
An Architecture-Centric Development Approach for Service-Oriented Product Lines 999

An Architecture-Centric Development Approach for

Service-Oriented Product Lines

Xingjian Lu1,3, Jianwei Yin4, Gaoqi He1, Huiqun Yu2, Neal N. Xiong5
1 College of Computer Science and Technology, East China Normal University, China

2 School of Information Science and Engineering, East China University of Science and Technology, China
3 Smart City Collaborative Innovation Center, Shanghai Jiao Tong University, China

4 College of Computer Science and Technology, Zhejiang University, China
5 Dept. of Mathematics and Computer Science, Northeastern State University, USA

luxj@ecust.edu.cn, zjuyjw@zju.edu.cn, hegaoqi@sei.ecnu.edu.cn, yhq@ecust.edu.cn, xiongnaixue@gmail.com*

*Corresponding Author: Gaoqi He; E-mail: hegaoqi@sei.ecnu.edu.cn

DOI: 10.3966/160792642019072004001

Abstract

Service-Oriented Product Line (SOPL), which

combines Service-Oriented Architecture (SOA) and

Software Product Line (SPL) concepts and technologies,

has attained an increasing interest in software engineering

community in recent years. However, there are still

several challenges we have to overcome when developing

a SOPL. In this paper, an architecture-centric approach

for SOPL development is proposed to alleviate these

challenges. First, the business process execution language

(BPEL) based architecture style and architecture

description language bpel4Arch are developed. Then,

based on them, a model-driven reference architecture

generating method and a common rule engine based

architecture customization approach are proposed. For

facilitating the translation between application architecture

and BPEL, we also provide an optimal partition for

application architecture by applying the mixed integer

programming (MIP) technique, which can achieve the

entire function of target product with minimum molecular

services. Finally, an initial case study on E-Shopping

domain and some evaluations show the feasibility and

efficiency of the proposed approach.

Keywords: Serviced-Oriented Architecture, Software

Product Line, Serviced-Oriented Product

Line

1 Introduction

The concept of Software Product Line (SPL) is

introduced to software engineering to meet requirements

of software development in large-scale customization

environment. Traditionally, SPLs are implemented

with systematically developed components [1]. However,

the reconfigurations of these components are largely

limited to design-time. Due to the continuously change

of user needs and expectations, we need the Service-

Oriented Product Line (SOPL) to support the ability of

changing products at runtime, by combine the service-

oriented Architecture (SOA) and SPL [2-6]. In a SOPL,

the service characteristics, e.g., dynamic discoverability

and binding [7], can be used to provide the flexibility

of reconfiguration for SPLs and their products.

First, how to identify and design services or service

compositions for the domain, to decide the variation

points and service variability implementation

mechanisms, and to define the SOPL architectural

view [8-9]. Second, how to provide a common

customization framework for different SOPLs to

achieve reusability at the level of SPL. Third, using

services in SPLs increases the complexity of

application derivation, since each function of SOPL is

implemented by a service. And several services may

implement a single functionality, or more than one

functionality can be implemented by a single service.

Thus how to select the appropriate services to derive an

optimal application that may be composed of several

services is also challenging.

Software architecture design plays a fundamental

role in coping with inherent difficulties of the

development of large-scale and complex software [10].

In the SPL context, reference architecture specifies a

common structure for all member products, while

application architecture, which can be derived from

reference architecture, refers to the concrete

architecture of a specific product. Reference architecture

can be used as a basis for the development of systems

for a specific domain, and application architecture can

be used to derive product instances by guiding how to

organize the components or services to form the

required products. Thus, to solve above challenges, a

systematic architecture-centric approach for SOPL

development is proposed in this paper.

Since the de facto standard Business Process

Execution Language (BPEL) is used so widely in

industry that we regard the SOPL as a web service

composition system based on it in this paper.

First, the BPEL-Based architecture style and a

1000 Journal of Internet Technology Volume 20 (2019) No.4

description language bpel4Arch are developed as the

basis of the proposed approach, in order to represent

and document the architecture asset, and to facilitate

the evolution of the proposed approach. Then, we

propose an architecture-centric development approach

for SOPL, including model-driven reference

architecture generating, rule engine based application

architecture customization, optimal partition of

application architecture. At last, an initial case study on

E-Shopping domain, the optimal partition performance

evaluation and derivation efficiency evaluation show

the feasibility and efficiency of the proposed approach.

The remainder of this paper is organized as follows:

Section 2 represents the related work on SOPL. We

give an overview of the proposed architecture-centric

approach for SOPL development in section 3. Section

4 describes more details of the proposed development

approach for SOPL. We evaluate the performance of

the proposed approach for SOPL in section 5. Finally,

our concluding remarks are provided in section 6.

2 Related Work

Many works [3-5] in the literature has considered

the development of SOPL. However, most of them

mainly focus on identifying services and variability

management in the domain engineering, while few

papers refer to complete methodological approach

from requirement to implementation. In this paper, we

focus on complete methodological approach for SOPL.

The proposed approach is similar to [11], where the

authors define a Business Process Modeling Notation

(BPMN) and a feature model, and then they use feature

selections to generate a concrete BPMN model,

according to the mapping between features and BPMN

model [12-13]. Different from [11], we use the SPL

architecture to organize services and guide product

derivation process. Architecture has more powerful

description ability, especially for complex systems that

can’t be represented by BPMN. In addition, the

mapping between features and services in [11] is

simple one-to-one, but we deal with more complex

mapping between features and services, and provide an

optimal partition for application architecture to derive

optimal product instances.

Software Architecture, which depicts the system

configuration states from a global perspective, can be

effectively used as the basis of software development.

Some initiatives have suggested exploring these

architectures in SPLs [14-16]. To easy the SPL

development and automate the SPL architecture design,

[14] introduces a multi-objective optimization

approach to SPL architecture design by using

evolutionary algorithms. For giving more details on

how and when to use reference architectures, [16]

explores the use of reference architecture in the

development of product line artifacts, and [15] presents

an architecture-centric approach to derive product

instances from customization of product line

architecture. Compared with these works, our approach

focuses more on SOA paradigm and describes in more

detail Architecture-Centric development process for

SOPL, from the views of reference architecture and

application architecture.

In addition, some works concerning the generating

of architecture in SOPL are proposed in [17-18]. In

[17], an approach to designing SOPL architecture for

business process families has been proposed. [18] also

focuses on approach of architecture designing in SOPL,

and provides a detailed description of activities for

reference architecture generating. However, both of

them pay less attention on model-driven methods and

architecture customization in application engineering.

