
Lightweight, Low-Rate Denial-of-Service Attack Prevention and Control Program for IoT Devices 877

Lightweight, Low-Rate Denial-of-Service Attack Prevention and

Control Program for IoT Devices

Chi-Che Wu1, Rung-Shiang Cheng2, Chiung-Wen Hsu3, Li-Wei Wu4*

1 Department of Electrical Engineering, National Kaohsiung University of Sciences and Technology, Taiwan
2 Department of Information Technology, Overseas Chinese University, Taiwan

3 Department of Information Management, National Kaohsiung University of Sciences and Technology, Taiwan
4 Department of Information Business, Tunghai University, Taiwan

1101405110@gm.kusa.edu.tw, rscheng@mail.ksu.edu.tw, sandrahsu33@kuas.edu.tw, lwwu@thu.edu.tw

*Corresponding Author: Rung-Shiang Cheng; E-mail: rscheng@mail.ksu.edu.tw

DOI: 10.3966/160792642019052003020

Abstract

As information technology has become more advanced,

the Internet of things (IoT) has evolved from being a

mere concept to becoming a part of everyday life. IoT-

based home appliance applications have matured, and

numerous relevant software programs have been made

commercially available. Therefore, IoT-created security

issues have become an issue that must be addressed.

Hypertext transfer protocol (HTTP) transmission is

one of the main transmission methods used in IoT-based

communication. As HTTP evolves from the original

HTTP/1.0 to the current HTTP/2, transmission efficiency

and security have undergone considerable improvements.

However, despite these improvements, HTTP/2 remains

exposed to various risks, one of the most common of

which is low-rate denial-of-service attacks (DoS attacks).

Using this type of attack, hackers can paralyze target

hosts. This hinders the target hosts’ ability to respond

promptly, causing substantial damage to their systems.

Although DoS attacks are one of the most commonly

used methods by hackers to attack target hosts, most

mainframe computers are equipped with excellent DoS

attack prevention and control programs. Nevertheless,

most IoT devices do not have high computing power and

are thus prone to DoS attacks. Therefore, this study

examined the feasibility of using a lightweight, low-rate

DoS attack prevention and control program in IoT

devices with low computing power. The objective is to

enable these devices to prevent and control DoS attacks.

Keywords: HTTP/2, Denial-of-service attacks, Low-rate

denial-of-service attacks, Information

security

1 Introduction

In recent years, the Internet of things (IoT) has been

widely used in smart homes and in the field of

industrial control. IoT embodies the concept of

creating a network in which everything is connected.

For users, the IoT provides a novel way of interacting

with devices. The interaction process includes

collecting relevant data; for example, electronic

devices may be programmed according to user

instructions to turn on automatically right before the

user returning home and turn off automatically when

the user leaves the house. The use of IoT in the field of

industrial control is even more prevalent than that in

smart homes. For instance, smart factories add

numerous sensors to relevant equipment. When the

equipment malfunctions, the networking devices send

warning messages through wireless transmission to

inform users of the abnormal situation, achieving early

disaster prevention [3-4].

In general, devices connected to an IoT-based

network contain a network component with data

transmission capability. In addition, several sensors

that have dissimilar goals or purposes are installed.

These sensors are comparable to human senses and can

be used to collect relevant data in surrounding

environments. For example, in the field of debris flow

detection, researchers can install soil moisture sensors

in mountainous areas that are prone to debris flows;

when the sensors detect soil moisture saturation and

that critical values are being reached, warning

messages are sent to terminal devices through wireless

transmission, after which the terminal devices inform

relevant personnel through their networking capability

[1-2].

In addition to the aforementioned conventional IoT

applications, Google introduced an IoT-related

program called “Physical Web” in 2014 [15]. The main

concept of the program was to modify the way in

which the next IoT generation would be accessed,

transforming the conventional IoT access method from

Internet protocol-based (IP-based) to uniform resource

locator-based (URL-based), creating a novel approach

called the Web of Things (WoT). The WoT primarily

comprises IoT and web-enabled technologies. All

physical objects can be operated through a string of

878 Journal of Internet Technology Volume 20 (2019) No.3

URLs and data can be accessed and used by RESTFul

(representational state transfer web services). Users do

not need to install additional applications to operate the

physical objects; all they must know are the URLs

corresponding to the physical objects [5].

