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Abstract 

Based on the ideas [The Newton-parallel matrix 

multisplitting algorithms for solving systems of nonlinear 

equations, Journal of Sichuan Normal University (Natural 

Science), 1995, 18(4): 51-55] and [Global relaxed non-

stationary multisplitting multi-parameters methods, 

International Journal of Computer Mathematics, 2008, 

85(2): 211-224], this paper extends global relaxed 

multisplitting TOR iterative method for solving linear 

systems to that for nonlinear systems and presents 

Newton-relaxed non-stationary multisplitting multi-

parameters USAOR method for nonlinear equations. 

Moreover, we also study the convergence of our methods, 

set up the convergence theorems and estimate the rate of 

convergence.  

Keywords: Nonlinear equations, Matrix multisplitting 

method, Global relaxed multisplitting 

multiparameters method, H-matrix 

1 Introduction 

Consider the following nonlinear equations [36-37] 

 ( ) 0, :
N N

F x F R R= Ω ⊂ →  (1) 

where F  is nonlinear mapping, Ω  is any bounded set 

on N
R , and x  is a real vector on Ω .  

With the rapid development of technology, solution 

of nonlinear equation is more and more important. 

Nonlinear problems are of interest to engineers, 

physicists, mathematicians, and many other scientists 

because most systems are inherently nonlinear in 

nature. The application of scientific computing has 

been widely used in all walks of life, such as the 

analysis images of meteorological data, the shape 

design of aircraft, cars and ships, and the scientific 

calculation of high-tech research. Therefore, it is often 

necessary to find the root of the nonlinear equations (1). 

Many scholars have done a lot of research work on the 

numerical solution of the smooth nonlinear equations 

(1), and a series of efficient calculation methods have 

been obtained, which can be seen in [2-3, 6, 9-10, 13, 

17, 22]. Even so, the algorithm design and theoretical 

analysis for the nonlinear equations are still far less 

mature and profound than the linear equations. For 

most iterative method for solving nonlinear equations, 

the structural idea comes from the iterative method of 

solving linear equations. The concept of multisplitting 

for the parallel solution of linear system was 

introduced by O’Leary and White [35] and further 

studied by many other authors [2-13, 15-17, 22-23, 26, 

28-31, 34, 38, 40-50]. Among them, Prof. Bai, Huang 

and Gu et al. [2-13, 29-31] did great work. In 1993, Bai 

and Wang [2] set up a general framework of parallel 

matrix mullisplitting relaxation methods for solving 

large scale system of linear equations, investigated the 

convergence properties of this framework and gave 

several sufficient conditions. In 1994, Bai [3] gave 

comparisons of the convergence and divergence rates 

of the parallel matrix multisplitting iteration methods 

when the coefficient matrices are an L -matrix. In [31], 

Huang et al. further studied GRPM-style methods and 

gave comparisons of convergent and divergent rates for 

an H -matrix. In 1995, Bai [4-5] further discussed the 

convergence and divergence rates for a class of 

generalized matrix multisplitting relaxation methods in 

a detailed manner and revealed the inner links between 

two known frameworks of multisplitting relaxation 

methods. In 1996, Bai et al. [6-7] constructed various 

synchronous and asynchronous parallel matrix 

multisplitting iterative methods suitable to the SIMD 

and MIMD multiprocessor systems and set up a class 

of parallel nonlinear AOR method in the sense of 

matrix multi-splitting for solving the large scale system 

of nonlinear equations. In [12-13, 34], Bai et al. studied 

the nonstationary multisplitting iteration methods and 

the nonstationary multisplitting two-stage iteration 

methods when the coefficient matrix is an H -matrix 

or a positive definite matrix or a hermitian positive 
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definite matrix. In [29-30], Gu et al. further studied 

relaxed nonstationary two-stage matrix multisplitting 

methods and the corresponding asynchronous schemes. 

