
DBTCP: A Transmission Mechanism of the Backup for Disaster Recovery in DCNs 1069

DBTCP: A Transmission Mechanism of the Backup for

Disaster Recovery in DCNs

Chen-Yue Wang, Zhan Shi, Wei Su, Qi-Li Wen, Hua-Chun Zhou

School of Electronic and Information Engineering, Beijing Jiaotong University, China

1195326758@qq.com, novshz@126.com, wsu@bjtu.edu.cn, 295438550@qq.com, hchzhou@bjtu.edu.cn*

*Corresponding Author: Chen-Yue Wang; E-mail: 1195326758@qq.com

DOI: 10.3966/160792642019072004007

Abstract

End-to-end communication has been widely used in all

aspect of our daily lives, and are these applications are

mostly rely on data center networks (DCNs), which are

served as the core infrastructure for storing and

processing a large number of data. Disaster backup,

different from general data transmission, has some unique

characteristics and requires low latency, high throughput,

burst robustness, tight deadline, massive loads and easy

deployment, where mass data in DCNs nodes need to be

transferred as much as possible and the tight deadline

should be meet after the alarm for a potential nature

extreme phenomena is sound. This paper first introduces

and summarizes the existing transmission mechanisms

deployed for DCNs worldwide. Further, we explain the

unique characteristics of disaster backup. Then our paper

discusses the design idea and proposes the detailed design

of the DCN backup TCP (DBTCP), through simulation

and evaluation, the results of which displayed in the form

of graphs. We are confirmed that the DBTCP designed is

capable of making almost all of flows meet the tight

deadline under high load and high burst. By carefully

investigations implemented in both NS2 and Linux kernel,

we notice that DBTCP nearly always outperforms

previous presented mechanisms, like DCTCP, D
2
TCP. In

typical scenarios, DBTCP can reduce missing deadline

rate and improve both throughout and robustness when

flows burst, keeping the outstanding easy deployment

feature of former mechanisms at the same time. The

DBTCP proposed in this paper provides a reliable and

effective solution, and has a certain reference value for

future research.

Keywords: DCN, Backup for disaster recovery,

Transmission mechanism, Deadline

1 Introduction

Nowadays, end-to-end communication generates

more and more data in a really short time, thus cloud

computing technology and data centers becoming the

hot focus of both scientific and public attention. Real-

time communication applications, as a representative

manner of end-to-end communication which have been

widely used in all aspect of our daily lives, are required

to provide stringent data transmissions with a given

deadline. These services and applications are mostly

rely on data center networks (DCNs), which are served

as the core infrastructure for storing and processing a

large number of data [1-2].

However, due to the geographic distribution

characteristic of DCNs devices, it is unavoidably

vulnerable to natural disasters, such as typhoons,

tsunamis, earthquakes, and floods. Therefore the

performance of the mechanism considering missed

deadlines and throughput can be significantly affected.

To avoid large scale data loss and meet strict

transmission deadline, network protocols need to

incorporate new tailor traffic management and various

transport schemes for DCNs, serving users in a timely

manner. In other words, DCNs are required more

effective and reliable mechanisms in backup for nature

disaster, to ensure that the data in nodes of DCNs

which may be destroyed, can be backed up as many as

possible to other security nodes within a tight deadline,

when a potential disaster is detected.

The mechanisms of the backup for disaster recovery

in DCNs’ involve network topology optimization [3-4],

multipath transmission for load balancing [5-6],

optimal destination node and transmission path

selection, end-to-end transmission mechanism, and so

on. There are indeed other transmission mechanisms

which have been used widely in DCNs, such as

DCTCP [7] and D2TCP [8] which attain good features

as general modes of transportation. But when a sudden

disaster comes, they often fail to deliver as much data

as protocol especially designed for disaster recovery

within the hard response deadlines. For instance,

DCTC does not take deadline into consideration,

apparently causing large missed data. Besides, the

performance of D2TCP which is deadline-aware, will

degrade to DCTCP when the network load is too heavy,

while there must be a huge burst of data to transfer in

the case of disaster backup. In addition, other

transmission mechanisms in DCNs, such as PDQ [9]

and so on, are difficult to deploy incrementally, as they

require large hardware and software changes of hosts

1070 Journal of Internet Technology Volume 20 (2019) No.4

and switches, and cannot coexist with legacy

transmission mechanism.

