
An Improved Single Packet Traceback Scheme for IoT Devices 887

An Improved Single Packet Traceback Scheme for IoT Devices

Jia-Ning Luo1, Ming-Hour Yang2*

1 Department of Information and Telecommunications Engineering, Ming Chuan University, Taiwan
2 Department of Information and Computer Engineering, Chung Yuan Christian University, Taiwan

deer@mail.mcu.edu.tw, mhyang@cycu.edu.tw

*Corresponding Author: Ming-Hour Yang; E-mail: mhyang@cycu.edu.tw

DOI: 10.3966/160792642019052003021

Abstract

Hackers in recent years began to invade the IP camera,

CCTV cameras, routers and other IoT devices that

embedded Linux operating systems, as the power of the

botnet. DDoS attacks will directly affect the operation of

the victims, which has a huge impact on the operation of

the networks. In current Internet, the attackers can easily

forge the source IP addresses, so the system administrator

cannot discover the true locations of the intruded devices

nor the attackers.

In this paper, we proposed a single packet traceback

method that allows the source of an attack to be

accurately determined with zero router storage load. We

use a 32-bit space in the packet header to record attack

paths and use the time to live field to decrease the false

positive rate of tracebacks. Our protocol does not require

additional storage space on routers for recording attack

path data.

Keywords: Packet marking scheme, Packet logging

scheme, Hybrid IP traceback

1 Introduction

With the rapid development of the Internet of Things

(IoT), all kinds of mobile networking equipment and

consumer electronics products are widely distributed

on the Internet. According to ABI research estimates,

by 2020 there will be more than 41 billion IoT

equipments. Most IoT devices (including routers and

cameras) are shipped with default passwords and

disabled security features. Many customers only install

the hardware and not change the default settings,

leaving the attacker to leave a major vulnerability to

attack. This situation will be accelerated by the number

of IoT devices enabled. The IoT device itself can be

networked 24 hours a day, causing hackers to love the

IoT device to launch DDoS attacks.

Two types of denial of service attacks exist: flood-

based attacks and software exploit attacks [1]. Flood-

based attacks send massive numbers of packets to

overload a target’s bandwidth or computational or

storage capacities, thus rendering the server unable to

accept packets from legitimate users. In contrast,

software exploit attacks use fewer packets to attack

vulnerabilities in a target system that can disable the

system and render it unable to provide services. In

addition, most routers do not verify the authenticity of

the source IP address, and attackers can forge the

source IP address to hide their true locations. Therefore,

the development of a traceback scheme to determine

the true IP address of attacks is crucial.

Traceback schemes can be classified based on the

type of attack they can respond to. Some can only trace

the true source of flood-based attacks [2-18], but others

can trace the true source of both flood-based and

software exploit attacks [19-23], [24-31]. The

messaging approach uses additional packets to transmit

router information [16-18]. Routers or paths traversed

by the packet are marked in additional packets. This

can be accomplished by using ICMP messages [16-17]

or packets sent to the same destination from different

sources [18]. However, the messaging approach

requires gathering a large number of packets and is

thus not suitable for tracing the source of software

exploit attacks. Unlike the messaging approach, the

packet marking approach does not require an additional

record of the relationship between a tracked packet and

a marking packet. However, packet marking

approaches can only be used to trace flood-based

attacks. In both probabilistic packet marking [2-9] and

deterministic packet marking [10-15, 31] schemes,

packet marking involves recording a packet’s trail by

storing router or path identifiers in rarely used header

fields. However, these methods require at least eight

packets to reconstruct the attack path [12]. Therefore,

they are unsuitable for tracing the source of software

exploit attacks, in which services can be disabled by a

single packet.

Packet logging traceback schemes [19-21] were

developed to trace the source of software exploit

attacks. In these schemes, each router traversed by a

packet records unaltered information from the packet.

This resolves the issue of not being able to trace the

source from a single packet because of insufficient

packet data space. A router’s internal logs can be

consulted to determine whether a specific packet

888 Journal of Internet Technology Volume 20 (2019) No.3

passed through a specific router. For example, Snoeren

et al. [19] developed a source path isolation engine that

uses Bloom filters to store digests of packets that pass

through a router. However, if too many packet digests

are stored on a Bloom filter, two separate packets can

correspond to the same field and cause false positives.

Another problem with packet logging schemes is that

they require too much storage space on the router to

store packet information. To address this issue, hybrid

IP traceback schemes were developed [22-30]. In this

type of scheme, unused header fields are used to record

a packet’s path information. After all header fields

have been filled, path information is stored on the

router. For example, Yang et al. [27] developed the

RIHT scheme in which path information is recorded by

encoding the interface numbers of the routers traversed

by a packet. When the packet’s storage space is

exceeded, additional data are stored on the router. The

amount of router storage space required is less than

320 kB regardless of the number of packets that pass

through a router. Yang [29] also developed the HAHIT

scheme in which only the 16-bit identification field in

an IP header is used to mark path information. This

resolves the issue of not being able to reassemble

fragmented packets. In 2014, Yang [30] proposed

using multiple tables rather than a single table to

reduce the router storage space required by the HAHIT

scheme. However, an additional burden is still placed

on routers because of the need to store overflow data

on the routers.

To allow tracing the source of software exploit

attacks from a single packet without incurring any

router storage load, Takurou et al. [31] proposed using

Bloom filters in the packet header to record

information regarding the routers traversed by the

packet. Thus, even without requiring additional router

storage capacity, a single packet is still sufficient to

trace an attacker’s true location. However, packet paths

that involve too many routers can cause multiple

routers to correspond to the same field in the Bloom

filter. Zhou et al. [9] modified this approach, using

Bloom filters in multiple packets to decrease the

chance of field conflicts and thus false positives.

However, if the Bloom filter field was overwritten

multiple times, the routers cannot be determined in this

modified approach, which impacts the accuracy of

tracebacks. As a result, this approach cannot be used to

determine the source of a software exploit attack from

a single packet.

In this paper, we proposed a single packet traceback

method that allows the source of an attack to be

accurately determined with zero router storage load.

We used the Skitter data [32] from the Center for

Applied Internet Data Analysis (CAIDA) to perform

network topology tests of this traceback scheme. The

key contributions of this paper are as follows:

(1) Any traceback can be completed by using only

one single packet.

(2) Attacks from multiple sources can be traced

simultaneously.

(3) No additional router storage capacity is required.

