
Characteristics of Basil in Aspects of Digital Information Retrieval and Data Mining 983

Characteristics of Basil in Aspects of Digital Information

Retrieval and Data Mining

Varin Chouvatut1, Ekkarat Boonchieng2*

Department of Computer Science, Faculty of Science, Chiang Mai University, Thailand

varinchouv@gmail.com, ekkarat@boonchieng.net

*Corresponding Author: Ekkarat Boonchieng; E-mail: ekkarat@boonchieng.net

DOI: 10.3966/160792642019052003030

Abstract

This research aims to propose a novel process for

classifying two types of basil, which have different

species but share common genus, based on main

characteristics of their leaves. One type of the basil

proposed in this research is called holy basil and another

type is called sweet basil. Considering their leaves, both

types have similar features in various points of view, for

example, their color shade, size or dimensions, scribbled

patterns of the leaf edge, etc. They have a lot of similar

features because they share the same genus. However,

their similar features are the challenged characteristics

this research aims to explore and also to demonstrate how

well our proposed method work.

Keywords: Holy basil, Sweet basil, Classification, Edge

detection, Color texture

1 Introduction

There are a certain number of researches [3, 8-10]

exploring and classifying various types of plants’ leaf

recently. However, research with leaf classification for

plants sharing common genus but being in different

species is still rarely found. The major reason is that

any plants sharing common genus will generally have

very similar features and thus this causes a big

challenge of recognizing each species of theirs. Most

researches usually worked on categorizing leaves of

different species and also of different genera.

To obtain the segmentation of region of interest

(ROI), in this case region of a plant leaf, color image

should be converted into gray-scale image and then

binary image [4]. Then, the binary segmentation of an

individual leaf can be extracted.

Yin et al. [5] showed a number of leaf vein

extraction methods which can generally be used for

object’s edge detection. They compared results

obtained from filters including Gabor, Canny, Prewitt,

Sobel, etc. From their venation extraction images, we

found that Sobel operator provided good details on a

plant leaf and this characteristic function could be

useful for our purpose of feature extraction.

Once the edge of a plant leaf can be obtained, basic

structuring elements [6] of the leaf’s edge should be

analyzed to extract the direction of edge’s Gradient

vector [13]. Since Gradient vectors as used in this

research of a plant leaf’s edge can indicate one of the

plant’s features.

Other than identification from a leaf’s edge shape,

green-color shading of a leaf can also be used for a leaf

analysis as used in [2]. Singh et al. [2] showed possible

green shadings of a plant leaf and they chose HSI color

space to analyze green color of a leaf since their

experiments may suffer from environmental light

condition. In addition, a green leaf may have disease

spots on it as shown in [7] and some detection

technique must be performed. We thus used hole-filled

algorithm [14] to cope with this problem which may

occur in any type of a plant leaf.

Vijayashree et al. [1] proposed a method for

measuring whether an input plant leaf was a basil leaf.

For our research, we choose holy basil and sweet basil

as our example of classifying two species of plants

whose genus is common. In order to demonstrate our

proposed methodology, all information extracted by a

number of computer processing techniques together

with analysis from some data mining classifiers is

combined to achieve the successful classification.

Both holy basil and sweet basil are in common

genus called Ocimum; while the holy basil is in

Sanctum species, the sweet basil is in Basilicum Linn

species. In other words, plant nomenclature of the holy

basil is Ocimum Sanctum and plant nomenclature of

the sweet basil is Ocimum Basilicum Linn. Since both

species of the basil share common genus, they have

various visible features and characteristics which are

very visually similar in many aspects, discarding their

exclusive smell, so that less experiential persons found

hard to categorize them apart.

To evaluate how appropriately the characterized

features of leaves of each basil species are selected and

how well the proposed methods for feature information

retrieval work, six classifiers of the support vector

machine (SVM) will be used and the accuracy obtained

from each classifier is measured. Six SVM classifiers

include linear SVM, quadratic SVM, cubic SVM, fine

984 Journal of Internet Technology Volume 20 (2019) No.3

Gaussian SVM, medium Gaussian SVM, and coarse

Gaussian SVM.

2 Methodology

The following sections explain how to acquire and

store a number of dominant characteristic features

which can be used for distinguishing the holy basil

species and the sweet basil species. To distinguish or

categorize the two basil-species, several SVM

classification models will be created and then each

generated model with the extracted features can be

evaluated using the accuracy measurement. Section 3

explains how to extract basil leaves out of a color

digital image. Section 4 explains how to retrieve the

edge patterns of the basil leaves. Section 5 explains

how to observe the color shadings of the basil leaves

although every basil leaf looks green. Section 6 shows

whether the leaf’s dimensions in terms of height and

width of each basil-species are different and how to

gain the information. And Section 7 shows the results

obtained from analyzing the extracted information of

the basil leaves using several SVM classification

models that are generated. Also, how perfect the

generated models work and how perfect the

information retrieval in forms of characteristic features

is chosen and done.

3 Acquisition of Leaf’s Color Image

In this section, we will emphasize on obtaining

individual leaf out of a color image with many leaves.

All input images are scanned by a scanner. Using

scanned images reduces burden of processing in

camera calibration due to the possibly-distinctive

skewness of each camera’s lens. Also, brightness

condition can be controlled and consistent using a

scanner to capture input images. Several leaves of holy

basil are arranged untidily on a white paper. This

process of image acquisition is also applied to leaves of

sweet basil.

Figure 1 shows an example image of 34 holy basil

leaves of various sizes. One may observe that the

leaves are unintentionally arranged on the paper. And

varied sizes of the holy basil leaves are mixed together

in the image with no arrangement pattern. Thus, some

of our input images may have larger number of small

leaves than the number of large leaves and some may

have larger number of large leaves than the number of

small leaves. In every experiment, we did not make

any determination of the leaf’s size. We just randomly

chose leaves from a pile of the holy basil leaves.

