
Towards a Usable Anomaly Diagnosis System among Internet Firewalls’ Rules 789 

 

Towards a Usable Anomaly Diagnosis System among  

Internet Firewalls’ Rules 

Chi-Shih Chao1, Stephen J. H. Yang2* 

1 Communications Eng. Department, Feng Chia University, Taiwan 
2 Computer Sciences and Information Eng. Department, National Central University, Taiwan 

cschao@fcu.edu.tw, Stephen.Yang.Ac@gmail.com 

                                                           
*Corresponding Author: Chi-Shih Chao; E-mail: cschao@fcu.edu.tw 

DOI: 10.3966/160792642019052003012 

Abstract 

While configuring firewalls, firewall rule editing, 

ordering, and distribution must be done with extreme 

caution on each of cooperative firewalls. However, 

network operators are prone to incorrectly configuring 

firewalls because commonly there are hundreds of 

thousands of filtering rules (i.e., rules in the Access 

Control List file; or ACL for short) which could be set up 

in a firewall, not mention these rules among firewalls can 

affect mutually. To complete the crucial but laboring 

inspection of rule configuration on firewalls effectively 

and efficiently, this paper describes two of our developed 

diagnosis mechanisms which can speedily discover rule 

anomalies within/among firewalls with two innovative 

data structures – Rule Anomaly Relationship tree (RAR 

tree) and Adaptive RAR tree (ARAR tree). With the 

assistance of these data structures and associated 

algorithms, two of our developed mechanisms show 

significant improvements on system performance and 

scalability in rule anomaly diagnosis for Internet firewalls. 

Keywords: Defense in depth, Firewall rule anomalies, 

RAR tree, ARAR tree, Diagnosis reuse 

1 Introduction 

Firewalls have become the emblem for modern 

network security where they function to avoid 

unauthorized or illicit sessions established to the 

devices inside the network areas it protects. In most of 

cases, a swarm of firewalls would be deployed in the 

proper positions of the managed network for 

cooperative, integrated, and in-depth network security 

protection [1]. However, in a large and complex 

network equipped with a stack of firewalls, it is very 

possible for a network manager to make mistakes 

while setting the firewall rules (i.e., ACL rules) since 

maintaining the security consistency between firewalls’ 

rule configurations and the demands of network 

security policies is always time-consuming, laboring, 

and error-prone [2], due to the lower-level 

programming language properties of those filtering 

rules. Sometimes, the matter can go evern worse where 

there are a couple of network administrators with 

different level of professional knowledge who are 

assigned to do this job collectively, setting up the 

filtering rule on different timings. This explains why 

researchers [3] like to compare the firewall configuring 

task to programming a distributed system in assembly 

language. 

Such kind of the security inconsistencies typically 

can be revealed by either the occurrence of anomalies 

between the firewall rules or demand-mismatching of 

network security policies [4]. Among the literature in 

this field, E. Al-Shaer and H. Hamed first define a rule 

anomaly as a duplicate or multiple rule-matching for a 

packet in a rule set. Based on the concept, they 

formally define several different intra-/inter-ACL 

anomalies among the firewall rules. Nevertheless, since 

a Finite-State-Machine (or FSM)-based comparison 

between each pair of filtering rules should be 

conducted for rule anomaly check-ups, their rule 

anomaly inspection algorithm will meet an inefficiency 

as the number of rules or firewalls grows [5]. 

To lower the comparisons between firewall rules 

needed in [4], Y. Yin et al. [6] segment the IP address 

space, which is formed by the managed source and 

destination networks, into blocks where each block is 

precisely split by the IP addresses in the conditional 

field of each firewall rule. Utilizing these varying-sized 

blocks, a SIERRA tree is built and two conflict rules 

would be hanged on the same branch of the tree [7]. 

Network managers only needs to do the anomaly 

inspections or check-ups on rules in the same spatial 

block(s) (or on the same branches in the SIERRA tree), 

as opposing to wasting enormous time to conduct a 

comprehensive pair-wise rule comparisons. Yet, this 

approach would lead to a fatal drawback in a 

networking environment with frequent rule updates. 

Besides, a clean-slate reconstruction of the SIERRA 

tree is very possibly unavoidable if a simple rule 

deletion or insertion is administored [8]. It is because 

space blocks are precisely sliced according to the IP 

addresses of each rule. So, once one rule changes, the 



790 Journal of Internet Technology Volume 20 (2019) No.3 

 

whole spatial rule relationship would change, and the 

corresponding data structures could be reconstructed. 

This drawback also reveals that the local diagnosis 

results, i.e., the intra-ACL diagnosis results, can hardly 

be re-used for the diagnosis of inter-ACL rule 

anomalies. By the same token, modification or 

reconfiguration of firewall rules for new demands of 

network security could fail their system to go live in 

time for varying threats. 

In our work, our goal is to build a feasible diagnosis 

system to ease the discovery of the anomalies between 

firewalls’ rules where the developed system should 

take efficiency, effectiveness and scalability into 

account. To describe how we achieve the goals in our 

work, in the rest of this paper, we organize Session 2 to 

spell out how a Rule Anomaly Relation tree (RAR tree) 

is created on the basis of these collected firewall rules, 

and how it can be used in our system to facilitate the 

diagnosis of intra/inter-ACL rule anomalies. In Session 

3, an improved version of RAR tree-based diagnosis 

system with new data structure – ARAR tree is shown. 