(4) The traceback scheme has a zero false negative

rate.

(5) The traceback scheme has a low false positive

rate.

(6) CAIDA’s skitter data from 1998 to 2008,

comprising network topology constructed from route

information obtained by sending packets from a single

origin to multiple destinations, were used to validate

our method.

In the following sections, Section 2 offers a detailed

explanation of the proposed traceback scheme. A more

advanced version with fragmentation supported of the

proposed scheme is discussed in Section 3. In Section

4, analyses of the scheme are described. Analyses

results are discussed in Section 5, as well as a

comparison of our scheme and other traceback

schemes. Finally, Section 6 concludes the paper.

2 An Improved Single Packet Traceback

Scheme for IoT Devices

Our objective was to develop a single packet

traceback scheme with zero router storage load capable

of attaining zero false negative rates and low false

positive rates. To achieve this objective, traceback

information is stored only in the IP header. The time to

live (TTL) field in the IP header is used to improve

traceback accuracy. A detailed description of the

proposed scheme is provided later in the paper. First,

we must define an attacker model:

‧ Multiple attackers simultaneously initiate single

attacks or multiple attacks from multiple locations.

‧ Attackers can spoof their IP addresses in the packets

(i.e., spoof attacks).

‧ Attackers are aware of this traceback algorithm and

will purposely create a forged mark in the packet to

mislead the traceback.

We assume that attackers initiate multiple software

exploit attacks or one or more DDoS attacks on a

single target. Thus, our scheme can simultaneously

trace multiple attack sources. In addition, only the final

destination of the packet is considered when routers

determine which downstream router to forward a

packet to; the packet’s originating IP is not

authenticated. Attackers can spoof the source IP to hide

their location, thus allowing all attacks to reach the

victim. Furthermore, because we assume our traceback

scheme is openly accessible, attackers can disguise

their location by designing a forged mark in packet

headers in an attempt to mislead the traceback. To be

able to perform tracebacks on attackers with these

qualities, and to define the scope of problems that can

be resolved by the proposed traceback scheme, our

traceback scheme can only work if the following

An Improved Single Packet Traceback Scheme for IoT Devices 889

conditions are met:

‧ Routers are safe from intrusions.

‧ Routers can identify whether a packet was

forwarded from another router or from a local area

network.

‧ All routers support this traceback scheme.

‧ The target has an intrusion detection system because

an attack must be identified before a traceback can

begin.

To simplify assumptions and focus on the main

proposal of this paper, we assume that the victim has

an intrusion detection system to detect the attacks. To

trace the source of an attack, a packet must have space

to record the routers traversed by the packet. As shown

in Figure 1, we use the 32-bit space in the IP header

occupied by the identification, flag, and fragment

offset fields to mark and store path information.

Because only 0.06% to 0.25% of all packets exceed the

maximum transmission unit and must be fragmented

[33-34], storing path information in these fields will

not affect normal network functioning in most cases.

Offset 0-3 4-7 8-15 16-18 19-31

0 Version Header length TOS Total length

32 Identification field Flag Fragment offset

64 TTL Protocol Header checksum

96 Source IP address

128 Destination IP address

160 Options and Paddings (Multiple of 32bits)

Figure 1. Packet marker field in the IP header

2.1 Packet Marking Scheme

When router Ri receives a packet P, the router first

determines whether the packet came from a local area

network. If so, router Ri sets packet P’s marker field,

P.mark32, to 0 and packet P’s TTL field, P.ttl, to the

maximum value (255). These values prevent passing a

non-zero marker to the Internet, which would result in

the inability to accurately determine when to stop

tracing and the difficulty of determining whether a

packet has exceeded the hot count caused by different

initial TTL values. Table 1 lists all symbols used in this

method.

In Table 1, we use the IP header’s identification

field, flag field, and fragment offset field as a 32-bit

marking field. The maximum size of a mark is denote

as MSM, where MSM can be 215, 216, or 232. The

marker field in a packet P is denoted as mark15,

mark16, and mark 32, according to MSM. The h() is a

hash function (for example, MD5) to get the hash value

with the input of a router’s IP. The bloom filter BF

computes k distinct packet digests for each packet

using independent uniform hash functions and uses the

n-bit results to index into a 2n-sized bit array [19].

Table 1. List of symbols

Ri

{R1,R2,….Ri,…,Rn}; a router on the path

between the origin and the destination.

P a packet on the Internet.

P.mark32 a 32-bit marker field in packet P.

P.mark30 a 30-bit marker field in packet P.

P.mark15 a 15-bit marker field in packet P.

P.ttl the TTL field in packet P’s IP header.

IPRi the IP address of router Ri.
h() hash function.

MSM maximum size of a mark.

BF the bloom filter.

MS

a flag that indicates the marker field is full

and no additional marks can be included in

this field.

P.id
an identifier that is identical for all fragments

of packet P.

P.no
the sequence of fragments with the same

identifier

SF
a flag that indicates the marker field has been

fragmented

threshold the threshold for fragmenting packets

|| the operator ‘OR’

% the operator ‘MOD’

As shown in the Algorithm 1, when Ri receives a

packet P that is not from a local area network, the

router hashes its IP address
i

R
IP to calculate multiple

indexes that need to be marked in P.mark32. A bitwise

OR operation is performed on 1 and the bits referenced

by those indexes in P.mark32, and packet P is

forwarded to the next router. This process repeats until

the packet P reaches its destination.

Algorithm 1. Packet marking algorithm

Input: A Packet header P

1. if P comes from local network then

2. P. mark 32 = 0

3. P.ttl = 255.

4. end

5. P. mark 32[()%] 1
i

R
h IP MSM = .

6. P.ttl = P.ttl 1− .

7. Forward this packet to the next router

Figure 2 shows an example in which five senders

send packets through eight routers to the same

destination. The IP hash values for routers R1 through

R8 are 5, 1, 3, 3, 7, 1, 5, and 6, respectively.