Based on D2TCP, this paper is aimed at proposing a

deadline-aware flow rate control scheme on condition

of shallow packet buffers in switches, the principle of

which is as followed: flows with shorter deadline or

smaller load should take up more bandwidth. By

carefully investigations implemented in both NS2 and

Linux kernel, we notice that DBTCP nearly always

outperforms previous presented mechanisms, like

DCTCP, D2TCP. In typical scenarios, DBTCP can

reduce missing deadline rate and improve both

throughout and robustness when flows burst, keeping

the outstanding easy deployment feature of former

mechanisms at the same time.

To demonstrate the effective performance of

DBTCP, this paper first introduces and summarizes the

existing transmission mechanisms deployed for DCNs

worldwide. Further, we explain the unique

characteristics of disaster backup. Then our paper

discusses the design idea and proposes the detailed

design of the DCN backup TCP (DBTCP), through

simulation and evaluation, the results of which

displayed in the form of graphs. We are confirmed that

the DBTCP designed is capable of making almost all

of flows meet the tight deadline under high load and

high burst.

The rest of this paper is organized as follows.

Section 2 analyzes and summarizes the existing

domestic and overseas transmission mechanisms of

DCNs. Then in section 3, the paper discusses the

characteristics and requirements in data transmission of

the backup for disaster recovery in DCNs, and

proposes DBTCP. Simulation and evaluation of

DBTCP are given in section 4. Finally, section 5 is a

summary of our paper.

2 Relevant Work

The ever-increasingly developed ideas designed for

DCNs have become hot research propositions, while

they still face severe network congestions and missing

data when nature disaster occurs.

The two principal design ideas for the current

transmission mechanisms in DCNs are respectively

called Earliest Deadline First (EDF) and Shortest Job

First (SJF). In EDF scheduling discipline, each flow is

assigned a deadline, where the flow with shorter

deadline is allocated bandwidth preferentially, so that

more flows can be transmitted within their deadline. As

for SJF scheduling discipline, the smaller flow has

wider bandwidth, and thus the average flow

completion time (AFCT) is shorten dramatically. Some

of the existing transmission mechanisms of DCNs,

implement only EDF, such as D2TCP and D3 [10], or

simply SJF, such as L2DCT [11]. Others conform to

both of EDF and SJF, such as PDQ and LPD [12]. As

for congestion control in the transmission rate, the

related algorithms are divided into two categories. One

monitors congestion in the link and adjusts the

transmission window passively, the other allocates

transmission rate proactively.

In this section, existing transmission mechanisms in

DCNs are classified by their manner of regulating the

transmission rate, on the basic conception of which we

compare the advantages and disadvantages of these

transmission mechanisms.

2.1 Transmission Mechanisms Adjusting the

Transmission Rate Passively

Among many TCP-like transmission mechanisms

for DCNs, DCTCP uses shallow buffers and marks

packets once queue length exceeds a preset threshold,

by which way the congestion window is adjusted

accordingly and the rate of queue occupancy in

switches is limited. DCTCP, deployed explicit

congestion notification (ECN) [13] mechanism,

achieves low latency, high throughput, and high burst

tolerance and can easily coexist with TCP. But the

weakness of DCTCP is that it does not consider the

strict deadline in applications such as web search and

chat networking.

D2TCP proposes a gamma-correction function on

the basis of DCTCP, which contributes to the deadline-

awareness and higher transport completion rate. In this

way, D2TCP regulate the congestion window according

to both deadline and congestion level, correcting small

and temporary oversubscribing. However, the

performance of D2TCP degrades to DCTCP on

condition of heavy network load.

L2DCT also uses the ECN and can avoid

overloading without knowing the size of lows. It

adjusts the congestion window based on the estimated

congestion level and flow size, where shorter flows

should has shorter completion time thus reducing the

mean transport time. In addition, as L2DCT need not

modify switches, it can be easy to deploy incrementally

on the basis of TCP. However, L2DCT also ignores

deadline.

pFabric [14] is designed to complete transmission as

simple as possible. Switches drop and send every

packets selectively and accordingly on the reference of

priority set by the sending ends. At the beginning,

flows are all sent with the maximal link rate, only

under high and persistent packet loss the allocated

bandwidth throttled back, therefore flows with higher

priority have a shorter completion time. Besides,

information of flows is useless for switches, whose

buffers should be small. Unfortunately, pFabric is

vulnerable to congestion.

HULL [15] also achieves ultra-low latency at the

cost of little bandwidth loss. Based on DCTCP, it uses

phantom queues as well as packet pacing in order to

tolerate burst. But HULL can only be employed under

the condition of great change to hosts and switches.