Our method towards SOPL architecture not only pays

more attention on model-driven development for

reference architecture but also provides a common

architecture customization approach based on the rule

engine. [19] developed a model-driven product

derivation tool, called GenArch, centered on

definitions of feature, architecture and configuration

models, which enable the automatic instantiation of

SPLs. However, this tool aims to derive a product

based on components. There are no details how to get

the initial versions of these three models and the

mapping between features and components is simple.

Our method concentrates on the development of

service-based product lines. We also provide an

optimal partition for complex mapping between

features and services to derive optimal product

instances. And the evaluation shows that our method

has higher efficiency on product derivation and

modification than the tool GenArch.

3 Approach Overview

The engineering process for the SOPL using the

proposed architecture-centric development approach is

depicted in Figure 1. Similar to traditional development

of SPL, the approach consists of two phases: domain

engineering and application engineering. As the phase

“develop for reuse”, domain engineering is in charge of

developing a common reusable infrastructure and

assets such as feature model, business process, service

library, and reference architecture. While application

engineering aims to develop the target products using

the assets created before. It is known as the phase

“developing reusing”. It is during this phase where

products are built by service composition based on

BPEL.

As the basis of this approach, the BPEL-Based

architecture style and an architecture description

language bpel4Arch for SOPL are developed first in

this paper. Then, the proposed architecture-centric

development approach for SOPL pays more attention

on following phases: (a) Model-driven reference

An Architecture-Centric Development Approach for Service-Oriented Product Lines 1001

Figure 1. SOPL Development Process Using Our Proposed Approach

architecture generating during domain engineering; (b)

Architecture customization based on rule engine during

application engineering; and (c) Mapping application

architecture to BPEL.

Model-driven reference architecture generating aims

to get the reusable reference architecture from feature

model and business process models. In this method, we

integrate the feature modeling and business process

modeling to reference architecture development, for

satisfying the service-oriented paradigm and providing

demanded variability and flexibility of SPLs.

Architecture customization is to derive application

architecture based on reference architecture and user’s

feature selections. In order to simplify this process, we

provide a common architecture customization approach

for different SPLs based on rule engine. Through this

way, we only need to create a rule-based knowledge

base for the domain of each SPL and all the tasks of

application customization can leave to the common

rule engine based customizer. The main task of

mapping application architecture to BPEL is to create

the mapping relationship between abstract service

components of application architecture and concrete

service candidates in domain service library, and

generate final BPEL code for each customization. To

get the BPEL code with minimum number of

molecular services, we propose an optimal partition

method for application architectures by using the MIP

technique.

4 Approach Details

4.1 Architecture Style and Description

Language

As described before, each product derived in the

application engineering can be regarded as a BPEL-

based composite service. Thus a BPEL-based

architecture styleis proposed in this paper. As Figure 2

shows, each web service of the SOPL mounts on a

BPEL process, which can start and monitor the

execution of process. Due to different granularities, a

web service can be a molecular service or a BPEL sub-

flow with several services. Due to the variability of

SPLs, four kinds of business activities are involved in

the BPEL flow [17]:

Figure 2. Architecture style for BPEL-based SOPL

1002 Journal of Internet Technology Volume 20 (2019) No.4

‧ Mandatory business activities with variability: These

activities are mandatory, but the variants chosen

under the constraints must be decided.

‧ Optional business process: These activities may or

may not be selected in the target products.

‧ Optional business process with variability: These

activities are optional, but the variants chosen under

the constraints must be decided.

‧ Mandatory business activities: These activities must

be included in all the products.

According to such architecture style, all the target

products derived from application engineering should

be translated into BPEL. Thus an architecture

description language bpel4Arch is also proposed for

SOPL based on BPEL, to formally describe SOPL

architecture and facilitate this translation. Two main

views need to be described by bpel4Arch: reference

architecture and application architecture. Reference

architecture includes variability of the domain in SPL

and can be used to derive application architecture

based on user’s customization information. More

precisely, Figure 2 describes the reference architecture

style. Application architecture style is similar to it just

without variable business activities.

Bpel4Arch consists of three parts: service

component definition, connector definition and

configuration definition. Service component is the

entity of services used to describe the activity of

business process in SOPL; Connector which is used to

create interaction between service components,

represents howthe BPEL process controls interactions

between web services; Configuration defines the

instances of service components and connectors, and

creates the relationships, which equal to the bindings

between web services in BPEL process. For simplicity,

we don’t develop all the parts from scratch, but extend

some syntaxes of BPEL. These extensions can be

divided into two categories: (1) removing the unused

tags and annotations that with no help to architecture

description from the BPEL syntax; (2) adding

variability specific syntax elements to the key tags and

annotations reserved from the BPEL syntax, to support

the description of reference architecture for SOPL.

These additions should contain three aspects of

variability information: the point at which variation can

occur in reference architecture; the variants which can

be bound at some variation point; the variability

binding properties such as the variability type,

cardinality of variants, relationship of variations, and

variability binding constraints.

Table 1 lists the main syntax elements of bpel4Arch,

as described before, these syntax elements are derived

from two ways. Tags such as <sequence>, <flow>,

<pick>, <switch>, <while>, <condition>, <otherwise>,

<case>, and <invoke>are derived from the BPEL

syntax. Tag <serviceComponent>and attributes id,

name, type and feature are new added to our syntax to

support the variability description of SOPL

architecture.

Table 1. Syntax elements of bpel4Arch (D: Derived from BPEL; A: Added new)

Element Type Description

<sequence> D Similar to BPEL, service components in this structure style are invoked on sequence.

<flow> D Similar to BPEL, service components in this structure style can be invokedin parallel.

<pick> D Only one service component in this structure will be invoked.

<condition> D A condition whose value can be true or false according to its Boolean expression.

<otherwise> D A condition whose value is opposite to its Boolean expression.

<case> D Similar to the case term in programming language, it presents a possible invoke path.

<switch> D
Similar to BPEL flow, the first service components in this structure style will be invoked if

its condition is fulfilled.

<while> D Service components in this structure style will be invoked repeatedly.

<invoke> D It identifies a service component will be invoked here.

invokeType A
Attribute of <invoke>, identifies the type of service component. Its value can be mandatory,

optional, mandatory with variability, and optional with variability.

<serviceComponent> A Basic units of SOPL architecture, it represents a service component.

