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Abstract 

In this paper we present the conbination of deep 

learning and Support Vector Machine applied on the 

recognition of hyperspectal images. Hyperspectral image 

recognition is an essential problem in the practical 

hyperspectral imagery system. While deep learning is 

capable of reproducing feature vectors with great 

dimensions out of original data, it leads to great time cost 

and the Hugh phoenomenon. Such nonlinear problem is 

regarded as obstacles and kernel method appears to be a 

promising way to solve it. The performance of kernel-

based learning system is influenced by the choices of 

kernel function and parameter greatly. We present the 

kernel learning method termed Support Vector Machine 

(SVM) applied on feature vectors supplied by deep 

learning upon hyperspectral image. The learning system 

is improved by adjusting the parameters and kernel 

functions to the data structure for improving performance 

on solving complex tasks. Experimental results validate 

the feasibility of the proposed methods. 
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1 Introduction 

In recent decades, hyperspectral imageris have 

exibited great potential capability in remote sensing 

including target detection technology and spectral 

imaging technology. Among all hyperspectral 

applications, recognition various land coverings have 

been one of our essential concerns, which benefits 

from the great amount of spatial and spectral 

information, compared to other images. However, such 

amount of high spectral dimension leads to high 

dimension feature vectors which create onstacles in 

applying traditional image classification algorithms [1]. 

The Hughes phenomenon may come into being during 

classification procedures if training samples are 

outnumbered which happens a lot [2]. 

The main procedure of the hyperspectral image 

recognition can be divided into two parts: extracting 

essential features from enormous bands and designing 

suitable classifiers for significant classification 

accuracies. Unfortunately, the huge data size of the 

hyperspectral image is not only bad for detecting 

valuable information but also increases the difficulties 

of classifiers construction. These problems, coupled 

with other disadvantages such as the overfitting of 

classifiers caused by the noise, will seriously influence 

the classification performance [2]. 

In general, there are three categories of HSI spectral-

spatial classifiers. First, many spectral-spatial 

classifications extract spatial and spectral features from 

HSI before performing classification. Spatial features 

based on morphological filters [3-6] are widely used in 

HSI classification; for example, Ghamisi et al. exploit 

spatial information using extended multi-attribute 

profiles (EMAPs) [7]. In order to use spatial features, 

some researches extract spatial features and spectral 

features, then use spatial and spectral information in a 

concatenation strategy; However, all those spatial 

features are handcrafts, which demanded human 

knowledge. Furthermore, more features mean higher 

dimensionality and make HSI classification a more 

time-consuming task [8]. 

Second, some spectral-spatial classifications take 

spatial information into the classifier during 

classification. Simultaneous orthogonal matching 

pursuit (SOMP) and simultaneous subspace pursuit 

(SSP) [9] incorporate the spatial correlation between 

neighboring samples through a classifier based on joint 

sparsity representation. This kind of methods gives 

neighboring samples the right of decision and can 

improve classification [8]. 

Third, several classification methods attempt to use 

spatial dependencies after classification in a decision 

rule or by spatial regularization. Tarabalka [10] 

proposed a spectral-spatial classification scheme based 

on the pixel-wise SVM classification, followed by 
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majority voting within the watershed regions. All those 

spectral-spatial classifications significantly improve 

classification results and can be used in succession [8]. 

Deep learning using neural networks have presented 

state-of-the-art performances in a wide range of tasks. 

A great many of the tasks use the softmax activation 

function for classification. Support vector machine is 

an widely used alternative to softmax for classification. 

Using SVMs in combination with convolutional nets 

have been proposed in the past as part of a multistage 

process. In particular, a deep convolutional net is first 

trained using supervised/unsupervised objectives to 

learn good invariant hidden latent representations. The 

corresponding hidden variables of data samples are 

then treated as input and fed into SVMs. 

In this paper, we provide a solution to object 

classification on hyperspectral image using SVM 

combined deep learning, the following content is 

divided into 5 parts: related works; proposed method; 

experiment and result; and conclusion. 