In [16], Cao studied the convergence of nested 

stationary iterative methods when the coefficient 

matrix is monotone including H -matrices. In [26], 

Evans, Wang and Bai proposed a class of matrix 

multisplitting multiparameter relaxation methods 

including the matrixmultisplitting SOR method, the 

extrapolated matrix multisplitting AOR method, the 

matrix multisplitting SSOR and SAOR methods as its 

special cases for solving large nonsingular systems of 

equations and established the convergence theory of 

this new class of methods under the condition that the 

coefficient matrix of the system of equations is an H -

matrix. In [40-41, 43-44, 46-47], Wang et al. further 

studied the convergence of relaxed parallel 

multisplitting AOR, USAOR and SSOR methods for 

an H -matrix. In [22-23, 45], Chang and Zhang et al. 

further proposed the parallel multisplitting TOR 

method for solving a large nonsingular systems of 

linear equations when the coefficient matrices are an 

H -matrix and established the convergence theorem of 

this new algorithm. Then, Zhang et al. [48] further 

studied the parallel multisplitting TOR method and 

obtained the better convergence results. In [17, 38], 

Cao et al. analyzed the convergence of two different 

variants of relaxed multisplitting methods with 

different weighting schemes when A is a monotone 

matrix or an M -matrix. In [49], Zhang et al. studied 

the non-stationary matrix multisplitting 

multiparameters methods for almost linear systems 

when the matrix A  is a square nonsingular H -matrix. 

Using the similar ideas, Zhang et al. [50] analyzed 

modulus-based synchronous multisplitting multi-

parameters methods for linear complementarity 

problems when the system matrix is an H
+
-matrix. In 

[33], Li extended the corresponding methods to the 

solution of nonlinear equations, and constructed and 

the Newton-parallel multisplitting algorithms. On the 

basis, this paper extends relaxed parallel multisplitting 

USAOR iterative method for solving linear systems to 

that for nonlinear systems. Moreover, we study the 

convergence of our methods, set up the convergence 

theorems and estimate the rate of convergence. When 

choosing the approximately optimal relaxed parameters, 

Newton-relaxed parallel multisplitting multi-

parameters USAOR iterative methods presented in this 

paper for nonlinear systems will have faster 

convergence rate than other methods. 

The Newton method for solving equations (1) is as 

follows: 

 1 ' 1( ) ( ), 0,1,...,k k k k
x x F x F x k

+ −

= − =  (2) 

The corresponding Newton equations are 

 ' '( ) ( ) ( ).k k k k
F x x F x x F x= −  (3) 

For convenience, define 

 ' '( ) ( ), ( ) ( ) ( ),k k k k k k
A x F x b x F x x F x= = −  (4) 

Then the formula (3) can be expressed as 

 ( ) ( ), 0,1...k k
A x x b x k= =  (5) 

On the basic knowledge of nonlinear equations (1), 

please refer to the literature [15, 30]. If the case of 

relaxed matrix multisplitting is applied, then we can 

obtain Newton-relaxed parallel multisplitting iterative 

method, abbreviated as NRPM iterative method. 

 

 

Algorithm 1. (Relaxed Parallel Multisplitting Method) 

Given the initial vector (0)
,

N
x R∈  

For 0,1,...,m =  repeat (I) and (II), until convergence. 

(I) For 1,2,..., ,t α=  (parallel) solving :
t
y  

( ) ( ) ( )k k m k

t t t
M x y N x x b x= + (Local relaxation) (6) 

(II) Computing 

1

1

(1 )m m

t t

t

x E y x
α

γ γ
+

=

= ∑ + − (System relaxation) (7) 

 

Remark 1.1. If a diagonal element of the 
t

E  is zero, 

the corresponding component of the 
t
y  does not need 

be calculated, it greatly saves the amount of work. 

Therefore, this shows that 
t

E  also play a role in the 

allocation of the workload of the processor. We should 

choose 
t

E  to load the balance between the processors 

as far as possible, thereby reduce the cost of waiting 

for synchronization. Obviously, Algorithm 1 has the 

nature of parallelism. 

Lemma 1.1. Let A  be an H -matrix, then A  is 

nonsingular, and 1 1| | .A A
− −

≤ 〈 〉  

Lemma 1.2. Let A  and B  be M -matrices. If ,A B≤  
1 1

.then A B
− −

≥  

Lemma 1.3. Let A  be an H -matrix, and ,A D B= −  
1( ), (| | | |) 1.D diag A  then D Bρ

−

= <  Moreover, D is 

nonsingular. 

