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Abstract 

Hackers in recent years began to invade the IP camera, 

CCTV cameras, routers and other IoT devices that 

embedded Linux operating systems, as the power of the 

botnet. DDoS attacks will directly affect the operation of 

the victims, which has a huge impact on the operation of 

the networks. In current Internet, the attackers can easily 

forge the source IP addresses, so the system administrator 

cannot discover the true locations of the intruded devices 

nor the attackers. 

In this paper, we proposed a single packet traceback 

method that allows the source of an attack to be 

accurately determined with zero router storage load. We 

use a 32-bit space in the packet header to record attack 

paths and use the time to live field to decrease the false 

positive rate of tracebacks. Our protocol does not require 

additional storage space on routers for recording attack 

path data. 

Keywords: Packet marking scheme, Packet logging 

scheme, Hybrid IP traceback 

1 Introduction 

With the rapid development of the Internet of Things 

(IoT), all kinds of mobile networking equipment and 

consumer electronics products are widely distributed 

on the Internet. According to ABI research estimates, 

by 2020 there will be more than 41 billion IoT 

equipments. Most IoT devices (including routers and 

cameras) are shipped with default passwords and 

disabled security features. Many customers only install 

the hardware and not change the default settings, 

leaving the attacker to leave a major vulnerability to 

attack. This situation will be accelerated by the number 

of IoT devices enabled. The IoT device itself can be 

networked 24 hours a day, causing hackers to love the 

IoT device to launch DDoS attacks. 

Two types of denial of service attacks exist: flood-

based attacks and software exploit attacks [1]. Flood-

based attacks send massive numbers of packets to 

overload a target’s bandwidth or computational or 

storage capacities, thus rendering the server unable to 

accept packets from legitimate users. In contrast, 

software exploit attacks use fewer packets to attack 

vulnerabilities in a target system that can disable the 

system and render it unable to provide services. In 

addition, most routers do not verify the authenticity of 

the source IP address, and attackers can forge the 

source IP address to hide their true locations. Therefore, 

the development of a traceback scheme to determine 

the true IP address of attacks is crucial. 

Traceback schemes can be classified based on the 

type of attack they can respond to. Some can only trace 

the true source of flood-based attacks [2-18], but others 

can trace the true source of both flood-based and 

software exploit attacks [19-23], [24-31]. The 

messaging approach uses additional packets to transmit 

router information [16-18]. Routers or paths traversed 

by the packet are marked in additional packets. This 

can be accomplished by using ICMP messages [16-17] 

or packets sent to the same destination from different 

sources [18]. However, the messaging approach 

requires gathering a large number of packets and is 

thus not suitable for tracing the source of software 

exploit attacks. Unlike the messaging approach, the 

packet marking approach does not require an additional 

record of the relationship between a tracked packet and 

a marking packet. However, packet marking 

approaches can only be used to trace flood-based 

attacks. In both probabilistic packet marking [2-9] and 

deterministic packet marking [10-15, 31] schemes, 

packet marking involves recording a packet’s trail by 

storing router or path identifiers in rarely used header 

fields. However, these methods require at least eight 

packets to reconstruct the attack path [12]. Therefore, 

they are unsuitable for tracing the source of software 

exploit attacks, in which services can be disabled by a 

single packet. 

Packet logging traceback schemes [19-21] were 

developed to trace the source of software exploit 

attacks. In these schemes, each router traversed by a 

packet records unaltered information from the packet. 

This resolves the issue of not being able to trace the 

source from a single packet because of insufficient 

packet data space. A router’s internal logs can be 

consulted to determine whether a specific packet 



888 Journal of Internet Technology Volume 20 (2019) No.3 

 

passed through a specific router. For example, Snoeren 

et al. [19] developed a source path isolation engine that 

uses Bloom filters to store digests of packets that pass 

through a router. However, if too many packet digests 

are stored on a Bloom filter, two separate packets can 

correspond to the same field and cause false positives. 

Another problem with packet logging schemes is that 

they require too much storage space on the router to 

store packet information. To address this issue, hybrid 

IP traceback schemes were developed [22-30]. In this 

type of scheme, unused header fields are used to record 

a packet’s path information. After all header fields 

have been filled, path information is stored on the 

router. For example, Yang et al. [27] developed the 

RIHT scheme in which path information is recorded by 

encoding the interface numbers of the routers traversed 

by a packet. When the packet’s storage space is 

exceeded, additional data are stored on the router. The 

amount of router storage space required is less than 

320 kB regardless of the number of packets that pass 

through a router. Yang [29] also developed the HAHIT 

scheme in which only the 16-bit identification field in 

an IP header is used to mark path information. This 

resolves the issue of not being able to reassemble 

fragmented packets. In 2014, Yang [30] proposed 

using multiple tables rather than a single table to 

reduce the router storage space required by the HAHIT 

scheme. However, an additional burden is still placed 

on routers because of the need to store overflow data 

on the routers. 

To allow tracing the source of software exploit 

attacks from a single packet without incurring any 

router storage load, Takurou et al. [31] proposed using 

Bloom filters in the packet header to record 

information regarding the routers traversed by the 

packet. Thus, even without requiring additional router 

storage capacity, a single packet is still sufficient to 

trace an attacker’s true location. However, packet paths 

that involve too many routers can cause multiple 

routers to correspond to the same field in the Bloom 

filter. Zhou et al. [9] modified this approach, using 

Bloom filters in multiple packets to decrease the 

chance of field conflicts and thus false positives. 

However, if the Bloom filter field was overwritten 

multiple times, the routers cannot be determined in this 

modified approach, which impacts the accuracy of 

tracebacks. As a result, this approach cannot be used to 

determine the source of a software exploit attack from 

a single packet. 

In this paper, we proposed a single packet traceback 

method that allows the source of an attack to be 

accurately determined with zero router storage load. 

We used the Skitter data [32] from the Center for 

Applied Internet Data Analysis (CAIDA) to perform 

network topology tests of this traceback scheme. The 

key contributions of this paper are as follows: 

(1) Any traceback can be completed by using only 

one single packet. 

(2) Attacks from multiple sources can be traced 

simultaneously. 

(3) No additional router storage capacity is required. 

(4) The traceback scheme has a zero false negative 

rate. 

(5) The traceback scheme has a low false positive 

rate. 

(6) CAIDA’s skitter data from 1998 to 2008, 

comprising network topology constructed from route 

information obtained by sending packets from a single 

origin to multiple destinations, were used to validate 

our method. 