Figure 2 below shows an example image composed

of 33 sweet basil leaves of different sizes. Again,

varied-size leaves are unintentionally arranged on the

paper. One may observe that this image has many

small leaves of the sweet basil. Although those

amongst the small leaves still have variety in their size.

Figure 1. Example of an input image with several

leaves of holy basil

Figure 2. Example of an input image with several

leaves of sweet basil

From Figure 1 and Figure 2, we may see that leaves

of holy basil and leaves of sweet basil are much similar

in many aspects such as size, shape, color, edge pattern,

vein, etc.

In terms of size, size of a holy basil leaf and size of a

sweet basil leaf are almost the same. As in Figure 1

and Figure 2, holy basil leaves and sweet basil leaves

have almost the same width and height, in other words

they have almost the same dimensions, regardless of

whether they are a small (or young) leaf or a large (or

old) leaf.

In terms of shape, leaves of the two species of basil

are still similar in shape in the way that the whole

leaf’s shape is quite like an oval. In details, the leaf’s

tip is narrow and sharp, its widest portion is about the

Characteristics of Basil in Aspects of Digital Information Retrieval and Data Mining 985

middle of the leaf but nearer to its bottom, and its

bottom has even sharper shape than its tip.

Nevertheless, it is a small (or young) leaf or a large (or

old) leaf.

In terms of color shadings, the shade of green on a

young leaf is lighter than that on an older leaf. Other

than the green shadings on the leaf, there are still some

degree of pink (or purple) shadings that a basil leaf

may have on it. However, a slightly distinct amount of

the shadings or even different areas of such distinct

shadings on a leaf may be useful in characterizing the

basil species.

In aspects of the edge pattern between the two

species of basil, having a glance at only one leaf of

basil without any comparison (i.e. there is not another

species to be compared to it), one can find hard to say

the leaf is of holy basil or of sweet basil. This is

because both species’ leaves have scribbled edge.

From visual observation, one may see however not

clearly that a holy basil leaf seems to have higher

variation of scribbled edge than a sweet basil leaf.

However, such difference is not obvious especially in

case of small (or young) leaves.

Although leaves of the two species seem to have

similarity in various aspects as mentioned above, we

are sure that there must be some small degree of

distinction in each feature between them. Such minor

distinction in characteristic features between the two

species of basil should be able to be extracted and thus

analyzed deeply to distinguish them apart.

Each of Figure 1 and Figure 2 consists of a large

number of leaves of the holy basil and the sweet basil,

respectively. Thus, each individual basil leaf must be

cropped out of the whole image first. To do so, the

background subtraction technique is required.

The foreground or the object of interest for our

purpose is the basil leaf detected in the input image.

Our input image is an image with several basil leaves.

Our background (anything else in the image which is

not a basil leaf) has white color since we used a plain

A4 white paper to put those basil leaves on it. To

extract all foreground objects out of the white

background, we can use some segmentation techniques

for the purpose. The segmentation techniques we chose

are thresholding technique with assistance of edge

detection technique.

Firstly, since we do not need to consider the leaf’s

color shadings at this point, we thus convert the color

image into a gray-scale image. The gray-scale image of

holy basil leaves is shown in Figure 3. And the gray-

scale image of sweet basil leaves is shown in Figure 4.

After that, since there may be some noise in the

input image as described in [11-12], for example the

brown or black dust on the white background paper,

such noise should be removed prior to foreground

detection. Median filter has been used for noise

reduction, most of the time, it can even eliminate the

noise. Median filter is enough to remove such noise in

Figure 3. The gray-scale image of holy basil leaves

after conversion

Figure 4. The gray-scale image of sweet basil leaves

after conversion

our case and also still keeps much of the detail of the

whole image. The filter used in our research has

dimensions of 3 × 3 pixels as shown in Figure 5. Since

median filter is a nonlinear filter, it has no coefficient

to be determined, and thus only its dimensions can be

determined. This 3 × 3 median filter has a total of nine

elements to be considered. Nine elements of

neighborhood pixels of the input image where the filter

is overlaid will be considered at a time.

Figure 5. A median filter with dimensions of 3 × 3

pixels used in the research

986 Journal of Internet Technology Volume 20 (2019) No.3

For example, if the input image is as small in size as

4 × 4 pixels with intensity level of each pixel as shown

in Figure 6. Note that, the color input image used in

our research has intensity levels in the range of [0, 255]

for all components, red, green, and blue. And when the

color image is converted into a gray-scale image, its

intensity levels will still vary between 0 and 255.

Assuming that the 3 × 3 median filter recently overlays

the 4 × 4 input-image at the position displayed in gray

region and bordered with dash lines in Figure 6. After

sorted in ascending order, the list of nine sorted

intensity levels will be 0, 5, 8, 10, 39, 97, 100, 150, and

255. So now we can find the median value in the list

which is the intensity level 39. Then, this median value

of 39 will be updated to the output image from this

filtering process at the position as shown in Figure 7.

10 5 97 105

39 8 255 228

0 100 150 176

80 98 148 200

Figure 6. An example of a 4 × 4 gray-scale image with

intensity levels in a range of [0, 255] overlaid by a 3 ×

3 filter in the region displayed in gray and bordered

with dash lines

 39

Figure 7. The 4 × 4 gray-scale image resulted from an

example of filtering process from Figure 4

Since the background in the input image is white,

the leaves will be in darker shadings. We thus find the

negative image of the filtered image obtained from

applying the median filter using (1), where f(x, y) is

the output intensity level of pixel at coordinates (x, y)

of the negative image and g(x, y) is the input intensity

level of the pixel of the input image.

 f(x, y) = 255 – g(x, y) (1)

The resulting negative image of the image of holy

basil leaves is shown in Figure 8 while the negative

image of sweet basil leaves is shown in Figure 9.