DBTCP: A Transmission Mechanism of the Backup for Disaster Recovery in DCNs 1071

2.2 Transmission Mechanisms Adjusting the

Transmission Rate Proactively

D3 similarly achieves low latency, high bandwidth

utilization, and burst tolerance. It allocate bandwidth

for next RTT at the routers based on real-time

remaining data quantity and transmission time.

Nevertheless, due to its greedy approach that allocate

bandwidth to far-deadline requests arriving ahead of

near-deadline requests, D3 faces priority inversions and

missed deadlines. Moreover, D3 has the same problem

as HULL.

ICTCP is also deadline-agnostic, while promises

high throughput, low latency and easy deployment. In

this mechanism, the receiving ends are responsible for

receive window adjustment according to incast

congestion and the aggregate burst control of the

sender operating in unison.

In contrast to L2DCT, PDQ uses the information of

flows to decide if the flows should be paused and how

much the bandwidth can be allocated. Regardless of

the difficulty in deployment, PDQ has fast completion

time, high bandwidth utilization and multipath version.

In addition, it can also maintain performance under the

inaccurate information of the flows, and prevent

deadlock.

3 Design of DBTCP

Given network topology, terminal type and transport

link, this section explains why the disaster backup

mechanisms need special design and how DBTCP

ensure more stability and efficiency when extreme

nature phenomena appears.

3.1 Characteristics and Requirements of the

Transmission for Backup

When nature disaster comes, the duration between

detection of possible phenomena and expected data

transmission time can be really short, which means,

before disasters cause regional damage to DCNs, the

completion interval for data backup is extremely tight

and strict and transmission loads of these nodes is often

huge. Meanwhile, in order to transfer more data within

shorter time, there can be massive burst once

emergency mechanism is initiated from daily

circumstance after the alarm of a potential disaster is

detected. In summary, the major characteristic of

disaster backup is the tight deadline to send mass data

in a burst manner.

When we design the mechanism for disaster

recovery, low latency, high throughput, burst

robustness, tight deadline, massive loads and easy

deployment are all taken into consideration. DBTCP,

which studies the present transmission protocols such

as TCP, DCTCP and D2TCP, has the advantages of

previous mechanisms and overcomes their weakness,

showing superior properties under the typical scenarios

as well as the extreme circumstance. The features of

DCNs should also be considered, such as the equal

ability to back up data at each nodes. In any cases, the

mechanism must avoid significant changes of every

part like hosts and switches in order to implement

incremental deployment.

3.2 Design Principle of DBTCP

DBTCP considers the deadline as well as the size of

flows equally, which results in the priority of each flow

to satisfy the EDF and the SJF scheduling disciplines

in the same time. Within these two factors, when a

disaster occurs, the transport completion plays

apparently a more major role, so that we give deadline

greater weight as it has greater impact on the priority

of flows, or even play a decisive role. Note that the

flows having the tighter deadline are given the higher

priority, so that as many flows as possible can meet

their deadline. Flows with smaller size have the higher

priority when the different flows possess the same

deadline, to reduce the mean flow completion time.

In DBTCP, congestion control mechanism of hosts

is based on the same ECN as DCTCP and D2TCP. The

sending ends can not only know when congestion has

occurred, but also be aware of the degree of congestion,

according to the received ACK packets. Furthermore,

the same ECN can contribute to coexisting with legacy

transmission mechanisms used widely, reducing the

modifications of the current hosts and switches, and

incremental deployment of DBTCP.

The senders adjust the congestion window of each

flow independently, based on the priority of flows and

the current degree of congestion. For a given flow, the

severer the congestion is, the more the congestion

window is reduced. While at the same degree of

congestion, the higher priority the flow possesses, the

less the congestion window decreases; and in the

absence of congestion, the higher priority the flow has,

the more the congestion window increases. So that

DBTCP is able to alleviate congestion effectively, and

minimize the loss of throughput caused by the

reduction of congestion window at the same time. In

addition, bandwidth can be preempted by the flows

with the higher priority.

Due to the likely burst caused by the backup for

disaster recovery in DCNs, the sending ends should use

the packet pacing to smooth the transmission rate and

reduce the burst proactively. The senders adopt the

hardware pacer to support the sub-microsecond

scheduling granularity and operate the packets after the

segmentation by LSO. Rather than used at the

beginning of the transmission, the pacing only plays a

role in the flows with the relatively low priority when

congestion occurs. Besides, when congestion is

mitigated, the sending ends no longer use the pacing

for the flows with the high priority comparatively

which have already adopted the pacing before.