In the following sections, Section 2 offers a detailed 

explanation of the proposed traceback scheme. A more 

advanced version with fragmentation supported of the 

proposed scheme is discussed in Section 3. In Section 

4, analyses of the scheme are described. Analyses 

results are discussed in Section 5, as well as a 

comparison of our scheme and other traceback 

schemes. Finally, Section 6 concludes the paper. 

2 An Improved Single Packet Traceback 

Scheme for IoT Devices 

Our objective was to develop a single packet 

traceback scheme with zero router storage load capable 

of attaining zero false negative rates and low false 

positive rates. To achieve this objective, traceback 

information is stored only in the IP header. The time to 

live (TTL) field in the IP header is used to improve 

traceback accuracy. A detailed description of the 

proposed scheme is provided later in the paper. First, 

we must define an attacker model: 

‧ Multiple attackers simultaneously initiate single 

attacks or multiple attacks from multiple locations. 

‧ Attackers can spoof their IP addresses in the packets 

(i.e., spoof attacks). 

‧ Attackers are aware of this traceback algorithm and 

will purposely create a forged mark in the packet to 

mislead the traceback. 

We assume that attackers initiate multiple software 

exploit attacks or one or more DDoS attacks on a 

single target. Thus, our scheme can simultaneously 

trace multiple attack sources. In addition, only the final 

destination of the packet is considered when routers 

determine which downstream router to forward a 

packet to; the packet’s originating IP is not 

authenticated. Attackers can spoof the source IP to hide 

their location, thus allowing all attacks to reach the 

victim. Furthermore, because we assume our traceback 

scheme is openly accessible, attackers can disguise 

their location by designing a forged mark in packet 

headers in an attempt to mislead the traceback. To be 

able to perform tracebacks on attackers with these 

qualities, and to define the scope of problems that can 

be resolved by the proposed traceback scheme, our 

traceback scheme can only work if the following 
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conditions are met: 

‧ Routers are safe from intrusions. 

‧ Routers can identify whether a packet was 

forwarded from another router or from a local area 

network. 

‧ All routers support this traceback scheme. 

‧ The target has an intrusion detection system because 

an attack must be identified before a traceback can 

begin. 

To simplify assumptions and focus on the main 

proposal of this paper, we assume that the victim has 

an intrusion detection system to detect the attacks. To 

trace the source of an attack, a packet must have space 

to record the routers traversed by the packet. As shown 

in Figure 1, we use the 32-bit space in the IP header 

occupied by the identification, flag, and fragment 

offset fields to mark and store path information. 

Because only 0.06% to 0.25% of all packets exceed the 

maximum transmission unit and must be fragmented 

[33-34], storing path information in these fields will 

not affect normal network functioning in most cases. 

 
Offset 0-3 4-7 8-15 16-18 19-31 

0 Version Header length TOS Total length 

32 Identification field Flag Fragment offset

64 TTL Protocol Header checksum 

96 Source IP address 

128 Destination IP address 

160 Options and Paddings (Multiple of 32bits) 

Figure 1. Packet marker field in the IP header 

2.1 Packet Marking Scheme 

When router Ri receives a packet P, the router first 

determines whether the packet came from a local area 

network. If so, router Ri sets packet P’s marker field, 

P.mark32, to 0 and packet P’s TTL field, P.ttl, to the 

maximum value (255). These values prevent passing a 

non-zero marker to the Internet, which would result in 

the inability to accurately determine when to stop 

tracing and the difficulty of determining whether a 

packet has exceeded the hot count caused by different 

initial TTL values. Table 1 lists all symbols used in this 

method. 

In Table 1, we use the IP header’s identification 

field, flag field, and fragment offset field as a 32-bit 

marking field. The maximum size of a mark is denote 

as MSM, where MSM can be 215, 216, or 232. The 

marker field in a packet P is denoted as mark15, 

mark16, and mark 32, according to MSM. The h() is a 

hash function (for example, MD5) to get the hash value 

with the input of a router’s IP. The bloom filter BF 

computes k distinct packet digests for each packet 

using independent uniform hash functions and uses the 

n-bit results to index into a 2n-sized bit array [19]. 

Table 1. List of symbols 

Ri 

{R1,R2,….Ri,…,Rn}; a router on the path 

between the origin and the destination.  

P a packet on the Internet. 

P.mark32 a 32-bit marker field in packet P. 

P.mark30 a 30-bit marker field in packet P. 

P.mark15 a 15-bit marker field in packet P. 

P.ttl the TTL field in packet P’s IP header. 

IPRi the IP address of router Ri. 
h() hash function. 

MSM maximum size of a mark. 

BF the bloom filter.  

MS 

a flag that indicates the marker field is full 

and no additional marks can be included in 

this field. 

P.id 
an identifier that is identical for all fragments 

of packet P.  

P.no 
the sequence of fragments with the same 

identifier  

SF 
a flag that indicates the marker field has been 

fragmented 

threshold the threshold for fragmenting packets  

|| the operator ‘OR’ 

% the operator ‘MOD’  

 

As shown in the Algorithm 1, when Ri receives a 

packet P that is not from a local area network, the 

router hashes its IP address 
i

R
IP  to calculate multiple 

indexes that need to be marked in P.mark32. A bitwise 

OR operation is performed on 1 and the bits referenced 

by those indexes in P.mark32, and packet P is 

forwarded to the next router. This process repeats until 

the packet P reaches its destination. 

 

 

Algorithm 1. Packet marking algorithm 

Input: A Packet header P 

1. if P comes from local network then 

2.  P. mark 32 = 0 

3.   P.ttl = 255. 

4. end 

5. P. mark 32[ ( )% ] 1
i

R
h IP MSM = . 