Figure 8. Result of negative image of the image of

holy basil leaves

Figure 9. Result of negative image of the image of

sweet basil leaves

From Figure 8 and Figure 9, the background of the

obtained negative images is changed to a dark tone.

Hence, the two negative images can be further

processed more easily.

Once we got the negative image with black (or a

dark tone) background, we can then use thresholding

technique written in (2) to separate each leaf out of the

dark background.

f(x, y) = 0 if g(x, y) < 0.2,

f(x, y) = 1 if g(x, y) ≥ 0.2.
(2)

In (2), the intensity levels are ranged in [0, 1] where

level 0 means black color and level 1 means white

color. That is, for the intensity ranging in [0, 255], if

the input intensity level g(x, y) of the pixel at

Characteristics of Basil in Aspects of Digital Information Retrieval and Data Mining 987

coordinates (x, y) is less than 51, the output intensity

level f(x, y) of the pixel will be changed to 0 (black).

But if the input intensity level g(x, y) of the pixel is

greater than or equal to 51, the output intensity level

will be changed to 255 (white). The intensity level 51

is known as a threshold value used in thresholding

technique where the level of 51 is calculated from 0.2

times 255. One may also call the value of 0.2 as the

threshold value of (2).

After applying the thresholding technique as

explained, the result of image of the holy basil leaves is

shown in Figure 10 and the result of image of the sweet

basil leaves is shown in Figure 11.

Figure 10. Result of image of holy basil leaves after

thresholding

Figure 11. Result of image of sweet basil leaves after

thresholding

Consequently, each white object in the image

resulted from thresholding technique represents region

of a basil leaf. Now, an individual leaf can be separated

using another technique called blob coloring. The blob

coloring technique is to label different objects found in

the binary image (the image containing only black and

white colors) with different numbers. For example, if

an input image has 34 leaves, there will be 34 white

objects in the image resulted from thresholding. Thus,

there will be objects labelling with numbers 1, 2, …,

34 obtained from blob coloring. The blob coloring

technique we used considers 8-neighborhood

connection; i.e. if a connected pixel is present in one of

eight directions around the current pixel at coordinates

(x, y) as shown in Figure 12, the pixel at coordinates (x,

y) and the connected pixel are of the same object and

thus they two will be assigned with the same label

number.

(x–1, y–1) (x–1, y) (x–1, y+1)

(x, y–1) (x, y) (x, y+1)

(x+1, y–1) (x+1, y) (x+1, y+1)

Figure 12. 8-neighborhood pixels considered as

connected pixels of the pixel at coordinates (x, y)

After each white blob (or each object) which is each

leaf was labelled with a unique number from blob

coloring technique, each leaf can be extracted and

saved into a separate image file. At this step, there may

be a detected object which is not a basil leaf. The

object may be blob of a noise region that was not

eliminated completely at the filtering step for some

reason. However, such blob of noise is obviously small

comparing to the blob of a basil leaf. Consequently, we

can eliminate or ignore such really small blob out of

our interest in the next step.

Figure 13 shows an example image file of an

individual leaf of holy basil saved separately from

applying the blob coloring technique. Figure 13(a) is

the gray-scale version of an individual leaf of holy

basil and Figure 13(b) is its RGB color version. Note

that RGB represents red, green, and blue components

of a color image.

(a) and RGB color image (b) of an individual leaf of

holy basil

Figure 13. An example of gray-scale image

988 Journal of Internet Technology Volume 20 (2019) No.3

Also, Figure 14 shows an example image file of an

individual leaf of sweet basil saved separately from the

blob coloring. Figure 14(a) is the gray-scale version of

an individual leaf of sweet basil and Figure 14(b) is its

RGB color version.

(a) and RGB color image (b) of an individual leaf of

sweet basil

Figure 14. An example of gray-scale image

One may see from Figure 13 and Figure 14 that the

boundary of a leaf region saved in an individual image

file has no background portion left, in other words, the

background region is set to black.

The images of an individual leaf of holy basil and an

individual leaf of sweet basil as shown in Figure 13

and Figure 14 are called leaves in a standard position.

The standard position chosen in this research is that the

highest portion and the widest portion of a leaf are

aligned to vertical and horizontal axis, respectively.

The standard alignment of a leaf will be necessary for

the process of measuring proportion of leaf’s

dimensions to be described later. If the leaf is not

aligned as described, rotation technique calculated

from (3) is required. Here, we rotate the object with ∆θ

= 1° at a time. Note that, positive angle change

indicates counterclockwise direction around the

object’s center point.

R=

cosθ -sinθ 0

sinθ cosθ 0

0 0 1

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

P' = R • P.

(3)

From (3), let P be the current position of a point (or

a pixel) of the target object in image with coordinates

[x y 1]T and P' with coordinates [x' y' 1]T be the

corresponding point obtained after rotation using the

rotation matrix R.

Using (3), the leaf region will be continued rotating

until the highest and the widest portions of the leaf is

found or at least compromised on the acceptable

standard position we defined.

4 Detection of Scribbled Patterns of the

Leaf’s Edge

Although, a leaf of holy basil and of sweet basil

have curved and scribbled edges making them look

quite similar, the scribbled patterns of their leaf edge

actually have some small degree of difference in details.

This difference in patterns can be observed by

enlarging the image resulting from edge detection

technique shown in Figure 15 and Figure 16. Figure 15

is the enlarged image of an example edge portion of a

holy basil leaf. And Figure 16 is that of a sweet basil

leaf.

