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Abstract 

Deploying cloud service at base stations (Cloudlets, 

considered as Mobile Edge Computing) or sharing 

resources between mobile devices (Mobile Cloudlets) are 

expected to be enablers of Edge Computing or Fog 

computing. Different Mobile Edge Computing systems 

have been proposed based on hierarchical cloud 

architecture. However, the dynamics and diversity of 

mobile cloudlets makes it challenging to offload tasks to 

optimal nodes (process locally, or offload to a device in 

Mobile Cloudlets or Cloudlets). In this paper, offloading 

availability is formulated by considering user mobility 

similarity and the residual energy of mobile devices. To 

guarantee offloading availability and minimize energy 

consumption as well as data size transmitted through the 

cellular access links, offloading decisions for multi-tasks 

(task scheduling problem) are formulated to be a multi-

objective optimization problem and we develop a 

centralized algorithm TS-SMOSA such that efficient-

energy offloading decisions are made and tasks can be 

allocated to optimal nodes. Finally, experimental results 

are promising and show near optimal solutions for all of 

our studied scenario. 

Keywords: Mobile edge computing, Offloading 

availability, Offloading decisions, Task 

scheduling, Multi-objective optimization 

1 Introduction 

To fill the gap between resource-constrained mobile 

devices and diverse mobile applications, Edge 

Computing (EC) is proposed as a newly emerging 

computing paradigm that endow cloud-computing 

capability at the edge of network (e.g., smartphones, 

tablets, smart cars, base stations and routers). 

Deploying cloud service at base stations (Cloudlets, 

considered as Mobile Edge Computing) or sharing 

resources between mobile devices (Mobile Cloudlets) 

are expected to be enablers of EC [1-2]. A similar 

concept is Fog computing, which is introduced in the 

context of Internet of Things and big data applications 

[3]. Therefore, many technologies in EC are also 

applicable to Fog computing, such as task offloading, 

resource allocation, mobility management and so on. 

In Mobile Edge Computing (MEC), mobile devices 

can offload tasks to Cloudlet that consists of a number 

of interconnected physical machines [4]. However, 

even if considered endowed with computational 

capacities, Cloudlets cannot offer the same performance 

as the traditional cloud powerful servers. With the 

rapidly growing density of mobile devices, the 

workload in a cloudlet grows bigger following the 

increment of mobile devices. On the other hand, 

mobile devices offloading tasks to cloudlet through 

cellular networks increase the pressure of cellular 

networks and the growth rate of current cellular system 

capacity cannot catch up with the demand of mobile 

applications. 

Mobile Cloudlets are assumed to be a promising 

solution in which a group of nearby mobile devices are 

connected wirelessly, e.g., using WiFi or Bluetooth. In 

Mobile Cloudlets, tasks from mobile users can be 

offloaded to its nearby users that have more powerful 

computation capabilities. Mobile devices can be 

providers as well as consumers of service. Potential 

application scenarios of mobile cloudlets include 

multimedia sharing at an event, location information 

acquisition and language translation for a group of 

tourists [5, 11]. Device-to-Device (D2D) communication 

is assumed an important technology in the future 5G, 

which brings Mobile Cloudlets to reality further. 

Therefore, Mobile Cloudlets are a useful way to 

leverage resource of mobile device, which provide 

abundant and efficient resources in an elastic manner. 

Different MEC systems have been proposed based 

on hierarchical cloud architecture [5-8], which aim at 

cooperatively leverage the hierarchical resource of 

edge cloud and remote cloud. In this paper, we focus 

on a 3-tier MEC system, as shown in Figure 1. 

Specifically, the devices in different tiers have distinct 

computation and communication capabilities. Tier-1 is 

mobile cloudlets that are composed of connected 



1058 Journal of Internet Technology Volume 20 (2019) No.4 

 

mobile devices. Tier-2 is Cloudlets, which are 

deployed at base station or to an edge switch so that 

multiple base stations can share the computing 

resources. Tier-3 servers are the existing Cloud 

Computing infrastructures, such as data centers.  
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Figure 1. The MEC system model 

However, offloading in Mobile Cloudlets is not 

always successful [9-12]. First, cloud resources in 

Mobile Cloudlets is dynamic and diverse. As a result, a 

selfish node may drop an offloading request from other 

nodes. Moreover, some mobile devices may not be 

powerful enough to provide energy consumption 

required for completing an offloaded task, which result 

in task execution failure. Offloading availability is a 

complicated problem that is influenced by incentive 

mechanism, user mobility, the energy of mobile device 

and resources capacity. Therefore, an optimal provider 

should be selected in terms of contact possibility (the 

possibility of accepting offloading requests) and 

energy efficiency based on the full view of mobile 

network. Thus, efficient offloading policy considering 

offloading availability plays an important role to 

leverage cooperatively hierarchical device resources 

and cloud resources. 