6. P.ttl = P.ttl 1− . 

7. Forward this packet to the next router 

 

Figure 2 shows an example in which five senders 

send packets through eight routers to the same 

destination. The IP hash values for routers R1 through 

R8 are 5, 1, 3, 3, 7, 1, 5, and 6, respectively. 
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P.mark32 = 00101000

Attack Packet 1

R6 marker position� 1

P.ttl = 252

P.mark32 = 10101000

victim receives

Attack Packet 2

P.ttl = 252

P.mark32 = 10100000

R7

R8

Attacker3

Legitimate

user1

Legitimate

user2

Attack Packet 3

R7 marker position� 5

P.ttl = 254

P.mark32 = 00001000

Attack Packet 3

R2 marker position� 1

P.ttl = 253

P.mark32 = 10001000

Attack Packet 3

R4 marker position� 3

P.ttl = 252

P.mark32 = 10101000

Attack Packet 3

R6 marker position� 1

P.ttl = 251

P.mark32 = 10101000

victim receives

Attack Packet 3

P.ttl = 251

P.mark32 = 10101000

    legitimate packet

attack packet

User1 Packet

R8 marker position� 6

P.ttl = 254

P.mark32 = 00000100

User1 Packet

R3 marker position� 3

P.ttl = 253

P.mark32 = 00100100

User1 Packet

R6 marker position� 1

P.ttl = 253

P.mark32 = 10100100

victim receives

User1 Packet

P.ttl = 253

P.mark32 = 10100100

User2 Packet

R5 marker position� 7

P.ttl = 254

P.mark32 = 00000010

User2 Packet

R6 marker position� 1

P.ttl = 253

P.mark32 = 10000010

victim receives

User2 Packet

P.ttl = 253

P.mark32 = 10000010

 

Figure 2. An example of 3 attack and 2 legitimate packets forwarded to the same destination 

From Figure 2, we see that attack packet sent by 

Attacker 1 was passed to the Internet via router R1 and 

traversed routers R3 and R6 to reach its final destination. 

Because this packet traversed three routers, its TTL 

value P.ttl is 3 less than the maximum, or 252. The 

string in P.mark32, the packet marker field, is 

10101000. Three bits were set to 1 to record that this 

packet has traversed three routers. Attacker 2’s packet 

also traversed three routers, and its TTL value P.ttl is 

also 3 less than the maximum, or 252. However, 

because the IP hash values of routers R2 and R6 are 

both 1, only the first and third bits were set to 1, and 

the string in this packet’s P.mark32 is 10100000. 

Attacker 3’s packet was passed to the Internet via 

router R7 but then took the same path as attacker 2’s 

packet to reach the destination. Thus, its TTL value is 

1 less than attacker 2’s packet, or 251. However, three 

bits were set to 1 in the packet marker field, and the 

string in its P.mark32 is 10101000. During packet 

marking, the router does not distinguish whether a 

packet is part of an attack. Thus, the target also 

receives legitimate packets. For example, in Figure 2, 

the destination also received packets from Legitimate 

users 1 and 2 with P.mark32 strings of 10100100 and 

10010000, respectively. 

When the target detects a successful DDoS attack 

from three attacking packets, we use the path 

reconstruction algorithm explained in the next section 

to track the attackers. 

2.2 Path Reconstruction 

When the victim detects an intrusion, the attack 

packet P is sent to the traceback server to find the 

source. The traceback server transmits the fields 

necessary for tracing the source, P.mark32 and P.ttl, to 

a router Ri that is one hop upstream from the victim for 

path reconstruction. As shown by the algorithm 2, after 

Ri receives P.mark32 and P.ttl, it uses its own IP 
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address, IPRi, in a hash function to calculate its marker 

position in a BF.  

 

 

Algorithm 2. Path reconstruction algorithm 

Input:  

1. if P. mark 32[ ( )% ] 1
i

R
h IP MSM =  then 

2.  P.ttl = P.ttl 1+  

3.  Send ( [ ( )% ], . )
i

R
BF h IP MSM P ttl=  to  

traceback router 

4.  if P.ttl < 255 then 

5.   Send P. mark 32 and P.ttl to all upstream 

routers 

6.  end 

7. else  

8.  End traceback 

9. end 

 

If Ri’s marker position is unflagged (i.e., P.mark32 

[h(IPRi)%MSM] = 0), then router Ri is not in the path 

of the attack packet P, and Ri no longer needs to assist 

with tracing the source of the attack. In contrast, if Ri’s 

marker position is flagged (i.e., P.mark32 

[h(IPRi)%MSM] = 1), then Ri transmits the BF that 

includes Ri’s marker position to the traceback server. Ri 

also checks whether P.ttl plus 1 is equal to the 

initialization value of 255; if so, then Ri is the boundary 

router for the attacker and the traceback is complete. If 

not, Ri transmits P.mark32 and P.ttl to all other linked 

upstream routers to continue tracing the source of the 

attack. After the traceback server receives all attack 

packet BFs from the routers, the server integrates all 

BF values to find a router combination that completely 

matches the P.mark32 in the BF and in which the P.ttl 

is equal to 255. This comprises the routing of an attack 

packet. 

Figure 3 shows how this algorithm can be used to 

reconstruct the path of the three attackers shown in 

Figure 2. After the victim identifies the three attack 

packets, it sends a request to the traceback server to 

identify the source of these attacks. The traceback 

server transmits the markers of the three attack packets 

(P.mark32 = 10101000, P.ttl = 253; P.mark32 = 

10100000, P.ttl = 253; and P.mark32 = 10101000, P.ttl 

= 252) to router R6, which is upstream from the victim 

(Figure 3).  

 

Figure 3. Path reconstruction of the three attacks in Figure 2 
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Router R6’s marker position is 1 and the first 

position in all three packets are marked as 1, which 

indicates that all three packets traversed router R6. 

Because the P.ttl values of all three packets are lower 

than 255 at R6, all three attack packets are sent to the 

upstream routers R3, R4, and R5 to continue the 

traceback. R5’s marker position is 7 and the seventh 

position in all three packets are 0, which indicates that 

none of the three packets traversed router R5.  

The marking of these three packets match the 

marker positions of routers R3 and R4 and their P.ttl 

values are still lower than 255. Thus, R3 and R4 next 

forward these three packets to their upstream routers R1, 

R8, and R2 to continue the traceback. 

For Attack packet 1, only R1’s marker position 

matches the marker position in its P.mark32. The 

traceback server combines the BFs transmitted by R6, 

R3, and R1 into BF = 10101000. This matches the string 

contained in attack packet 1’s P.mark32. In addition, 

Attack packet 1’s P.ttl at R1 is 255. Therefore, attack 

packet 1 originated from router R1.  

For Attack packet 2, although the traceback server 

combined the BFs transmitted by routers R3 and R6 into 

BF = 10100000, the P.ttl values transmitted by these 

two routers were both 254. Thus, the traceback server 

continues to combine another BF, the one transmitted 

by router R2, which results in BF = 10100000. Thus, 

the path of Attack packet 2 is R2 to R4 to R6. Without 

the inclusion of P.ttl, the path reconstruction would 

have stopped at R3 and R4. This example shows that 

P.ttl can improve the accuracy of path reconstruction. 