Therefore, DBTCP can not only reduce the throughput

1072 Journal of Internet Technology Volume 20 (2019) No.4

loss caused by the pacing, but also preempt bandwidth

for flows with the high priority.

Switches decide how to send and drop packets,

according to the priority of the flows to which these

packets belong. If a switch receives a packet when its

queue is full, it drops the packet arriving last in the

flow with the lowest priority. And when the switch

wants to send a packet, the packet is sent which arrive

first in the flow possessing the highest priority.

Because the switch uses the queue to store packets, the

packet arriving early is in front of the queue, while the

packet arriving late is at the end of the queue. As a

result, there is no overhead of the extra space to

preserve the arrival orders of packets. In this way, the

flows having the higher priority can complete as

quickly as possible, and the head-of-line blocking

caused by the out-of-order packets can be alleviated.

Hence, DBTCP is capable of reducing the average flow

completion time.

In addition, because switches have to frequently

traverse and compare the information of the packets

saved, such as the identification and the priority of the

flows to which the packets belong, they had better

store these information separately in an extra queue.

When a switch compares the priority of the flows to

which the packets belong, it simply need to traverse the

queue which only preserves the information of these

packets instead of whole packets. As a result, DBTCP

can lessen the time for traversal and comparison, to

improve the performance of switches of processing

packets, thereby reducing latency.

The other mechanisms of DBTCP are the same as

TCP [16], to ensure that DBTCP is able to coexist with

legacy transmission mechanisms used widely at

present such as DCTCP and D
2TCP, and minimize the

changes of hosts and switches. So it can deploy

incrementally in DCNs.

Note that DBTCP also adjusts the transmission rate

passively. But it overcomes shortcomings of the other

transmission mechanisms which modify transmission

rate with similar manner. The comparisons between

DBTCP and the others similar is shown in Table 1.

Table 1. Comparisons between DBTCP and others

similar

Scheme
Degree of
congestion

Deadline Size
Deploy
-ment

TCP √
DCTCP √ √
D2TCP √ √ √
L2DCT √ √ √
pFabric √ √
HULL √ √

DBTCP √ √ √ √

3.3 Design Details of DBTCP

We start with the definition of p as the priority

imminence factor, knowing that a higher p means a

greater priority. Especially, when it comes to the value

of p is 0, it implies the corresponding flow does not has

a certain deadline, then the window size gets

characteristics similar to DCTCP. We maintain p as

follows:

 , 0
max
t

maxt
s

p e p
s

= × ≥ (1)

Here t is the deadline set for flows with tmax is the

upper limit of t; the size of the flow is s, and smax is the

upper limit of s. When the node sends a packet, the

information of the p of the flow is carried in the header

of this packet. Then the packet is transferred to

switches where two queues is maintained at the same

time, one of which stores the whole packet accepted

while the other simply keeping the information of each

packet like the identification and p.

In the case a packet arrives and the queue of the

switch saving the whole packet is not full currently, the

packet will be kept. Accordingly, its information in the

corresponding queue is stored. However, if the packet

arrives when the queue to save packets has already

been filled at that time, whether the packet is stored is

decided by the comparison of p. If every p of the

packets accepted is larger than or equal to the p carried

by the packet just received, this packet received should

be dropped. While if there is a packet accepted whose

p is less than the p of the packet has received, switch

will keep the packet which is arrived and destroy the

packet whose p is larger with latest arrival time as well

as its information. In other words, the packet received

can be accepted, its information stored in the

corresponding queues.

Furthermore, we can put it this way that when a

switch has the opportunity to send a packet, it will

traverse the information queue and compare these

numerical value until the switch gets the flow with the

highest p and then sends the packet first in this flow.

Before sending a packet, we expect the switch is

ECN-capable which implies when the ECN field of the

packet header is set by the sending node, the switch

can configured to mark CE bits when the packet buffer

occupancy exceeds a certain threshold. In detail, after a

packet is stored in the queue leaving occupancy ratio of

the packet queue greater than a fixed threshold called K,

the switch should mark the header of this packet with

the CE code point. The procession and transmission of

the packet with ACK by the receiving ends is the same

as DCTCP and D2TCP.