Although IoT and WoT devices have matured, their

power consumption needs to be considered during their

initial design process, which has led to them exhibiting

a performance that is far inferior to that of

conventional computers (Figure 1). Thus, when these

devices are exposed to denial-of-service (DoS) attacks,

the conventional defense mechanisms employed by

these devices are unable to effectively detect and block

attacks. Accordingly, designing a lightweight

protection program for IoT devices is crucial.

Figure 1. IOT and web frontend

Because webpage transmission exhibits cross-

platform-like characteristics, it is used in numerous IoT

applications. Similarly, the HTTP communication

protocol is used as the IoT transmission protocol when

transmitting data. At present, HTTP/1.1 is generally

used as the HTTP communication protocol. However,

this communication protocol was introduced in 1999

and has been in use for more than 16 years. Because

network structures and related applications have

changed dramatically during this period, comparisons

between the older HTTP/1.1 and the upgraded

HTTP/2.0 must be made.

Since the introduction of HTTP/2 in May 2015,

related studies have mainly compared differences in

the performance of the old and new communication

protocols, whereas few studies have investigated the

security of these protocols. Because Internet attacks are

continuing to evolve, the present study explored

information security in the HTTP/2 network protocol.

Studies on low-rate DoS attacks against HTTP/2

services have demonstrated that compared with the

plaintext transmission method employed by HTTP/1.1,

the binary transmission method used by HTTP/2

requires servers to complete more calculations to

support related services. Thus, HTTP/2 is more prone

to DoS attacks. The main goal of such attacks is to

substantially consume server resources and prevent

access by other users [1].

Because the aforementioned security risks against

HTTP/2 are different from those created by previous

DoS attacks, this study proposed a set of defense

mechanisms and simulated real environments to verify

whether the proposed defense approach can reduce the

security threats on users.

2 Literature Analysis

2.1 From the IoT to the WoT

The conventional IoT involves the use of numerous

sensors that transmit related data to a cloud platform

through a network device. Users who need to control

or access relevant data can do so by connecting to the

cloud platform and accessing inquired data. The

Physical Web program introduced by Google in 2014

specified that all sensors and devices have URLs,

which are the basis of connection in the web

environment; these URLs are connected to physical

devices to allow users to quickly control and use the

devices. Each of these devices discloses its

communication method by using the RESTFul

application programming interface defined by the

device itself. This prevents users from needing to

control the devices via a centralized machine.

Therefore, users can develop related applications more

quickly. The use and control of these devices are

similar to those of hyperlinks.

HTTP and RESTFul are design concepts that allow

users to easily assign URLs to physical objects. For

example, assuming that a device has the control URL

http://device1.wot.kuas.edu.tw/ and a light sensing

module, then users can use [GET] http://demo.com/

light to obtain relevant sensor data [15].

2.2 From the IoT to the WoT

HTTP is currently the most prevalent web-based

protocol on the Internet; its primary purpose is to

enable servers to respond to user requests [2].

2.2.1 HTTP/1.0

HTTP/0.9 is the original version of HTTP, wherein

users submit basic requests and servers respond using

simple semantics. HTTP/1.0 improved the HTTP

protocol and allowed messages to be transmitted in the

MIME format.

In the HTTP/1.0 operation process, users request

resources from servers (during which transmission

control protocols (TCPs) are established) and servers

fulfill the request by returning the data demanded by

the users, ending the connection process. The servers

do not engage in follow-up tracking or submit further

record requests. Users who request additional webpage

resources must reconnect to the network and repeat the

aforementioned process (Figure 2) [3].

Lightweight, Low-Rate Denial-of-Service Attack Prevention and Control Program for IoT Devices 879

Figure 2. The HTTP/1.0 operation process

2.2.2 HTTP/1.1

HTTP/1.1 has become the most widely used Internet

protocol on the Internet. The main objectives of the

protocol are to establish strict guidelines and further

improve on HTTP/1.0. The main functions of

HTTP/1.1 are as follows:

a. Default HTTP Persistent Connection

For HTTP/1.0 to collect any resources from the

server, an independent TCP connection must first be

established. However, this increases the burden on the

server and easily leads to network congestion.