Figure 15. Example of an obtained edge detection

showing scribbled patterns of a partial leaf’s edge of

the holy basil

Figure 16. Example of an obtained edge detection

showing scribbled patterns of a partial leaf’s edge of

the sweet basil

To extract patterns of the curved and scribbled edge

of a basil leaf, we detected the directions of connected

pixels changed using 4-neighborhood pixels as shown

in Figure 17.

 (x–1, y)

(x, y–1) (x, y) (x, y+1)

 (x+1, y)

Figure 17. 4-neighborhood pixels considered as

connected pixels of the pixel at coordinates (x, y)

Characteristics of Basil in Aspects of Digital Information Retrieval and Data Mining 989

Using 4-neighborhood connection is sufficient to

gain characteristics of the scribbled patterns of a leaf.

Four directions of neighborhood pixels are used to find

the direction or the slope angle of the leaf edge. So,

using 4-neighborhood connection of a leaf’s edge,

horizontal and vertical edge portions are counted to

extract the scribbled patterns of the leaf. For the

process of edge detection, we used Sobel’s edge

detection technique [5] which has two operators whose

dimensions are 3 × 3 pixels as shown in Figure 18.

Figure 18(a) is Sobel’s operator for detecting

horizontal edges, each of which may be considered as a

blob in blob coloring technique. And Figure 18(b) is

Sobel’s operator for detecting vertical edges.

-1 -2 -1 -1 0 1

0 0 0 -2 0 2

1 2 1 -1 0 1

(a) horizontal edges (b) vertical edges

Figure 18. Sobel’s operators used for the detection of

horizontal edges (a) and vertical edges (b)

Before applying the Sobel’s operators to the leaf

image, the RGB image must first be converted to a

gray-scale image and then converted to a binary image

which consists of only black and white colors.

Again, thresholding technique is used to convert a

gray-scale image to its corresponding binary image.

The thresholding technique we used is done using (2)

where the threshold value is set to 0.5 for the image’s

intensity levels varying in the range of [0, 1].

From Figure 13(b), the RGB color image of a holy

basil leaf is converted to its corresponding binary

image resulting as Figure 19.

Figure 19. Binary image showing edge detection of a

holy basil leaf

Then, edge enhancement technique using one of

Sobel’s operators, Figure 18(a), to find or emphasize

the horizontal edge portions of the holy basil leaf in

Figure 19 is applied and results in blob detection of

horizontal edges. The detected blobs of horizontal edge

portions of the holy basil leaf from Figure 19 is shown

in Figure 20. The blob detection is based on the blob

coloring technique and thus the number of blobs of the

horizontal edges can be counted using this blob

coloring technique. In this example, the number of

blobs in Figure 20 is 84.

Figure 20. The result of blob detection from horizontal

edge enhancement of a holy basil leaf

Other than the horizontal edge portions, the vertical

edge portions of the holy basil leaf, Figure 19, are also

detected and the detection result is shown in Figure 21.

For this purpose, another Sobel’s operator, Figure

18(b), is applied to find and emphasize the vertical

edge portions of the holy basil leaf in Figure 19. In this

example, the number of blobs in Figure 21 is Figure 20.

Figure 21. The result of blob detection from vertical

edge enhancement of a holy basil leaf

From Figures 20 and Figure 21, one may observe

that both images have two small objects inside the

boundary of the leaf. The interior objects can be just

dark spots on the basil leaf itself or some contaminated

noises in the image. We should eliminate such noise

out of the leaf region before counting the number of

blobs from the horizontal edges or from the vertical

edges. To do so, we can use the hole-filled technique

once we got the gray-scale image of the basil leaf

shown in Figure 13(a).

After applying the hole-filled technique, the detected

horizontal and vertical edges in terms of blobs of this

holy basil leaf are as shown in Figure 22(a) and Figure

22(b), respectively. From Figure 22, the blobs of noise

are completely disappeared. Threshold value from (2)

used in this experiment is set to 0.1. The number of

blobs counted from Figure 22(a) equals 39 blobs and

from Figure 22(b) equals five blobs; note that some

blobs may be a long or large connected object thus it is

considered to be a single blob.

990 Journal of Internet Technology Volume 20 (2019) No.3

(a) horizontal (b) vertical

Figure 22. The result of blob detection from horizontal

(a) and vertical (b) edge enhancement of a holy basil

leaf after hole-filled technique

The hole-filled algorithm can be done in a binary

image using the negative technique. Result image

obtained from the negative technique is called a

negative image. To illustrate how this technique works,

let an input binary image whose intensity of each pixel

is either 0 (black) or 1 (white) be as shown in Figure

23. Region of the object (e.g. a basil leaf) is shown as

white pixels, the black background is the black region

outside of the white region, and a hole is shown as a

black region inside the white region. Then, we can

create a negative image of this binary image using (4)

where f_bin(x, y) is the intensity of input image at

pixel coordinates (x, y) and f_neg(x, y) is the

corresponding intensity of negative image at the same

pixel.

 f_neg(x, y) = 1 – f_bin(x, y) (4)

Figure 23. An example of input binary image used for

illustration of the hole-filled algorithm

Thus, the obtained result will be as Figure 24.

Figure 24. An example of the obtained negative image

used for illustration of the hole-filled algorithm

After that within the black region which is now the

region of object in the negative image, we can find

hole(s) inside the black region more easily using flood-

filled algorithm and then replace intensity of any pixels

inside the hole’s region to black color (color 0 in this

case). Consequently, the result image is as shown in

Figure 25.

Figure 25. An example of the hole-filled image used

for illustration of the hole-filled algorithm

Finally, convert the black and white color back to

cancel the effect of creating the negative image at the

first step. Again, use (4) to convert the intensity of

Figure 25 back, then we will get Figure 26 as a result.

Now, the background of the image is black and object

(or a leaf’s region) is white as same as shown in

Figures 10 and 11.