Sending ends use α, a weighted average, to present

the estimation of the degree of congestion. As the

fraction of the packets marked in the last window of

data, F in the formula is estimated according to the

received ACK packets. And g is the weight given to

the new samples whose range is 0 to 1. α is updated

once for every window of data, roughly one RTT, as

follows:

DBTCP: A Transmission Mechanism of the Backup for Disaster Recovery in DCNs 1073

 (1)g g Fα α= − × + × (2)

Note that α has the range of 0 to 1, and the greater α

becomes, the severer congestion appears. Based on α

and p, the penalty function f is defined as follows:

 , [0,1]
pf fα= ∈ (3)

When the packet starts transmission, the sending

nodes employs TCP slow start mechanism [17]. Only if

f > 0, the sending ends adjusts the congestion window

in order to avoid the congestive collapse and severe

wave of the window size. And the key effect on f of the

corresponding flow is the ACK packet that the sender

may receive. We resize the congestion window cwnd

as follows:

 (1)
2

f
cwnd cwnd= × − (4)

If f is measured zero, it is believed that no

congestion appears in this flow. Then, if the flow has

cwnd less than or equal to the slow start threshold, we

call the flow in the slow start phase whose congestion

window is adjusted according to the principle referred

as slow start in TCP mechanism; and if the cwnd is

greater than the slow start threshold now, the flow is in

the stage of congestion avoidance, so the sender should

adjust the cwnd as follows, where MSS is its maximum

segment size:

 cwnd cwnd p MSS= + × (5)

Note that if a flow have no deadline, when congestion

occurs its cwnd is reduced by half like TCP, and

remains still or even decreases if corresponding flow is

in the congestion avoidance phase.

We must notice that pacing is not used for all flows

at the start. If a flow does not adopt pacing, the sending

node can sends a packet immediately, while the packet

has to be placed in a token bucket rate limiter, which

means it has to be sent with a fixed rate, as the flow

employs pacing. Whenever receiving an ACK packet

whose header’s ECE flag is set to 1, there will be a

new flow without pacing adjusted to adopt the

principle, whose priority is lowest currently. While if

no ACK packet whose ECE flag equals 1 is received

after the interval T from last ACK packet with the ECE

flag set to 1, the flow with the highest priority should

give up pacing

Other mechanisms such as retransmission timeout,

slow start, fast retransmission and fast recovery, are the

same as TCP.

Steps of processes are shown in Figure 1, and Figure

2.

Figure 1. The step of processes for an end in DBTCP

Figure 2. The step of processes for a switch in DBTCP

4 Simulation and Evaluation of DBTCP

In this section, we simulate and evaluate the

proposed DBTCP via NS-2, and compare DBTCP with

other transmission mechanisms used currently in

DCNs.

1074 Journal of Internet Technology Volume 20 (2019) No.4

4.1 Design Details of DBTCP

Above all, we verify that DBTCP can adjust the

congestion window according to the priority of a flow,

to preempt bandwidth for the flow with higher priority.

Meanwhile we observe the impact of the flow’s

deadline and size on its priority.

We simulate 30 concurrent flows, which are divided

into 3 groups of 10 flows each. The deadline and size

of the flows of each group are shown in Table 2.

Table 2. The deadline and size of the flows of each

group.

Group Deadline (s) Size (MB)
1 0.9 120
2 0.9 150
3 0.6 150

We can tell from it that the deadline of group 1 is

0.9s and the size of the flow is 120MB; the deadline of

group 2 is 0.9s and the size of the flow is 150MB; the

deadline of group 3 is 0.6s and the size of the flow is

150MB.In each of the 3 groups, we randomly select a

flow’s change of the congestion window in the

simulation to show in Figure 3. Note that f1 belongs to

the first group, and f2 belongs to the second group, and

f3 belongs to the third group.

Figure 3. The congestion window of DBTCP.

As can be seen from Figure 3, although f3’size is

equal to or greater than f1’size and f2’size, it is

assigned bandwidth preferentially, ensuring that f3 is

first completed within its deadline, whose deadline is

less than f1’s deadline and f2’s deadline. Besides, f1

and f2 have the same deadline, but f1’s size is less than

f2’s size, so f1 has a slightly bigger congestion window.

Therefore, we can know that DBTCP is able to

determine the priority of each flow according to its

deadline and size. In addition, compared with flow’s

size, the deadline of a flow has a greater impact on its

priority.

Then, in order to intuitively compare the

performance of DBTCP and the current mainstream

transmission mechanisms in DCNs, we compare the

throughput of DBTCP, D2TCP and DCTCP.