<bpel4Arch> A It is the root element of a bepl4Arch file.

archType A Attribute of <bpel4Arch>, it identifies reference or application architecture.

domain A Attribute of <bpel4Arch>, it specifies the domain of SOPL.

feature A
Attribute of <serviceComponent>, it indentifies the name of feature that is mapped by this

service component.

feature_model_uri A Attribute of <serviceComponent>, it describes the uriof thefeature model.

4.2 Model-driven Reference Architecture

Generating

As one of the most prominent techniques to provide

an abstract overview of architecture models, feature

modeling is used widely in current SPL methods [20-

22, 29]. However, feature modeling mainly focuses on

the description of domain features, without providing

representations of basic processes in a system’s

architecture [23-25]. On the other hand, it is becoming

An Architecture-Centric Development Approach for Service-Oriented Product Lines 1003

increasingly clear that a SOA cannot be useful without

a clear focus on the business processes. Thus, a model-

driven approach for reference architecture generating is

proposed in this paper, to derive a reference

architecture thatsatisfies demanded SPL variability,

flexibility and business process logic.

As Figure 3 shows, this approach starts with an

identification phase that is separated in component

identification activity and service identification activity.

Component identification takes an analysis of feature

models to identify the architectural component

candidates. Service identification aims to derive

service candidates from business process models [26].

In this activity, processes themselves, their sub-

processes and process activities can be considered as

molecular or orchestrating service candidates,

depending on their granularities.

Figure 3. Activities of the Approach for Reference

ArchitectureGenerating

The identification phase is followed by a variability

analysis activity, which pays more attention on

concrete implementation details of variability in the

components or services. It receives the list of

components and services identified previously to

define and document the key architectural decisions

regarding variability. Variation in reference

architecture can be managed in two ways: variation

point description and product line patterns. Service

orientation can be used as a technique to implement

variability, i.e., each variant can be implemented as a

service. It is also necessary to introduce service

internal variability through changing a class attribute, a

class, a method or even a service. Product line patterns

are used to model structural varieties through

identifying commonality and variability of related

business processes.

Finally, architecture specification activity concludes

this approach, in which the components, services,

service orchestrations and their flows will be specified.

For facilitating the translation between reference

architecture and BPEL codes, the architecture

description language bpel4Arch is used to describe and

document the reference architecture of SOPL, after

identifying the basic structural units (components and

services) and defining the design decisions (variation

decisions, quality decisions, etc.) of the reference

architecture.

4.3 Architecture Customization based on Rule

Engine

After the reference architecture has been modeled

and implemented, feature-driven dynamic customization

will be carried out to derive the application architecture

for the target product during application engineering. A

common architecture customization approach for

different SOPLsis proposed based on rule engine.

Figure 4 depicts the architecture of this rule engine

based customizer.

Target

Application

Feature Selector

(Include QoS)

Rule Engine

(Inference Engine)

Knowledge Base

(Rule Base)

Working Memory

(Fact Base)

Knowledge Base

Editor

Domain

Engineer

Application

Engineer

Figure 4. Architecture of Rule Engine Based

Customizer

The rule base contains the rules in the form of if-

then statements, which represent the knowledge about

the domain of SOPL. It is often provided by domain

engineers through the knowledge base editor. The

working memory contains the facts, which are smallest

pieces of information supported by the rule engine. In

our customizer, the facts are feature selections and

non-functional property constraints provided by

application engineers. The rule engine matches facts in

the working memory against rules in the rule base, and

determines which rules are applicable according to the

reasoning method. Thefeature selector can help

application engineer select desired features and non-

functional profiles. All these information can be used

to execute the customization task. The knowledge base

editor can help domain engineers develop and edit the

domain knowledge for SOPLs.

The feature-driven customization process in above

rule engine based customizer is as follows: First,

application engineers select desired features and non-

functional profiles through the feature selector for each

concrete task of customization. After receiving all the

customization information, the customizer will add

them to the working memory as a set of facts. Then the

reasoning task will be executed to check the

correctness and consistency based on the feature model

and feature dependency rules in the SOPL domain

knowledge base, for determining the final features that

will be included in the target product. After that, the

service components, which are mapped to the final

feature selections based on the dependency rules

between features and service components, will be

reorganized to derive customized application

architecture based on the assembly rules extracted from

the reference architecture. For more details how to

1004 Journal of Internet Technology Volume 20 (2019) No.4

achieve architecture customization please refer to our

publication [27].

4.4 Mapping Application Architecture to

BPEL

Through reference architecture generating and

architecture customization, we get the application

architecture that satisfies user’s functionality and QoS

requirements. However, each service component

appears in this architecture has not been bound to a

concrete service, but an abstract service identified by a

feature. To get a target product that can be executed on

BPEL engine, we still need to translate this architecture

to BPEL codes.

For simplicity, traditional methods often map an

abstract service node to one component or molecular

service. These methods are easy to implement,

however, in the real world, the fixed one-to-one

mapping cannot satisfy required flexibility and

scalability of SOPL. In addition, as one kind of large

granularity component, service is being designed to

implement more and more functions. So we pay more

attention on the many-to-one mapping between

abstract service nodes and a molecular service in this

section, especially how to partition abstract service

nodes, and map them to concrete molecular services to

achieve the entire function for target product with

minimal number of molecular services.

4.4.1 Hypothesis and Definitions

For simplicity, only linear abstract service node

composition model is discussed here. We assume the

function of each abstract service node is implemented

by at least one molecular service. We first give the

following definition of serviceable factor (SF).

Definition 1. Serviceable Factor (SF) identifies the

probabilities of that the function of a feature or a

feature composition can be implemented by a

molecular service. The value varies from 0 to 1.

According to our hypothesis described before, SF of

each single feature is 1. In the following, we will

discuss how to calculate the SF for a feature

composition.

Definition 2. Semantic Similarity identifies the

degree of similarity between any two features. It

focuses on the topology structure of the feature model,

without considering the relationships. The semantic

similarity between any two features can be calculated

as follows:

max

max

(,) 1,

(,)
(,)

() ()

() ()

=

−

= × +

∩

×

∪

Sim X Y where X=Y or

D Distance X Y
Sim X Y a

D

FeatureSet X FeatureSet Y
b

FeatureSet X FeatureSet Y

max

max

() ()
,

− −

+ ×

≠

L Level X Level Y
c

L

where X Y

 (1)

,a ,b c are weighting parameters, which take on

values in the range [0, 1] and reflect the contribution of

distance, semantic overlap, and hierarchy level gap on

semantic similarity. Their sum is required to be one,

but how to set concrete values for them depends on

specific feature models, including the largest path

length, the number of nodes, and the hierarchy depth of

the feature model. Generally their values are set

according to domain experts or by experimental

attempts to evaluate which combination fits more to the

real world. (,)Distance X Y represents the path

lengthfrom feature X to feature Y and the lengthof

each edge is 1;
max

D is the largest distance for all pairs

of features in the feature model; ()FeatureSet X

represents the feature set from feature X to the root R.