Therefore, HTTP/1.1 mandates the use of a default

HTTP persistent connection and allows connection

reuse, which reduces the burden on the server

considerably and decreases the time required to

establish a TCP connection (Figure 3).

Figure 3. HTTP/1.1 operation process

b. Pipelining

HTTP/1.1 pipelining allows multiple requests to be

submitted at once. However, the servers must respond

to these requests according to the order in which the

requests were submitted (Figure 4), which reduces

response waiting time. However, this mechanism

creates a head-of-line (HOL) blocking problem

because requests that take servers substantial time to

process cause delays to responses to subsequent

requests. To solve this problem, 6-8 TCP connections

are currently built per browser to process submitted

requests.

Figure 4. HTTP/1.1 pipelining

HTTP/1.1 also features other functions such as a

buffer mechanism, domain name mechanism, error

hints, and expansibility. Because of these features and

its rigorous guidelines, HTTP/1.1 remains in use after

16 years [4].

2.2.3 HTTP/2

The HTTP working group used Speedy (SPDY) as a

basis on which to successfully develop HTTP/2. In

May 2015, they officially released two documents

(RFC 7540 and RFC 7541) that presented the second

major version of the HTTP protocol. This protocol

improves on the potential problems in HTTP/1.1,

decreases webpage loading times, increases webpage

transmission speed, and lowers webpage processing

time.

The HTTP/2 request process differs from that of

HTTP/1.1. For instance, HTTP/1.1 establishes 6-8 TCP

connections to speed up the inquiry time, whereas

HTTP/2 establishes only one TCP connection so as to

reduce the burden on servers. After a TCP connection

is established, browsers can establish multiple

noninterfering streams and use the smallest unit frame

to allocate the request content, facilitating browser-

server communications (Figure 5) [5-10].

Figure 5. HTTP/2 request submission process

The main functions of HTTP/2 are as follows:

a. Binary Frame

Requests submitted by webpages were previously

880 Journal of Internet Technology Volume 20 (2019) No.3

transmitted in plaintext, which created large network

packets, hindering transmission speed. Thus, HTTP/2

changed conventional requests into binary frames and

encoded and compressed plaintext in requests (Figure 6)

to reduce the size of the network packets, enhancing

transmission speed.

Figure 6. Binary frame

RFC 7540 states that in each binary frame, the

length is expressed as a 3-byte fields, type as a 1-byte

fields, flag as a 1-byte fields, reserved word as a 1-bit

field, and stream identifier as a 31-bit fields. The frame

payload requests data according to where the length is

placed (Figure 7). RFC 7540 also specifies the 10

different frame types to be used (Table 1), of which

“headers” and “data” are the most common; these two

functions correspond to the “header” and “body”

functions of HTTP/1.1 [5-9].

Figure 7. HTTP/2 frame layout

Table 1. HTTP/2 Frame

Binary Frame Type Description

DATA 0x0
Transmits the body of HTTP/1.1

requests and responses

HEADERS 0x1
Creates a stream in which the header

contains header block fragments

PRIORITY 0x2 Prioritizes or reprioritizes resources

RST 0x3
Notifies that a stream is allowed to

terminate immediately

STREAM 0x4

Sets the configuration data

specifying how two endpoints are to

communicate

SETTING 0x5

Represents the building of a stream

and promises that the referenced

resources will be provided

PUSH 0x6

Measures the minimum submission-

response time and determines

whether the TCP connection is still

working

PROMISE 0x7

Stops the connection when the server

finds a serious error with the request

and when the idle time is excessively

long

PING 0x8 Controls flow

GOAWAY 0x9
Connects a series of header block

fragments

b. Multiplexing

Although HTTP/1.1 pipelining enables users to send

multiple requests, it is prone to HOL blocking. By

contrast, HTTP/2 rebuilds the pipeline, creates multiple

streams according to the number of requests received,

and adds a corresponding stream ID to every request

submitted and response issued (Figure 8). These steps

prevent requests that will take a long time to process

from affecting when other requests are processed,

solving the HOL blocking problem and confirming the

effectiveness of the multiplexing function [8].