2 Related Works 

Recently, fully-connected and convolutional neural 

networks have been trained to achieve state-of-the-art 

performance on a wide variety of tasks such as speech 

recognition, image classification, natural language 

processing, and bioinformatics. For classification tasks, 

most of these “deep learning” models employ the 

softmax activation function for prediction and 

minimize cross-entropy loss [11]. Support vector 

machine is an widely used alternative to softmax for 

classification [12]. Using SVMs (especially linear) in 

combination with convolutional nets have been 

proposed in the past as part of a multistage process. In 

particular, a deep convolutional net is first trained 

using supervised/unsupervised objectives to learn good 

invariant hidden latent representations [11]. The 

corresponding hidden variables of data samples are 

then treated as input and fed into linear (or kernel) 

SVMs [13]. Other papers have also proposed similar 

models but with joint training of weights at lower 

layers [14] 

SVM is a kernel based classifier consisting in 

projecting data in a high dimensionality space by 

means of non-linear mapping function Φ and aiming at 

determining the optimal separator hyperplane by 

margin maximization. SVM is a supervised classifier. 

It has been proposed first for binary classification [15]. 

In Yichuan Tang’s paper, they demonstrate a small but 

consistent advantage of replacing the soft-max layer 

with a linear support vector machine [11]. In Rafika 

Ben Salem’s work, they proposed method exploited the 

performance of support vector machine (SVM) in the 

processing of data with high dimensionality. In their 

work, they employed all spectral information and two 

different spatial features which are Extended Multi-

Attribute Profile (EMAP) and the mean of 

neighborhood pixels. Camps-Valls and al. [16] have 

investigated the combination of spectral and spatial 

kernels to get an accurate classification of 

hyperspectral images. Fauvel and al. [17] have 

registered a significant improvement according to the 

characterization of each pixel by a stocked vector that 

concatenate spectral and contextual information 

extracted by Morphological Profiles (MP). Kang and al. 

[18] have exploited the performance of edge-

preserving filters to develop an accurate spectral-

spatial classification outperforming the classification 

without filtering. Huang and al. [19] have proposed a 

multi-feature model aiming at constructing a SVM set 

combining multiple spectral and spatial features. 

The spectrum data in database is collected in 

advance, so it has inconsistency between the spectrums 

with the data collection. The inconsistency can be 

considered the nonlinear changing. The relationships of 

between spectral curves are the classical nonlinear 

relationship. So the classification is the nonlinear and 

complex classification problem. Traditional classification 

methods are not effective to hyperspectral sensing data, 

among these machine learning methods kernel learning 

is a feasible and effective nonlinear classifier methods 

on hyperspectral sensing data. Kernel-based machine 

learning, which solves the problem of linear learning 

using kernel trick, is one important preprocessing 

method of hyperspectral sensing data. Recently, many 

linear methods are kernelized. For example, Linear 

Discriminant Analysis (LDA) and Principal Component 

Analysis (PCA) [20-22] are kernelized to Kernel PCA 

(KPCA) and Kernel Discriminant Analysis (KDA) [23], 

respectively. The performances of these linear methods 

are improved because the kernel method is used to 

characterize the complicated nonlinear relationships. 

Researchers are developing the kernel learning 

methods. Baudat and Anouar [24], Liang and Shi [25], 

Lu [26], Chen [27] and Wang [28] developed a series 

of improved KDA methods. Some other researchers 

presented the alternative framework of KLPP to 

develop a framework of KPCA+LPP [29-31] for image 

recognition, radar target recognition and other 

researchers improved LPP with kernels [32-36]. 

Researchers optimized the parameters of kernel 

function to improve kernel-based learning [27, 33, 37]. 

These methods select the optimal kernel parameter 

from a set of discrete values, but the geometry 

structure of data distribution in the kernel-based 

mapping space is not changed. Xiong proposed a data-

dependent kernel machine learning [34] and Amari 

presented the support vector machine classifier by 

modifying the kernel function [20]. In the previous 

works [27, 34], the authors presented data-dependent 

kernel for face recognition. Multiple kernel learning 

methods are developed to solve the kernel model 

selection problems [38-41]. In the work of Lingping 

Kong [42-43], their study in the Hierarchichal network 

and Genetic Algorithm have been inspiring for the 
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design of our own neural network and our experiment. 

3 Proposed Method 

3.1 Motivation and Contribution 

Deep learning based methods are widely used in 

machine learning. Deep learning learns hierarchical 

representation, and the higher layer represents 

increasingly abstract concepts and is increasingly 

invariant to transformations and scales [8]. 

For classification problems using deep learning 

techniques, it is standard to use the softmax or 1-of-K 

encoding at the top. For example, given 10 possible 

classes, the softmax layer has 10 nodes denoted by 
i
p , 

where i = 1, ..., 10. 
i
p  specifies a discrete probability 

distribution, therefore, 
10

1
i

i

p =∑ .  