()Level X represents the hierarchy level of feature X

in the feature model.
max

L is the largest hierarchy level

(depth) of the feature model.

Definition 3. Semantic Relevance identifies the

relationship of relevance between any two features in

the feature model. The semantic similarity reflects the

similarity between features on the topology structure of

the feature model, however, there are also some kinds

of relationships between any two features in the

domain of SPL: Mandatory, Optional, Or, Alternative,

Require, Exclude [25, 32]. When calculating the

semantic relevance, we add an edge between feature X

and Y, if X requires Y or Y requires X. For the

relationship Exclude, there is no edge between the two

features. Thus the distance is generally smaller than

two, if a pair of features exists some positive (not

Excludes) relationship. The formula of semantic

relevance is as follows:

(,) 1

(,) ,
(,)

Rel X Y where X Y

Rel X Y where X Y
Distance X Y

µ

µ

= =

= ≠

+

 (2)

µ is an adjustable parameter. Though µ depends on

specific feature model, generally we suggest it takes on

value 3, since the distance is generally smaller than

two if some positive relationship exists.

Semantic similarity reflects the implication relations

while semantic relevance reflects specific relationships

defined by domain experts, the two indicators both

have contributions to the serviceable factor. We used

three different comprehensive analyzing methods, e.g.

average value, product value, and the method similar to

addition formula of probability, to test which

combination of semantic similarity and semantic

relevance is more fit to actual cases, i.e. the higher the

serviceable factor of each method for the combination

An Architecture-Centric Development Approach for Service-Oriented Product Lines 1005

with any two features, the higher the probability to find

out a molecular service in the real-world UDDI or

service library. After comparing the calculated

serviceable factor of each method with service

matchingin the real-world UDDI or service library, we

find that the third method is more fit to actual cases

through the experimental selections. The used formula

of serviceable factor is as follows:

(,) (,) (,) (,)

(,)

SF X Y Sim X Y Rel X Y Sim X Y

Rel X Y

= + −

×

 (3)

Let
1 2

{ , ,...... }
n n

F f f f= represent a composite

feature set that has n features, and the serviceable

factor of
n

F can be calculated as follows:

2

(,)

()

i j

i j

n

n

SF f f

SF F i n and j n
C

≠

= ≤ ≤

∑
 (4)

4.4.2 The Optimal Partition Algorithm

To partition the application architecture for deriving

the target product with minimum number of molecular

services, enumerating all the possible partitions is

necessary. However, the complexity of this kind of

method is so high that cannot be applied to practical

applications, especially when the number of abstract

services is high. Thus, to reduce the number of match

between features and all molecular services in UDDI

or service library, we propose to use MIP technique to

find the optimal partition, where the number of

molecular services is minimum and the probability to

find a molecular service for each segment is high.

As the first step of this optimal method, we define a

matrix [,]SF n n to denote the serviceable factor of

each segment of the abstract service component nodes,

i.e. [,]SF i j denotes the serviceable factor of the

segment of abstract service nodes form node 1i + to

1j + , where 0 , 0i n j n≤ < ≤ < . So for each i and j ,

the value of [,]SF i j can be calculated according to Eq.

(4) if i j< . When i j= , that means there is only one

abstract service node in this segment, so the value of

[,]SF i j is 1 according to our hypothesis.

Then we use MIP model to find the optimal partition

for the sequential abstract service nodes. First, we

define the binary decision variable
ij

X , i j≤ for each

abstract service segment from node i to j such that

1
ij

X = if this abstract service segment is selectedto be

included in the partition, and 0
ij

X =

otherwise.

Furthermore, in order to reduce the number of variable

ij
X

and improve the efficiency of our MIP model, we

set a default value 0 for
ij

X

when i j> , and then we

execute a first filtering through setting 0
ij

X =

when

[,] ,SF i j τ< τ is an adjustable parameter, which

indentifies the threshold of serviceable factor to find a

molecular service. As analyzed before, we can select n
abstract service segments at most in the worst case. So

we use the following allocation constraints in the

model:

The objective function of our MIP model is to

minimize the number of molecular services needed to

match with the features and maximize the sum of

serviceable factor of these abstract service segments.

So the objective function can be expressed as follows:

1 1 1 1

0 0
([,])

minimize()
(1)

n n n n

ij iji j i i j i
X SF i j X

n n

τ
α β

τ

− − − −

= = = =

− ∗

× −

−

∑ ∑ ∑ ∑
 (5)

α and β are contribution factors of the two features:

the number of needed molecular service and the sum of

serviceable factor.

Abstract service segments in the partition cannot

overlap each other, so we should make sure only one

abstract service segment which starts from node i or

ends to j can be selected at most in the partition. Thus

the following constraint should be added:

1

0
1, 0 1

a n

iji j a
X a n

−

= =

≤ ∀ ≤ ≤ −∑ ∑ (6)

Furthermore, the selection of partition must ensure

all the abstract service component nodes have been

included in. From Eq. (6) we know each abstract

service component node can be selected once at most,

so we add the following constraint to the model:

1 1

0
(1)

n n

iji j i
j i X n

− −

= =

− + =∑ ∑ (7)

By solving this model using any MIP solver method,

we can get an optimal set of abstract service segments,

and then we will test whether this partition can find a

molecular service for each abstract service segment. In

most of cases, this try will succeed, because we have

made the service factor of each candidate abstract

service segment is larger than the given threshold and

the sum of service factor is as large as possible under

other constraints. In the rare cases that the best

selection cannot meet the requirements, we can still

rapidly get the best one from the rest selections through

executing MIP solver again, by adding the following

constraints to the model:

 0
1

m z
ijz

X m
=

< +∑ (8)

Where z
ijX

is the set of abstract service segments

that are selected in the last optimal partition. The

purpose of this constraint is to exclude the last optimal

partition solution from the rest candidates in the next

solving process. Then we will repeat this process until

finding a partition that can find a molecular service for

each abstract service segment. Compared with the

enumerating methods, the number of needed service

1006 Journal of Internet Technology Volume 20 (2019) No.4

matches of our partition method is much smaller and

the efficiency is higher. After deriving the optimal

partition we can use it to translate application

architecture to BPEL for the target product through

replacing abstract service segments with selected

molecular services. Due to space limitations, the

concrete details of these replacements are omitted here.