For Attack packet 3, the marker positions of routers 

R1 and R2 both match packet 3’s marker field; however, 

packet 3’s P.ttl is 254. Therefore, the traceback server 

waits for additional BFs to be sent from routers that are 

upstream to R1 or R2. Only R2 has an upstream router 

(R7) that has a matching marker position. Thus, the 

traceback server successfully reconstructs the path of 

Attack packet 3: R7 to R2 to R4 to R6. 

3 Traceback Scheme with Bloom Filters 

that Can Be Fragmented 

If a packet’s path is too long, most of the marker 

positions in the marker field may be in use. When this 

happens, new markings can conflict with existing 

markings, which could decrease the accuracy of the 

path reconstruction [19]. Therefore, a method of 

fragmenting markers is described in this section [9, 18]. 

By placing marker segments in different packets, the 

size of the marker field is increased from 32 bits to 240 

bits. The single-bit flags MS and SF indicate whether a 

packet’s marker field is saturated and whether it has 

been fragmented, respectively. As shown in Figure 4, 

each fragmented packet contains an 11-bit identifier 

field (id) and a 4-bit sequence field (no) to allow 

reassembly of the packet at the destination. Together, 

these two fields identify a packet as the n the fragment 

of the original packet. Finally, a 15-bit field is used to 

mark the packet marking data. 

MS  SF                           mark30

P
0

P
1

P
2

P
15...

MS  SF                id = 333                  no = 0                      mark15

  1     1                   11                              4                               15

MS  SF                id = 333                  no = 1                      mark15

  1     1                   11                              4                               15

MS  SF                id = 333                  no = 2                      mark15

  1     1                   11                              4                               15  

Figure 4. Marker fragmentation of packet P 

The marker fragmentation algorithm is shown in 

Algorithm 3. When a router Ri receives a packet P, P is 

handled in one of three ways depending on its marker 

field. 

 

 

 

Algorithm 3. Advanced marking scheme 

Input:  

1. if P comes from local network then 

2.  P.mark30[] = 0 

3.  P.ttl = 255 

4.  P.MkSTRT = FALSE 

5.  P.SegFlag = FALSE 
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6. end 

7. if P. mark 30 ≤  2*threshold and 

 P.MkSTRT = FALSE and P.SegFlag = FALSE 

then 

8.  k = 3 

9.  SegP
1
.id = GetID() 

10.  SegP
1
.no = 0 

11.  SegP
1
.MkSTRT = SegP

2
.MkSTRT =TRUE 

12.  SegP
1
.ttl = SegP

2
.ttl = P.ttl 

13.  SegP
1
.SegFlag = TRUE 

14.  SegP
1
.mark15 = P.mark30 [1-15] 

15.  SegP
2
.mark15 = P.mark30 [16-30] 

16. elseif |P. mark 15| ≤  threshold and 

P.MkSTRT = FALSE and P.SegFlag =  

TRUE then 

17.  k = 2 

18.  SegP
1
.MkSTRT =TRUE 

19.  SegP
1
.id = P.id 

20.  SegP
1
.no = P.no 

21 end 

22 if P.SegFlag = TRUE then 

23  for 2j←  to k do 

24   SegPj.SegFlag = TRUE 

25   SegPj.id = SegPj-1.id 

26   SegPj.no = SegPj-1.no + 1 

27  end 

28  SegPj.ttl = 255 

29  SegPj.MkSTRT = FALSE 

30  SegPj.Mark15 [] = 0 

31  SegPj.Mark15 [ ( )% ]
i

R
h IP MSM  =1 

32  SegPj.ttl = SegPj.ttl -1 

33 else  

34  P.Mark [ ( )% ]
i

R
h IP MSM  =1 

35  P.ttl = P.ttl -1 

36 end 

37 Forward all packets to the next router 

 

In the first scenario, when router Ri receives a packet 

P, the number of used marker positions in P is less 

than the threshold value. In this case, Ri’s marking is 

unlikely to conflict with existing markings. Ri uses a 

hash function of its IP address, IPRi, to calculate its 

marker position. A bitwise OR operation is performed 

on the marker position and 1 and the packet is sent to 

the next router. 

In the second scenario, when router Ri receives a 

packet P, the number of used marker positions in P 

exceeds two times the threshold value and P is not 

flagged as fragmented (i.e., SF = FALSE). As shown in 

Figure 4, a fragmented marker field requires additional 

space to store id and no data, which are needed for 

reassembly but reduces the space available for storing 

marking information. Therefore, we use the following 

three steps to create new storage space for marking 

data. Steps 1 and 2 fragment the original marker field 

and Step 3 generates a new marker field: 

1. First, Ri splits packet P’s mark30 field in half. The 

first and second halves are copied to the mark15 field 

in packets P0 and P1, respectively. 

2. Next, Ri generates a unique identifier and writes 

this to the id field in both P0 and P1. The values 0 and 1 

are written to the no field in P0 and P1, respectively. Ri 

also sets both fragmented packets’ saturation flags, MS, 

to TRUE to prevent downstream routers from writing 

marking data into the marker fields. The original 

packet’s TTL value is copied to both P0 and TTL to 

assist the traceback server with determining the path 

length of these two fragmented packets when they are 

used for source traceback.  

3. Finally, a new fragmented packet, P2, is created. 

Its id field is set to the same identifier generated for P1 

and P2. Its no field is set to 2 and the fragmentation 

flag SF is set to TRUE. Ri’s marking data is then 

written to P2’s marker field. P2’s TTL field is set to the 

initialization value of and its MS flag is set to FALSE. 

In the third scenario, when Ri receives a packet P, 

the number of used marker positions exceeds the 

threshold value and P is flagged as fragmented (i.e., SF 

= TRUE). Ri sets the MS flag as TRUE, indicating that 

packet P,is saturated and cannot accept additional 

marking data. As in Step 3 of the second scenario, Ri 

generates a new fragmented packet Pi with the same 

identifier as P. Its no field is set to P.no + 1 and the 

fragmentation flag SF is set to TRUE. Ri ’s marking 

data is then written into Pi. Pi’s TTL field is set to the 

initialization value of 255 and its MS flag is set to 

FALSE. 

Lastly, one problem remains unsolved: the threshold 

value for fragmenting marker fields influences the 

chance of conflicts when marking data is written into 

the field. This, in turn, impacts the false positive rate 

for tracing the source of attacks. Section 4 discusses 

how the threshold value is determined. 

When the target wants to reconstruct a path with 

fragmented markers, all fragmented packets with the 

same identifier are forwarded to the traceback server. 