Recent research shows a strong correlation between 

mobility similarity and social proximity [13-14]. 

Mobility similarity has a strong indication of friendship 

[15]. Namely, the higher the similarity of user mobility, 

the greater the possibility of accepting offloading 

requests. Thus, in this paper, we consider the effect of 

user mobility on offloading availability evaluation. 

Here we define the probability of successfully 

offloading a task as offloading availability in the 

system. For a task, we use the term “probability of 

successfully offloading”. Moreover, for the system, we 

use the term “offloading availability”. 

To the best of our knowledge, few researches 

considers offloading availability in MEC system. In 

this paper, leveraging the advantages of Cloudlets and 

Mobile Cloudlets, we design offloading policy in 

hierarchical MEC system. A centralized offloading 

decision is constructed through synthetically taking the 

type of task into consideration and user mobility 

similarity is assumed as a factor in evaluating 

offloading availability. The detailed model is as shown 

in Figure 1. To guarantee offloading availability and 

minimize energy consumption of total mobile devices, 

as well as data size transmitted through the cellular 

access links, a multi-objective optimization problem is 

formulated. Task Scheduling based on Suppapitnarm 

Multi-Objective Simulated Annealing (TS-SMOSA) is 

applied to address the formulated problem such that 

tasks can be offloaded to optimal nodes. Experimental 

results are promising and show near optimal solutions 

for all of our studied scenarios. 

In particular, our contributions in this paper are: 

1. From a new perspective, offloading availability is 

constructed through synthetically considering user 

mobility similarity. By computing user mobility 

similarity based on mobility trajectory data, we use the 

mobility similarity as a factor in evaluating offloading 

availability, jointly considers the residual energy of 

mobile devices. 

2. We formally model the problem of task 

scheduling in MEC as a multi-objective optimization 

problem, which is to guarantee offloading availability 

and minimize energy consumption of total mobile 

devices, as well as data size transmitted through the 

cellular access links. 

3. We develop a centralized algorithm TS-SMOSA 

such that efficient-energy offloading decisions are 

made and tasks can be allocated to optimal nodes. 

4. We conduct simulation experiments for TS-

SMOSA performance evaluation. Experimental results 

are promising and show near optimal solutions for all 

of our studied scenarios. 

2 Related Work 

Mobile Cloud Architecture There have been a lot of 

research on offloading policy for different kinds of 

mobile cloud resources architecture [5, 7-8, 16-18]. In 

[8], two-tier cloud architecture is proposed. Cloudlet is 

deployed at BS or Wifi hotspot for executing 

computation-intensive modules and remote cloud for 

data-intensive modules. [3] present a 3-tier heterogeneous 

MEC system architecture. A hierarchical MEC is new 

research trend and it will result in a better distribution 

of the computing task and a tradeoff between lower 

energy consumption, execution delay in the system. 

Specially, with the development of SDN technology, it 

has been integrated into various networks [16]. [5] 

proposed a software defined cooperative offloading 

model that make a decision that mobile devices execute 
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tasks locally, cooperate with other devices or offload 

tasks to the remote cloud. [6] proposed a network 

architecture by leveraging the cloudlet concept, the 

SDN technology, and the cellular network 

infrastructure. The authors in [11] analyze the 

availability of Mobile Cloudlets from the theoretical 

aspect and examine the fundamental properties of 

Mobile Cloudlets. The authors in [12] propose multi-

hop mobile cloudlets and evaluate the performance of 

computational offloading. All the work above assumed 

that offloading is always successful in problem 

formulation. This observation motivates us to consider 

a more realistic scenario in which offloading decisions 

for multiple tasks are made at a certain time slot T and 

offloading availability is taken into consideration. 

Task Offloading and Optimization Objectives In 

most of the existing works, task offloading is 

formulated into a multi-objective optimization problem 

which minimize weighted cost, energy and time [9, 19-

21], or minimize energy and delay satisfies certain 

constraints [22-23]. The multi-objective optimization 

problem is turned into a single-objective problem using 

a weighted method, which will inevitably miss some 

feasible solutions. This method usually gets only one 

optimal solution, which has a great relationship with 

weight parameters and scalarization method. In 

practice, it is difficult to determine these parameters. In 

addition, scalarization method will result in changes of 

the optimal solution space. Different from the 

aforementioned work, our goal is to provide a certain 

amount of well distribution Pareto optima solution and 

the system can choose one as the task offloading 

scheme at the current time slot T. 