5 Implementation

5.1 Case Study

To clarify and explain the proposed approach, we

introduce an initial case study on the E-Shopping

domain in this section. Part of the feature model of the

E-Shopping SOPLis presented in Figure 6, by using the

protegeto document and analyze feature models [28].

Figure 6. Part of Feature Model of E-Shopping Domain

Applying the technique for component identification,

we finish with the following component candidates:

create shopping cart, product list, add product to cart,

delete from cart, request checkout, fraud detection,

credit card payment, PayPal payment, cargo insurance

and delivery components. There are also some other

components, e.g. access control, customer management

that were excluded from this figure due to the space

limitation. Figure 7 depicts the simplified business

process for the domain of E-Shopping. It starts with an

activity that creates a shopping cart. Then customers

can get the details of products in the view of product

list. After adding products to shopping cart, customers

can request a checkout operation. Subsequently,

customer will make a decision of selecting cargo

insurance or not, before delivering the products. At last,

it’s time to pay for these products. An optional Fraud

Detection will be executed before selecting a concrete

payment method that can be credit card or PayPal, in

order to support versatile security functionalities in

different levels.

Figure 7. E-Shopping Business Process

From the business process, following service

candidates were identified first: create shopping cart,

product list view, shopping cart management, request

checkout, cargo insurance, delivery, fraud detection,

credit card payment and PayPal payment. Then, during

variability analysis phase, the cargo insurance and

delivery service candidates can be reduced to only one

service through introducing variability to the service

interface, to reflect the service operation cargo

insurance is optional. In the case of payment method

feature, we use service orientation technique to

implement the variability. Credit card payment and

PayPal payment are the two services implementing the

variants of payment method feature. The optionalfraud

detection feature is also implemented as a service. In

addition, due to low variability granularity, sub-

features of shopping cart manage (add product to cart

and delete from cart) were put all in a unique

component with internal variability.

After all architectural decisions derived, the

reference architecture (Figure 8) of E-Shopping SOPL

is documented by a bpel4Arch file. A code fragment of

this file is described in Figure 9. As mentioned before,

the bpel4Arch code consists of the Tags of definition

and properties of service components, and the Tags of

topology relationship between these service

An Architecture-Centric Development Approach for Service-Oriented Product Lines 1007

components.

Then we can transform the feature model and

reference architecture to rules by applying the

technique proposed in our previous work [25], to

achieve the customization based on the rule engine. As

Figure 10 shows, the feature model and reference

architecture are first transformed to the First Order

Predicts, e.g. the definition, type, and relationship of

features, and the definition, type, and mapping

relationship of service components, etc. Then we

assume the user selects both the cargo insurance and

fraud detection features with the feature selector, and

the selected payment method is credit card. The rule

engine based customizer will use above predicts and

user’s selections to derive the application architecture,

by using the customization rules. Here we just list three

example rules for this case study, the first is to

determine the internal variability of service component

Shipping service; the second is to determine the

optional service component fraud detection; the third is

to determine the alternative service component credit

card payment. After the customization, we can get the

application architecture of E-Shopping SOPL where

each variation point in the reference architecture will

be bind to a specific variant.

The process view of application architecture of E-

Shopping SOPL is depicted in Figure 11. From this

figure we can see that there are six sequential activity

nodes. Each activity node can be implemented in at

least one molecular service according to the

assumption. We also assume there is an external

molecular service security credit card payment that can

achieve the function of Fraud detection and credit card

payment service. To get the structure of BPEL with

minimum number of molecular services, we use the

MIP technique to derive the optimal partition of these

activity nodes. Table 2 depicts the calculated

serviceable factor matrix.

Figure 8. Reference Architecture of E-Shopping

<bpel4Arch name=“ES_RefArch” archType=“reference” domain=“E-Shopping”

 feature_model_url=“http://www.abc.com/e-shopping-feature-model”>

 <serviceComponent name=“create_shopping_cart_SC” feature=“Create Shopping Cart”/>

 <serviceComponent name=“add_product_to_cart_SC” feature=“Add Product to Cart”/>

 <serviceComponent name=“request_checkout_SC” feature=“Request Checkout”/>

 <serviceComponent name=“shipping_SC” feature=“Shipping”/>

 <serviceComponent name=“fraud_detection _SC” feature=“Fraud Detection”/>

 <serviceComponent name=“credit_card_payment_SC” feature=“Credit Card”/>

 <serviceComponent name=“paypal_payment_SC” feature=“PayPal”/>

 <sequence>

 <invoke name=“create_shopping_cart_service”

 serviceComponent=“create_shopping_cart_SC” invokeType=“mandatory” />

 <invoke name=“add_product_to_cart_service”

 serviceComponent=“add_product_to_cart_SC” invokeType=“mandatory” />

 <invoke name=“request_checkout_service”

 serviceComponent=“request_checkout_SC” invokeType=“mandatory” />

 <invoke name=“shipping_service”

 serviceComponent=“shipping _SC” invokeType=“mandatory with variability” />

 <invoke name=“fraud_detection_service”

 serviceComponent=“fraud_detection_SC” invokeType=“optional” />

 <invoke name=“payment_service” invokeType=“mandatory with variability”>

 <List name=“payment_SC_List” type=“alternative” min=1 max=2>

 <serviceComponent=“credit_card_payment_SC” />

 <serviceComponent=“paypal_payment_SC” />

 </List>

 </invoke>

 </sequence>

</bpel4Arch>

Figure 9. bpel4arch code fragment for the E-Shopping case study

1008 Journal of Internet Technology Volume 20 (2019) No.4

Feature Predicts:

feature(Shipping),

feature(Cargo Insurance),

feature(Fraud Detection),

feature(Credit Card),

parent_is(Cargo Insurance, Shipping),

type_is(Shipping, mandatory),

type_is(Cargo Insurance, optional),

type_is(Fraud Detection, optional),

type_is(Credit Card, alternative)

User’s Selections:

selected(Cargo Insurance, true),

selected(Fraud Detection, true),

selected(Credit Card, true)