2 Newton-relaxed Multisplitting USAOR 

Method 

In order to improve the convergence speed, in this 

section we will design the Newton-relaxed parallel 

multisplitting USAOR Method. From multisplitting 

iteration scheme, we have 

 ( ) ( ) ( ),k k k
H x I G x A x= −   

Then 

 1 ( ( ) ( )) ( ) ( ), 0,1,2,...,m k k m k k
x I G x A x x G x b x m

+

= − + =   
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To extense the iterative scheme, we will introduce 

 1

1

( ) ( ) , ( ) ( ) ( ),k k k k k

t t
t

G x E M x H x I G x A x

α

−

=

= ∑ = −   

The corresponding iterative scheme is 

 1 ( ) ( ) ( ), 0,1,2,...,m k m k k
x H x x G x b x k

+

= + =  (8) 

Define 

 ( ) ( ) ( ) ( ), 1,2,..., ,k k k k

t t
A x D x L x U x t α= − − =   

where ( )kD x ( ( )), ( )k k

t
diag A x L x=  is strictly lower 

triangular matrix, ( )k
t

U x  is strictly upper triangular 

matrix, satisfying 

 ( ) ( ) ( ) ( )k k k k

t t
U x D x L x A x= − −   

Then ( ( ) ( ), ( ), )k k k

t t t
D x L x U x E−  is a multisplitting of 

( ).k
A x  

 

 

Algorithm 2. (Relaxed Non-stationary Parallel 

Multisplitting Method) 

Given the initial vector (0)
,

N
x R∈  

For 0,1,...,m =  repeat (I) and (II), until convergence. 

For 1,2,..., ,t α=  Define (0)
.

m

t
y x=  

(I) For 1,2,..., ( , )i q m t=  (parallel) solving :
i

t
y  

 ( 1)( ) ( ) ( )k i k i k

t t t t i
M x y N x y b x−

= +  (9) 

(II) Computing 

 1 ( , )

1

1 )m q m t m

t t

t

x E y x
α

γ γ
+

=

= +∑ （—  (10) 

 

If applying USAOR iteration method on Algorithm 

2, we may obtain relaxed nonstationary multisplitting 

multi-parameters USAOR method, denoted as RNMM-

USAOR method, whose iteration format is as follows: 

 ( ),m m k

RNMM USAOR RNMM USAOR
x H x G b xγ

− −

= +  (11) 

where 

 (1 ) ,
RNMM USAOR

H H Iγ γ
−

= + −   

 ( , )

, ,

1

( , )q m k

t

t

H E Q P
α

η ξ α β

=

=∑   

 

( , ) 1
1

, ,

1 1

1

,

{ [ ] [ ] }

[ ]

q m k
i

RNMM USAOR t

t i

t t

G K W V R M

W V

α

β ξ η ξ α β

β ξ η α

−

−

−

= =

−

=∑ ∑
  

 

1

,

1

,

( ( ) ( )) [(1 ) ( )

( ) ( ) ( )] ,

k k k

t t t

k k

t t t t t

Q D x L x D x

L x U x V R

η ξ

ξ η ξ

ξ η

η ξ η

−

−

= − −

+ − + =

 

 

1

,

1

,

( ( ) ( ))

[(1 ) ( ) ( ) ( )

( )] .

k k

t t

k k

t t t t

k

t t

P D x U x

D x U x

L x W M

α β

β α β

β

α α β

α

−

−

= −

− + −

+ =

 (12) 

Obviously, the iterative scheme (11) converges if 

and only if ( ) 1.
RNMM USAOR

Hρ
−

<  If we approximately 

solve Newton equations (5) by using RNMM-USAOR 

method, then we can obtain Newton-relaxed non-

stationary multisplitting multi-parameters USAOR 

method, denoted as NRNMM-USAOR method, whose 

iteration format is as follows: 

(1) 1 1: [ ( ) ...... ]

( ) ( )

k k k l

NRNMM USAOR

k k

NRNMM USAOR

x x H x I

G x F x

ξ + −

−

−

= − + +

 (13) 

Based on the iterative scheme (13), when choosing 

different parameters , , , ,
k k k k

α β η ξ γ  and ( , ),q m t  we 

will obtain different iterative scheme. Please refer to 

Table 1. 