890 Journal of Internet Technology Volume 20 (2019) No.3

Attacker2

R2R1

R4R3 R5

R6

Victim

Attack Packet 2

R2 marker position� 1

P.ttl = 254

P.mark32 = 10000000

Attack Packet 2

R4 marker position� 3

P.ttl = 253

P.mark32 = 10100000

Attack Packet 2

R6 marker position� 1

P.ttl = 252

P.mark32 = 10100000

victim receives

Attack Packet 1

P.ttl = 252

P.mark32 = 10101000

Attacker1

Attack Packet 1

R1 marker position� 5

P.ttl = 254

P.mark32 = 00001000

Attack Packet 1

R3 marker position� 3

P.ttl = 253

P.mark32 = 00101000

Attack Packet 1

R6 marker position� 1

P.ttl = 252

P.mark32 = 10101000

victim receives

Attack Packet 2

P.ttl = 252

P.mark32 = 10100000

R7

R8

Attacker3

Legitimate

user1

Legitimate

user2

Attack Packet 3

R7 marker position� 5

P.ttl = 254

P.mark32 = 00001000

Attack Packet 3

R2 marker position� 1

P.ttl = 253

P.mark32 = 10001000

Attack Packet 3

R4 marker position� 3

P.ttl = 252

P.mark32 = 10101000

Attack Packet 3

R6 marker position� 1

P.ttl = 251

P.mark32 = 10101000

victim receives

Attack Packet 3

P.ttl = 251

P.mark32 = 10101000

 legitimate packet

attack packet

User1 Packet

R8 marker position� 6

P.ttl = 254

P.mark32 = 00000100

User1 Packet

R3 marker position� 3

P.ttl = 253

P.mark32 = 00100100

User1 Packet

R6 marker position� 1

P.ttl = 253

P.mark32 = 10100100

victim receives

User1 Packet

P.ttl = 253

P.mark32 = 10100100

User2 Packet

R5 marker position� 7

P.ttl = 254

P.mark32 = 00000010

User2 Packet

R6 marker position� 1

P.ttl = 253

P.mark32 = 10000010

victim receives

User2 Packet

P.ttl = 253

P.mark32 = 10000010

Figure 2. An example of 3 attack and 2 legitimate packets forwarded to the same destination

From Figure 2, we see that attack packet sent by

Attacker 1 was passed to the Internet via router R1 and

traversed routers R3 and R6 to reach its final destination.

Because this packet traversed three routers, its TTL

value P.ttl is 3 less than the maximum, or 252. The

string in P.mark32, the packet marker field, is

10101000. Three bits were set to 1 to record that this

packet has traversed three routers. Attacker 2’s packet

also traversed three routers, and its TTL value P.ttl is

also 3 less than the maximum, or 252. However,

because the IP hash values of routers R2 and R6 are

both 1, only the first and third bits were set to 1, and

the string in this packet’s P.mark32 is 10100000.

Attacker 3’s packet was passed to the Internet via

router R7 but then took the same path as attacker 2’s

packet to reach the destination. Thus, its TTL value is

1 less than attacker 2’s packet, or 251. However, three

bits were set to 1 in the packet marker field, and the

string in its P.mark32 is 10101000. During packet

marking, the router does not distinguish whether a

packet is part of an attack. Thus, the target also

receives legitimate packets. For example, in Figure 2,

the destination also received packets from Legitimate

users 1 and 2 with P.mark32 strings of 10100100 and

10010000, respectively.

When the target detects a successful DDoS attack

from three attacking packets, we use the path

reconstruction algorithm explained in the next section

to track the attackers.

2.2 Path Reconstruction

When the victim detects an intrusion, the attack

packet P is sent to the traceback server to find the

source. The traceback server transmits the fields

necessary for tracing the source, P.mark32 and P.ttl, to

a router Ri that is one hop upstream from the victim for

path reconstruction. As shown by the algorithm 2, after

Ri receives P.mark32 and P.ttl, it uses its own IP

An Improved Single Packet Traceback Scheme for IoT Devices 891

address, IPRi, in a hash function to calculate its marker

position in a BF.

Algorithm 2. Path reconstruction algorithm

Input:

1. if P. mark 32[()%] 1
i

R
h IP MSM = then

2. P.ttl = P.ttl 1+

3. Send ([()%], .)
i

R
BF h IP MSM P ttl= to

traceback router

4. if P.ttl < 255 then

5. Send P. mark 32 and P.ttl to all upstream

routers

6. end

7. else

8. End traceback

9. end

If Ri’s marker position is unflagged (i.e., P.mark32

[h(IPRi)%MSM] = 0), then router Ri is not in the path

of the attack packet P, and Ri no longer needs to assist

with tracing the source of the attack. In contrast, if Ri’s

marker position is flagged (i.e., P.mark32

[h(IPRi)%MSM] = 1), then Ri transmits the BF that

includes Ri’s marker position to the traceback server. Ri

also checks whether P.ttl plus 1 is equal to the

initialization value of 255; if so, then Ri is the boundary

router for the attacker and the traceback is complete. If

not, Ri transmits P.mark32 and P.ttl to all other linked

upstream routers to continue tracing the source of the

attack. After the traceback server receives all attack

packet BFs from the routers, the server integrates all

BF values to find a router combination that completely

matches the P.mark32 in the BF and in which the P.ttl

is equal to 255. This comprises the routing of an attack

packet.

Figure 3 shows how this algorithm can be used to

reconstruct the path of the three attackers shown in

Figure 2. After the victim identifies the three attack

packets, it sends a request to the traceback server to

identify the source of these attacks. The traceback

server transmits the markers of the three attack packets

(P.mark32 = 10101000, P.ttl = 253; P.mark32 =

10100000, P.ttl = 253; and P.mark32 = 10101000, P.ttl

= 252) to router R6, which is upstream from the victim

(Figure 3).

Figure 3. Path reconstruction of the three attacks in Figure 2

892 Journal of Internet Technology Volume 20 (2019) No.3

Router R6’s marker position is 1 and the first

position in all three packets are marked as 1, which

indicates that all three packets traversed router R6.

Because the P.ttl values of all three packets are lower

than 255 at R6, all three attack packets are sent to the

upstream routers R3, R4, and R5 to continue the

traceback. R5’s marker position is 7 and the seventh

position in all three packets are 0, which indicates that

none of the three packets traversed router R5.

The marking of these three packets match the

marker positions of routers R3 and R4 and their P.ttl

values are still lower than 255. Thus, R3 and R4 next

forward these three packets to their upstream routers R1,

R8, and R2 to continue the traceback.

For Attack packet 1, only R1’s marker position

matches the marker position in its P.mark32. The

traceback server combines the BFs transmitted by R6,

R3, and R1 into BF = 10101000. This matches the string

contained in attack packet 1’s P.mark32. In addition,

Attack packet 1’s P.ttl at R1 is 255. Therefore, attack

packet 1 originated from router R1.