Let h be the activation of the penultimate layer 

nodes, W is the weight connecting the penultimate 

layer to the softmax layer, the total input into a softmax 

layer, given by α , is 
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The predicted class i would be 
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To achieve a better result, we fused the SVM 

method as an advanced classifier. SVM Methods are 

supervised learning models with associated learning 

algorithms that analyse data and recognize patterns and 

are used for classification and regression analysis. The 

basic SVM takes a set of input features and predicts, 

for each given input, the possible class form, making it 

a nonprobabilistic binary linear classifier. 

Given a training dataset 
1 1 2 2

{( , ), ( , ), ...,( , )}
n n

x y x y x y  

where 
1
x R∈  and 

1
y  is either 1 or −1 indicating the 

class to which the point 
1
x  belongs, let 

1 2
[ , , ..., ]

T

n
x x x x= . The construction of the hyperplane 

for a linearly separable problem is 0
T

w x b+ = , where 

w is the normal vector to the hyperplane and the 

parameter / || ||b w  determines the offset of the 

hyperplane from the origin along the normal vector w. 

Thus, the margin between the hyperplane and the 

nearest point is maximized and can be posed as the 

following problem: 

 
, ,

1

1
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2

n

T

w b i

i

w w Cξ ξ
=

+ ∑  (4) 

Subject to ( ) 1 ,T

i i i
y w x b ξ+ ≥ −  i = 1, 2, ..., n, 0

i
ξ ≥  

where C is a user-defined constant as the penalty 

parameter of the error term. 

In machine learning, one-class classification, also 

known as unary classification, tries to identify objects 

of a specific class amongst all objects, by learning 

from a training set containing only the objects of that 

class. This is different from and more difficult than the 

traditional classification problem, which tries to 

distinguish between two or more classes with the 

training set containing objects from all the classes. 

One-class SVM is an unsupervised algorithm that 

learns a decision function for novelty detection: 

classifying new data as similar or different to the 

training set. 

Most deep learning methods for classification using 

fully connected layers and convolutional layers have 

used softmax layer objective to learn the lower level 

parameters. In this paper, we substitute softmax with 

single-class SVM as classifier. Single-class SVM takes 

the output of the third layer of the backpropogate 

procedure of deep learning as input which are vectors 

with 2000 dimensions. It is proved that SVM combined 

deep learning (DLSVM) is capable of recognize 

materials better than using deep learnning only. 

3.2 Steps and Procedure 

Based on our work flow design in Figure 1, our first 

procedure is to delete some noise band in order to 

improve the accuracy. Secondly, in virtue of the lack of 

pixels of some materials, we eliminated two kinds of 

materials from our experiment. 

Finishing the above steps, we have obtained 

sufficient high-quality data to begin recognition. Firstly, 

we utilize deep learning transforming original data 

vectors into vectors of 2000 dimentions; then we 

divide the vectors of each material into training 

samples and test samples according to a certain ratio; 

finally, the vectors are imported into single-class SVM 

for recognition and we can achieve its accuracy. 

3.3 Discussion 

Through such procedure, we managed to take 

advantage of the neural network to obtain ten times the 

amount of feature value than original ones while 

combining it with SVM for its ability of classification. 

The previous process dig into the hidden pattern of 

different materials making it easier to conduct 

classification at the risk of Hughes danger which can 

be avoided by applying SVM that makes high 

dimensional vector classification possible. 
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Figure 1. Work flow of SVM combined deep learning 

on hyperspectral image 

4 Experiment and Result 

4.1 Experiment Sighting and Database 

Indian Pines dataset is collected under various 

spectral and spatial resolutions. The spetral curves 

denote the different remote sensing environments with 

Airborne platform. The data cube have 224 bands of 

spectral resolution through 0.4-2.5μ m range and it has 

the spatial resolution of 20m per pixel. We removed 

the noisy and water-vapor absorption bands and 200 

bands of images are used in the experiments. The 

whole scene consists of 145×145 pixels and 16 classes 

of interested objects with the size ranging from 20 to 

2468 pixels, 9 classes are used in the experiments. One 

example is shown in Figure 2. 

The hyperspectral unmixing algorithms proposed in 

this work have been tested using the public domain 

Indian Pines hyper-spectral dataset which has been 

previously used in many different studies. This image 

was obtained from the AVIRIS imaging spectrometer 

at Northern Indiana on June 12, 1992 from a NASA 

ER2 flight at high altitude with ground pixel resolution 

of 17 meters. The dataset comprises 145*145 pixels 

and 220 bands of sensor radiance without atmospheric 

correction. It contains two thirds of agriculture, and 

one third of forest, two highways, aril lane and some 

houses. Ground truth determines sixteen different 

classes. Water absorption bands (104-108, 150-163 and 

220) were removed, obtaining a 200 band spectrum at 

each pixel. Figure 3 indicates the distribution of 

different kinds of materials on Indian Pines and Table 

1. records the amount of samples of different materials. 