Table 1. Diffetent Newton-relaxed multisplitting 

iterative scheme 

, , , , ( , )
k k k

q m tα β η γ  Method Ref 

1 1 1 1
, , , , 1, 1α β α β  NM-USSOR this paper

1 1 2 2
, , , , 1, 1α β α β  NM-USSAOR this paper

1 1 1 1
, , , , , 1α β α β γ  NRM-USSOR this paper

1 1 2 2
, , , , , 1α β α β γ  NRM-USAOR this paper

, , , , 1, ( , )
t t t t

q m tα β α β NNMM-USSOR this paper

, , , , 1, ( , )
t t t t

q m tα β η ξ  NNMM-USAOR this paper

, , , , , ( , )
t t t t

q m tα β α β γ  NRNMM-USSOR this paper

, , , , , ( , )
t t t t

q m tα β η ξ γ NRNMM-USAOR this paper

 

Remark 2.1. NRNMM-USAOR method uses more 

relaxed factors and is the generalization of a variety of 

Newton-multisplitting iterative scheme. Moreover, 

each processor can select different parameters, so it is 

suitable for parallel computing. For NRNMM-USAOR 

method, we can choose proper 
t

E  in order to make 

each processor achieve load balance and avoid waiting 

for synchronization. Moreover, if we can select 

appropriate relaxed factors, then the convergence speed 

may be improved and solving time may be greatly 

reduced. 

3 Convergence Analysis 

Lemma 3.1. [33] Assume F is G -differentiable in 

an open neighborhood 
0

Ω ⊂Ω  of ( )intx
∗

∈ Ω , '

F is 

continuous in x∗  and ( )'

F x
∗  is nonsingular, such that 

( ) ( )'

0 1,2,...,F x t α
∗

= = ( ) ( )( ), ,
t t t

M x N x E
∗ ∗  is a 

multisplitting of ( )'

.F x
∗  If 

0
:

N N

t
M R

×

Ω →  is the 

attraction [27] of iterative scheme ,ξ ∀ positive integer 

1,l >  and ( ) ( )1
, ,

l

R x H xξ ρ∗ ∗⎡ ⎤= ⎢ ⎥⎣ ⎦
where ( )1

,R xξ ∗  is 

R -factor [27] of iterative scheme ξ  in , ( )x Gρ
∗  is the 
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spectral radius of matrix .G
 

Theorem 3.2. Assume F  is G -differentiable in an 

open neighborhood 
0

Ω ⊂Ω  of ( ) '

int ,x F
∗

∈ Ω  
'

F is 

continuous in x
∗  and ( )'

F x
∗  is nonsingular. Let 

( ) ( ) ( ) ( )'

, 1,2,...,
t t

F x D x L x U x t α= − − = is the 

decomposition of the iterative scheme (11), ( )
t
L x  is 

continuous in x
∗  and ( ) ( )( )'D x diag F x∗ ∗

=  is 

nonsingular, 
1

,
t t

t

E I E

α

=

=∑  is diagonal non-negative 

matrix. Consider Newton-relaxed non-stationary 

multisplitting Multi-parameters USAOR method 

 
( )

( ) ( )

1
1

...

, 0,1,...

l
k k k

GRNMM USAOR

k k

GRNMM USAOR

x x H x I

G x F x k

−
+

−

−

⎡ ⎤= − + +
⎢ ⎥⎣ ⎦

=
  

where ,
RNMM USAOR RNMM USAOR

H G
− −

 is defined before. If 

( ) 1
k

RNMM USAOR
H xρ

−

⎡ ⎤ <⎣ ⎦ , then x∗  is the attration [23] 

of iterative scheme 
( )1
,ξ  and 

( )( )1

1
,R xξ ∗  

( ) ,
RNMM USAOR

H xρ
∗

−

⎡ ⎤= ⎣ ⎦  where 
( )( )1

1
,R xξ ∗  is R -

factor [27] of iterative scheme (1)ξ  in .x
∗  

Proof. From hypothesis, we can find: ( )'

F x  

( ) ( ) , 1,2,..., .
t t

M x N x t α= − =  Since ( )'

,
t

F L x  is 

continuous in x∗ , then ( )
t

M x is also continuous in 

*

, 1,2,..., .x t α=  Since ( )t
L x

∗  is strictly low triangular 

matrix and ( )D x
∗  is nonsingular, then we can obtain 

that ( )t
M x

∗  is also nonsingular, 1,2,..., .t α=  It is easy 

to meet all the conditions of Lemma 3.1. By Lemma 

3.1, Theorem 3.2 is established. 