For Attack packet 2, although the traceback server

combined the BFs transmitted by routers R3 and R6 into

BF = 10100000, the P.ttl values transmitted by these

two routers were both 254. Thus, the traceback server

continues to combine another BF, the one transmitted

by router R2, which results in BF = 10100000. Thus,

the path of Attack packet 2 is R2 to R4 to R6. Without

the inclusion of P.ttl, the path reconstruction would

have stopped at R3 and R4. This example shows that

P.ttl can improve the accuracy of path reconstruction.

For Attack packet 3, the marker positions of routers

R1 and R2 both match packet 3’s marker field; however,

packet 3’s P.ttl is 254. Therefore, the traceback server

waits for additional BFs to be sent from routers that are

upstream to R1 or R2. Only R2 has an upstream router

(R7) that has a matching marker position. Thus, the

traceback server successfully reconstructs the path of

Attack packet 3: R7 to R2 to R4 to R6.

3 Traceback Scheme with Bloom Filters

that Can Be Fragmented

If a packet’s path is too long, most of the marker

positions in the marker field may be in use. When this

happens, new markings can conflict with existing

markings, which could decrease the accuracy of the

path reconstruction [19]. Therefore, a method of

fragmenting markers is described in this section [9, 18].

By placing marker segments in different packets, the

size of the marker field is increased from 32 bits to 240

bits. The single-bit flags MS and SF indicate whether a

packet’s marker field is saturated and whether it has

been fragmented, respectively. As shown in Figure 4,

each fragmented packet contains an 11-bit identifier

field (id) and a 4-bit sequence field (no) to allow

reassembly of the packet at the destination. Together,

these two fields identify a packet as the n the fragment

of the original packet. Finally, a 15-bit field is used to

mark the packet marking data.

MS SF mark30

P
0

P
1

P
2

P
15...

MS SF id = 333 no = 0 mark15

 1 1 11 4 15

MS SF id = 333 no = 1 mark15

 1 1 11 4 15

MS SF id = 333 no = 2 mark15

 1 1 11 4 15

Figure 4. Marker fragmentation of packet P

The marker fragmentation algorithm is shown in

Algorithm 3. When a router Ri receives a packet P, P is

handled in one of three ways depending on its marker

field.

Algorithm 3. Advanced marking scheme

Input:

1. if P comes from local network then

2. P.mark30[] = 0

3. P.ttl = 255

4. P.MkSTRT = FALSE

5. P.SegFlag = FALSE

An Improved Single Packet Traceback Scheme for IoT Devices 893

6. end

7. if P. mark 30 ≤ 2*threshold and

 P.MkSTRT = FALSE and P.SegFlag = FALSE

then

8. k = 3

9. SegP
1
.id = GetID()

10. SegP
1
.no = 0

11. SegP
1
.MkSTRT = SegP

2
.MkSTRT =TRUE

12. SegP
1
.ttl = SegP

2
.ttl = P.ttl

13. SegP
1
.SegFlag = TRUE

14. SegP
1
.mark15 = P.mark30 [1-15]

15. SegP
2
.mark15 = P.mark30 [16-30]

16. elseif |P. mark 15| ≤ threshold and

P.MkSTRT = FALSE and P.SegFlag =

TRUE then

17. k = 2

18. SegP
1
.MkSTRT =TRUE

19. SegP
1
.id = P.id

20. SegP
1
.no = P.no

21 end

22 if P.SegFlag = TRUE then

23 for 2j← to k do

24 SegPj.SegFlag = TRUE

25 SegPj.id = SegPj-1.id

26 SegPj.no = SegPj-1.no + 1

27 end

28 SegPj.ttl = 255

29 SegPj.MkSTRT = FALSE

30 SegPj.Mark15 [] = 0

31 SegPj.Mark15 [()%]
i

R
h IP MSM =1

32 SegPj.ttl = SegPj.ttl -1

33 else

34 P.Mark [()%]
i

R
h IP MSM =1

35 P.ttl = P.ttl -1

36 end

37 Forward all packets to the next router

In the first scenario, when router Ri receives a packet

P, the number of used marker positions in P is less

than the threshold value. In this case, Ri’s marking is

unlikely to conflict with existing markings. Ri uses a

hash function of its IP address, IPRi, to calculate its

marker position. A bitwise OR operation is performed

on the marker position and 1 and the packet is sent to

the next router.

In the second scenario, when router Ri receives a

packet P, the number of used marker positions in P

exceeds two times the threshold value and P is not

flagged as fragmented (i.e., SF = FALSE). As shown in

Figure 4, a fragmented marker field requires additional

space to store id and no data, which are needed for

reassembly but reduces the space available for storing

marking information. Therefore, we use the following

three steps to create new storage space for marking

data. Steps 1 and 2 fragment the original marker field

and Step 3 generates a new marker field:

1. First, Ri splits packet P’s mark30 field in half. The

first and second halves are copied to the mark15 field

in packets P0 and P1, respectively.

2. Next, Ri generates a unique identifier and writes

this to the id field in both P0 and P1. The values 0 and 1

are written to the no field in P0 and P1, respectively. Ri

also sets both fragmented packets’ saturation flags, MS,

to TRUE to prevent downstream routers from writing

marking data into the marker fields. The original

packet’s TTL value is copied to both P0 and TTL to

assist the traceback server with determining the path

length of these two fragmented packets when they are

used for source traceback.

3. Finally, a new fragmented packet, P2, is created.

Its id field is set to the same identifier generated for P1

and P2. Its no field is set to 2 and the fragmentation

flag SF is set to TRUE. Ri’s marking data is then

written to P2’s marker field. P2’s TTL field is set to the

initialization value of and its MS flag is set to FALSE.

In the third scenario, when Ri receives a packet P,

the number of used marker positions exceeds the

threshold value and P is flagged as fragmented (i.e., SF

= TRUE). Ri sets the MS flag as TRUE, indicating that

packet P,is saturated and cannot accept additional

marking data. As in Step 3 of the second scenario, Ri

generates a new fragmented packet Pi with the same

identifier as P. Its no field is set to P.no + 1 and the

fragmentation flag SF is set to TRUE. Ri ’s marking

data is then written into Pi. Pi’s TTL field is set to the

initialization value of 255 and its MS flag is set to

FALSE.