Figure 26. An example of the final image used for

illustration of the hole-filled algorithm

From Figure 14(b) and the use of thresholding

technique, the RGB color image of a sweet basil leaf is

converted to a gray-scale image and then converted to

its corresponding binary image resulting as Figure 27.

Figure 27. Binary image showing edge detection of a

sweet basil leaf

Then, edge enhancement technique using the

Sobel’s operator from Figure 18(a) is applied to the

binary image of the sweet basil leaf shown in Figure 27

and the obtained result of the blob detection of

Characteristics of Basil in Aspects of Digital Information Retrieval and Data Mining 991

horizontal edges is as Figure 28. In this example, we

found 97 blobs of horizontal edges.

Figure 28. The result of blob detection from horizontal

edge enhancement of a sweet basil leaf

Applying another Sobel’s operator, Figure 18(b), to

the binary image of the sweet basil leaf shown in

Figure 27, the detected blobs of vertical edges are as

shown in Figure 29. In this example, we found 10

blobs of vertical edges.

Figure 29. The result of blob detection from vertical

edge enhancement of a sweet basil leaf

As same as the case of holy basil leaf, one may see

some noises inside the sweet basil leaf in Figure 28 and

Figure 29. The hole-filled technique is again applied to

the gray-scale image of this sweet basil leaf shown in

Figure 14(a). Then, the results of horizontal edges and

vertical edges obtained from the hole-filled technique

are as shown in Figure 30(a) and Figure 30(b),

respectively. The number of blobs counted from the

two figures are 43 blobs and 2 blobs, respectively.

(a) horizontal (b) vertical

Figure 30. The result of blob detection from horizontal

(a) and vertical (b) edge enhancement of a sweet basil

leaf after hole-filled technique

Figure 31 shows a comparison of the number of

blobs counted from the horizontal edges detected from

143 holy basil leaves and 176 sweet basil leaves. The

comparison of the number of blobs counted from the

vertical edges detected from both species of basil

leaves is shown in Figure 32. The blob detection

shown in Figures 31 and 32 is based on the setting of

threshold value in (2) to 0.5.

Figure 31. The comparison result of blob detection

from horizontal edge enhancement between holy basil

leaves and sweet basil leaves

The connectivity information, in the directions of

horizontal axis and vertical axis, retrieved above is

stored in a tabular format partially shown in Table 1.

The connectivity information in terms of blobs of

horizontal edges together with blobs in vertical edges

is labelled as either ‘holy’ or ‘sweet’ indicating basil

species, i.e. a holy basil or a sweet basil, respectively.

Table 1. Partial example of information retrieval on

connectivity

Horizontal Edges Vertical Edges Basil Species

47 1 holy

45 3 holy

53 3 holy

51 2 holy

33 2 holy

: : :

78 5 sweet

51 3 sweet

73 6 sweet

79 4 sweet

75 5 sweet

Figure 31, Figure 32, and Table 1 show some degree

of distinction between two basil species. Thus, this

retrieved information will then be useful for further

analysis.

992 Journal of Internet Technology Volume 20 (2019) No.3

Figure 32. The comparison result of blob detection

from vertical edge enhancement between holy basil

leaves and sweet basil leaves

5 Separating Uncertain Color Shade of the

Leaf

From Figure 1 and Figure 2 of the input color image

of holy basil leaves and sweet basil leaves, respectively,

the green shadings of the holy basil leaves seem to be

lighter than that of the sweet basil leaves. We thus

should count the color components of the basil leaves,

one of the important classification factors.

Red, green, and blue components of each pixel in

the boundary of an example basil leaf are extracted and

the color information retrieval is shown in Figure 33.

In total, we used 143 holy basil leaves and 176 sweet

basil leaves and each of the three color-components

has intensity level in a range of [0, 255].

Figure 33. Color information retrieval of a holy basil

leaf and a sweet basil leaf

From Figure 33, all three color-components

consisting of red, green, and blue component of the

example leaf of holy basil mostly have higher intensity

levels than the three components of sweet basil.

Here, we stored the average and standard deviation

of color shading for all three components of each basil

leaf. The average value of each color-component, i.e.

red, green, or blue, of the jth basil leaf whose number

of pixels equals Nj can be computed using (5). From

(5), let AvgRj, AvgGj, and AvgBj be the average value

of red, green, and blue component, respectively, of the

jth basil leaf; Ri, Gi, and Bi be the red, green, and blue

level, respectively, of the ith pixel on this jth basil leaf;

and Nj be the number of pixels of this jth basil leaf;

where i = 1, 2, …, Nj and j = 1, 2, …, 143 for holy

basil but j = 1, 2, …, 176 for sweet basil.

 AvgR
j
 =

R
i

i
∑

N
j

,

 AvgG
j
 =

G
i

i
∑

N
j

, and (5)

 AvgB
j
 =

B
i

i
∑

N
j

.

As same as the average calculation, the standard

deviation of each color-component of the jth basil leaf

whose number of pixels equals Nj can be computed

using (6). From (6), let SdRj, SdGj, and SdBj be the

standard deviation of red, green, and blue component,

respectively, of the jth basil leaf and AvgRj, AvgGj,

and AvgBj be the average value of red, green, and blue

component, respectively, obtained from (5).

 SdR
j
=

R
i
 - AvgR

j()
2

i
∑

N
j

,

 SdG
j
=

G
i
 - AvgG

j()
2

i
∑

N
j

, and (6)

 SdB
j
=

B
i
 - AvgB

j()
2

i
∑

N
j

.

Figure 34 shows a graph plot comparing the average

values of red, green, and blue components between two

species. And Figure 35 shows a graph plot comparing

their standard deviation values.