 

(a) Three band false color composite 

 

(b) Spectral signatures 

Figure 2. One example of Indian Pines data 

 

Figure 3. Indian Pines 
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Table 1. Groundtruth classes for the Indian Pines and 

their sample numbers 

Num Class Samples 

1 Alfalfa 46 

2 Corn-notill 1428 

3 Corn-mintill 830 

4 Corn 237 

5 Grass-pasture 483 

6 Grass-trees 730 

7 Grass-pasture-mowed 28 

8 Hay-windrowed 478 

9 Oats 20 

10 Soybean-notill 972 

11 Soybean-mintill 2455 

12 Soybean-clean 593 

13 Wheat 205 

14 Woods 1265 

15 Buildings-Grass-Trees-Drives 386 

16 Stone-Steel-Towers 93 

4.2 Algorithm Evaluaiton 

The cross-validation method is applied to select the 

procedure parameters. The polynomial kernel and 

Gaussian kernel are chosen as the basic kernels. In 

different application systems, we can choose the type 

of kernel functions of the offline training system. We 

implement the optimized multi-kernel learning on 

Indian Pines dataset and AVIRIS Salinas Dataset, 

compared with Support Vector Classifier (SVC), 

Kernel Sparse Representation Classifier (KSRC), SVM 

[44], RMKL-SVM [45] and POL-KSRC [46]. The 

classification results denote that the feasibility in the 

intelligent hyperspectral imaging instrument.  

Firstly, we implement some experiments to evaluate 

the proposed multiple quasiconformal kernel based on 

Support Vector Classifier (SVC), Kernel Sparse 

Representation Classifier (KSRC) on data 

classification. We test the single kernel and 

quasiconformal multikernels for kernel classifiers on 

SVC and KSRC, that is, PK-SVC: Polynomial Kernel-

SVC, GK-SVC:Gaussian Kernel-SVC, QMK-SVC: 

Quasiconformal Multi-kernels Based SVC, PK- KSRC: 

Polynomial Kernel- KSRC, GK- KSRC: Gaussian 

Kernel- KSRC, QMK- KSRC: Quasiconformal Multi-

kernels Based KSRC. The experimental results are 

shown in Figure 4. Compared with the truth, QMK-

SVC perofor better than GK-SVC, and QMK-KSRC 

perofor better than GK-KSRC. So the proposed 

method is more fitted to the hyperspectral sensing data 

analysis in the intelligent hyperspectral imaging 

instrument. In the practical applications, the multiple 

bands of hyperspectral data are changed to the single 

band of image. Thus, for the intelligent hyperspectral 

instrument the multiple bands of sensing data are 

changed to the single data. 

    

(a) Ground truth (b) GK-SVC (c) QMK-SVC 

     

(d) PK- KSRC (e) GK- KSRC (f) QMK- KSRC

Figure 4. Performance basic kernel and optimized 

kernel on classification on Indian Pines data 

For the quantitative comparison, we implement 

some experiments using the averaged accuracy to 

evaluate the performance of the algorithms. The 

experimental results are shown in Table 2, Table 3 and 

Table 4. For the SVC, QMK-SVC performs better than 

PK-SVC and GK-SVC. For the KSRC, QMK-KSRC 

outperforms PK-KSRC and GK-KSRC. On the 

multiple kernels, Gaussian kernel and Polynomial 

kernel are as the basic kernels for the combination. The 

classification results denote that the feasibility in the 

intelligent hyperspectral imaging instrument. And in 

the practical application the multiple bands of 

hyperspectral data are changed to the single band of 

image. Thus, for the intelligent hyperspectral 

instrument the multiple bands of sensing data are 

changed to the single data. 