Figure 8. Multiplexing procedure

c. Stream Prioritization

RFC7540 explains that all streams can be dependent

on other streams. After a server processes an

“independent” stream (i.e., a stream that another stream

is dependent on), resources are reallocated to the

“dependent” stream (Figure 9). During the

transmission process, users can thus request to

download the most important content first to avoid data

congestion [8].

Figure 9. Stream prioritization diagram

d. Server Push

Conventionally, when webpage requests are

submitted, browsers analyze the responses received

from servers. When the browsers find that they require

additional resources to display the webpages properly,

they send further requests to the servers to obtain these

resources. This leads to an increase in the time

expended due to the transmission of network packets

back and forth. HTTP/2 introduces the server push

function, which allows servers to automatically “push”

the additional resources needed by webpages to users,

saving the time spent submitting requests and speeding

up a webpage’s display time (Figure 10) [8, 10].

Lightweight, Low-Rate Denial-of-Service Attack Prevention and Control Program for IoT Devices 881

Figure 10. Server push process

e. Header Compression

When users submit multiple requests, the headers of

the requests occasionally contain repeated information.

Therefore, HTTP/2 compresses and stores repeated

information (Figure 11); when repeated information is

found in subsequent requests, different header

information is sent, reducing the network packet size

and enhancing the transmission speed [9].

Figure 11. Header compression process

2.3 DoS Attacks

DoS attacks are cyber-attacks aimed at depleting the

network or system resources of servers, causing the

servers to temporarily suspend or terminate their

services and preventing users from using the services

[11].

Low-rate DoS attacks are a variation of DoS attacks;

they attack by continuously sending a small number of

network packets to attack server response times or

buffer zones, causing depletion of server resources,

resulting in service termination [12-14].

A study on low-rate DoS attacks on HTTP/2

services [1] confirmed that HTTP/2 security is at risk

of low-rate DoS attacks. In such attacks, a virtual host

using a type 1 ping and WINDOW_UPDATE frame

defined by HTTP/2 attacks the virtual server. In the

experiment of the aforementioned study, the degree of

CPU depletion, size of the network packets received

per second, and number of network packets received

per second were used as a basis for assessing low-rate

DoS attacks [15].

3 System Framework and Design

This study designed lightweight DoS-attack

prevention and control programs for IoT devices that

support WoT functions. Because RESTFul is the

primary method for facilitating communication

between devices, this study focused on designing a

program that protects HTTP from low-rate DoS attacks.

In addition, related power consumption requirements

were considered to ensure that the program can be used

for long periods of time under battery power.

HTTP/2 is the latest version of HTTP. Compared

with HTTP/1.1, it has superior transmission capacity

and lower power consumption. However, HTTP/2 is

prone to low-rate DoS attacks. Thus, this study

designed a defense mechanism in which the server

firewall records the frames requested by users within a

set time period (10 and 20 ms in this study) and

identifies whether the frames are repeats and thereby

pose a risk of a low-rate DoS attack. If the two

criteria(Send packets Less than10ms or 20ms) are met,

the firewall initiates a filtering process (Figure 12),

which reduces the impact of the attacks on other users.

Figure 12. Defense procedure

This study used a Raspberry Pi (Figure 13) to

perform a simulation analysis. In addition, the electric

current detection method was employed to calculate

whether there were substantial differences in the power

consumption situation prior to and after the

introduction of the prevention and control method. The

results were used to verify whether the prevention and

control program is feasible for physical web devices.

Figure 13. Raspberry Pi

Two experiments were performed. The objective of

the first experiment was to confirm whether HTTP/2 is

actually prone to real security threats and whether such

threats can affect legitimate users. The present study

divided the webpages viewed by legitimate users into

five categories: “simple, static webpages,” “medium-

performance webpages,” “high-performance webpages”

“image download webpages,” and “new query-based

database webpages.” Next, simulations were performed

in which 0, 1, 5, 10, and 15 attackers sent ping frames

to the HTTP/2 (Table 2) to investigate the effect of the

882 Journal of Internet Technology Volume 20 (2019) No.3

number of attackers on legitimate users’ usage

experiences.