Characteristics of Basil in Aspects of Digital Information Retrieval and Data Mining 993

Figure 34. Information retrieval on average color-

shadings of all holy basil leaves and all sweet basil

leaves

Hence, the average values and standard deviation

values of all basil leaves are stored with labels of

‘holy’ or ‘sweet’ indicating holy basil or sweet basil,

respectively. Table 2 shows an example portion of the

retrieved information in aspect of color-shadings of the

basil leaves. Note that the red, green, and blue

components are in the range of [0, 255] and the

averages and standard deviations are displayed with

floating point numbers rounded to two decimal places.

Table 2. Partial example of information retrieval on

color-shading

Average Standard Deviation

Red Green Blue Red Green Blue

Basil

Species

228.39 225.60 224.47 4.71 4.64 5.29 holy

228.39 225.60 224.47 4.71 4.64 5.29 holy

228.39 225.60 224.47 4.71 4.64 5.29 holy

228.39 225.60 224.47 4.71 4.64 5.29 holy

228.39 225.60 224.47 4.71 4.64 5.29 holy

: : : : : : :

221.75 219.01 219.30 9.51 8.32 10.80 sweet

221.76 219.03 219.32 9.30 8.09 10.63 sweet

221.78 219.04 219.33 9.22 8.01 10.57 sweet

221.78 219.04 219.33 9.22 8.01 10.57 sweet

221.78 219.04 219.33 9.22 8.00 10.57 sweet

The average values and standard deviation values of

each of the three color-components are not obviously

different. This is because the overall color shadings of

a basil leave, no matter it is of either holy basil or

sweet basil, are in quite similar green shadings.

However, observing from Figure 34 and Figure 35, the

three components of the two basil-species are

obviously distinguishable. Thus, the retrieved features

of this color shading are stored for further analyzing in

the process of model generation.

Figure 35. Information retrieval on standard deviations

of color-shadings of all holy basil leaves and all sweet

basil leaves

6 Proportion of Leaf’s Dimensions

Height of a holy basil leaf seems to be larger than

height of a sweet basil leaf while width of a sweet basil

leaf seems to be larger than width of a holy basil leaf.

Nevertheless, we need some exact measurement in

terms of dimensions of each basil leaf. Therefore, this

is the reason that we need to rotate (if required) a basil

leaf to meet its standard position. A basil leaf may

require to be rotated in either counterclockwise

direction or clockwise direction until its highest portion

aligns to the y axis in the Cartesian coordinate system.

Consequently, the widest portion of the leaf, or some

size closest to the widest portion of the leaf, will be

aligned to the x axis. Note that, we mainly place the

highest portion of a basil leaf aligned to the y axis

before extracting the widest portion of it. As a result,

the highest and the widest portion will be determined

as the leaf’s height and width, respectively.

An example of the height and width measured from

a holy basil leaf in a standard position is as shown in

Figure 36. In this example, height of this leaf is 170

pixels and width is 112 pixels.

Figure 36. An example of information retrieval on

dimensions of a holy basil leaf in a standard position

After the dimensions in terms of height and width in

the unit of pixels of a basil leaf can be extracted, the

ratio of the two dimensions of the leaf is calculated

using (7). From (7), let Ratioj be the ratio of height,

994 Journal of Internet Technology Volume 20 (2019) No.3

Heightj, and width, Widthj, of the jth basil leaf where j

= 1, 2, …, 143 for the holy basil and j = 1, 2, …, 176

for the sweet basil. Here, we use the ratio of height to

width for each leaf because, mostly and naturally, the

height of a basil leaf is longer than its width resulting

in a ratio value of larger than one. This ratio value of

larger than one can help preventing some prone to error

in calculation with many precision numbers.

 Ratio
j
 =

Height
j

Width
j
 (7)

Then, the retrieved information in terms of a leaf’s

dimensions will be stored together with a label ‘holy’

or ‘sweet’. A partial example of the retrieved

information on the basil leaves’ dimensions is as

shown in Table 3. Note that height and width of each

leaf are measured in the unit of pixels.

Table 3. Partial example of information retrieval on

Dimensions

Height Width Ratio Basil Species

309 150 2.06 holy

240 105 2.285714286 holy

288 165 1.745454545 holy

252 153 1.647058824 holy

231 151 1.529801325 holy

: : : :

324 198 1.636363636 sweet

309 169 1.828402367 sweet

282 176 1.602272727 sweet

303 164 1.847560976 sweet

318 150 2.12 sweet

From Table 3, one may think that the ratios of two

basil-species are really similar or not significantly

different, the similarity and difference of the two basil-

species in terms of height, width, and ratio

measurement can be seen in Figure 37 to Figure 39

below.

Figure 37. The comparison result of the leaves’

heights between holy and sweet basil species

Figure 38. The comparison result of the leaves’ widths

between holy and sweet basil species

Figure 39. The comparison result of ratios of height to

width between holy and sweet basil leaves

From Figure 37, the information on the height

dimension of both basil species looks as not different

or at least insignificantly different.

From Figure 38, the information on the width

dimension of the sweet basil leaves is mostly higher

than that of the holy basil leaves.

Although the leaves’ heights of both basil species

are quite similar, their widths are different.

Consequently, the ratios of height to width calculated

from (7) between two basil-species are undoubtedly

different in some degree as seen in Figure 39. These

different characteristics should be able to be used

further to categorizing the two species apart.

7 Analyzing the Retrieved Information

To categorize a holy-basil leaf out of a sweet-basil

leaf, all dominant features of a leaf of each basil

species as mentioned above can assist in generating an

efficient classification model. Also, the appropriate

feature selection, which should be of dominant features

Characteristics of Basil in Aspects of Digital Information Retrieval and Data Mining 995

of the basil species, can assist in indirectly reducing or

even eliminating the unexpectedly effects of

inappropriate or noisy data on the training process of

model creation.