We simulate 40 concurrent flows, which are divided

into 5 groups and each group has 8 flows. The

transmission mechanism, deadline and size of these

flows of each group are indicated in Table 3.

Table 3. The scheme, deadline and size of the flows of

each group

Group Scheme Deadline (s) Size (MB)
1 D2TCP 0.9 120
2 D2TCP 0.9 150
3 DBTCP 0.9 120
4 DBTCP 0.9 150
5 DCTCP 120

The first group obeys D2TCP whose deadline is 0.9s

and flow is 120MB; the second group has a bigger size.

While the third group is DBTCP with a 0.9s deadline

and 120MB flow; the fourth group also uses DBTCP

which has a larger flow of 150MB. The fifth group

applies DCTCP. We select randomly one flow in each

group, plotting their throughput in Figure 4, and each

flow’s identifier is the same as the identifier of the

corresponding group.

Figure 4. The congestion throughput of DBTCP

As shown in Figure 4, f1 and f2 has basically same

throughput. Although f1 and f2 have high throughput

between 0.35s and 0.55s, their throughput are low at

other times. Besides, both f1 and f2 miss their deadline.

In contrast, f3 and f4 maintain a high throughput for

most of the time, and both of them complete within

their deadline. Because f3’size is less than f4’size, f3

has higher throughput on the whole compared with f4.

Obviously, the throughput of f5 is always low.

Thus we can see that D2TCP can achieve high

performance, however because there is no difference in

treatment between the different streams when adjusting

the window, its performance cannot be stabilized under

the high load; in comparison, DBTCP can keep good

performance to avoid missing flows’ deadline as far as

possible due to the consideration of both deadline and

flow size; and DCTCP has poor performance in the

simulation, without considering the deadline or size of

flows.

DBTCP: A Transmission Mechanism of the Backup for Disaster Recovery in DCNs 1075

4.2 Deadline Missing Rate

We construct a three-level tree topology, which is

shown in Figure 5, in order to evaluating and

comparing the deadline missing rate of DBTCP and

other transmission mechanisms used in DCNs. In this

way, we observe whether DBTCP can make more

flows for backup complete within their deadline.

………

……… ………

root switch

N top-of-rack switches

10N servers

10Gbps 10Gbps

1Gbps 1Gbps 1Gbps 1Gbps

Figure 5. The topology for simulation

There are N racks in the topology. Then through the

1 Gbps links, each of them is connected to a top-of-

rack switch. In addition, there is a total of 10N servers,

because each of rack includes 10 servers. And these

top-of-rack switches are connected to a root switch, by

the 10 Gbps links.

We assume that all of these 10N servers are the

nodes which are about to be damaged unfortunately by

a disaster detected. As a result, through the converging

via top-of-rack switches, these backup data have to be

ultimately transmitted from servers to the root switch.

During this process, high burst and throughput will be

generated by a large number of aggregated data.

Because the number of severs is far more than the

number of top-of-rack switches, and there are many

top-of-rack switches connected to only one root switch.

Through this method, we can simulate the scene of the

back-up for disaster recovery in DCNs.

Then, we set switches’ threshold K = 30, and

servers’ fan-in degree is 20. The RTO and RTT of each

flow is 10ms and 100 us respectively. Furthermore, we

set t = 500ms with tmax = 1s, and s = 500KB on average,

with smax = 1MB.

When the number of severs backed up is 20, 30, 40,

50 and 60 respectively, which means that N

correspondingly takes 2, 3, 4, 5 or 6, we calculate the

percentage of the flows that miss the deadline.

We compare DBTCP with the other transmission

mechanisms in DCNs, such as D2TCP, DCTCP and

TCP, under the same conditions. Besides, we alter s to

800 KB or modify t to 200ms, but other parameters are

constant. The simulation and comparison results are

shown in Figure 6.

The deadline missing rate of DBTCP and others

The deadline missing rate with tighter deadline

The deadline missing rate with lager size

Figure 6. The deadline missing rate of DBTCP and

others

According to these test results, compared with

DCTCP and TCP, both DBTCP and D2TCP are able to

make more flows complete within their deadline.

However, D2TCP’s performance may degrade under

quite high load, while DBTCP is better capable of

adapting to this scene, to maintain great performance.

The reason of these test results is that, DBTCP

considers deadline as well as the size of flows, and

deadline plays a major role. While DCTCP ignores the

deadline, and D2TCP does not take the flow into

consideration, which makes performance fail under

heavy load.