Mobility in MEC Reference [9] developed an 

offloading algorithm for intermittently connected 

cloudlet system. User mobility is taken into 

consideration to evaluate the successful offloading 

probability. However, the user in [9] is assumed to 

move straight (the centrifugal direction or centripetal 

direction) in the cloudlet coverage. Reference [24] 

proposed an offloading method in which Markov 

model is used as user mobility model for mobility 

prediction, but Markov model fail to portray the reality 

and complex user mobility characteristics. [25] studied 

the heterogeneous mobile cloud and a centralized 

algorithm is developed for the offloaded tasks and 

adopt the most commonly user mobility model, 

random waypoint to model users’ movements. This 

model fails to describe the human mobility 

characteristics in real world. The contact and inter-

contact durations, also known as the contact and inter-

contact time consider the temporal correlation of the 

user mobility, which are commonly used to model the 

connectivity between mobile users. This model has 

been applied in reference [11, 26]. [26] adopts contact 

duration and inter-contact duration to model user 

mobility for predicting the probability that two nodes 

are connected at future time. [27] aims to optimize the 

mobility and energy charging for mobile cloudlets at 

the same time. However, the contact and inter-contact 

time is difficult to obtain in practice, especially in 

urban scenario. To be more realistic, modern mobile 

device with GPS has led people to share locations, and 

these GPS trajectory data mining can reveal 

commonalities between a pair of users [28].  

As shown in [15], although 50% to 70% of human 

mobility is driven by periodic behavior such as 

working or going home, 10% to 30% is driven by 

friendship. Existent analysis shows a strong correlation 

between social proximity and mobility similarity, 

namely, mobility between friends are significantly 

more similar than that between strangers [13]. 

Therefore, movement trajectories similarity has a 

strong indication of friendship. It is reasonable to 

assume that similarity of user mobility indicates the 

probability that a user accepts offloading request. 

Based on the observation above, we utilize the 

similarity of movement trajectories as a factor of 

offloading availability evaluation. Meanwhile, we also 

consider the residual energy of mobile devices. 

The rest of this paper is organized as follows. 

Section 3 describes system model and problem 

formulation. Section 4 devotes to algorithm selection 

and the proposed TS-SMOSA strategy for multi-task 

offloading decisions, followed by experiments and 

results in Section 5. Finally, the paper concluded in 

Section 6. 

3 System Model and Problem Formulation 

3.1 Notation 

We assume that there are n  devices in the network. 

They have m tasks to be executed, denoted by 

1 2
{ , ,..., }

h m
T T T T= . We use u

h
T  to denote that a task 

h
T  

belongs to the user u . A task can be executed locally 

(mobile device itself), offloaded to other devices (in 

Mobile Cloudlets), or to the Cloudlet (which is 

deployed at base station) in accordance with the 

decision-making in a centralized control manner (e.g. 

Soft Defined Network Controller). Let (T )u
h

P  denote 

the offloading decision for a task u

h
T , given by (1), 

where 0 denotes that task is executed locally, form 1 to 

n denotes that the task is executed by the certain one 

worker node in Mobile Cloudlets, and 1n +  denotes 

Cloudlet. We define a tuple representation 

( , , )u

h h h
T Type α β=  to describe the parametric context 

of each task. Type  denotes the type of a task, 
h

α  and 

h
β  denote the input and output data size [5]. Energy 

consumption for executing tasks includes consumption 

of computation and transmission consumption. 

Compared with mobile devices, cloudlets have 

powerful computing power. Therefore, when a task is 
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offloaded to a cloudlet, we assume that consumption of 

computation is 0 and energy consumption for 

executing tasks only includes energy consumption in 

transmission to cloudlet. Especially, when a task is 

offloaded to a worker nodes j  in mobile cloudlets and 

the worker node j  has already executed the task and 

cached the results, the energy consumption of j  for 

executing the task with the same Type  again is close to 

0. 

(T ) 1,2,...,

1

u

h

0                  process locallly

P n   offload to a device  in mobile cloudlet

n          offload to cloudlet 

⎧
⎪

=⎨
⎪ +⎩

 (1) 

Based on the given model and scenario, we focus on 

the following problems: how to schedule multi-user 

multi-tasks in the two-layer(mobile cloudlets-cloudlets) 

cloud environment at current time slot T and 

accomplish all the tasks in offloading service. To 

design energy-efficient dynamic offloading strategy, a 

multi-objective optimization problem is formulated 

from the systematic perspective, which minimize 

energy consumption of all mobile devices and traffic 

size in cellular access network, maximize offloading 

availability. The following describes the three 

objectives definition under Mobile Cloudlets and 

Cloudlet execution model. 

3.2 Mobile Cloudlets Execution Model 

3.2.1 Energy Consumption of Computation 

We define the computation energy consumption of 

device j  for executing task Tu

h
as (2) [5, 21, 29-30], 

where X denotes the complexity coefficient of one task. 