Lastly, one problem remains unsolved: the threshold

value for fragmenting marker fields influences the

chance of conflicts when marking data is written into

the field. This, in turn, impacts the false positive rate

for tracing the source of attacks. Section 4 discusses

how the threshold value is determined.

When the target wants to reconstruct a path with

fragmented markers, all fragmented packets with the

same identifier are forwarded to the traceback server.

The traceback server begins by forwarding the highest

numbered fragmented packet in the sequence (i.e., the

fragment with the highest no value) to the routers that

are directly upstream from the target. The source router

of this fragmented packet is determined using the

traceback scheme described in Section 2.2. The

previous fragmented packet in the sequence is then

sent to the routers upstream from that source router to

continue the traceback. Path reconstruction continues

until the first two fragmented packets in the sequence

(P0 and P1) are reached. The marker fields of these two

packets must be concatenated. The TTL of P0 is sent to

the routers upstream from the last known router to

continue tracing the original source of the attack.

Figure 5 shows an example of marking two distant

attack packets with a fragmentation threshold of 3.

When Attack packet 1 reaches router R1, its number of

894 Journal of Internet Technology Volume 20 (2019) No.3

used marker positions exceeds twice the threshold

value and it is not flagged as fragmented (i.e., SF =

FALSE). Thus, R1 splits the original marker

(01111011) in P.mark30 in half and copies the strings

0111 and 1011 to the P.mark15 fields into the

fragmented packets with sequence numbers 0 and 1,

respectively. Ri then flags its marker position in a new

packet with the sequence number 2, resulting in the

string 0001 in P.mark15. These three fragmented

packets then traverse R3 and R6 to reach the final target.

The marker fields of P0 and P1 remain unchanged, but

the marker field of P2 contains the string 1011.

Figure 5. An example of fragmented markers

When Attack packet 2 reaches R7, its number of

used marker positions exceeds the threshold value. The

packet flagged as fragmented (i.e., SF = TRUE), and

its sequence number is 3. Thus, R7 generates a new

fragmented packet with the same identifier as Attack

packet 2. The new fragmented packet’s sequence

number is 3 + 1 = 4, and its P.mark15 contains the

string 0100. These two packets traverse R2 and R4 to

reach R6. At R6, P4’s P.mark15 contains the string 1110.

The number of used marker positions exceeds the

threshold value of 3. R6 then produces yet another new

fragmented packet with the same identifier as Attack

packet 2 and the sequence number 5 and marks its

P.mark15 field with 1000. This fragmented packet is

sent with all others to the target.Figure 6 contains a

path reconstruction example. When the target detects

an attack packet, all fragmented packets marked as part

of this packet are sent to the traceback server for path

reconstruction. The traceback server classifies and

sorts these attack packets and starts path reconstruction

with the highest numbered fragmented packet. The

fragmented packet with identifier 1 and sequence

number 2 is sent to R6 for path reconstruction. R6’s

marker position is 1, which matches the string 1011 in

P.mark15. This fragmented packet is sent to the

upstream routers R3 and R4, whose marker positions

also match the string in P.mark15, and the packet is

sent further upstream to routers R1 and R2 for path

reconstruction. When the packet reaches R1, R1’s

marker position matches the string 1011 in P.mark15

and the TTL is 255. This indicates that the packet

originated from R1. The traceback server finds that the

next packet needed for path reconstruction is the

fragmented packet with the sequence number 1. The

traceback server concatenates the marker fields from

two fragmented packets with identifier 1 and sequence

numbers 0 and 1 and sends this to R1 for path

reconstruction.

An Improved Single Packet Traceback Scheme for IoT Devices 895

Figure 6. Path reconstruction example

The fragmented packet with identifier 2 and

sequence number 5 is sent to R6 for path reconstruction.

R6’s marker position is 1, which matches the string

1000 in P.mark15. In addition, the P.ttl is 255. Thus,

the traceback server forwards the fragmented packet

with sequence number 4 to the upstream servers R3 and

R4. The string in P.mark15 is 1110. Both R3’s and R4’s

marker positions match the string 1110 in P.mark15,

and the fragmented packet continues on to the

upstream servers R1 and R2. When this fragmented

packet arrives at R1, R1’s marker position does not

match the string in P.mark15. This indicates that this

packet did not traverse R1. R2’s marker position is 1,

which matches the string, and the fragmented packet is

sent upstream to R7. R7’s marker position also matches

the string, and the P.ttl is 255. The traceback server

then forwards the fragmented packet with sequence

number 3 to routers upstream from R7 to continue the

path reconstruction.

4 Traceback False Positive Rate Analysis

In this section, we analyzed the false positive rates

for the proposed traceback scheme when using a

896 Journal of Internet Technology Volume 20 (2019) No.3

Bloom filter with m bits as the marker field, as shown

in Figure 7. When k hash functions are used to

calculate the indexes of the packet markers in the

marker field, the attack path is recorded in positions

referenced by k indexes. In addition, the packet must

traverse n routers to reach its destination. Thus, the

false positive rate of deducing the source of the packet

can be calculated using Eq. (1).

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 2 3 4 5 6 7 8 9 1 0 1 1 1 2 1 3 1 4 1 5

F
a

ls
e

 P
o

s
it

iv
e

 R
a

te

Hop Count

k=10 k=9 k=8 k=7 k=6 k=5 k=4 k=3 k=2 k=1

Figure 7. The impact of hop count and hash functions on the false positive rate

1

(1 [1]) (1)
kn

kn k kmFP e
m

−

= − − ≈ − (1)

We analyzed the skitter data from CAIDA [32],

which contains 197,003 complete paths traversing

130,267 routers; the results are shown in Figure 8. We

found that the majority of paths had a hop count (n) of

16. Theilmann et al. [35] also found that packets

traverse an average of 16 routers (n = 16) to reach their

destinations.

Figure 8. Hop count distribution

We used Eq. 1 to calculate false positive rates for 1

to 10 hash functions (k = 1-10) when the marker field

is 32 bits (m = 32) and the hop count is 16 (n = 16); the

results are shown in Figure 8. We found that the lowest

false positive rate was achieved when k = 1. Thus, we

propose that when a small marker field of only 32 bits

is used, only one hash function is required to record the

attack path.

When marker fields are fragmented because the

packets path is excessively long, all downstream

routers use a 15-bit marker field (m = 15). To preclude

marker position conflicts between two routers, a 15-bit

marker field can only be marked by 15 routers before a

new marker field is required for the remaining path.