5 Conclusion

Disaster backup in DCNs promises great

performance using DBTCP by monitoring deadlines

and packet size at the same time with low latency, high

throughput, burst robustness, tight deadline, massive

loads and easy deployment, where the mass treasure

data in DCNs nodes can be transferred at the most

1076 Journal of Internet Technology Volume 20 (2019) No.4

degree and meet the tight deadline after the alarm for a

potential nature extreme phenomena is sound.

The two principal design ideas for the current

transmission mechanisms in DCNs are respectively

called Earliest Deadline First (EDF) and Shortest Job

First (SJF). In the way of adjusting the transmission

rate, existing transmission mechanisms in DCNs are

classified by their manner of regulating the

transmission rate, on the basic conception of which we

compare the advantages and disadvantages of these

transmission mechanisms.

In summary, the major characteristic of disaster

backup is the tight deadline to send mass data in a burst

manner. The features of DCNs should also be

considered, such as the equal ability to back up data at

each nodes. In any cases, the mechanism must avoid

significant changes of every part like hosts and

switches in order to implement incremental

deployment. Beyond that, it should be able to coexist

with the legacy transmission mechanisms in DCNs,

and require only less changes to hosts and switches, so

that it can be easy to deploy incrementally.

Taken all that features into consideration, we

propose DBTCP where the priority of a flow is

determined according to its deadline and size, with the

deadline a greater impact on the priority. ECN is used

as DCTCP to indicate the degree of congestion, as an

auxiliary means of adjusting congestion window

besides its priority. Besides, the switch decides

whether to drop and send packets accordingly. The

other mechanisms are the same as TCP.

Through the simulation and evaluation, it is

confirmed that DBTCP outperforms previous presented

mechanisms, like DCTCP, D2TCP. In typical scenarios,

DBTCP can reduce missing deadline rate and improve

both throughout and robustness when flows burst,

keeping the outstanding easy deployment feature of

former mechanisms at the same time.

Furthermore, considering that the features and

requirements of OLDI applications in DCNs are

similar to those of the backup for disaster recovery, we

will continue to study in depth whether DBTCP can be

applied to OLDI applications in the future. And as

DBTCP is easy implemented, we should also consider

the safety when TCP and DBTCP cooperate in the

current network avoiding DBTCP leading to the

collapse of the existing network by taking absolute

advantage of bandwidth.

References

[1] D. Li, G. -H. Chen, F. -Y. Ren, C. -L. Jiang, M. -W. Xu, Data

Center Network Research Progress and Trends, Chinese

Journal of Computers, Vol. 25, No. 7, pp. 87-89, July, 2014.

[2] W. -F. Xia, P. Zhao, Y. -G. Wen, H. -Y. Xie, A Survey on

Data Center Networking (DCN): Infrastructure and

Operations, IEEE Communications Surveys & Tutorials, Vol.

19, No. 1, pp. 640-656, January, 2017.

[3] A. Greenberg, J. R. Hamilton, N. Jain, S. Kandula, C. Kim, P.

Lahiri, D. A. Maltz, P. Patel, S. Sengupta, VL2: A Scalable

and Flexible Data Center Network, ACM SIGCOMM

Conference, Barcelona, Spain, 2009, pp. 95-104.

[4] M. Al-Fares, A. Loukissas, A. Vahdat. A Scalable,

Commodity Data Center Network Architecture, ACM

SIGCOMM Conference, Seattle, WA, USA, 2008, pp. 63-74.

[5] C. Raiciu, S. Barre, C. Pluntke, A. Greenhalgh, D. Wischik,

M. Handley, Improving Datacenter Performance and

Robustness with Multipath TCP, ACM SIGCOMM

Conference, Toronto, Ontario, Canada, 2011, pp. 266-277.

[6] M. Al-Fares, S. Radhakrishnan, B. Raghavan, N. Huang, A.

Vahdat, Hedera: Dynamic Flow Scheduling for Data Center

Networks, USENIX Symposium on Networked System Design

and Implementation (NSDI), San Jose, CA, 2010, p. 19.

[7] M. Alizadehzy, A. Greenbergy, D. A. Maltzy, J. Padhyey, P.

Pately, B. Prabhakarz, S. Senguptay, M. Sridharan, Data

Center TCP (DCTCP), ACM SIGCOMM Conference, New

Delhi, India, 2010, pp. 63-74.

