volume 20 (2019) No.4

SGD is one of the most popular algorithms for solving

matrix factorization with missing value. However, the

large computational burden required by SGD poses a

significant efficiency challenge. In this paper, we

improve the existing GPUSGD method to further

improve its efficiency. The results on four real-world

data sets show that the proposed algorithm eGPUSGD

can make a very good use of the massively parallel

GPU architecture and improve the efficiency of

GPUSGD significantly.

Acknowledgments

This research was supported in part by NSFC under

Grant No. 61572158 and 61602132, Shenzhen Science

and Technology Program under Grant No. JCYJ20160

330163900579 and and JCYJ20170811160212033.

References

[1] F. Cacheda, V. Carneiro, D. Fernández, V. Formoso,

Comparison of Collaborative Filtering Algorithms:

Limitations of Current Techniques and Proposals for Scalable,

High-performance Recommender Systems, ACM Transactions

on the Web, Vol. 5, No. 1, pp. 1-33, February, 2011.

[2] P. Resnick, H. R. Varian, Recommender Systems,

Communications of the ACM, Vol. 40, No. 3, pp. 56-58,

March, 1997.

[3] T. Gopalakrishnan, P. Sengottuvelan, A. Bharathi, R.

Lokeshkumar, An Approach To Webpage Prediction Method

Using Variable Order Markov Model In Recommendation

Systems, Journal of Internet Technology, Vol. 19, No. 2, pp.

415-424, March, 2018.

[4] Y. Koren, R. Bell, C. Volinsky, Matrix Factorization

Techniques for Recommender Systems, Computer, Vol. 42,

No. 8, pp. 42-49, August, 2009.

[5] Z. Zhang, Y. Liu. A List-wise Matrix Factorization Based

POI Recommendation by Fusing Multi-Tag, Social and

Geographical Influences, Journal of Internet Technology, Vol.

19, No. 1, pp. 127-136, January, 2018.

[6] D. Steinkraus, I. Buck, P. Y. Simard, Using GPUs for

Machine Learning Algorithms, Proceedings of 8th

International Conference on Document Analysis and

Recognition, Seoul, Korea, 2005, pp. 1115-1120.

[7] W. B. Jiang, B. Luo, H. Jin, A. L. Yuille, J. S. Xiao, A Novel

Parallelized Feature Extraction in Grouped Scale Space Based

on Graphic Processing Units, Journal of Internet Technology,

Vol. 17, No. 5, pp. 1061-1069, September, 2016.

[8] F. Li, Y. Ye, Z. Tian, X. Zhang. CPU versus GPU: Which

Can Perform Matrix Computation Faster-Performance

Comparison for Basic Linear Algebra Subprograms, Neural

Computing and Applications, https://doi.org/10.1007/s00521-

018-3354-z, January, 2018.

[9] J. Jin, S. Lai, S. Hu, J. Lin, X. Lin, GPUSGD: A GPU-

accelerated stochastic gradient descent algorithm for matrix

factorization, Concurrency and Computation: Practice and

Experience, Vol. 28, No. 14, pp. 3844-3865, December, 2016.

[10] V. P. Pauca, J. Piper, R. J. Plemmons, Nonnegative Matrix

Factorization for Spectral Data Analysis, Linear Algebra and

Its Applications, Vol. 416, No. 1, pp. 29-47, July, 2006.

[11] F. Shahnaz, M. W. Berry, V. P. Pauca, R. J. Plemmons,

Document Clustering Using Nonnegative Matrix

Factorization, Information Processing & Management, Vol.

42, No. 2, pp. 373-386, March, 2006.

[12] S. A. Vavasis, On the Complexity of Nonnegative Matrix

Factorization, SIAM Journal on Optimization, Vol. 20, No. 3,

pp. 1364-1377, August, 2009.

[13] L. Eldén, Matrix Methods in Data Mining and Pattern

Recognition, Society for Industrial and Applied Mathematics,

2007.

[14] I. Pilászy, D. Zibriczky, D. Tikk, Fast Als-based Matrix

Factorization for Explicit and Implicit Feedback Datasets,

Proceedings of the 4th ACM conference on Recommender

systems, Barcelona, Spain, 2010, pp. 71-78.