Thus, we used Eq. 1 to calculate the false positive

rates for 1 to 15 hops (n = 115) and 1 to 10 hash

functions (k = 110); the results are shown in Figure 9.

We found that when the fragmentation threshold was

low (n < 7), false positive rates were lower when more

bits (k) were used for marking. However, this increased

the number of packets used. In contrast, when the

fragmentation threshold was high (n > 7), using fewer

bits (k) for marking resulted in lower false positive

rates.

An Improved Single Packet Traceback Scheme for IoT Devices 897

Figure 9. The impact of number of marker bits (k) for

each traversed router on the false positive rate

However, one remaining question must be resolved:

What is the optimum threshold value for the number of

marker positions that can be marked before requiring a

new marker field? Because the great majority of

packets traverse fewer than 30 routers to reach their

destination [35-36] when a router uses C 15-bit marker

fields to trace at- tackers, the optimum threshold value

is 30/C marker fields. For example, if a 240-bit

marking space is used for tracebacks, sixteen 15-bit

marker fields are needed to record these markers. Thus,

the fragmentation threshold is 30/16 = 2.

5 Experiment

The accuracy of the proposed algorithm is examined

in this section. In the following experiment, we used

CAIDAs skitter data [32] to generate the network

topography and used only one hash function (k = 1) in

the bloom filter to mark the packets. The accuracy and

efficiency of the proposed scheme were also compared

to those of the scheme by Takurou et al. [31] and Long

et al. [18].

5.1 Path Reconstruction

Our traceback scheme, like the scheme developed by

Takurou et al. [31], records every traversed router in

the marker field. Thus, both schemes can achieve the

goal of a zero false negative rate. We randomly chose

1000 paths from the 197,003 paths included in

CAIDAs skitter data as attack paths. Our 32-bit

unfragmented marking scheme and the scheme

developed by Takurou et al. were each repeated 10

times to compare the false positive rates. The results

are shown in Figure 10. As shown, the false positive

rate of our proposed scheme was approximately 92%.

It was slightly lower than the false positive rate of the

scheme developed by Takurou et al., which approached

100%. The scheme developed by Takurou et al. uses a

32-bit marking space, but conflicts that occur when a

packets path is excessively long can cause false

positives. Although our scheme uses the TTL field to

assist with the traceback, improvements are not evident

in a marker field that is as small as 32 bits. Thus, we

developed fragmentation of the marker field to

improve the false positive rate.

Figure 10. Comparison of the false positive rates from

the scheme developed by Takurou et al. and our 32-bit

unfragmented marking scheme

We compared the false positive rates of our scheme

and the scheme developed by Takurou et al. when

using a 120-bit marking space and a 240-bit marking

space; the results are shown in Figure 11. Although

Takurou et al. did not propose a fragmentation method,

we applied one to their scheme to expand the marking

space available. Results showed that our scheme,

which uses the TTL, greatly improved the false

positive rate. A 120-bit marking space requires 8

packets for a traceback; the fragmentation threshold is

⎡30/8⎤ = 4. The false positive rate was approximately

20%. This was 1/3 of the false positive rate observed in

the scheme developed by Takurou et al., which does

not use the TTL field. A 240-bit marking space

requires 16 packets for a traceback; the fragmentation

threshold is ⎡30/16⎤ = 2. The false positive rate was

approximately 6%. This was approximately five times

lower than the rate observed in the scheme developed

by Takurou et al. Thus, the benefit of using the TTL

field increases significantly as the marking space is

increased.

Figure 12 shows the relationship between hop count

and the false positive rate observed in our scheme. A

higher hop count resulted in a higher false positive rate.

How- ever, when 120 or more bits were used for the

marking space, the increase in the false positive rate as

a result of hop count was less noticeable. Thus, our

proposed scheme should perform well in current

Internet conditions.

898 Journal of Internet Technology Volume 20 (2019) No.3

Figure 11. Comparison of the false positive rates

Figure 12. The relationship between hop count and

false positive rate

5.2 Marker Delivery Ratio

In this section, the marker delivery ratio observed in

our proposed method was compared to those of the

opportunistic piggyback marking (OPM) and advanced

opportunistic piggyback marking design (AOPM)

developed by Long et al. [18]. We randomly chose ten

paths with 5 to 25 hops to the same destination from

CAIDA’s skitter data [32]. One attack packet was sent

on each of the paths to the target.

Our scheme fragments the marking data, comprising

information from all routers traversed in the path of an

attack packet, into 16 fragments. In contrast, OPM and

AOPM creates 10 fragments. Figure 13 shows that the

marker delivery ratio of our scheme was more than

twice that of the scheme developed by Long et al. The

schemes developed by Long et al. place markers either

in packets with the same destination (the OPM scheme)

or in packets with different destinations (the AOPM

scheme). Inadequate traffic flow past a particular

router creates the problem of insufficient packets for

marking data. Skitter data uses the traceroute command

at a starting point to construct a tree-shaped network

topography that spreads outwards. Leaves are assumed

to be attackers and roots are assumed to be targets.

These assumptions result in large numbers of packets

traversing routers close to the roots and much fewer

packets traversing routers close to the leaf. This

decreases the marker delivery ratio in the scheme

developed by Long et al.

Figure 13. Comparison of marker delivery ratios

Our scheme uses the existing fragmentation ability

of routers to produce additional marking space on the

same path. Markers are not dependent on network

traffic for delivery; thus, our scheme achieved twice

the marker delivery ratio that was observed in the

scheme developed by Long et al. This is a critical

advantage. If intact markers are not delivered to the

target when attacks occur, tracing the source of the

attacks becomes impossible.

5.3 The Number of Marked Packets Required

to Carry the Marking Data

Figure 14 compares the number of marked packets

required to record an attack packet in OPM, AOPM,

and our scheme. We randomly chose one path with 5 to

25 hops to the same destination from CAIDA’s skitter

data. An attack packet was sent on this path to the

target.

Figure 14. Number of marked packets required

Figure 15 shows that the number of marked packets

requires to record an attack packet in our scheme was

far fewer than the number required by the two methods.

OPM requires 10 marked packets to carry the path

information for each router traversed in the path; thus,

a total of 250 marked packets were required. AOPM

uses packets that have different destinations but share

intermediate routers along the path to assist with

An Improved Single Packet Traceback Scheme for IoT Devices 899

sending marker fields to a downstream router.