Theorem 3.3. Assume the conditions are satisfied of 

F  and x∗  in Theorem 3.2. ( ) ( ) ( ) ( )'

t t
F x D x L x U x

∗ ∗ ∗ ∗

= − −  

is H -matrix, ( ) ( ) ( )( ), , ( 1,2,..., )
t t t

D x L x U x E t α
∗ ∗ ∗

− =  

is multisplitting of ( )'

.F x
∗  Let ( ) ( )' | |F x D x

∗ ∗

〈 〉 = −  

( ) ( ) ( ) ( )| | | | | | | | .
t t
L x U x D x B x

∗ ∗ ∗ ∗

− = − If 0 ,
t t

α η< <  

2 2
,0 ,0 ,0 ,

1 1
t t t t '

β α ξ η γ
ρ ρ

≤ ≤ ≤ ≤ < <

+ +

 then x∗  is 

the attration [27] of iterative scheme 
( )1

ξ , and 

( ) ( )( ) ( )1| | | | ,D x B x Jρ ρ ρ
∗ − ∗

= =  
( )( )1

1
,R xξ ∗  

( ) ,
RNMM USAOR

H xρ
∗

−

⎡ ⎤= ⎣ ⎦ 1

max{|1 | ,|1 |'

t t t
t α

ρ α α ρ η
≤ ≤

= − + −  

}, ( , ) 1,
t

q m tη ρ+ ≥  0,1,2...,m = 1,2,... .t α=  

 

 

Proof. Since ( ) ( )| | ,
GRNMM USAOR GRNMM USAOR

H x H xρ ρ
∗ ∗

− −

⎡ ⎤ ⎡ ⎤≤⎣ ⎦ ⎣ ⎦  

we only prove that ( )| | 1
GRNMM USAOR

H xρ
∗

−

⎡ ⎤ <⎣ ⎦ , then 

we can obtain ( )GRNMM USAOR
H xρ

∗

−

⎡ ⎤
⎣ ⎦ . By Theorem 3.2 

we can see that this theorem is established.  

At first, we will prove | |H x xθ≤  

( 0,1,2.....,0 1).m θ= ≤ <  

By hypothetical conditions, we know 
* *( ) ( )

t t
D x U xβ−  

and * *( ) ( )
t t

D x L xξ−  are both H -matrix, 1,2,3.... .k α=  

By Lemma 1.1 and definition of comparison matrix, it 

is not difficult to find 

 

* * 1 * * 1

* * 1

| ( ( ) ( )) | ( ( ) ( ))

(| ( ) | | ( ) |) .

t t t t

t t

D x U x D x U x

D x U x

β β

β

− −

−

− ≤ −

= −

  

 

* * 1 * * 1

* * 1

| ( ( ) ( )) | ( ( ) ( ))

(| ( ) | | ( ) |) .

t t t t

t t

D x L x D x L x

D x L x

ξ ξ

ξ

− −

−

− ≤ −

= −

 (14) 

Case 1: when 0 , 1, 0 , 0 ,
t t t t t t

α η β α ξ η< ≤ ≤ ≤ ≤ ≤  

,

2
0

1
γ

ρ
< <

+

 Define  

1 * * * 2 *

* *

1 * * * *

1 * * *

2 * * * *

2 *

( ) | ( ) | | ( ) |, ( )

| ( ) | | ( ) | .

( ) (1 ) | ( ) | ( ) | ( ) | | ( ) |

( ) (| ( ) | | ( ) |).

( ) (1 ) | ( ) | ( ) | ( ) | | ( ) |

( ) (| (

t t t t

t t

t t t t t t t

t t

t t t t t t t

t t

M x D x U x M x

D x L x

N x D x U x L x

M x D x B x

N x D x L x U x

M x D

β

ξ

α α β α

α

η η ξ η

η

= −

= −

= − + − +

= − −

= − + − +

= −

� �

�

�

�

�

* *) | | ( ) |).x B x−

 (15) 

By equation (11), we can get 

* 1 * 1 1 *

,

1 * 1 1 * 1 * *

1 * 1 * * 1 *

( ) | ( ( )) ( )

( ( )) [( ( )) (| ( ) | | ( ) |)]