Table 2. Webpage and content

Web pages type Web page content

Simple
A blank page contains some

simple text (ex:Hello World)

Static Webpage
A webpage with more content

contains several pictures

medium-performance
Webpages with time

complexity O(N2)

high-performance
Webpages with time

complexity O(N3)

image download 1Mb picture image file

new query-based database

webpages

A simple page for query

employee lists

The first experiment demonstrated that intensively

sending ping network packets sent by attackers to the

devices within a short period of time severely affected

the devices’ performances. Related parameters such as

(Table 3) Accordingly, this study proposed the

aforementioned network packet filtering method,

which identifies whether users are located at the same

IP address when they submit requests. If so, the

method further examines whether their requests are

repeats. If they are, the users are asked to refer to the

previous responses issued to them to prevent them

from sending a large number of requests within a short

period of time, causing transmission delays or

damaging the system.

Table 3. Experiment parameters

Webpages browsed
Number of

attackers
Filter time

Simple, static webpages 0 Unfiltered

Medium-performance webpages 1 10 ms

High-performance webpages 5 20 ms

Image download webpages 10 -

New query-based database webpages 15 -

The second experiment implemented the defense

mechanism introduced in this study and determined

whether it can effectively reduce the risk of low-rate

DoS attacks. Given that existing webpages do not

normally fall into only one of the aforementioned five

categories and that users regularly request a variety of

resources such as images and data types, all five

webpage types were used in the second experiment.

4 Performance Assessment

4.1 Average Time Required to Send and

Receive Network Packets and the Final

Network Packet Return Time

Instead of exploring the extent to which attackers

deplete server resources, this experiment was

conducted to determine the effect of attackers on

legitimate users’ webpage-browsing experience. In this

experiment, users were divided into two groups:

attackers and legitimate users. The attackers initiated

their attacks by continuously sending PING frames,

whereas the legitimate users browsed webpages of all

five types. A TCP connection was established every

time a user visited a webpage. Once a connection was

established, ten header frames were sent, which were

then received and responded to in order to establish a

new TCP connection. To prevent unclosed TCP

connections from affecting the experimental results,

signals indicating a closed TCP connection were sent

to servers prior to completing new TCP connections.

Users were required to wait 1 s before browsing the

next webpage. Each experiment was performed 30

times (Figure 14).

Figure 14. Experiment procedure

Follow-up assessments of the experiments were

made using two time intervals. The first interval

denoted the time required to receive returned data after

a header frame was sent; this transmission process was

repeated 10 times to determine the average time

required, which was defined as the average network

packet return time. The second interval denoted the

time required to establish TCP connection and

simultaneously send and receive 10 header frames

(Figure 14); this value was defined as the final return

time.

4.2 Experiment Results

4.2.1 Results of Experiment 1

According to the experiment procedure detailed in

Section 3.1, this study conducted a experiment for

browsing the five webpage types, each underwent 30

Lightweight, Low-Rate Denial-of-Service Attack Prevention and Control Program for IoT Devices 883

trials. The measured time intervals were ranked in

ascending order, and the 10 middle values were

averaged to plot Figure 15 and Figure 16. The results

confirmed the effect of the number of attackers on

legitimate users’ usage experience; in particular, the

effect was strongest for high-performance webpages.

Figure 15. Average time required to send and return

network packets, with the defense mechanism used

Figure 16. Average time required to send and return

network packets for the five webpage types

4.2.2 Results for Experiment 2

Experiment 2 was performed to verify whether

introducing the defense mechanism could effectively

reduce the effect of attackers on legitimate users’ usage

experience. Similarly to Experiment 1, measurements

from the experimental trials were listed in ascending

order, and the 10 middle values were averaged to plot

Figure 17 and Figure 18. The two graphs reveal that

the defense mechanism effectively lowered the risk of

a successful attack.

Figure 17. Final network packet return time, with the

defense mechanism used

Figure 18. Final network packet return time for the

five webpage types

4.2.3 CPU Usage Comparison and Power

Consumption

Through the built-in monitor display of the

operating system, and record the usage rate of the CPU

before and after the protection and use usb Electric

current Record power(Table 4), to ensure that our

method will not cause a serious burden on the server.

According to Figure 19 and Figure 20, we know that

this protection mechanism is not It will put too much

burden on the CPU and ensure that it can run normally

on lightweight devices.