Table 2. Performance of SVC on the Indian Pines data 

(%) 

Class 1 2 3 4 5 6 

PK-SVC 49.3 58.7 96.4 39.2 65.8 93.6 

GK-SVC 78.0 73.6 99.1 76.9 80.5 97.1 

Class 7 8 9 10 11 12 

PK-SVC 62.9 85.3 100 65.8 72.3 58.4 

GK-SVC 79.7 89.8 99.7 83.6 86.0 80.7 

Table 3. Performance of KSRC on the Indian Pines 

data (%) 

Class 1 2 3 4 5 6 

PK-KSRC 51.8 59.6 96.1 49.1 78.5 93.8

GK-KSRC 77.8 76.4 99.1 75.5 79.0 97.4

Class 7 8 9 10 11 12 

PK-KSRC 62.8 84.7 100 67.5 75.2 60.7

GK-KSRC 82.7 88.7 100 83.9 86.3 81.1
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Table 4. Performance on the Pavia University data (%) 

Class 
POL-

SVM 

RBF-

SVM 

SMKL-

SVM 

RMKL

-SVM

POL -

KSRC 

RBF -

KSRC 

p1 83.97 84.46 84.25 88.24 84.94 85.43 

p2 85.25 91.42 90.26 93.14 86.23 92.46 

p3 70.24 74.15 74.67 78.24 71.25 75.17 

p4 87.25 90.42 90.26 89.26 88.26 91.42 

p5 96.25 97.67 97.25 97.27 97.23 98.67 

p6 70.45 78.78 77.48 84.24 71.46 79.71 

p7 69.35 71.15 70.16 76.22 69.91 72.17 

p8 76.24 81.53 80.25 82.95 77.26 82.51 

p9 98.57 99.46 99.26 99.22 98.86 99.98 

 

The experimental results on hyperspectral image 

databases show that the optimized multiple kernels-

based machine learning achieves better performance 

than those of other methods on the hyperspectral data 

analysis for the intelligent hyperspectral imaging 

instrument. The kernel-based learning machine is to 

solve the data mapping through the selection of 

function and parameters of kernels. The optimized 

multiple kernels are combined to more precisely 

characterize the hyperspectral sensing data from the 

intelligent hyperspectral instrument for improving the 

performance of solving complex visual learning tasks. 

The experimental results show that the proposed 

framework outperforms others on hyperspectral data 

analysis for the intelligent hyperspectral instrument. In 

the practical application the multiple bands of 

hyperspectral data are changed to the single band of 

image. Thus, for the intelligent hyperspectral 

instrument the multiple bands of sensing data are 

changed to the single data. The classification results 

denote that the feasibility in the intelligent 

hyperspectral imaging instrument. The performance of 

the practical application is evaluated with the 

classification result. In the system, the cross-validation 

method is applied to select the procedure parameters, 

and the polynomial kernel and Gaussian kernel are 

chosen as the basic kernels. The type of kernel function 

in the offline training system is chosen through cross-

validation method. 

4.3 Perfomance Evaluation 

In the part of deep learning, the iteration times is 

2000; the nodes of the tree layer are 500, 500, 2000. In 

the SVM part we use the LIBSVM to solve this 

optimization problem and the parameters applied are 

default values. Due to the amount of the data and the 

effectiveness of the method, the ratio between training 

samples and test samples within the class is set up as 

10:34. 

We have conducted experiments on Indian Pines 

using deep learning solely with iteration number of 1, 

10, 200, 2000, 3000, 4000. The Accuracy have reached 

the top when the iteration number is 2000 which is 

45.25%. Considering that deep learning’s goal is to 

classify all the materials at the same time, it is 

understandable that the accuracy is hard to be 

improved. However, our goal is to recognize different 

kinds of materials from hyperspectral images, it is 

effectively unnecessary to classify them all at the same 

time. In other words, single classification is capable of 

satisfying our requirement. 

The recognition accuracy result of 14 classes of 

materials using deep learning and single-class SVM are 

persented in Figure 5. 
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Figure 5. Recognition accuracy of single-class SVM 

Some conclusions can be obtained from Figure 6, 

First, DLSVM perform better result than those reported 

previously: simple Euclidean and LOOC-based method 

[47-48]. The average accuracy have reached 83.99%. 

Comparing to the accuracy of deep learning, DLSVM 

have accomplished a great improvement. 
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Figure 6. Recognition accuracy of different classifiers 

4.4 Discussion 

Judging from Figure 5, the performance of our 

method varies upon different materials. However, most 
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materaials reached accuracy higher than 80%, few 

reached higher than 95% using training data against 

testing data at the ratio of 29.4%. Proving our method 

to be an effective way of classifying hyperspectral 

images and a promising algorithm for further work. 

5 Conclusion 

In conclusion, we have shown that DLSVM works 

better than softmax on standard dataset Indian Pines 

and the result exhibits the efficiency of DLSVM upon 

recognition of hyperspectral images. Besides, the 

substitution from from softmax to SVM appears to be 

smooth and steady. Further research could be focused 

on multiclass SVM formulations and other 

hyperspectral images. 
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