Architecture Predicts:

serviceComponent(shipping_SC),

serviceComponent(shipping_with_insurance_SC),

serviceComponent(fraud_detection_SC),

serviceComponent(credit_card_payment_SC)

type_is(shipping_SC, mandatory_with_variability),

type_is(fraut_detection_SC, optional),

type_is(credit_card_payment_SC, optional)

feature_map(shipping_SC, Shipping),

feature_map(shipping_with_insurance_SC, Cargo Insurance),

feature_map(fraud_detection_SC, Fraud Detection),

feature_map(credit_card_payment_SC, Credit Card),

sequence(shipping_SC, fraut_detection_SC),

sequence(fraut_detection_SC, payment_SC_List)

Customization Rules:

(1) feature(Cargo Insurance) ^ parent_is(Cargo Insurance, Shipping) ^ serviceComponent(shipping_SC)

^ feature_map(shipping_SC, Shipping) ^ type_is(shipping_SC, mandatory_with_variability) ^

selected(Cargo Insurance, true) � ArcIncluded(shipping_with_insurance_SC , true) ^

sequence(shipping_with_insurance_SC, fraud_detection_SC)

(2) feature(Fraud Detection) ^ selected(Fraud Detection, true) ^ serviceComponent(fraud_detection_SC) ^

feature_map(fraud_detection_SC, Fraud Detection) � ArcIncluded(fraud_detection_SC, true)

(3) feature(Credit Card) ^ selected(Credit Card, true) ^ serviceComponent(credit_card_SC) ^

feature_map(credit_card_SC, Credit Card) � ArcIncluded(credit_card_SC, true) ^

sequence(fraud_detection_SC, credit_card_SC)

Figure 10. Rule-based customization for application architecture of E-Shopping SOPL

Create

shopping cart

Add product

to cart

Request

checkout

Fraud

detection

Shipping

with insurance

Credit card

payment

Figure 11. Application Architecture of E-Shopping SOPL

Table 2. Serviceable factor matrix (i: Start index; j: End index)

j

i
0 1 2 3 4 5

0 1 0.51 0.58 0.55 0.52 0.51

1 0 1 0.51 0.49 0.48 0.49

2 0 0 1 0.57 0.54 0.55

3 0 0 0 1 0.57 0.61

4 0 0 0 0 1 0.80

5 0 0 0 0 0 1

Then, we use the open source lpsolve 5.5 to solve

the MIP model setting 0.5α β= = . From table 2 we

can see the serviceable factor for each abstract service

segment is between 0.45 and 0.80, and the probability

of finding out a concrete service for an abstract service

segment is almost zero when the serviceable factor is

below 0.7 according to the domain experts, so we set

the threshold of service factor 0.7τ = . By running

thelpsove once, we derive an optimal partition for this

case study. In this partition, abstract service component

node 0 to 3 will map a concrete molecular service

separately; abstract service 4 and 5 will put together to

map a concrete molecular service. Then we will try to

find concrete molecular service candidates for each

segment of this partition. If we can find all the service

candidates, that means this partition is the final optimal

partition, else we will run lpsolve again to find the next

optimal partition selection through adding the

constraints to this MIP model according to Eq. (8).

5.2 Optimal Partition Performance

Evaluation

In this subsection, we will evaluate the performance

of the proposed MIP based optimal partition method.

We first develop a feature mode with more than 200

feature nodes. Then we calculate the value of

serviceable factor for any two features according to Eq.

(3). Here we set 5,a = 1,b = 0.2c = for Eq. (1),

3µ = for Eq. (2), 0.6,α = 0.4β = for Eq. (5) and

0.8τ = .

Figure 12(a) shows the cumulative distribution

function (CDF) of the number of MIP solving with

different number of abstract service component nodes k

separately. The results can be summarized as follows:

‧ Overall, optimal partition method achieves good

results for all examined values of k. For 10k = , at

least 90% of the application architecture can find the

optimal partition within one MIP solving. Even

An Architecture-Centric Development Approach for Service-Oriented Product Lines 1009

for 50,k = at least 80% of the application

architecture can find the optimal partition within

four MIP solving.

‧ Larger k achieves lower efficiency. That means if

the number of abstract service components is larger,

we need more MIP solving to map application

architecture to BPEL. Because larger number of

abstract service components means more abstract

service segments whose serviceable factor is larger

than the threshold, so the probability to find

molecular services for the partition is lower,

resulting in more MIP solving to find the optimal

partition.

Figure 13(a) shows the percentage of the number of

final selected molecular service under different number

of abstract service nodes. We can see that these values

are stable near 99%, little affected by the number of

abstract service nodes. This distribution shows that our

method can achieve stable efficiency on reducing

number of final selected molecular service,

independent of the number of abstract service

component nodes.

Then we keep the number of abstract service fixed

to 20. Figure 12(b) and Figure 13(b) depict CDF of

MIP solving and the percentage of selected services

under different value of α separately, when 0.4β = .

We can see that larger value of α achieves lower

efficiency on number of MIP solving and higher

efficiency on number of needed molecular services.

The results can be explained as follows: larger value of

α means the influence of the number of molecular

services on the final selection is strengthened, so in

most cases, we need less molecular services to achieve

the entire function. However, less molecular services

means more abstract service segments with more than

one abstract service component node will be tested if

can find a molecular service to achieve its function, so

we need more number of MIP solving to find the final

optimal partition.

On the contrary, as depicted by Figure 12(c) and

Figure 13(c) where 0.6α = and β varies from 0.3 to

0.4, larger value of β achieves higher efficiency on

the number of MIP resolving and lower efficiency on

the number of needed molecular services. The reason is

similar to Figure 12(b) and Figure 13(b). Due to space

limitation, we don’t describe it more detail.

(a) Different number of abstract

service component nodes

(b) Different valuesof α (c) Different values of β

Figure 12. CDF of MIP solving under

(a) Different number of abstract

service component nodes

(b) Different values of α (c) Different values of β

Figure 13. Percentage of selected service under

1010 Journal of Internet Technology Volume 20 (2019) No.4

From above analysis, we can see that α and β
have greater impact on efficiency of needed molecular

services than k. It is thus important to assign

appropriate values forthem. However, the optimal α

and β depend on specific application scenarios,

including user’s preference, feature model, and used

UDDI. A good rule of thumb is that setting default α

and β to 0.5, and then try experimental attempts (with

different combinations of them) or use some machine

learning method to get the optimal combination of α

and β, which can achieve better balance between them

and bring highest efficiency on needed molecular

services.

5.3 Product Derivation Efficiency Evaluation

Next we report the efficiency results of empirical

evaluations of our method on E-Shopping case study,

when comparing with GenArch, which is a model-

based product derivation tool developed for

component-based SPL [24]. For each customization,

we use the same feature selections to drive product

derivation and record time spent to get the product.