[15] H. F. Yu, C. J. Hsieh, S. Si, I. S. Dhillon, Parallel Matrix

Factorization for Recommender Systems, Knowledge and

Information Systems, Vol. 41, No. 3, pp. 793-819, December,

2014.

[16] H. F. Yu, C. J. Hsieh, S. Si, I. S. Dhillon, Scalable Coordinate

Descent Approaches to Parallel Matrix Factorization for

Recommender Systems, Proceedings of the 12th

International Conference on Data Mining, Brussels, Belgium,

2012, pp. 765-774.

[17] B. Recht, C. Re, S. Wright, F. Niu, Hogwild: A Lock-free

Approach to Parallelizing Stochastic Gradient Descent,

Proceedings of the 25th Annual Conference on Neural

Information Processing Systems (NIPS), Granada, Spain,

2011, pp. 693-701.

[18] R. Gemulla, E. Nijkamp, P. J. Haas, Y. Sismanis, Large-scale

Matrix Factorization with Distributed Stochastic Gradient

Descent, Proceedings of the 17th ACM SIGKDD

International Conference on Knowledge Discovery and Data

Mining, San Diego, CA, 2011, pp. 69-77.

[19] Y. Zhuang, W. S. Chin, Y. C. Juan, C. J. Lin, A Fast Parallel

SGD for Matrix Factorization in Shared Memory Systems,

Proceedings of the 7th ACM Conference on Recommender

Systems, Hong Kong, China, 2013, pp. 249-256.

[20] F. Li, B. Wu, L. Xu, C. Shi, J. Shi, A Fast Distributed

Stochastic Gradient Descent Algorithm for Matrix

Factorization, Proceedings of the 3rd International

Conference on Big Data, Streams and Heterogeneous Source

Mining: Algorithms, Systems, Programming Models and

Applications, New York, NY, 2014, pp. 77-87.

An Efficient Approach of GPU-accelerated Stochastic Gradient Descent Method for Matrix Factorization 1097

Biographies

Feng Li is now a Ph.D. student in the

Harbin Institute of Technology

Shenzhen Graduate School. He

received the Master degree in

Computer Science and the Bachelor

degree in Mathematics from Harbin

Institute of Technology in 2013 and

2011. His research interests include

high performance computing and randomized

algorithms.

Yunming Ye is a Professor in the

Harbin Institute of Technology

Shenzhen Graduate School. He

received the Ph.D. degree in

Computer Science from Shanghai Jiao

Tong University. His research

interests include data mining, text

mining, and ensemble learning algorithms.

Xutao Li is now an associate

professor in the Shenzhen Graduate

School, Harbin Institute of

Technology. He received the PhD

degrees in Computer Science from

Harbin Institute of Technology in

2013. His research interests include

machine learning and graph mining,

especially tensor based learning

and mining algorithms.

1098 Journal of Internet Technology Volume 20 (2019) No.4

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (Japan Color 2001 Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJDFFile false
 /CreateJobTicket true
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHT <FEFF005B683964DA300C005000440046002800310032003000300064007000690029300D005D0020>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
 <<
 /AddBleedMarks true
 /AddColorBars false
 /AddCropMarks true
 /AddPageInfo true
 /AddRegMarks false
 /BleedOffset [
 8.503940
 8.503940
 8.503940
 8.503940
]
 /ConvertColors /NoConversion
 /DestinationProfileName (sRGB IEC61966-2.1)
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /ClipComplexRegions true
 /ConvertStrokesToOutlines false
 /ConvertTextToOutlines false
 /GradientResolution 400
 /LineArtTextResolution 1200
 /PresetName <FEFF005B9AD889E367905EA6005D>
 /PresetSelector /HighResolution
 /RasterVectorBalance 1
 >>
 /FormElements true
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MarksOffset 0
 /MarksWeight 0.283460
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PageMarksFile /JapaneseWithCircle
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [1200 1200]
 /PageSize [612.000 792.000]
>> setpagedevice