Table 4. Power consumption

Page Type
No protection

mechanism

Use protection

mechanisms

Simple 101 mA 102 mA

Static Web Page 101 mA 101 mA

Medium Performance 102 mA 103 mA

High Performance 110 mA 111 mA

Image Download 105 mA 104 mA

New query based 120 mA 120 mA

Figure 19. Experiment parameters

Figure 20. Protected CPU usage

884 Journal of Internet Technology Volume 20 (2019) No.3

5 Conclusion

Currently, the IoT is one of the most crucial

information technologies in everyday life. However,

despite the convenience of the IoT, it possesses

security issues that must be quickly addressed.

Because HTTP is one of the major transmission

methods used in IoT communication, protecting related

devices from attack-led paralysis during the

transmission process must be considered. HTTP/2 is

the latest version of HTTP and is also the first upgrade

of the 16-year-old protocol. HTTP/2 solves the

potential HOL blocking problem of HTTP/1.1 and uses

the binary transmission method to speed up

transmission effectively. In addition, HTTP/2 has

special functions such as multiplexing and stream

prioritization. However, although HTTP/2 has

numerous advantages, studies have revealed that it also

has several problems, one of which is its security.

Therefore, this study conducted a series of experiments

to explore this issue. The first experiment confirmed

the existence threats to HTTP/2 security, which have

also been identified in previous studies. Thus, the

experimental results of this study offered two major

contributions. The first is the revelation that the higher

the number of attackers, the longer the amount of time

is required for legitimate users to load webpages and

that the effect is strongest when loading high-

performance webpages. The second major contribution

is the proposed defense mechanism that was verified in

the second experiment; this mechanism can effectively

reduce the effect of attackers on the usage experience

of legitimate users.

The experimental results also demonstrated that ping

and WINDOW_UPDATE-type binary frames are

susceptible to low-rate DoS attacks. However,

WINDOW_UPDATE was not considered when

conducting the experiments in this study. Therefore,

this factor should be considered in future studies to

make the defense mechanism introduced in this study

more complete.

References

[1] E. Adi, Z. Baig, C. P. Lam, P. Hingston, Low-rate Denial-of-

service Attacks against HTTP/2 Services, 5th International

Conference on IT Convergence and Security (ICITCS), Kuala

Lumpur, Malaysia, 2015, pp. 1-5.

[2] Wikipedia, Hypertext Transfer Protocol, https://en.wikipedia.

org/wiki/Hypertext_Transfer_Protocol.

[3] D.-J. Deng, Y.-P. Lin, X. Yang, J. Zhu, Y.-B. Li, J. Luo, K.-C.

Chen, IEEE 802.11ax: Highly Efficient WLANs for

Intelligent Information Infrastructure, IEEE Communications

Magazine, Vol. 55, No. 12, pp. 52-59, December, 2017.

[4] T. Berners-Lee, R. Fielding, H. Frystyk, Hypertext Transfer

Protocol--HTTP/1.0, No. RFC 1945, May, 1996.

[5] D. J. Deng, C. H. Ke, H. H. Chen, Y. M. Huang, Contention

Window Optimization for IEEE 802.11 DCF Access Control,

IEEE Transactions on Wireless Communications, Vol. 7, No. 12,

pp. 5129-5135, December, 2008.

[6] R. Fielding, J. Gettys, J. Mogul, H. Frystyk, L. Masinter, P.

Leach, T. Berners-Lee, Hypertext Transfer Protocol--

HTTP/1.1, No. RFC 2616, June, 1999.

[7] S. Chowdhury, V. Sapra, A. Hindle, Is HTTP/2 More Energy

Efficient than HTTP/1.1 for Mobile Users?, PeerJ PrePrints,

December, August, 2015.

[8] I. Grigorik, Making the Web Faster with HTTP 2.0,

Communications of the ACM, Vol. 56, No. 12, pp. 42-49,

December, 2013.

[9] M. Varvello, K. Schomp, D. Naylor, J. Blackburn, A.

Finamore, K. Papagiannaki, To HTTP/2, or Not To HTTP/2,

That Is The Question, Networking and Internet Architecture,

July, 2015.

[10] M. Belshe, M. Thomson, R. Peon., Hypertext transfer

protocol version 2 (http/2), No. RFC 7540, May, 2015.