Figure 14(a) shows the average derivation time, which

is normalized to that spent for customization with 5

selected features by using GenArch, with different

number of selected features.

(a) Average derivation time (b) Required number of services or

components for customization with

different number of selected features

(c) Average modification time with

different number of modified

functions

Figure 14.

As we can see, our method achieves 60%-87%

efficiency improvement for product derivation without

MIP-Based optimal partition. Even with MIP-Based

optimal partition, it can also achieve 53%-67%

efficiency improvement. The main reason is that

GenArch needs to copy the required codes of

components to generate a JAVA project, while our

method only needs to derive a BPEL file. Figure 14(b)

shows the average number of required services or

components to derive the target product with different

number of selected features. From this figure, we can

see that our method achieves better efficiency on

number of needed molecular services than GenArch. It

is mainly because the optimal partition aims to derive

the target products with fewer services by mapping

more than one feature to a molecular service.

We also evaluate the average time of our method to

change some functions after a product has been derived.

We first derive a product with 10 selected features,

then we change some functions and record the time to

achieve this change. The cost time is normalized to one

function modification. Figure 14(c) shows the

comparative results on average time to achieve such

modifications with different number of modified

functions. We can see that our method achieves better

efficiency on modification time than GenArch.

Because it just needs to modify the implementation

details of the required services, while GenArch has to

re-execute the derivation process, which is time-

consuming, e.g. its average derivation time is nearly 10

times as the time to change one function.

6 Conclusion

In this paper, an efficient architecture-centric

approach for SOPL development is proposed. To

achieve this development, the BPEL-Based

architecture style and the architecture description

language bpel4Arch are developed first. Then, based

on them, a model-driven reference architecture

generating method and a common architecture

customization approach are proposed based on the rule

engine. Furthermore, for facilitating the translation

between application architecture and BPEL codes, we

also provide an optimal partition for application

architecture according to the mapping between abstract

service component nodes and concrete service

candidates in the domain service library, in order to

achieve the entire function of application architecture

with minimum molecular services. Finally, a case

study and some evaluations prove the feasibility and

high efficiency of the proposed approach. Due to

limitation of the number of available services in

production, the optimization performance and

An Architecture-Centric Development Approach for Service-Oriented Product Lines 1011

derivation efficiency of our method are currently

validated only by controlled experiments. However, in

the future, we plan to apply and improve the proposed

method in the real world SOPL application

development.

Acknowledgments

This work was partially supported by the NSF of

China under grant No. 61602175, Natural Science

Foundation of Shanghai under grant No. 19ZR1415800,

the National Science and Technology Supporting

Program of China under grant No. 2015BAH18F02,

the Model Information Service Industry Program of

Guangdong Province under grunt No. GDEID2010IS049,

the Fundamental Research Funds for the Central

Universities under grant No. ZH1726108, and the

Special Funds for Informatization Development in

Shanghai under grant No. 201602008, Popularization

of Science Program of Shanghai Science and Technology

Commission under grant No. 19DZ2301100.

References

[1] B. Mohabbati, M. Hatala, D. Gašević, M. Asadi, M. Bošković,

Development and Configuration of Service-oriented Systems

Families, ACM Symposium on Applied Computing, Taichung,

Taiwan, 2011, pp. 1606-1613.

[2] R. Capilla, J. Bosch, P. Trinidad, A. Ruiz-Cortésc, M.

Hinchey, An Overview of Dynamic Software Product Line

Architectures and Techniques: Observations from Research

and Industry, Journal of Systems and Software, Vol. 91, No. 1,

pp. 3-23, May, 2014.

[3] S. Khoshnevis, An Approach to Variability Management in

Service-oriented Product Lines, International Conference on

Software Engineering, Zurich, Switzerland, 2012, pp. 1483-

1486.

[4] J. R. F. Da Silva, A. S. De Melo Filho, V. C. Garcia, Toward

a Qos Based Run-time Reconfiguration in Service-oriented

Dynamic Software Product Lines, International Conference

on Enterprise Information Systems, Lisbon, Portugal, 2014,

pp. 460-465.

[5] A. Murguzur, R. Capilla, S. Trujillo, Ó. Ortiz, R. E. Lopez-

Herrejon, Context Variability Modeling for Runtime

Configuration of Service-based Dynamic Software Product

Lines, SPLC, Florence, Italy, 2014, pp. 2-9.

[6] T. K. Chang, E. T. Y. Hwang, An Soa-based System

Modeling Methodology, Journal of Internet Technology, Vol.

16, No. 3, pp. 547-561, May, 2015.

[7] C. Yu, D. Yao, X. Li, L.T. Yang, N. Xiong, H. Jin, Location-

aware Private service Discovery in Pervasive Computing

Environment, Information Sciences, Vol. 230, No. 5, pp. 78-

93, May, 2013.

[8] M. Abu-Matar, H. Gomaa, An Automated Framework for

Variability Management of Service-oriented Software

Product Lines, Seventh International Symposium on Service-

Oriented System Engineering, Washington DC, USA, 2013,

pp. 260-267.

[9] S. Khoshnevis, F. Shams, Linear Evolution of Domain

Architecture in Service-oriented Software Product Lines,

Fundamentals of Software Engineering, Tehran, Iran, 2015,

pp. 275-291.

[10] B. Tekinerdogan, S. Cetin, M. A. Babar, P. Lago, J. Mäkiö,

Architecting in Global Software Engineering, ACM SIGSOFT

Software Engineering Notes, Vol. 37, No. 1, pp. 1-7, Jan.,

2012.

[11] G. H. Alferez, V. Pelechano, Systematic Reuse of Web

Services through Software Product Line Engineering,

European Conference on Web Services, Bertinoro, Italy, 2011,

pp. 192-199.

[12] M. Terenciani, D. Paiva, G. Landre, M. I. Cagnin, BPMN- A

Notation for Representation of Variability in Business

Process towards Supporting Business Process Line Modeling,

International Conference on Software Engineering and

Knowledge Engineering, Pittsburgh, USA, 2015, pp. 227-230.

[13] P. Bollen, Business Process Model Semantics in Bpmn,

Innovations in Enterprise Information Systems Management

and Engineering, Hagenberg, Austria, 2016, pp. 31-45.

[14] T. E. Colanzi, Search Based Design of Software Product

Lines Architectures, International Conference on Software

Engineering, Zurich, Switzerland, 2012, pp. 1507-1510.