The traceback server begins by forwarding the highest 

numbered fragmented packet in the sequence (i.e., the 

fragment with the highest no value) to the routers that 

are directly upstream from the target. The source router 

of this fragmented packet is determined using the 

traceback scheme described in Section 2.2. The 

previous fragmented packet in the sequence is then 

sent to the routers upstream from that source router to 

continue the traceback. Path reconstruction continues 

until the first two fragmented packets in the sequence 

(P0 and P1) are reached. The marker fields of these two 

packets must be concatenated. The TTL of P0 is sent to 

the routers upstream from the last known router to 

continue tracing the original source of the attack. 

Figure 5 shows an example of marking two distant 

attack packets with a fragmentation threshold of 3. 

When Attack packet 1 reaches router R1, its number of 
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used marker positions exceeds twice the threshold 

value and it is not flagged as fragmented (i.e., SF = 

FALSE). Thus, R1 splits the original marker 

(01111011) in P.mark30 in half and copies the strings 

0111 and 1011 to the P.mark15 fields into the 

fragmented packets with sequence numbers 0 and 1, 

respectively. Ri then flags its marker position in a new 

packet with the sequence number 2, resulting in the 

string 0001 in P.mark15. These three fragmented 

packets then traverse R3 and R6 to reach the final target. 

The marker fields of P0 and P1 remain unchanged, but 

the marker field of P2 contains the string 1011. 

 

Figure 5. An example of fragmented markers 

When Attack packet 2 reaches R7, its number of 

used marker positions exceeds the threshold value. The 

packet flagged as fragmented (i.e., SF = TRUE), and 

its sequence number is 3. Thus, R7 generates a new 

fragmented packet with the same identifier as Attack 

packet 2. The new fragmented packet’s sequence 

number is 3 + 1 = 4, and its P.mark15 contains the 

string 0100. These two packets traverse R2 and R4 to 

reach R6. At R6, P4’s P.mark15 contains the string 1110.  

The number of used marker positions exceeds the 

threshold value of 3. R6 then produces yet another new 

fragmented packet with the same identifier as Attack 

packet 2 and the sequence number 5 and marks its 

P.mark15 field with 1000. This fragmented packet is 

sent with all others to the target.Figure 6 contains a 

path reconstruction example. When the target detects 

an attack packet, all fragmented packets marked as part 

of this packet are sent to the traceback server for path 

reconstruction. The traceback server classifies and 

sorts these attack packets and starts path reconstruction 

with the highest numbered fragmented packet. The 

fragmented packet with identifier 1 and sequence 

number 2 is sent to R6 for path reconstruction. R6’s 

marker position is 1, which matches the string 1011 in 

P.mark15. This fragmented packet is sent to the 

upstream routers R3 and R4, whose marker positions 

also match the string in P.mark15, and the packet is 

sent further upstream to routers R1 and R2 for path 

reconstruction. When the packet reaches R1, R1’s 

marker position matches the string 1011 in P.mark15 

and the TTL is 255. This indicates that the packet 

originated from R1. The traceback server finds that the 

next packet needed for path reconstruction is the 

fragmented packet with the sequence number 1. The 

traceback server concatenates the marker fields from 

two fragmented packets with identifier 1 and sequence 

numbers 0 and 1 and sends this to R1 for path 

reconstruction. 
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Figure 6. Path reconstruction example 

The fragmented packet with identifier 2 and 

sequence number 5 is sent to R6 for path reconstruction. 

R6’s marker position is 1, which matches the string 

1000 in P.mark15. In addition, the P.ttl is 255. Thus, 

the traceback server forwards the fragmented packet 

with sequence number 4 to the upstream servers R3 and 

R4. The string in P.mark15 is 1110. Both R3’s and R4’s 

marker positions match the string 1110 in P.mark15, 

and the fragmented packet continues on to the 

upstream servers R1 and R2. When this fragmented 

packet arrives at R1, R1’s marker position does not 

match the string in P.mark15. This indicates that this 

packet did not traverse R1. R2’s marker position is 1, 

which matches the string, and the fragmented packet is 

sent upstream to R7. R7’s marker position also matches 

the string, and the P.ttl is 255. The traceback server 

then forwards the fragmented packet with sequence 

number 3 to routers upstream from R7 to continue the 

path reconstruction. 

4 Traceback False Positive Rate Analysis 

In this section, we analyzed the false positive rates 

for the proposed traceback scheme when using a 
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Bloom filter with m bits as the marker field, as shown 

in Figure 7. When k hash functions are used to 

calculate the indexes of the packet markers in the 

marker field, the attack path is recorded in positions 

referenced by k indexes. In addition, the packet must 

traverse n routers to reach its destination. Thus, the 

false positive rate of deducing the source of the packet 

can be calculated using Eq. (1).  
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Figure 7. The impact of hop count and hash functions on the false positive rate 
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We analyzed the skitter data from CAIDA [32], 

which contains 197,003 complete paths traversing 

130,267 routers; the results are shown in Figure 8. We 

found that the majority of paths had a hop count (n) of 

16. Theilmann et al. [35] also found that packets 

traverse an average of 16 routers (n = 16) to reach their 

destinations.  

 

Figure 8. Hop count distribution 

 

 

We used Eq. 1 to calculate false positive rates for 1 

to 10 hash functions (k = 1-10) when the marker field 

is 32 bits (m = 32) and the hop count is 16 (n = 16); the 

results are shown in Figure 8. We found that the lowest 

false positive rate was achieved when k = 1. Thus, we 

propose that when a small marker field of only 32 bits 

is used, only one hash function is required to record the 

attack path. 

When marker fields are fragmented because the 

packets path is excessively long, all downstream 

routers use a 15-bit marker field (m = 15). To preclude 

marker position conflicts between two routers, a 15-bit 

marker field can only be marked by 15 routers before a 

new marker field is required for the remaining path. 

Thus, we used Eq. 1 to calculate the false positive 

rates for 1 to 15 hops (n = 115) and 1 to 10 hash 

functions (k = 110); the results are shown in Figure 9. 