However, the number of marked packets required by

AOPM increased slightly to 270. Our scheme does not

require assistance of other packets. The number of

required marked packets is dependent only on the hop

count. If 240 bits of marking space is required and the

fragmentation threshold is 2, then a path with a hop

count of 25 uses only ⎡25/2⎤, or 13 marked packets.

Figure 15. Number of marked packets required to

record an attack packet

6 Conclusion

Our proposed scheme, an improved packet traceback

scheme with bloom filters, uses a 32-bit space in the

packet header to record attack path information. This

enables single- packet tracebacks via packet marking

and does not require additional storage space on

routers for recording attack path data. Because no data

is stored on routers, the router load is reduced

compared to packet logging or hybrid IP traceback

schemes. In addition, using the TTL field in packet

headers decreases the false positive rate caused by

marker field conflicts. We also proposed a dynamic

marking space to further improve upon the traceback

accuracy of the 32-bit marker field. Using 120-bit

marking space results in a false positive rate of

approximately 20%, which is 1/3 lower than the false

positive rate observed in the scheme developed by

Takurou et al.; using a 240-bit marking space results in

a false positive rate of approximately 6%, which is five

times lower than that observed in the scheme

developed by Takurou et al. Furthermore, our proposed

scheme has a 100% marker delivery ratio and only

requires 16 packets to trace the source of an attack with

94% accuracy. Our proposed method successfully

achieves the objectives of single packet traceback, zero

router storage load, zero false negative rate, and low

false positive rate.

Acknowledgements

This research was supported by the National Science

Council of Taiwan under grant no. MOST 107-2218-E-

011-012-, MOST 107-2221-E-033-010-, and MOST

107-2221-E-130-001-.

References

[1] A. Hussain, J. Heidemann, C. Papadopoulos, A Framework

for Classifying Denial of Service Attacks, 2003 Conference

on Applications, Technologies, Architectures, and Protocols

for Computer Communications, Karlsruhe, Germany, 2003,

pp. 99-110.

[2] A. Yaar, A. Perrig, D. Song, FIT: Fast Internet Traceback,

24th Annual Joint Conference of the IEEE Computer and

Communications Societies, Miami, FL, 2005, pp. 1395-1406.

[3] D.X. Song, A. Perrig, Advanced and Authenticated Marking

Schemes for IP Traceback, 2001 Twentieth Annual Joint

Conference of the IEEE Computer and Communications

Societies, Las Vagas, NV, 2001, pp. 878-886.

[4] H. Tian, J. Bi, X. Jiang, W. Zhang, W, A Probabilistic

Marking Scheme for Fast Traceback, 2010 Second

International Conference on Evolving Internet, Valencia,

Spain, 2010, pp. 137-141.

[5] J. Liu, Z.-J. Lee, Y.-C. Chung, Dynamic Probabilistic Packet

Marking for Efficient IP Traceback, Computer Networks, Vol.

51, No. 3, pp. 866-882, February, 2007.

[6] S. Savage, D. Wetherall, A. Karlin, T. Anderson, Network

Support for IP Traceback, IEEE/ACM Transaction on

Networking, Vol.9, No.3, pp. 226-237, June, 2001.

[7] V. Paruchuri, A. Durresi, S. Chellappan, TTL Based Packet

Marking for IP Traceback, IEEE Global Telecommunications

Conference (GLOBECOM 2008), New Orleans, LA, 2008, pp.

1-5.

[8] S. Saurabh, A. S. Sairam, Linear and Remainder Packet

Marking for Fast IP Traceback, 2012 Fourth International

Conference on Communication Systems and Networks

(COMSNETS), Bangalore, India, 2012, pp. 1-8.

[9] Z. Zhou, B. Qian, X. Tian, D. Xie, Fast Traceback against

Large-scale DDoS Attack in High-speed Internet,

International Conference on Computational Intelligence and

Software Engineering, Wuhan, China, 2009, pp. 1-7.

[10] A. Belenky, N. Ansari, Accommodating Fragmentation in

Deterministic Packet Marking for IP Traceback, IEEE Global

Telecommunications Conference (GLOBECOM’03), San

Francisco, CA, 2003, pp. 1374-1378.

[11] A. Belenky, N. Ansari, IP Traceback With Deterministic

Packet Marking, IEEE Communications Letters, Vol. 7, No. 3,

pp. 162-164, April, 2003.

[12] A. Belenky, N. Ansari, Tracing Multiple Attackers with

Deterministic Packet Marking (DPM), 2003 IEEE Pacific

Rim Conference on Communications Computers and Signal

Processing, Victoria, BC, Canada, 2003, Vol. 1, pp. 49-52.

[13] V. S. Rajam, S. M. Shalinie. A Novel Traceback Algorithm

For DDoS Attack with Marking Scheme for Online System,

2012 International Conference on Recent Trends in

Information Technology (ICRTIT), Chennai, India, 2012, pp.

407-412.

900 Journal of Internet Technology Volume 20 (2019) No.3

[14] H. Tian, J. Bi, P. Xiao, A Flow-based Traceback Scheme on

an AS-level Overlay Network, 2012 32nd International

Conference on Distributed Computing Systems Workshops

(ICDCSW), Macau, China, 2012, pp. 559-564.

[15] V. Aghaei-Foroushani, A. N. Zincir-Heywood, IP Traceback

Through (Authenticated) Deterministic Flow Marking: An

Empirical Evaluation, EURASIP Journal on Information

Security, Vol. 2013, No. 5, pp. 1-24, November, 2013.

[16] G. Yao, J. Bi, A. V. Vasilakos, Passive IP Traceback:

Disclosing the Locations of IP Spoofers from Path

Backscatter, IEEE Transactions on Information Forensics

and Security, Vol. 10, No. 3, pp. 471-484, December, 2015.

[17] S. M. Bellovin, M. Leech, T. Taylor, ICMP Traceback

Messages, IETF Internet Draft, pp. 1-18, February, 2003.

[18] L. Cheng, D.-M. Divakaran, W.-Y. Lim, V.-L. Thing,

Opportunistic Piggyback Marking for IP Traceback, IEEE

Transactions on Information Forensics and Security, Vol. 11,

No. 2, pp. 273-288, October, 2016.