Since we have a small number of holy-basil leaves

and sweet-basil leaves, i.e. 143 holy-basil leaves and

176 sweet-basil leaves in total, we chose to create

various models of the Support Vector Machine (SVM)

classifier. A classifier’s model can also be utilized for

demonstrating our selection of main (or dominant)

features of two basil-species and evaluating the

performance of our digital information retrieval. In our

experiments, we created six models of SVM classifiers

consisting of linear SVM, quadratic SVM, cubic SVM,

fine Gaussian SVM, medium Gaussian SVM, and

coarse Gaussian SVM. Every model is evaluated using

the Accuracy measurement calculated from (8):

 Accuracy =
TP + TN

P + N
, (8)

where TP refers to the number of true positive

samples, TN refers to the number of true negative

samples, P refers to the number of positive samples,

and N refers to the number of negative samples.

All of basil leaves we had was split into two sets,

one was used for training process called training set

and another was used for testing process called testing

set. The training dataset is about 80 per cent of the total

number of leaves and the testing dataset is thus about

20 per cent. Hence, the basil leaves of each species

were divided into two sets as shown in Table 4.

Table 4. The numbers of training and testing dataset

determined for each basil species

Species Training Set Testing Set Total

Holy Basil 114 29 143

Sweet Basil 141 35 176

Given only the characteristic features on scribbled

patterns of the basil leaves’ edges, the accuracy

measured from classifying basil species using each of

classification models of SVM classifier can be seen in

Table 5.

Table 5. Accuracy measurement based on scribbled

patterns of the leaves’ edges

SVM Models
Measure-

ment Linear Quad. Cubic
Fine

Gaus.

Medium

Gaus.

Coarse

Gaus.

Accuracy 81.2% 81.5% 80.6% 79.6% 80.3% 81.2%

Given only characteristic features on color shadings

of the basil leaves, the accuracy measured from

classifying basil species using each classification

model of SVM classifier can be seen in Table 6.

Table 6. Accuracy measurement based on color

shadings of the leaves

SVM Models
Measure-

ment Linear Quad. Cubic
Fine

Gaus.

Medium

Gaus.

Coarse

Gaus.

Accuracy 75.9% 52.0% 50.2% 83.4% 82.8% 82.8%

Given only the characteristic features on basil

leaves’ dimensions, the accuracy measured using each

of the classification models of SVM classifier can be

seen in Table 7.

Table 7. Accuracy measurement based on the leaves’

dimensions

SVM Models
Measure-

ment Linear Quad. Cubic
Fine

Gaus.

Medium

Gaus.

Coarse

Gaus.

Accuracy 74.7% 81.6% 67.2% 74.1% 80.9% 79.1%

Given all of the characteristic features on basil

leaves mentioned above, the accuracy measured from

classifying basil species using each of the classification

models of SVM classifier can be seen in Table 8.

Table 8. Accuracy measurement based on all

characteristic features of the leaves

SVM Models
Measure-

ment Linear Quad. Cubic
Fine

Gaus.

Medium

Gaus.

Coarse

Gaus.

Accuracy 100.0% 100.0% 100.0% 98.4% 100.0% 100.0%

From Table 5 to Table 8, using only one

characteristic feature of the basil leaves is surely not

enough for categorizing two species apart from each

other efficiently but providing all aspects of

characteristic features of basil leaves to train the

classification model results in almost perfect model

obtained.

From Table 5 given only the scribbled edge patterns

of basil leaves, the obtained accuracy measurement is

about 80.7 per cent on average. From Table 6 given

only the color shadings in terms of average and

standard deviation values of three color-components of

basil leaves, the obtained accuracy measurement is as

low as only about 71.2 per cent on average. From

Table 7 given only dimensions of basil leaves in terms

of ratio of height to width of each leaf, the obtained

accuracy measurement is about 76.3 per cent on

average. But from Table 8 given all characteristic

features retrieved from basil leaves, the obtain

accuracy measurement is about 99.7 per cent on

average which is very close to 100 per cent of accuracy.

996 Journal of Internet Technology Volume 20 (2019) No.3

8 Discussion and Conclusion

From our experiments, the lowest accuracy which is

found for only one case of experiments is obtained

from the fine Gaussian SVM model. Since the fine

Gaussian SVM model uses the least kernel scale,

accuracy measurement is generally lower than the

other models of SVM classifier. To improve

performance of this fine Gaussian SVM model so that

it can categorize these two basil-species better, we

recommend that finer or deeper details representing the

distinguishing characteristics of two species are

required.

As mentioned earlier that one major advantage of

the SVM classifiers is that an SVM classifier can still

provide a satisfying result, especially in terms of

accuracy measurement, even though it was trained

using only some small training dataset as used in our

case. Furthermore, there are various features on a basil

leaf, of either holy basil or sweet basil, which can be

utilized to characterize species of the leaf. Those

features we observed including scribbled patterns of

the basil leaf’s edge, color shades on the basil leaf, and

the leaf’s dimensions.

To demonstrate our feature selection of a basil leaf

and how good approaches we used to extract

information of each feature from a basil leaf, we

measured using the accuracy obtained from six SVM

classifiers composing of linear SVM, quadratic SVM,

cubic SVM, fine Gaussian SVM, medium Gaussian

SVM, and coarse SVM classifier. And all six

mentioned SVM classifiers showed that we achieved

very high accuracy of classification, which is 100 per

cent mostly, when all features were applied to generate

the classifier models.

Thus, from the measured results, our proposed

methods for digital information retrieval from the two

basil-species sharing a common genus have been

proved that the techniques we applied in feature

extraction and also the basil’s dominant features we

selected provide almost perfect success in categorizing

the two basil-species. Hence, we may call the dominant

features we selected as characterized features of the

two basil-species.

Acknowledgments

This work is supported by Thailand Research Fund

under grant number RTA6080013.