[15] C. Cu, Y. Zheng, Architecture-centric Derivation of Products

in a Software Product Line, International Workshop on

Modeling in Software Engineering, New York, USA, 2016,

pp. 27-33.

[16] E. Y. Nakagawa, P. O. Antonino, M. Becker, Exploring the

Use of Reference Architectures in the Development of

Product Line Artifacts, SPLC, Munich, Germany, 2011, pp.

1-8.

[17] E. Ye, M. Moon, Y. Kim, K. Yeom, An Approach to

Designing Service-oriented Product-line Architecture for

Business Process Families, International Conference on

Advanced Communication Technology, Okamoto, Japan,

2007, pp. 999-1002.

[18] F. M. Medeiros, E. S. Almeida, S. R. de Lemos Meira,

Towards an Approach for Service-oriented Product Line

Architectures, Proceedings of the Workshop on Service-

oriented Architectures and Software Product Lines, Jeju

Island, South Korea, 2009, pp. 1-7.

[19] E. Cirilo, U. Kulesza, C. J. P. de Lucena, GenArch: A Model-

based Product Derivation Tool, Proceedings of the First

Brazilian Symposium on Components, Architecture and Reuse,

Campinas, Brazil, 2007, pp. 31-44.

[20] M. Acher, P. Collet, P. Lahire, R. B. France, Familiar: A

Domain-Specific Language for Large Scale Management of

Feature Models, Science of Computer Programming, Vol. 78,

No. 6, pp. 657-681, June, 2013.

[21] N. I. Altintas, S. Cetin, A. H. Dogru, H. Oguztuzun,

Modeling Product Line Software Assets Using Domain-

specific Kits, IEEE Transactions on Software Engineering,

Vol. 38, No. 6, pp. 1376-1402, Nov., 2012.

[22] N. Itzik, I. Reinhartz-Berger, Sova- A Yool for Semantic and

1012 Journal of Internet Technology Volume 20 (2019) No.4

Ontological Variability Analysis, CAiSE, Thessaloniki,

Greece, 2014, pp. 177-184.

[23] I. Reinhartz-Berger, A. Zamansky, Y. Wand, Taming

Software Variability: Ontological Foundations of Variability

Mechanisms, International Conference on Conceptual

Computing, Stockholm, Sweden, 2015, pp. 399-406.

[24] H. A. Duran-Limon, C. A. Garcia-Rios, F. E. Castillo-Barrera,

R. Capilla, An Ontology-based Product Architecture

Derivation Approach, IEEE Transactions on Software

Engineering, Vol. 41, No. 12, pp. 1153-1168, December,

2015.

[25] Y. Yin, H. Gao, D. Yu, Model-based Data-Intensive Service

Abstraction Refinement, Journal of Internet Technology, Vol.

14, No. 5, pp. 807-816, September, 2013.

[26] X. Lu, J. Yin, Y. Yin, S. Deng, S. Luo, Knowledge base-

Centric Customization Approach for Different Software

Product Lines, SEA, Marina del Rey, USA, 2010, pp. 427-

434.

[27] Y. H. Chang, B. K. Chen, The Systematic Construction of a

Valid Domain Ontology, Journal of Internet Technology, Vol.

16, No. 2, pp. 289-299, March, 2015.

[28] G. Becan, M. Acher, B. Baudry, S. B. Nasr, Breathing

Ontological Knowledge into Feature Model Synthesis: An

Empirical Study, Empirical Software Engineering, Vol. 21,

No. 4, pp. 1794-1841, August, 2016.

[29] N. Xiong, A. V. Vasilakos, L. T. Yang, L. Song, Y. Pan, R.

Kannan, Y. Li, Comparative Analysis of Quality of Service

and Memory Usage for Adaptive Failure Detectors in

Healthcare Systems, IEEE Journal on Selected Areas in

Communications, 27(4), 495-509, 2009.

Biographies

Xingjian Lu is an assistant professor in

the School of Information Science and

Engineering, East China University of

Science and Technology, Shanghai,

China. He received his Ph.D. in

Zhejiang University, China in 2014. His

research interests include cloud computing, service

computing, and software product lines.

Jianwei Yin is a full professor in the

College of Computer Science and

Technology, Zhejiang University,

China. He received his Ph.D. in

Zhejiang University, China in 2001.

His current research interests include

cloud computing, and service computing. He has

published more than 120 research papers in these areas.

Gaoqi He is currently an associate

Professor at Department of Computer

Science and Engineering at East China

University of Science and Technology.

He received his Ph.D. degree from

State Key Laboratory of CAD&CG in

Zhejiang University in 2007. His

research interests include algorithm design and

optimization, and computer graphics.

Huiqun Yu is currently a Professor of

computer science with the Department

of Computer Science and Engineering

at East China University of Science

and Technology. He received his Ph.D.

degree from Shanghai Jiaotong

University in 1995. His research

interests include software engineering, cloud

computing and formal methods.

Neal N. Xiong is currently an

Associate Professor (3rd year) at

Department of Mathematics and

Computer Science, Northeastern State

University, OK, USA. His research

interests include Cloud Computing,

Parallel and Distributed Computing,

Networks, and Optimization Theory. He is serving as

an Editor-in-Chief, Associate editor or Editor member

for over 10 international journals (including Associate

Editor for IEEE Tran. on Systems, Man & Cybernetics:

Systems, Information Sciences, and Journal of Internet

Technology, Editor-in-Chief of Journal of Parallel &

Cloud Computing).

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (Japan Color 2001 Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJDFFile false
 /CreateJobTicket true
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHT <FEFF005B683964DA300C005000440046002800310032003000300064007000690029300D005D0020>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
 <<
 /AddBleedMarks true
 /AddColorBars false
 /AddCropMarks true
 /AddPageInfo true
 /AddRegMarks false
 /BleedOffset [
 8.503940
 8.503940
 8.503940
 8.503940
]
 /ConvertColors /NoConversion
 /DestinationProfileName (sRGB IEC61966-2.1)
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /ClipComplexRegions true
 /ConvertStrokesToOutlines false
 /ConvertTextToOutlines false
 /GradientResolution 400
 /LineArtTextResolution 1200
 /PresetName <FEFF005B9AD889E367905EA6005D>
 /PresetSelector /HighResolution
 /RasterVectorBalance 1
 >>
 /FormElements true
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MarksOffset 0
 /MarksWeight 0.283460
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PageMarksFile /JapaneseWithCircle
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [1200 1200]
 /PageSize [612.000 792.000]
>> setpagedevice