( ( )) | ( ) | ( | ( ) | | ( ) |).

t t

t t t

t t

|P x M x N x

                M x M x D x B x

                I M x D x I D x B x

α β

α

α

−

− −

− −

≤

= − −

= − −

� �

� �

�

 (16) 

Let e  denote the vector (1,1,1,.....1) .T N
e R= ∈  Since 

J  is nonnegative, the matrix T
J eeε+ has only 

positive entries and irreducible for any 0ε > . By the 

Perron-Frobenius theorem for any 0ε > , there is a 

vector 0x
ε
>  such that 

 ( ) ,T
J ee x J x x

ε ε ε ε ε
ε ρ+ = =   

where ( ) ( ).T
J ee J

ε ε
ρ ρ ε ρ= + =  Moreover, if 0ε >  

is small enough, we have 1
ε

ρ <  by continuity of the 

spectral radius. Because of 0 1,
t

α< ≤  we also have 

1 1,
t t ε

α α ρ− + <  and 1 1.
t t

α α ρ− + <  Since 
* 1( ( ))M x

−

≥�  
* 1| ( ) | ,D x

−  we have  
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* * 1 *

,

* 1 *

* 1 *

( ) | | ( ) | | ( ) |

[| ( ) | | ( ) | )]

| ( ) | | ( ) | [ ]

.

t

T

t

t t

|P x I D x D x

D x B x eee

                I D x D x I J

                I I J

α β

ε

ε

α

α

α α

−

−

−

≤ −

+

= − −

= − +

 (17) 

and  

 

* 2 * 1 *

,
| ( ) | ( ( )) | ( ) | [ ]

.

t t

t t

Q x I M x D x I J

I I J

η β ε

ε

η

η η

−

≤ − −

≤ − +

�

  

Then, we can obtain 

 * * * ( , )

, ,

1

| ( ) | ( ( ) ( )) |q m t

t

t

H x x | E Q x P x x
α

ε ξ η α β ε

=

≤ ∑   

 * * ( , )

, ,

1

[| ( ) || ( ) |]q m t

t

t

E Q x P x x
α

ξ η α β ε

=

≤∑   

 ( , )

1

[( )( )]q m t

t t t t t

t

E I I J I I J x

α

ε ε ε
η η α α

=

≤ − + − +∑   

 ( , )

1

[( )( )]q m t

t t t t t

t

E I I J I x

α

ε ε ε
η η α α ρ

=

= − + − +∑   

 ( , )

1

[( )( )]q m t

t t t t t

t

E I I x

α

ε ε ε
α α ρ η η ρ

=

= − + − +∑   

 (1 )(1 )
t t t t

x
ε ε ε

α α ρ η η ρ≤ − + − +   

 
1

( 0),x
ε

θ ε= →  (18) 

where 
1

(1 )(1 ) 1.
t t t tε ε

θ α α ρ η η ρ= − + − + <  Then, we 

have *

1
| ( ) | .H x x x

ε ε
θ≤ and * *( ( )) (| ( ) |)H x H xρ ρ≤  

1
1.θ≤ <  

By similar proving process above, we have 

*| ( ) | [| 1| (1 )]

[ (1 )]

[| 1| )][| 1| )]

RNMM USAOR t t

t t

'

H x x

| -1| x

' x

ε ε

ε ε

ε

γ γ η η ρ

γ γ α α ρ

γ γρ γ γρ
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≤ − + − + ×

+ − +

≤ − + − +

 

 

2
.x

ε
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where 
2

[| 1| )][| 1| )] 1' 'θ γ γρ γ γρ= − + − + <  and '

ρ = 

1

max{|1 | ,|1 | }.
t t t t

t α

α α ρ η η ρ
≤ ≤

− + − +  

Finally, we can obtain  
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2
| ( ) | .

RNMM USAOR
H x x x

ε ε
θ

−

≤   

and  

 * *

2
( ( )) (| ( ) |) 1.