We found that when the fragmentation threshold was 

low (n < 7), false positive rates were lower when more 

bits (k) were used for marking. However, this increased 

the number of packets used. In contrast, when the 

fragmentation threshold was high (n > 7), using fewer 

bits (k) for marking resulted in lower false positive 

rates. 
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Figure 9. The impact of number of marker bits (k) for 

each traversed router on the false positive rate 

However, one remaining question must be resolved: 

What is the optimum threshold value for the number of 

marker positions that can be marked before requiring a 

new marker field? Because the great majority of 

packets traverse fewer than 30 routers to reach their 

destination [35-36] when a router uses C 15-bit marker 

fields to trace at- tackers, the optimum threshold value 

is 30/C marker fields. For example, if a 240-bit 

marking space is used for tracebacks, sixteen 15-bit 

marker fields are needed to record these markers. Thus, 

the fragmentation threshold is 30/16 = 2.  

5 Experiment 

The accuracy of the proposed algorithm is examined 

in this section. In the following experiment, we used 

CAIDAs skitter data [32] to generate the network 

topography and used only one hash function (k = 1) in 

the bloom filter to mark the packets. The accuracy and 

efficiency of the proposed scheme were also compared 

to those of the scheme by Takurou et al. [31] and Long 

et al. [18]. 

5.1 Path Reconstruction 

Our traceback scheme, like the scheme developed by 

Takurou et al. [31], records every traversed router in 

the marker field. Thus, both schemes can achieve the 

goal of a zero false negative rate. We randomly chose 

1000 paths from the 197,003 paths included in 

CAIDAs skitter data as attack paths. Our 32-bit 

unfragmented marking scheme and the scheme 

developed by Takurou et al. were each repeated 10 

times to compare the false positive rates. The results 

are shown in Figure 10. As shown, the false positive 

rate of our proposed scheme was approximately 92%. 

It was slightly lower than the false positive rate of the 

scheme developed by Takurou et al., which approached 

100%. The scheme developed by Takurou et al. uses a 

32-bit marking space, but conflicts that occur when a 

packets path is excessively long can cause false 

positives. Although our scheme uses the TTL field to 

assist with the traceback, improvements are not evident 

in a marker field that is as small as 32 bits. Thus, we 

developed fragmentation of the marker field to 

improve the false positive rate. 

 

Figure 10. Comparison of the false positive rates from 

the scheme developed by Takurou et al. and our 32-bit 

unfragmented marking scheme 

We compared the false positive rates of our scheme 

and the scheme developed by Takurou et al. when 

using a 120-bit marking space and a 240-bit marking 

space; the results are shown in Figure 11. Although 

Takurou et al. did not propose a fragmentation method, 

we applied one to their scheme to expand the marking 

space available. Results showed that our scheme, 

which uses the TTL, greatly improved the false 

positive rate. A 120-bit marking space requires 8 

packets for a traceback; the fragmentation threshold is 

⎡30/8⎤ = 4. The false positive rate was approximately 

20%. This was 1/3 of the false positive rate observed in 

the scheme developed by Takurou et al., which does 

not use the TTL field. A 240-bit marking space 

requires 16 packets for a traceback; the fragmentation 

threshold is ⎡30/16⎤ = 2. The false positive rate was 

approximately 6%. This was approximately five times 

lower than the rate observed in the scheme developed 

by Takurou et al. Thus, the benefit of using the TTL 

field increases significantly as the marking space is 

increased. 

Figure 12 shows the relationship between hop count 

and the false positive rate observed in our scheme. A 

higher hop count resulted in a higher false positive rate. 

How- ever, when 120 or more bits were used for the 

marking space, the increase in the false positive rate as 

a result of hop count was less noticeable. Thus, our 

proposed scheme should perform well in current 

Internet conditions. 
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Figure 11. Comparison of the false positive rates 

 

Figure 12. The relationship between hop count and 

false positive rate 

5.2 Marker Delivery Ratio 

In this section, the marker delivery ratio observed in 

our proposed method was compared to those of the 

opportunistic piggyback marking (OPM) and advanced 

opportunistic piggyback marking design (AOPM) 

developed by Long et al. [18]. We randomly chose ten 

paths with 5 to 25 hops to the same destination from 

CAIDA’s skitter data [32]. One attack packet was sent 

on each of the paths to the target. 

Our scheme fragments the marking data, comprising 

information from all routers traversed in the path of an 

attack packet, into 16 fragments. In contrast, OPM and 

AOPM creates 10 fragments. Figure 13 shows that the 

marker delivery ratio of our scheme was more than 

twice that of the scheme developed by Long et al. The 

schemes developed by Long et al. place markers either 

in packets with the same destination (the OPM scheme) 

or in packets with different destinations (the AOPM 

scheme). Inadequate traffic flow past a particular 

router creates the problem of insufficient packets for 

marking data. Skitter data uses the traceroute command 

at a starting point to construct a tree-shaped network 

topography that spreads outwards. Leaves are assumed 

to be attackers and roots are assumed to be targets. 

These assumptions result in large numbers of packets 

traversing routers close to the roots and much fewer 

packets traversing routers close to the leaf. This 

decreases the marker delivery ratio in the scheme 

developed by Long et al.  

 

Figure 13. Comparison of marker delivery ratios 

Our scheme uses the existing fragmentation ability 

of routers to produce additional marking space on the 

same path. Markers are not dependent on network 

traffic for delivery; thus, our scheme achieved twice 

the marker delivery ratio that was observed in the 

scheme developed by Long et al. This is a critical 

advantage. If intact markers are not delivered to the 

target when attacks occur, tracing the source of the 

attacks becomes impossible. 

5.3 The Number of Marked Packets Required 

to Carry the Marking Data 

Figure 14 compares the number of marked packets 

required to record an attack packet in OPM, AOPM, 

and our scheme. We randomly chose one path with 5 to 

25 hops to the same destination from CAIDA’s skitter 

data. An attack packet was sent on this path to the 

target.  

 

Figure 14. Number of marked packets required 

Figure 15 shows that the number of marked packets 

requires to record an attack packet in our scheme was 

far fewer than the number required by the two methods. 

OPM requires 10 marked packets to carry the path 

information for each router traversed in the path; thus, 

a total of 250 marked packets were required. AOPM 

uses packets that have different destinations but share 

intermediate routers along the path to assist with 
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sending marker fields to a downstream router. 

However, the number of marked packets required by 

AOPM increased slightly to 270. Our scheme does not 

require assistance of other packets. The number of 

required marked packets is dependent only on the hop 

count. If 240 bits of marking space is required and the 

fragmentation threshold is 2, then a path with a hop 

count of 25 uses only ⎡25/2⎤, or 13 marked packets. 