X  is the ratio of CPU cycles and the input data size, 

dependent on the task type. F ()
j

 is the function of 

power coefficient of device j ’s CPU. Here we allow 

different mobile devices to have different computation 

capability. 

 (T ) F (X* )j u

compute h j kE α=  (2) 

3.2.2 Customer Energy Consumption and Provider 

Energy Consumption 

When the device carried by user u  offload task Tu

h
 

to device j , here we define u  as the customer and j  

as the provider. Customer energy consumption and 

Provider energy consumption can be denoted by (3) (4), 

where uj

t
p ( uj

r
p ) is transmission power of the device 

carried by user u  for data sending( receiving) to (from) 

j  [31], uj

T
R is the transmission rate between the link 

from the device carried by user u and device j  at time 

slot T.  

 E (T )uj u uj ujk k
customer h t ruj ju

T T

p p
R R

α β
= ∗ + ∗  (3) 

 
Pr

E (T ) (T )uj u ju ju j uk k
ovider h t r compute huj ju

T T

p p E
R R

α β
= ∗ + ∗ +  (4) 

Therefore, when a task Tu

h
 is executed in a worker 

node in Mobile Cloudlets, energy consumption for task 

completion in the network include customer energy 

consumption and provider energy consumption. 

 
Pr

(T ) E (T ) E (T )u uj u uj u

h customer h ovider hE = +  (5) 

Specially, when ,j u=  it means that device u  

execute task Tu

h
 locally. At this point, 

 (T ) (T )u u u

h compute hE E=  (6) 

3.2.3 Offloading Availability 

Considering the unreliable connection of mobile 

nodes, offloading availability of mobile cloudlets need 

to be guaranteed. As shown in [15], a similarity of 

movement trajectories is a strong indication of 

friendship. It is reasonable to assume that similarity of 

user mobility indicates the probability that a user 

accept offloading request. Based on the observation 

above, we use the similarity of movement trajectories 

as a factor in evaluating offloading availability. While 

user similarity computation is an active area of 

research [13, 28, 32-33], we simply adopt a lightweight 

metric called Jaccard coefficient to calculate the 

similarity of the user’s moving trajectories [34-35]. 

The insights of our work are also useful when other 

approaches to compute user similarity is adopted. 

We use {1,2,3..., }O o=  to denote the set of location 

which is visited by all users in a certain period. The 

user mobility similarity computation depends upon the 

visited locations in the certain period. Let Ou={a, b, c, 

d..}, any element belongs to O . For users ,u j U∈ , let 

uj
η  denote the user similarity. Then, according to the 

definition of Jaccard coefficient in [34], we have 

 
| O O |

| O O |

u j

uj

u j

η
∩

=

∪

 (7) 

Then, we define offloading availability (T )u
h

Q  of a 

task Tu

h
as shown in (8), where 

uj
η is user similarity of 

user u and ,j
j

R  is the residual energy of the 

provider .j  

 
Pr

E (T )
(T ) *

uj u

j ovider hu

h uj

j

R
Q

R
η

−

=  (8) 

Therefore, the average offloading availability of the 
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system can be represented as  

 
1

1
(T )

m

u

h

h

Q
m

=

∑  (9) 

3.3 Cloudlet Execution Model 

When a task Tu

h
is executed in cloudlet, energy 

consumption in the network include only transmission 

consumption between customer and cloudlet, which 

can be denoted by E (T ).uj u

customer h  It means that 

(T )u
h

E = E (T )uj u

customer h ,where j = n+1. Compared with 

worker nodes in Mobile Cloudlets, cloudlet deployed 

at base station have power computation ability and 

availability. We assume that when a task T
u

h
is 

executed in cloudlet, offloading availability (T )u
h

Q  of 

a task Tu

h
 is equal to 1. Specifically, if a task T

i

h
 is 

offloaded to another device in Mobile Cloudlets, local 

execution and cooperative execution between devices 

do not generate external traffic, which can be 

expressed by (T )u
h

S  =0. If a task T
u

h
 is offloaded to 

cloudlet, the produced data traffic can be expressed as  

 (T )u
h h h

S α β= +  (10) 

To this end, with above analytic results on the 

energy consumption, traffic size and offloading 

availability, the objective problem can be considered as 

a multi-objective optimization which involves 

minimizing energy consumption, minimizing data 

traffic in access links, maximizing average availability 

of offloading, which can be denoted as follows: 

 
1

1
max (T )

m

u

h

h

Q
m

=

∑  (11) 

 
1

min (T )
m

u

h

h

E

=

∑  (12) 

 
1

min (T )
m

u

h

h

S

=

∑  (13) 

4 Algorithm Selection and Design 

4.1 Algorithm Selection 

If the position sequence of all task being executed is 

assumed as a vector, while the total energy 

consumption, traffic usage and offloading availability 

are analyzed as the three objective functions, the task 

scheduling problem in this paper can be transformed 

into a multi-objective optimization problem. 