[19] A. C. Snoeren, C. Partridge, L. A. Sanchez, C. E. Jones, F.

Tchakountio, B. Schwartz, S. T. Kent, W. T. Strayer, Single-

packet IP Traceback, IEEE/ACM Transactions on Networking,

Vol. 10, No. 6, pp. 721-734, December, 2002.

[20] L. Zhang, Y. Guan, TOPO: A Topology-aware Single Packet

Attack Traceback Scheme, Securecomm and Workshops,

Baltimore, MD, 2006, pp. 1-10.

[21] E. Hilgenstieler, E. P. Duarte, G. Mansfield-Keeni, N.

Shiratori, Extensions to The Source Path Isolation Engine for

Precise and Efficient Log-based IP Traceback, Computers

and Security, Vol. 29, No. 4, pp. 383-392, June, 2010.

[22] C. Gong, K. Sarac, A More Practical Approach For Single-

packet IP Traceback Using Packet Logging and Marking,

IEEE Transactions on Parallel and Distributed Systems, Vol.

19, No. 10, pp. 1310-1324, August, 2008.

[23] K. Choi, H. Dai, A Marking Scheme Using Huffman Codes

for IP Traceback, 7th International Symposium on Parallel

Architectures, Algorithms and Networks, Hong Kong, China,

2004, pp. 421-428.

[24] S. Malliga, A. Tamilarasi, A Hybrid Scheme Using Packet

marking and Logging for IP Traceback, International Journal

of Internet Protocol Technology, Vol. 5, No.1-2, pp. 81-91,

April, 2005.

[25] S. Malliga, A. Tamilarasi, A Proposal for New Marking

Scheme with Its Performance Evaluation for IP Traceback,

WSEAS Transactions on Computer Research, Vol. 3, No. 4,

pp. 259-272, April, 2008.

[26] Y. Wang, S. Su, Y. Yang, J. Ren, A More Efficient Hybrid

Approach for Single-packet IP Traceback, 2012 20th

Euromicro International Conference on Parallel, Distributed

and Network-Based Processing, Garching, Germany, 2012,

pp. 275-282.

[27] M.-H. Yang, M.-C. Yang, RIHT: A Novel Hybrid IP

Traceback Scheme, IEEE Transactions on Information

Forensics and Security, Vol. 7, No. 2, pp. 789-797, April,

2012.

[28] N. Lu, Y. Wang, F. Yang, M. Xu, A Novel Approach for

Single-packet IP Traceback Based on Routing Path, 2012

20th Euromicro International Conference on Parallel,

Distributed and Network-Based Processing (PDP), Garching,

Germany, 2012, pp. 253-260.

[29] M.-H. Yang, Hybrid Single-packet IP Traceback with Low

Storage and High Accuracy, The Scientific World Journal,

Vol. 2014, pp. 1-12, February, 2014.

[30] M.-H. Yang, M.-C. Yang, J.-N. Luo, W.-C. Hsu, High

Accuracy and Low Storage Hybrid IP Traceback, 2014

International Conference on Computer, Information and

Telecommunication Systems (CITS), Jeju, South Korea, 2014,

pp. 1-5.

[31] H. Takurou, K. Matsuura, H. Hnai, IP Traceback By Packet

Marking Method with Bloom Filters, 41st Annual IEEE

International Carnahan Conference on Security Technology,

Ottawa, Canana, 2007, pp. 255-263.

[32] CAIDA’s Archipelago (Ark) Measurement Infrastructure,

https://www.caida.org/projects/ark/, 2014.

[33] I. Stoica, H. Zhang, Providing Guaranteed Services Without

Per Flow Management, Conference on Applications,

Technologies, Architectures, and Protocols for Computer

Communication, New York, NY, 1999, pp. 81-94.

[34] W. John, S. Tafvelin, Analysis of Internet Backbone Traffic

and Header Anomalies Observed, 7th ACM SIGCOMM

Conference on Internet Measurement, San Diego, CA, 2007,

pp. 111-116.

[35] W. Theilmann, K. Rothermel, Dynamic Distance Maps of the

Internet, Nineteenth Annual Joint Conference of the IEEE

Computer and Communications Societies (INFOCOM 2000),

Tel Aviv, Isrel, 2000, pp. 275-284.

[36] R. L. Carter, M. E. Crovella, Server Selection Using Dynamic

Path Characterization in Wide-area Networks, Sixteenth

Annual Joint Conference of the IEEE Computer and

Communications Societies. Driving the Information

Revolution, Kobe, Japan, 1997, pp. 1014-1021.

Biographies

Jia-Ning Luo holds a Ph.D. degree in

Computer Science of National Chiao

Tung University, Taiwan. He specializes

in network security, operating systems,

network administration and network

programming. He is currently an

associate professor at department of

information and telecommunications, Ming Chuan

University, Taiwan. His interesting topics includes

NFC-based protocols, IoT security and eWallet

security.

Ming-Hour Yang received his

doctoral degree in Computer Science

& Info. Engineering at National

Central University, Taiwan. His

research mainly focuses on network

security and system security with

particular interests on security issues

An Improved Single Packet Traceback Scheme for IoT Devices 901

in RFID and NFC security communication protocols.

Topics include: mutual authentication protocols; secure

ownership transfer protocols; polymorphic worms;

tracing mobile attackers.

902 Journal of Internet Technology Volume 20 (2019) No.3

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (Japan Color 2001 Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJDFFile false
 /CreateJobTicket true
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHT <FEFF005B683964DA300C005000440046002800310032003000300064007000690029300D005D0020>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
 <<
 /AddBleedMarks true
 /AddColorBars false
 /AddCropMarks true
 /AddPageInfo true
 /AddRegMarks false
 /BleedOffset [
 8.503940
 8.503940
 8.503940
 8.503940
]
 /ConvertColors /NoConversion
 /DestinationProfileName (sRGB IEC61966-2.1)
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /ClipComplexRegions true
 /ConvertStrokesToOutlines false
 /ConvertTextToOutlines false
 /GradientResolution 400
 /LineArtTextResolution 1200
 /PresetName <FEFF005B9AD889E367905EA6005D>
 /PresetSelector /HighResolution
 /RasterVectorBalance 1
 >>
 /FormElements true
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MarksOffset 0
 /MarksWeight 0.283460
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PageMarksFile /JapaneseWithCircle
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [1200 1200]
 /PageSize [612.000 792.000]
>> setpagedevice