 

Figure 15. Number of marked packets required to 

record an attack packet 

6 Conclusion 

Our proposed scheme, an improved packet traceback 

scheme with bloom filters, uses a 32-bit space in the 

packet header to record attack path information. This 

enables single- packet tracebacks via packet marking 

and does not require additional storage space on 

routers for recording attack path data. Because no data 

is stored on routers, the router load is reduced 

compared to packet logging or hybrid IP traceback 

schemes. In addition, using the TTL field in packet 

headers decreases the false positive rate caused by 

marker field conflicts. We also proposed a dynamic 

marking space to further improve upon the traceback 

accuracy of the 32-bit marker field. Using 120-bit 

marking space results in a false positive rate of 

approximately 20%, which is 1/3 lower than the false 

positive rate observed in the scheme developed by 

Takurou et al.; using a 240-bit marking space results in 

a false positive rate of approximately 6%, which is five 

times lower than that observed in the scheme 

developed by Takurou et al. Furthermore, our proposed 

scheme has a 100% marker delivery ratio and only 

requires 16 packets to trace the source of an attack with 

94% accuracy. Our proposed method successfully 

achieves the objectives of single packet traceback, zero 

router storage load, zero false negative rate, and low 

false positive rate.  

Acknowledgements 

This research was supported by the National Science 

Council of Taiwan under grant no. MOST 107-2218-E-

011-012-, MOST 107-2221-E-033-010-, and MOST 

107-2221-E-130-001-. 

References 

[1] A. Hussain, J. Heidemann, C. Papadopoulos, A Framework 

for Classifying Denial of Service Attacks, 2003 Conference 

on Applications, Technologies, Architectures, and Protocols 

for Computer Communications, Karlsruhe, Germany, 2003, 

pp. 99-110.  

[2] A. Yaar, A. Perrig, D. Song, FIT: Fast Internet Traceback, 

24th Annual Joint Conference of the IEEE Computer and 

Communications Societies, Miami, FL, 2005, pp. 1395-1406. 

[3] D.X. Song, A. Perrig, Advanced and Authenticated Marking 

Schemes for IP Traceback, 2001 Twentieth Annual Joint 

Conference of the IEEE Computer and Communications 

Societies, Las Vagas, NV, 2001, pp. 878-886. 

[4] H. Tian, J. Bi, X. Jiang, W. Zhang, W, A Probabilistic 

Marking Scheme for Fast Traceback, 2010 Second 

International Conference on Evolving Internet, Valencia, 

Spain, 2010, pp. 137-141. 

[5] J. Liu, Z.-J. Lee, Y.-C. Chung, Dynamic Probabilistic Packet 

Marking for Efficient IP Traceback, Computer Networks, Vol. 

51, No. 3, pp. 866-882, February, 2007.  

[6] S. Savage, D. Wetherall, A. Karlin, T. Anderson, Network 

Support for IP Traceback, IEEE/ACM Transaction on 

Networking, Vol.9, No.3, pp. 226-237, June, 2001. 

[7] V. Paruchuri, A. Durresi, S. Chellappan, TTL Based Packet 

Marking for IP Traceback, IEEE Global Telecommunications 

Conference (GLOBECOM 2008), New Orleans, LA, 2008, pp. 

1-5. 

[8] S. Saurabh, A. S. Sairam, Linear and Remainder Packet 

Marking for Fast IP Traceback, 2012 Fourth International 

Conference on Communication Systems and Networks 

(COMSNETS), Bangalore, India, 2012, pp. 1-8. 

[9] Z. Zhou, B. Qian, X. Tian, D. Xie, Fast Traceback against 

Large-scale DDoS Attack in High-speed Internet, 

International Conference on Computational Intelligence and 

Software Engineering, Wuhan, China, 2009, pp. 1-7. 

[10] A. Belenky, N. Ansari, Accommodating Fragmentation in 

Deterministic Packet Marking for IP Traceback, IEEE Global 

Telecommunications Conference (GLOBECOM’03), San 

Francisco, CA, 2003, pp. 1374-1378. 

[11] A. Belenky, N. Ansari, IP Traceback With Deterministic 

Packet Marking, IEEE Communications Letters, Vol. 7, No. 3, 

pp. 162-164, April, 2003. 

[12] A. Belenky, N. Ansari, Tracing Multiple Attackers with 

Deterministic Packet Marking (DPM), 2003 IEEE Pacific 

Rim Conference on Communications Computers and Signal 

Processing, Victoria, BC, Canada, 2003, Vol. 1, pp. 49-52. 

[13] V. S. Rajam, S. M. Shalinie. A Novel Traceback Algorithm 

For DDoS Attack with Marking Scheme for Online System, 

2012 International Conference on Recent Trends in 

Information Technology (ICRTIT), Chennai, India, 2012, pp. 

407-412. 



900 Journal of Internet Technology Volume 20 (2019) No.3 

 

[14] H. Tian, J. Bi, P. Xiao, A Flow-based Traceback Scheme on 

an AS-level Overlay Network, 2012 32nd International 

Conference on Distributed Computing Systems Workshops 

(ICDCSW), Macau, China, 2012, pp. 559-564. 

[15] V. Aghaei-Foroushani, A. N. Zincir-Heywood, IP Traceback 

Through (Authenticated) Deterministic Flow Marking: An 

Empirical Evaluation, EURASIP Journal on Information 

Security, Vol. 2013, No. 5, pp. 1-24, November, 2013. 

[16] G. Yao, J. Bi, A. V. Vasilakos, Passive IP Traceback: 

Disclosing the Locations of IP Spoofers from Path 

Backscatter, IEEE Transactions on Information Forensics 

and Security, Vol. 10, No. 3, pp. 471-484, December, 2015. 

[17] S. M. Bellovin, M. Leech, T. Taylor, ICMP Traceback 

Messages, IETF Internet Draft, pp. 1-18, February, 2003. 

[18] L. Cheng, D.-M. Divakaran, W.-Y. Lim, V.-L. Thing, 

Opportunistic Piggyback Marking for IP Traceback, IEEE 

Transactions on Information Forensics and Security, Vol. 11, 

No. 2, pp. 273-288, October, 2016. 

[19] A. C. Snoeren, C. Partridge, L. A. Sanchez, C. E. Jones, F. 

Tchakountio, B. Schwartz, S. T. Kent, W. T. Strayer, Single-

packet IP Traceback, IEEE/ACM Transactions on Networking, 

Vol. 10, No. 6, pp. 721-734, December, 2002. 

[20] L. Zhang, Y. Guan, TOPO: A Topology-aware Single Packet 

Attack Traceback Scheme, Securecomm and Workshops, 

Baltimore, MD, 2006, pp. 1-10. 