Comparing with the single object problems and the 

weighted multi-objective problem that has one 

objective function, the multi-objective solution may be 

not good in each objective, but our goal is to provide a 

certain amount of well distribution Pareto optima 

solution and the system can choose one as the task 

offloading scheme at the current time slot T.  

In this paper, based on three objective functions, we 

can use multi-objective simulated annealing algorithm 

iteratively to obtain the Pareto solution set of variables. 

SMOSA is a multi-objective algorithm proposed by 

Suppapitnarm and based on Simulated Appealing (SA), 

which is simple to formulate and it can handle mixed 

discrete and continuous problem with ease [36]. It is 

also efficient and has low memory requirement. 

SMOSA takes less CPU time when it is used to solve 

optimization problems, because it finds the optimal 

solution using point-by-point iteration [37-39].  

Thus, this paper proposes a centralized Task 

Scheduling algorithm based on Suppapitnarm Multi-

Objective Simulated Appealing (TS-SMOSA) to solve 

the optimization problem proposed above, which can 

achieve an approximately optimal solution set. 

4.2 Algorithm Design 

Different from traditional SA method, return-to-base 

is adopted in TS-SMOSA which enables the search to 

restart from a randomly selected solution from the 

Pareto set. A new acceptance probability formulation 

based on an annealing schedule with multiple 

temperatures (one for each objective) is also proposed. 

The key probability step is given as (14). The 

flowchart of SMOSA is given in Figure 2. 

Randomly  generated initial solution vector X, 

evaluate all objective functions and put it into a 

Pareto set of solutions

Generate a new solution vector Y.

Re-evaluate the objective functions 

 Compare the generated solution 

vector 

with all the solutions in the Pareto set 

and update the Pareto set.

 the generated solution vector is 

archived, make it the  current 

solution vector by putting X=Y 

 restart with a randomly selected solution 

from the Pareto set. 

 Reduce the temperature periodically using a 

problem dependent annealing schedul e  a n d 

reset the number of iterations

 the generated solution vector is 

not archived, accept it with the 

probability

 If the generated solution is accepted, 

make it the current solution vector 

by putting X=Y 

 If the generated solution vector is 

not accepted, retain the  earlier 

solution vector as the current 

solution vector

YES No

 return the Pareto set 

Has the number of iteration been met?

Has the stop criteria been met?

No

YES

YES

No

 

Figure 2. The flowchart of SMOSA 



1062 Journal of Internet Technology Volume 20 (2019) No.4 

 

 
1

min(1, exp )
N

i

i i

s
P

T
=

⎧ ⎫−Δ
= ⎨ ⎬

⎩ ⎭
∏  (14) 

The detailed TS-SMOSA algorithm is described as 

follows. And then we will analyze the effects of 

various parameters on the experimental performance. 

(1) Initialization (Algorithm 1): we randomly 

allocate a position (a worker node) for each task to be 

executed. According to (11) (12) (13), all objective 

functions are calculated and be put into a Pareto set of 

solutions. The values of the objective functions are 

respectively represented as f1, f2, f3.  

 

Algorithm 1. Init() 

Input: the number of tasks TaskSize, the number of 

device DeviceSize. 

Output: the initial position set for tasks processing. 

1. Variable: currentSol: the current solution; 

2. tempSol: a temporal solution; 

3. solResult: Pareto set of solutions; 

4. f1: the value of energy consumption; 

5. f2: traffic size; 

6. f3: the value of availability; 

7. ETAValue: The value of the objective functions 

corresponding to Pareto set. 

8. End Variable 

9. global currentSol //Declare a global variable to 

save the current solution 

10. tempSol = [] //define a variable to save a temporal 

solution 

11. for i from 0 to TaskSize do 

12. p = random.randint (0, DeviceSize+1) //randomly 

assign a position for each task 

13. end for 

14. add p into tempSol 

15. currentSol = tempSol 

16. add tempSol into result set solResults 

17. compute values of the objective functions and 

denoted as f1, f2, f3. 

18. add [f1, f2, f3] into ETAValue 

 

(2) Generate a new solution (Algorithm 2): 

randomly select two tasks in current solution and 

exchange their positions for execution, then take the 

new position set as a new solution. 

 

Algorithm 2. getNewSolution(ssol) 

Input: a position set for tasks processing. 

Output: a new position set for tasks processing. 