RNMM USAOR RNMM USAOR
H x H xρ ρ θ
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≤ ≤ <   

Case 2: when 
2

1 , , 0 , 0 ,
1

t t t t t t
α η β α ξ η

ρ
< < ≤ ≤ ≤ ≤

+

 

,

2
0 ,

1
γ

ρ
< <

+
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3 * * * *

1 * * *

( ) ( 1) | ( ) | ( ) | ( ) | | ( ) |

( ) [(2 ) | ( ) | | ( ) |].

t t t t t t t

t t t

N x D x U x L x

            M x D x B x

α α β α

α α
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So 

 * 1 * 1 3 *
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−
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 1 * 1 1 * * *( ( )) { ( ) [(2 ) | ( ) | | ( ) |]}
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Since 
2
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1

t t
α η

ρ
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+

 by similar proving process 

to Case 1, we have 
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where 
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( 1 )( 1 ) 1.
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θ α α ρ η η ρ= − + − + <  Then, we 

have *

3
| ( ) | ,H x x x

ε ε
θ≤  and * *( ( )) (| ( ) |)H x H xρ ρ≤  

3
1.θ≤ <  

By similar proving process above, we have 
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4
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t t t t
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The Theorem is completed. 

4 Numerical Experiments 

In this section, we compare the previously 

established method in this paper by using the following 

example of the system of nonlinear equation (24). For 

solving nonlinear systems of the form 

 ( ) ,Ax x bφ+ =  (24) 

where n n

A R
×

∈  is a square nonsingular H -matrix, 

,

n

x b R∈  and :
n n

R Rφ →  is a nonlinear diagonal 

Mapping, i.e., the i th component 
i

φ  of φ  is a function 

Only of 
i
x , an iterative method is usually considered. 

 

8 1 0 0 0 0

1 8 1 0 0 0

0 0 0
,

0 0 0

0 0 0 1 8 1

0 0 0 0 1 8

(8,8,...,8),

n nA R

D diag

×

−⎡ ⎤
⎢ ⎥− −⎢ ⎥
⎢ ⎥

= ∈⎢ ⎥
⎢ ⎥
⎢ ⎥− −
⎢ ⎥

−⎢ ⎥⎣ ⎦

=

� � �

� � �

  

 

1

2

1

1

2

2

( 1)

1

3

3

( ) : , .

3

3

n

n

x

x

n n n

n x

n

nx

n

x e

x e

x R R b R

x e

x e

φ

−

−

−

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥= → = ∈
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦⎣ ⎦

��  

We take 2,α =  

 
1 1 2 1 2

{1,2,..., }, { , 1,..., },S m S m m n= = +  

with 
1 2
,m m  being positive integers satisfying 

2 1
1 ,m m n≤ ≤ ≤  and the particular multisplitting 

( , , ), 1,2
k k k

D L U E k− =  of the coefficient matrix 
n n

A R
×

∈ . 
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1, 1, , ,
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2 2

(1) (2)

2 1 2 1

1 1

1, 1 , 0, 1 ,

1 1
, , , ,

2 2

0, , 1, ,

j j

 if  j m  if  j m

e  if  m j m   e  if  m j m

if  m j n  if  m j n
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⎪ ⎪
⎪ ⎪
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The computations are proceeded with 
1

4
[ ],
5

n

m =  

2
[ ].
5

n

m =  Based on NRNMM-USAOR method, when 

, , 1,
t t t t

ξ β η α γ= = =  we will show the validity of 

Theorem 3.2 and Corollary 3.3 in this paper and 

compare the spectral radius of H  with Theorem 3 in 

[33]. 

The above numerical examples not only clearly 

show the validity of Theorem 3.2 and Corollary 3.3 in 

this paper, but also show that the spectral radius of the 

iterative matrix with Theorem 3.3 is smaller than that 

in [33] when the same acceleration factor is adopted. 

 

Figure 1. The eigenvalue distribution of the corresponding methods in this paper and [33] when , , ,
t t t t

ξ β η α  use 

the first three cases of Table 2, respectively. Here, 10.n =   

 

Figure 2. The eigenvalue distribution of the corresponding methods in this paper and [33] when , , ,
t t t t

ξ β η α  use 

the first three cases of Table 2, respectively. Here, 100.n =   
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Figure 3. The eigenvalue distribution of the corresponding methods in this paper and [33] when , , ,

t t t t
ξ β η α  use 

the first three cases of Table 2, respectively. Here, 500.n =   

Table 2. Comparisons of spectral radii of algorithms in this paper and [33] 