[8] B. Vamanan, J. Hasan, T. N. Vijaykumar, Deadline-Aware

Data-center TCP (D2TCP), ACM SIGCOMM Conference,

Helsinki, Finland, 2012, pp. 115-126.

[9] C.-Y. Hong, M. Caesar, P. B. Godfrey, Finishing Flows

Quickly with Preemptive Scheduling, ACM SIGCOMM

Conference, Helsinki, Finland, 2012, pp. 127-138.

[10] C. Wilson, H. Ballani, T. Karagiannis, A. Rowstron, Better

Never than Late: Meeting Deadlines in Datacenter Networks,

ACM SIGCOMM Conference, Toronto, Canada, 2011, pp. 50-

61.

[11] A. Munir, I. A. Qazi, Z. A. Uzmi, A. Mushtaq, S. N. Ismail,

M. S. Iqbal, B. Khan, Flow Completion Times in Data Centers,

International Conference on Computer Communications, Turin,

Italy, 2013, pp. 2157-2165.

[12] H. Zhang, X.-G. Shi, X. Yin, F.-Y. Ren, Z.-Y. Wang, More

Load, More Differentiation- A Design Principle for Deadline-

Aware Congestion Control, International Conference on

Computer Communications, Hong Kong, China, 2015, pp.

127-135.

[13] K. K. Ramakrishnan, S. Floyd, D. L. Black, The Addition of

Explicit Congestion Notification (ECN) to IP, RFC 3168,

2001.

[14] M. Alizadeh, S. Yang, M. Sharif, S. Katti, N. McKeown, B.

Prabhakar, S. Shenker, pFabric: Minimal Near-Optimal

Datacenter Transport, ACM SIGCOMM Conference, Hong

Kong, China, 2013, pp. 435-446.

[15] M. Alizadeh, A. Kabbani, T. Edsall, B. Prabhakar, A. Vahdat,

M. Yasuda, Less is More: Trading a Little Bandwidth for

Ultra-Low Latency in the Data Center, USENIX Symposium

on Networked System Design and Implementation (NSDI),

San Jose, CA, 2012, pp. 253-266.

[16] Defense Advanced Research Projects Agency Information

Processing Techniques Office, Transmission Control Protocol,

RFC 793, September, 1981.

[17] M. Allman, V. Paxson, E. Blanton, TCP Congestion Control,

RFC 5681, September, 2009.

DBTCP: A Transmission Mechanism of the Backup for Disaster Recovery in DCNs 1077

Biographies

Chen-Yue Wang, born in yantai,

shandong province in 1993, is now a

postgraduate student at Beijing

jiaotong university. She is mainly

engaged in the research of the theory

and technology of the new generation

of info rmation network.

Zhan Shi, born in Beijing in 1992, is

graduated from Beijing Jiaotong

University. His main research

direction is the new generation of

information network.

Wei Su, born in 1978 in hebei

province, Ph.D., is professor at Beijing

Jiaotong University, whose main

research direction is he new

generation of key theory and

technology of information network.

Qi-Li Wen, born in qinghai province

in 1995 and earned her bachelor of

Communication Engineering degree

in 2017. Now she is a postgraduate

student at Beijing Jiaotong University.

Her main research direction is the new

generation of information network.

Hua-Chun Zhou, Ph.D., is professor

at Beijing Jiaotong University and

vice President of electronic

information engineering college,

whose main research direction is the

mobile Internet, network and

information security, etc.

1078 Journal of Internet Technology Volume 20 (2019) No.4

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (Japan Color 2001 Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJDFFile false
 /CreateJobTicket true
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHT <FEFF005B683964DA300C005000440046002800310032003000300064007000690029300D005D0020>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
 <<
 /AddBleedMarks true
 /AddColorBars false
 /AddCropMarks true
 /AddPageInfo true
 /AddRegMarks false
 /BleedOffset [
 8.503940
 8.503940
 8.503940
 8.503940
]
 /ConvertColors /NoConversion
 /DestinationProfileName (sRGB IEC61966-2.1)
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /ClipComplexRegions true
 /ConvertStrokesToOutlines false
 /ConvertTextToOutlines false
 /GradientResolution 400
 /LineArtTextResolution 1200
 /PresetName <FEFF005B9AD889E367905EA6005D>
 /PresetSelector /HighResolution
 /RasterVectorBalance 1
 >>
 /FormElements true
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MarksOffset 0
 /MarksWeight 0.283460
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PageMarksFile /JapaneseWithCircle
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [1200 1200]
 /PageSize [612.000 792.000]
>> setpagedevice