1. Variable: ssol: a position set for tasks processing; 

2. sol: a temporal variable 

3. numList: two random integers 

4. f1: the value of energy consumption 

5. f2: traffic size 

6. f3: the value of availability 

7. ETAValue: The value of the objective function 

corresponding to Pareto set 

8. End Variable 

9. sol = []; 

10. for i in range (TaskSize) do 

11. sol[i] = ssol[i] 

12. end for 

13. ssol = sol 

14. numList = random.sample (range (0, TaskSize), 2); 

// randomly select two tasks 

15. exchange their positions for execution 

16. return ssol 

 

(3) Judge whether to accept a new solution with 

multiple temperatures (Algorithm 3): the values of the 

objective functions corresponding to the new solutions 

are respectively f’1, f’2, f’3. If f’1< f1 and f’2<f2 and f’3< 

f3, accept it as the current solution vector. Otherwise, 

accept it with the probability (14). 

 

Algorithm 3. accept (newSol, t_energy, t_traffic,  

t_availability) 

Input: a position set for tasks processing, t_energy,  

t_traffic, t_availability. 

Output: True or False. 

1. Variable: newSol: a position set for tasks 

processing; 

2. t_energy: the temperature of energy consumption 

function 

3. t_traffic: the temperature of traffic usage function

4. t_availability: the temperature of availability 

function 

5. f1: energy consumption value of current solution 

6. f2: traffic usage value of current solution 

7. f3: availability value of current solution 

8. f1′: energy consumption value of new solution 

9. f2′: traffic usage value of new solution 

10. f3′: availability value of new solution 

11. availThreshod: the minimal availability value 

12. End Variable 

13. global currentSol; 

14. compute values of the objective functions 

according to currentSol and denoted as f 1; f 2; f 3; 

15. compute values of the objective functions 

according to newSol and denoted as f1′, f2′, f3′; 

16. if (f 1′< f 1 and f2′< f 2 and f3′< f 3) then 

17. return True; 

18. else 

19. if (( f1′ > f1 and f2′ < f2) or (f1′< f1 and f2′ > f2) or 

 ( f3 ′> availThreshod and f3 > availThreshod)) then 

20. energy = abs (f1 - f1 ′); //energy difference between 

current and new solution 

21. traffic = abs (f2′ - f2); // traffic size difference 

22. avail = abs (f3 - f3′); //availability difference 

23. dif=0-(energy*1.0/ t_energy +traffic*1.0/ t_traffic 

+avail*1.0/ t_availability) 

24. edif = math.exp(dif); 

25. prob = min(1,edif); //compute the accept probability 

26. if (random.random() < prob) then 
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27. return True; 

28. end if 

29. else 

30. return False; 

31. end if 

32. return False; 

34. end if 

 

(4) TS-SMOSA algorithm (Algorithm 4) is a 

stochastic optimization algorithm based on iteration, it 

starts from a higher initial temperature; generate a new 

solution through randomly selecting two task in current 

solution and exchanging their position on the basis of 

old solution. With decreasing temperature during 

repeated sampling, the optimum solutions are obtained. 

The TS-SMOSA process is described in the following 

steps: (1) start with a randomly generated initial 

solution vector, the objective function value is 

calculated, and assumed as the current optimal solution; 

(2) according to the new vector generated from current 

optimal solution, calculate the new objective function 

values, and determine whether to accept; 3) under 

different temperatures corresponding to each objective 

function, perform a certain length of iteration. Then 

based on annealing schedules, decrease the temperature 

respectively until the temperature is less than given 

value thresholds. The detailed process is described as 

Algorithm 4. 

 

Algorithm 4. TS-SMOSA() 

Input: 

Output: Pareto solution set and the corresponding  

objective function values. 

1. Variable: t_energy: the temperature for energy 

consumption function 

2. t_traffic: the temperature for traffic usage function

3. t_availability: the temperature for availability 

function 

4. t_min_energy: the minimal value for energy 

consumption 

5. t_min_traffic: the minimal value for traffic usage 

6. t_min_avail: the minimal value for availability 

7. num: the length of iteration in the same 

temperature 

8. r: a random integer 

9. x: annealing rate 

10. availThreshod: the minimal availability value 

11. ETAValue: the value of the objective function 

corresponding to Pareto set 

12. End Variable 

13. set initial temperature of energy consumption 

function, traffic usage function, and availability 

function; 

14. set annealing rate and minimal temperature of the 

three functions; 

15. set the length of iteration in a same temperature 

16. init(); 

17. while (t_energy > t_min_energy and t_traffic > 

 t_min_traffic and t_availability > t_min_avail) do 

18. for (i in range(num)) do 

19. newSol = getNewSolution(currentSol); 

20. end for 

21. if (accept (newSol, t_energy, t_traffic,t_avail)) then

22. currentSol = newSol; 

23. add currentSol into Pareto set solResult; 

24. add objective function values corresponding to 

currentSol into ETAValue 

25. else 

26. r = random.randint(0,len(solResults)-1); 

//randomly select a solution from Pareto set as 

current solution 

27. currentSol = solResults[r]; 

28. end if 

29. t_energy = t_energy * x //decrease the temperature 

30. t_traffic=t_traffic*x 

31. t_avail=t_avail*x 

32. end while 

33. Return ETAValue 

5 Experiments 

5.1 User Similarity Computation 

Experiments using Geolife dataset [40] are 

conducted to evaluation user trajectory similarity. 