References

[1] T. Vijayashree, A. Gopal, Comparison Procedure for the

Authentication of Basil (Ocimum Tenuiflorum) Leaf Using

Image Processing Technique, Proceeding of International

Conference on Communications and Signal (ICCSP), India,

2015, pp. 0075-0078.

[2] A. Singh, M. L. Singh, Automated Color Prediction of Paddy

Crop Leaf Using Image Processing, IEEE Technological

Innovation in ICT for Agriculture and Rural Development

(TIAR), Amritsar, 2015, pp. 24-32.

[3] A. Yadav, M. K. Dutta, C. M. Travieso, J. B. Alonso,

Automatic Identification of Botanical Samples of Leaves

Using Computer Vision, International Conference and

Workshop on Bioinspired Intelligence (IWOBI), Noida, 2017,

pp. 1-6.

[4] V. Bylaiah, Leaf Recognition and Matching with MATLAB,

Ph. D. Thesis, San Diego State University, San Diego, CA,

2014.

[5] W. Yin, C. Xiang, L. Tang, S. Chen, Venation Extraction of

Leaf Image by Bi-dimensional Empirical Mode

Decomposition and Morphology, IEEE Advanced

Information Technology, Electronic and Automation Control

Conference (IAEAC), Mumbai, India, 2015, pp. 952-956.

[6] N. D. Keni, R. Ahmed, Neural Networks Based Leaf

Identification Using Shape and Structural Decomposition,

International Conference on Global Trends in Signal

Processing, Information Computing and Communication

(ICGTSPICC), Mumbai, India, 2016, pp. 225-229.

[7] P. Chaudhary, A. K. Chaudhari, A. N. Cheeran, S. Godara,

Color Transform Based Approach for Disease Spot Detection

on Plant Leaf, International Journal of Computer Science and

Telecommunications, Vol. 3, No. 6, pp. 65-70, June, 2012.

[8] S. Hati, G. Sajeevan, Plant Recognition from Leaf Image

Through Artificial Neural Network, International Journal of

Computer Applications, Vol. 62, No. 17, pp. 15-18, January,

2013.

[9] K. Singh, I. Gupta, S. Gupta, SVM-BDT PNN and Fourier

Moment Technique for Classification of Leaf Shape,

International Journal of Signal Processing, Image Processing

and Pattern Recognition, Vol. 3, No. 4, pp. 67-78, December,

2010.

[10] B. P. Toth, M. Osvath, D. Papp, G. Szucs, Deep Learning and

SVM Classification for Plant Recognition in Content-Based

Large Scale Image Retrieval, Proceedings of Conference and

Labs of the Evaluation Forum (CLEF), Hungary, 2016, pp. 1-

10.

[11] C. Zhang, D. Wu, R. W. Liu, N. Xiong, Non-Local

Regularized Variational Model for Image Deblurring Under

Mixed Gaussian-Impulse Noise, Journal of Internet

Technology, Vol. 16, No. 7, pp. 1301-1319, December, 2015.

[12] F. Ahmed, S. Das, Removal of High-Density Salt-and-Pepper

Noise in Images With an Iterative Adaptive Fuzzy Filter

Using Alpha-Trimmed Mean, IEEE Transactions on Fuzzy

Systems, Vol. 22, No. 5, pp. 1352-1358, October, 2014.

[13] V. Jaouen, P. Gonzalez, S. Stute, D. Guilloteau, S. Chalon, I.

Buvat, C. Tauber, Variational Segmentation of Vector-Valued

Images With Gradient Vector Flow, IEEE Transactions on

Image Processing, Vol. 23, No. 11, pp. 4773-4785,

November, 2014.

[14] S. Lin, H. Ruimin, Z. Rui, Depth Similarity Enhanced Image

Summarization Algorithm for Hole-Filling in Depth Image-

Based Rendering, China Communications, Vol. 11, No. 11,

pp. 60-68, November, 2014.

Characteristics of Basil in Aspects of Digital Information Retrieval and Data Mining 997

Biographies

Varin Chouvatut graduated with

B.Eng. (Honours) and M.Eng. in

Computer Engineering and got Ph.D.

in Electrical and Computer

Engineering from King Mongkut’s

University of Technology Thonburi

since 2011. She is an assistant professor at Chiang Mai

University. Her research interests include computer

vision, image processing, computer graphics, and data

science.

Ekkarat Boonchieng got Ph.D. in

Computer Science from Illinois

Institute of Technology since 2000.

He is currently a Director of Center of

Excellence in Community Health

Informatics, Chiang Mai University.

His research interests include computer graphics,

image processing, computer network, data science and

biomedical engineering.

998 Journal of Internet Technology Volume 20 (2019) No.3

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (Japan Color 2001 Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJDFFile false
 /CreateJobTicket true
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHT <FEFF005B683964DA300C005000440046002800310032003000300064007000690029300D005D0020>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
 <<
 /AddBleedMarks true
 /AddColorBars false
 /AddCropMarks true
 /AddPageInfo true
 /AddRegMarks false
 /BleedOffset [
 8.503940
 8.503940
 8.503940
 8.503940
]
 /ConvertColors /NoConversion
 /DestinationProfileName (sRGB IEC61966-2.1)
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /ClipComplexRegions true
 /ConvertStrokesToOutlines false
 /ConvertTextToOutlines false
 /GradientResolution 400
 /LineArtTextResolution 1200
 /PresetName <FEFF005B9AD889E367905EA6005D>
 /PresetSelector /HighResolution
 /RasterVectorBalance 1
 >>
 /FormElements true
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MarksOffset 0
 /MarksWeight 0.283460
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PageMarksFile /JapaneseWithCircle
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [1200 1200]
 /PageSize [612.000 792.000]
>> setpagedevice