[11] R. Peon, H. Ruellan, HPACK: Header Compression for

HTTP/2. No. RFC 7541. May, 2015.

[12] A. Kuzmanovic, E. W. Knightly, Low-rate TCP-targeted

Denial of Service Attacks: The Shrew vs. the Mice and

Elephants, Proceedings of the 2003 Conference on

Applications, Technologies, Architectures, and Protocols for

Computer Communications, Karlsruhe, Germany, 2003, pp.

75-86.

[13] Y. Zhang, Z. M. Mao, J. Wang. Low-Rate TCP-Targeted DoS

Attack Disrupts Internet Routing, NDSS, February, 2007.

[14] Y. Xiang, K Li, W Zhou. Low-rate DDoS Attacks Detection

and Traceback by Using New Information Metrics, IEEE

Transactions on Information Forensics and Security 6.2, pp.

426-437, January, 2011

[15] D. Namiot, M. Sneps-Sneppe, The Physical Web in Smart

Cities, 2015 Advances in Wireless and Optical

Communications (RTUWO), Riga, Latvia, 2015, pp. 46-49.

Biographies

Chi-Che Wu currently a Ph.D.

student in the Department of Electrical

Engineering of National Kaohsiung

University of Sciences and

Technology. His research interests

include the mobile and cloud

computing, computer network,

algorithm.

Rung-Shiang Cheng received the M.S.

degree in Computer Science and

Information Engineering from

National Cheng Kung University, and

the Ph.D. degree in Electrical

Engineering from National Cheng

Kung University in 2001 and 2008, respectively. He

was an assistant professor and an associate professor in

2008 and 2011, respectively. Then he became a

Lightweight, Low-Rate Denial-of-Service Attack Prevention and Control Program for IoT Devices 885

professor in December 2017. He joined the Overseas

Chinese University as a Professor and Chair in the

Department of Information Technology in August

2018. He has published over 64 referred journal and

conference papers in wireless and mobile

communication protocols. His research interests

include network simulation and performance analysis,

wireless communications, and computer networks.

Chiung-Wen Hsu is an associate

professor in the Department of

Information Management at National

Kaohsiung University of Science and

Technology, Taiwan. She received her

Ph.D. in management information

systems from the Sun Yat-sen

University in 2007. Her research interests relate to the

domains of cognitive decision science, human

computer interaction, electronic commerce, and

technology adoption.

Li-Wei Wu is a Professor in the

Department of International Business,

Tunghai University. He received his

Doctoral degree in Business

Administration from the National

Cheng Kung University. His main

research areas include Services

Marketing, Relationship Marketing and Internet

Marketing. His research papers have been published in

Journal of Management, Management Review, NTU

Management Review, Sun Yat-Sen Management

Review, International Journal of Commerce and

Strategy, Tunghai Management Review, Asia Pacific

Management Review, Journal of e-Business, Journal of

Financial Services Marketing, Psychology &

Marketing, Managing Service Quality, Journal of

Services Marketing, Journal of Business and Industrial

Marketing, Journal of Business Research, Management

Decision, and others.

886 Journal of Internet Technology Volume 20 (2019) No.3

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (Japan Color 2001 Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJDFFile false
 /CreateJobTicket true
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHT <FEFF005B683964DA300C005000440046002800310032003000300064007000690029300D005D0020>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
 <<
 /AddBleedMarks true
 /AddColorBars false
 /AddCropMarks true
 /AddPageInfo true
 /AddRegMarks false
 /BleedOffset [
 8.503940
 8.503940
 8.503940
 8.503940
]
 /ConvertColors /NoConversion
 /DestinationProfileName (sRGB IEC61966-2.1)
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /ClipComplexRegions true
 /ConvertStrokesToOutlines false
 /ConvertTextToOutlines false
 /GradientResolution 400
 /LineArtTextResolution 1200
 /PresetName <FEFF005B9AD889E367905EA6005D>
 /PresetSelector /HighResolution
 /RasterVectorBalance 1
 >>
 /FormElements true
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MarksOffset 0
 /MarksWeight 0.283460
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PageMarksFile /JapaneseWithCircle
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [1200 1200]
 /PageSize [612.000 792.000]
>> setpagedevice