Geolife is a GPS trajectory dataset containing 182 

users collected by Microsoft Research Asia for their 

Geolife project. A GPS trajectory in this dataset is 

represented by a sequence of time-stamped points, 

each of which contains the information of latitude, 

longitude and altitude. All data processing is carried 

out in the MySQL database. We observe that sixty 

percent of the users have fewer than 50 thousands 

trajectory points. We consider these users as inactive 

user. For experiments, we selected 31 users who have 

trajectory points between 50 thousands and 150 

thousands. And we use the standard approach to extract 

stay points for every user. The standard approach 

towards extracting stay points is to first identify the 

stay regions and then select the stay points from it. We 

assume that a stay region is the geographical cluster 

where a user stays for a period of 30 minutes bounded 

by a distance of 200 m. For all the users, the stay 

points are stored in a table. In order to extract the 

common stay points of different users, we assume that 

the points within 200m as the same stay point marked 

with the same number. So we can get the final stay 

points information. For example, the stay points of 

users 002-004 are shown in Table 1. 
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Table 1. the stay points of users 002-004 

User 

_id 

Location 

_id 
latitude longitude Record_time 

002 1 39.899629 116.383413
2008/ 

10/31 3:47 

002 3 39.898716 116.350065
2008/ 

11/1 1:01 

002 4 39.90021 116.245314
2008/ 

11/1 3:19 

003 2 39.907938 116.36848 
2008/ 

10/31 9:31 

003 4 39.910378 116.367675
2008/ 

10/31 9:39 

004 3 40.000586 116.328166
2008/ 

11/3 16:56 

004 3 40.010634 116.320839
2008/ 

11/5 0:10 

004 4 40.00517 116.317553
2008/ 

11/5 4:20 

 
According to equation (7), we can get the similarity 

matrix of user 002,003,004 as shown below. In the 

same way, the similarity of any two users can be 

calculated. 

 

1 0.25 0.6

0.25 1 0.3

0.6 0.3 1

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

  

5.2 Performance Evaluation of TS-SMOSA 

In this section, we consider the urban scenario that a 

Mobile Cloudlets network with 10 mobile devices. 

These 

device-holders encounter and can communicate with 

each other. In current time slot T, there are 10 tasks 

that belong to these devices to be executed. For the 

cloudlet deployed in base station, uplink and downlink 

throughput is set to be 2 Mbps and 9 Mbps respectively. 

We refer to the standard of the transmission rate on 

link (i, j) and the transmission power measured in [29]. 

The residual energy of devices a uniform distribution 

over (11000, 30000) Joule. 

We evaluate the performance of the proposed 

algorithm TS-SMOSA. Randomly Offload (RO, all 

tasks randomly select a worker node to offload), All 

Local execution (AL, all tasks are executed on the 

mobile devices locally) are taken as the performance 

reference for comparison on the same topology with 

the same parameter setting. All the algorithms are 

implemented in Python 2.7. 

5.2.1 Impact of Complexity Coefficient 

XTo validate the efficiency of our algorithm for 

different types of tasks, we present the energy 

consumption, traffic usage, availability in our 

algorithm for different values X in Figure 3, Figure 4, 

Figure 5, Figure 6 and Figure 7, where ID represent the 

identifier number of result data. We generate the 

input/output data size using two normal distribution N 

(µ1, σ1

2) and N (µ2, σ2

2) [41], where the mean µ1 = 10MB, 

µ2 = 100MB, and the standard deviation σ1 = 3 and 

σ2=50. We set X to 100, 2000, 3700 Cycle/Byte 

respectively, which represent most of the typical cases 

of mobile applications. To evaluate the effectiveness of 

TS-SMOSA, we randomly select 50 solutions from 

Pareto solutions obtained from TS-SMOSA and 

compared with running RO 50 times in the following 

evaluation. As TS-SMOSA is probability-based 

algorithm, we run 10 or 20 groups of tests to draw 

concrete results. The cooling parameter is set to 0.99 

and the initial temperature and terminal temperature 

corresponding to the energy consumption, traffic usage, 

availability is set to (10000,10), (1000,1), (100,0.01). 