[21] E. Hilgenstieler, E. P. Duarte, G. Mansfield-Keeni, N. 

Shiratori, Extensions to The Source Path Isolation Engine for 

Precise and Efficient Log-based IP Traceback, Computers 

and Security, Vol. 29, No. 4, pp. 383-392, June, 2010. 

[22] C. Gong, K. Sarac, A More Practical Approach For Single-

packet IP Traceback Using Packet Logging and Marking, 

IEEE Transactions on Parallel and Distributed Systems, Vol. 

19, No. 10, pp. 1310-1324, August, 2008. 

[23] K. Choi, H. Dai, A Marking Scheme Using Huffman Codes 

for IP Traceback, 7th International Symposium on Parallel 

Architectures, Algorithms and Networks, Hong Kong, China, 

2004, pp. 421-428. 

[24] S. Malliga, A. Tamilarasi, A Hybrid Scheme Using Packet 

marking and Logging for IP Traceback, International Journal 

of Internet Protocol Technology, Vol. 5, No.1-2, pp. 81-91, 

April, 2005. 

[25] S. Malliga, A. Tamilarasi, A Proposal for New Marking 

Scheme with Its Performance Evaluation for IP Traceback, 

WSEAS Transactions on Computer Research, Vol. 3, No. 4, 

pp. 259-272, April, 2008. 

[26] Y. Wang, S. Su, Y. Yang, J. Ren, A More Efficient Hybrid 

Approach for Single-packet IP Traceback, 2012 20th 

Euromicro International Conference on Parallel, Distributed 

and Network-Based Processing, Garching, Germany, 2012, 

pp. 275-282. 

[27] M.-H. Yang, M.-C. Yang, RIHT: A Novel Hybrid IP 

Traceback Scheme, IEEE Transactions on Information 

Forensics and Security, Vol. 7, No. 2, pp. 789-797, April, 

2012. 

[28] N. Lu, Y. Wang, F. Yang, M. Xu, A Novel Approach for 

Single-packet IP Traceback Based on Routing Path, 2012 

20th Euromicro International Conference on Parallel, 

Distributed and Network-Based Processing (PDP), Garching, 

Germany, 2012, pp. 253-260. 

[29] M.-H. Yang, Hybrid Single-packet IP Traceback with Low 

Storage and High Accuracy, The Scientific World Journal, 

Vol. 2014, pp. 1-12, February, 2014. 

[30] M.-H. Yang, M.-C. Yang, J.-N. Luo, W.-C. Hsu, High 

Accuracy and Low Storage Hybrid IP Traceback, 2014 

International Conference on Computer, Information and 

Telecommunication Systems (CITS), Jeju, South Korea, 2014, 

pp. 1-5. 

[31] H. Takurou, K. Matsuura, H. Hnai, IP Traceback By Packet 

Marking Method with Bloom Filters, 41st Annual IEEE 

International Carnahan Conference on Security Technology, 

Ottawa, Canana, 2007, pp. 255-263. 

[32] CAIDA’s Archipelago (Ark) Measurement Infrastructure,  

https://www.caida.org/projects/ark/, 2014. 

[33] I. Stoica, H. Zhang, Providing Guaranteed Services Without 

Per Flow Management, Conference on Applications, 

Technologies, Architectures, and Protocols for Computer 

Communication, New York, NY, 1999, pp. 81-94. 

[34] W. John, S. Tafvelin, Analysis of Internet Backbone Traffic 

and Header Anomalies Observed, 7th ACM SIGCOMM 

Conference on Internet Measurement, San Diego, CA, 2007, 

pp. 111-116. 

[35] W. Theilmann, K. Rothermel, Dynamic Distance Maps of the 

Internet, Nineteenth Annual Joint Conference of the IEEE 

Computer and Communications Societies (INFOCOM 2000), 

Tel Aviv, Isrel, 2000, pp. 275-284. 

[36] R. L. Carter, M. E. Crovella, Server Selection Using Dynamic 

Path Characterization in Wide-area Networks, Sixteenth 

Annual Joint Conference of the IEEE Computer and 

Communications Societies. Driving the Information 

Revolution, Kobe, Japan, 1997, pp. 1014-1021. 

Biographies 

Jia-Ning Luo holds a Ph.D. degree in 

Computer Science of National Chiao 

Tung University, Taiwan. He specializes 

in network security, operating systems, 

network administration and network 

programming. He is currently an 

associate professor at department of 

information and telecommunications, Ming Chuan 

University, Taiwan. His interesting topics includes 

NFC-based protocols, IoT security and eWallet 

security. 

 

Ming-Hour Yang received his 

doctoral degree in Computer Science 

& Info. Engineering at National 

Central University, Taiwan. His 

research mainly focuses on network 

security and system security with 

particular interests on security issues 



An Improved Single Packet Traceback Scheme for IoT Devices 901 

 

in RFID and NFC security communication protocols. 

Topics include: mutual authentication protocols; secure 

ownership transfer protocols; polymorphic worms; 

tracing mobile attackers. 



902 Journal of Internet Technology Volume 20 (2019) No.3 

 

 



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (Japan Color 2001 Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages false
  /CreateJDFFile false
  /CreateJobTicket true
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness false
  /PreserveHalftoneInfo true
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Preserve
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects true
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHT <FEFF005B683964DA300C005000440046002800310032003000300064007000690029300D005D0020>
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
    <<
      /AddBleedMarks true
      /AddColorBars false
      /AddCropMarks true
      /AddPageInfo true
      /AddRegMarks false
      /BleedOffset [
        8.503940
        8.503940
        8.503940
        8.503940
      ]
      /ConvertColors /NoConversion
      /DestinationProfileName (sRGB IEC61966-2.1)
      /DestinationProfileSelector /NA
      /Downsample16BitImages true
      /FlattenerPreset <<
        /ClipComplexRegions true
        /ConvertStrokesToOutlines false
        /ConvertTextToOutlines false
        /GradientResolution 400
        /LineArtTextResolution 1200
        /PresetName <FEFF005B9AD889E367905EA6005D>
        /PresetSelector /HighResolution
        /RasterVectorBalance 1
      >>
      /FormElements true
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles true
      /MarksOffset 0
      /MarksWeight 0.283460
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PageMarksFile /JapaneseWithCircle
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /LeaveUntagged
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [1200 1200]
  /PageSize [612.000 792.000]
>> setpagedevice