Algorithum n  
2

1 e+

 ( , )q m k  , , ,
t t t t

ξ β η α  ( )p H  

1 1 1 1
0.2, 0.4ξ β η α= = = =  

this paper 10 1.6131 1,1 
2 2 2 2

0.6, 0.9ξ β η α= = = =  
0.3748 

1 1 2 2
0.2, 0.4, 0.6, 0.9ξ η ξ η= = = =  

[33] 10 1.6131 1,1 
1 2 1 2

0α α β β= = = =  
0.6155 

1 1 1 1
0.3, 0.4ξ β η α= = = =  

this paper 10 1.6131 1,1 
2 2 2 2

0.8, 1.4ξ β η α= = = =  
0.3524 

1 1 2 2
0.3, 0.4, 0.8, 1.4ξ η ξ η= = = =  

[33] 10 1.6131 1,1 
1 2 1 2

0α α β β= = = =  
0.6107 

1 1 1 1
0.8, 1.2ξ β η α= = = =  

this paper 10 1.6131 1,1 
2 2 2 2

0.5, 0.8ξ β η α= = = =  
0.0829 

1 1 2 2
0.8, 1.2, 0.5, 0.8ξ η ξ η= = = =  

[33] 10 1.6131 1,1 
1 2 1 2

0α α β β= = = =  
0.2918 

1 1 1 1
0.2, 0.4ξ β η α= = = =  

this paper 100 1.6002 1,1 
2 2 2 2

0.6, 0.9ξ β η α= = = =  
0.4777 

1 1 2 2
0.2, 0.4, 0.6, 0.9ξ η ξ η= = = =  

[33] 100 1.6002 1,1 
1 2 1 2

0α α β β= = = =  
0.6909 

1 1 1 1
0.3, 0.4ξ β η α= = = =  

this paper 100 1.6002 1,1 
2 2 2 2

0.8, 1.4ξ β η α= = = =  
0.4722 

1 1 2 2
0.3, 0.4, 0.8, 1.4ξ η ξ η= = = =  

[33] 100 1.6002 1,1 
1 2 1 2

0α α β β= = = =  
0.6864 

1 1 1 1
0.8, 1.2ξ β η α= = = =  

this paper 100 1.6002 1,1 
2 2 2 2

0.5, 0.8ξ β η α= = = =  
0.1311 

1 1 2 2
0.8, 1.2, 0.5, 0.8ξ η ξ η= = = =  

[33] 100 1.6002 1,1 
1 2 1 2

0α α β β= = = =  
0.3527 

1 1 1 1
0.2, 0.4ξ β η α= = = =  

this paper 500 1.6000 1,1 
2 2 2 2

0.6, 0.9ξ β η α= = = =  
0.4792 

1 1 2 2
0.2, 0.4, 0.6, 0.9ξ η ξ η= = = =  

[33] 500 1.6000 1,1 
1 2 1 2

0α α β β= = = =  
0.6919 

1 1 1 1
0.3, 0.4ξ β η α= = = =  

this paper 500 1.6000 1,1 
2 2 2 2

0.8, 1.4ξ β η α= = = =  
0.4737 

1 1 2 2
0.3, 0.4, 0.8, 1.4ξ η ξ η= = = =  

[33] 500 1.6000 1,1 
1 2 1 2

0α α β β= = = =  
0.6875 

1 1 1 1
0.8, 1.2ξ β η α= = = =  

this paper 500 1.6000 1,1 
2 2 2 2

0.5, 0.8ξ β η α= = = =  
0.1322 

1 1 2 2
0.8, 1.2, 0.5, 0.8ξ η ξ η= = = =  

[33] 500 1.6000 1,1 
1 2 1 2

0α α β β= = = =  
0.3544 
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5 Conclusions 

When the dimension of Newton equations is higher, 

the cost of the exact solution will be very large. 

Accordingly, the computation quantity of Newton 

method is also very large. In this paper, based on the 

literature [25-26, 33], by introducing a number of 

relaxed factors, we propose Newton-relaxed non-

stationary multisplitting multi-parameters USAOR 

method, establish local convergence Theorem estimate 

and the convergence rate. Finally, numerical examples 

show the effectiveness the proposed method. For the 

iterative method proposed in this paper, the 

convergence speed is faster than other methods when 

selecting the approximately optimal parameters, we 

will study it in further work. 
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