The results are shown in Figure 3, Figure 4 and 

Figure 5, Figure 6 and Figure 7. To the availability, 

TS-SMOSA always outperforms RO in all our 

experiments. When X=100, TS-SMOSA and RO 

consumes more energy than local execution for all 

tasks. This indicates that the energy consumption 

generated by communication is greater than that of 

computation. In this case, local execution for all tasks 

are more efficient than offloading to a worker node in 

mobile cloudlets or cloudlets. Offloading in mobile 

cloudlets or cloudlet is more suitable for computation-

intensive tasks. Since task scheduling solution 

generated by TS-SMOSA and AL have no data 

transmission through cellular network, the traffic size 

in both solutions is 0 and availability of the system is 

set to 1. As our algorithm TS-SMOSA takes 

availability into consideration, all the solutions in 

Pareto set generated from TS-SMOSA always 

outperform RO. When X=1000 and X=2000, TS-

SMOSA and RO begin to consumes less energy than 

AL. To the energy consumption and traffic size, TS-

SMOSA and RO has similar performance. When X= 

3000 or X=3700, TS-SMOSA and RO consumes less 

than 30.2% energy than AL, which means that TS-

SMOSA can achieve the optimal solution for 

computation intensive tasks. This is because that if the 

same type of task has been executed by other devices; 

our solution has efficiently saved the energy 

consumption generated by computation.  

 

Figure 3. Comparisons of TS-SMOSA, RO and AL 

(X=100) 
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Figure 4. Comparisons of TS-SMOSA, RO and AL 

(X=1000) 

 

Figure 5. Comparisons of TS-SMOSA, RO and AL 

(X=2000) 

 

Figure 6. Comparisons of TS-SMOSA, RO and AL 

(X=3000) 

 

Figure 7. Comparisons of TS-SMOSA, RO and AL 

(X=3700) 

5.2.2 The Impact of TS-SMOSA Cooling Parameter 

Since SMOSA is one of the algorithms which are 

Simulation Annealing-based multi-objective algorithms 

to find a Pareto set of solutions in a short time, 

parameters of affecting SMOSA performance include 

initial value of temperature, cooling schedule, number 

of iterations, stopping criteria. Based on settings 

mentioned before, initial value of temperature and 

stopping criteria eventually affect number of iterations. 

Therefore, in this article, we discuss the impact of the 

cooling parameter SPEED and number of iterations on 

algorithm performance. 

We use the same setting on input/output data size as 

that in the previous section. The initial temperature and 

terminal temperature corresponding to the energy 

consumption, traffic usage, availability is also set to 

(10000, 10), (1000, 1), (100, 0.01), respectively. We 

set complexity coefficient to 2000. Tests are executed 

ten times and results are averaged. 

The experiment results are shown in Figure 8. Since 

a larger value of SPEED help the TS-SMOSA to 

converge, it further reduces the total energy 

consumption and improved availability of offloading. 

On the other hand, when the value of SPEED < 0.65, 

the iterations may not be enough for the TS-SMOSA 

process to converge, incurring higher energy 

consumption and traffic size. At the same time, 

availability is not guaranteed. Besides, due to the 

speed-up of the cooling process, it is unlikely to accept 

a temporary solution, Figure 8 shows that when 

SPEED > 0.8, the iteration of traffic usage begin to 

converge. However, a higher value of SPEED leads to 

a larger number of iterations as shown in Figure 9. 

Because when the value of SPEED increases, the 

temperature needs more steps to be cooled down to the 

terminating temperature. As a result, the size of Pareto 

sets become large. In the previous experiment, we 

randomly selected 50 solutions to compare with RO. 

 

Figure 8. Impacts of cooling parameter SPEED on the 

performance of TS-SMOSA 
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Figure 9. Impacts of cooling parameter SPEED on the 

number of iterations 

The results from Figure 8 and Figure 9 show that 

there exists a tradeoff between the performance and 

optimality of task offloading solutions. Using a larger 

value of cooling parameter helps the TS-SMOSA 

process converge, reduces the energy consumption and 

improves offloading availability in the system, but also 

incurs a larger number of iterations and increases more 

the computational overhead. In practice, our design 

offers the system administrator the full flexibility to 

adjust such parameter as well as optimal solution size 

at run-time. 

6 Conclusion 

We define offloading decisions for multi-tasks as an 

optimization problem with the multi-objectives, i.e. 

energy consumption of mobile device, traffic size and 

average offloading availability in the system that 

consider user mobility similarity and energy efficiency 

of mobile devices as metrics to evaluate available 

surrounding users for offloading. These objectives 

proposed in this paper reflect the key factors when the 

system administrator making offloading policy for 

tasks. The TS-SMOSA algorithm is proposed to solve 

task scheduling problem,  

and obtains the approximate optimal solutions. 

Simulation results show that the multiple solutions for 

all of our studied cases almost can archive part of the 

Pareto optimum and is more effective than randomly 

offloading and local execution. In the future work, we 

will try to design task migration solution between 

cloudlet and remote cloud in MEC system. 
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