The corresponding diagnosis mechanism for intra-ACL 

and inter-ACL rule anomalies are rendered also. As a 

demonstration, Section 4 presents the system 

implementation and performance evaluations for our 

develped diagnosis mechanisms, and Section 5 

concludes this paper and shows some directions of our 

system development in the upcoming future. 

2 Anomaly Diagnosis with RAR Tree 

For the anomalies between firewall rules, they are 

completely defined by E. Al-Shaer et al and classified 

broadly into two types: anomalies within one single 

ACL (or referred to as intra-ACL rule anomalies) and 

anomalies among different ACLs (or called inter-ACL 

rule anomalies) [4]. In this section, we will introduce 

our RAR tree-based diagnosis approach and show how 

it aids us in achieving the system development goal: 

Effeectiveness, effieincy, and scalability. 

2.1 Discovery of Intra-ACL Rule Anomalies 

Figure 1 contains the example network used 

throughout this section to describe how our RAR tree 

is built and facilitates the diagnosis of intra-ACL rule 

anomalies. For brevity, Figure 2 only shows those rules 

in firewall H which manage the flow(s) from IP 

address(es) in domain D2 (140.134.30.*) to IP 

address(es) in Domain D7 (152.127.10.*) with service 

port numbered 80. An ACL consists of a number of 

filtering rules in the form of (<order>, <protocol>, 

<source_IP>, <source_port>, <destination_IP>, 

<destination_port>, <action>) to do packet filtering on 

a specific interface of a firewall with direction 

indications (for outbound or inbound traffic filtering). 

To avoid the typical time-consuming pair-wise rule 

comparisons for anomalies check-ups [4-5], a 2-

dimensional address space matrix is designed as a 

structural basis of our RAR tree to root out those 

unnecessary comparisons in which there is no 

intersection (or overlap) between the IP address spaces 

of two rules. To do so, in our system, the IP address 

ranges of the source network domain and destination 

network domain are used as two axes to construct a 

rectangle plane which is further divided into a matrix 

consisting of blocks in size of A*A. Later, with the 

fields of <source_IP> and <destination_IP>, the IP 

address space of each ACL rule can be represented as a 

smaller rectangle and drawn on the proper place of this 

matrix. For example, as shown in Figure 3, the 2-

dimensional address space matrix constructed by 

domains D2 and D7 can be divided into 64 blocks in 

size of 32*32 IP addresses, in which the IP address 

space of each rule in Figure 2 is depicted as a smaller 

rectangle (or even a point) and put on its own 

appropriate location on the matrix. 

 

Figure 1. Example network for our rule anomaly 

diagnosis 

 

Figure 2. Portion of ACL rules for HTTP traffic in 

firewall H from D2 to D7 

S
IP

(D2: 140.134.30.*)

D
IP 

(D7: 152.127.10.*)

HTTP

0 1 2 3 4 5 6 7

0

1

2

3

5

4

6

7

Accept

Deny

: A X A

1
5

7
21

22

39
40

51

 

Figure 3. Two-dimensional address space matrix 



Towards a Usable Anomaly Diagnosis System among Internet Firewalls’ Rules 791 

 

After that, the address space of a rule can be 

recorded in our RAR tree in the form of ― ― , 

where  contains the values of the conditional fields 

of the rule,  is used to indicate the matrix block(s) 

spanned by the address space of the rule,  shows the 

label (the order number) of the rule. As an example, in 

Figure 3, the address space of rule 1 in Firewall H 

spans four matrix blocks which are numbered block(1-

1), block(1-2), block(2-1), and block(2-2). In this case, 

our RAR tree will use four branches to record them for 

the rule, i.e., the portion enclosed by the left rectangle 

in Figure 4. By handling each rule in Figure 2 in this 

fashion, the RAR tree depicting the structural 

configuration of Figure 3 can be built as Figure 4. 

From Figure 4, it can be found that there are six 

branches containing more than one  leaves, which 

indicates only the IP address spaces of those rules in 

these branches could have the chance to intersect (or 

overlap) with each other and hence incur intra-ACL 

rule anomalies. So, we only have to do the pair-wise 

rule comparisons for anomaly checking on the rules at 

the same branch within these six branches; i.e., in our 

approach, we need to conduct the FSM-based pair-wise 

rule comparisons on H.5 and H.1, H.51 and H.1, H. 51 

and H.5, H.22 and H.21, H.39 and H.21, H.40 and 

H.21, H.39 and H.22, H.40 and H.39, and H.40 and 

H.22 where x.y indicates the yth rule in firewall x. 

 

Figure 4. The RAR tree of Figure 3 

It shows there are only 9 comparisons in total that 

should be made with our method. Comparing to [8], if 

the RAR tree is not employed, then 8

2
C = 28 rule pair-

wise comparisons are required for anomaly inspection. 

2.2 Discovery of Inter-ACL Rule Anomalies 

To isolate the inter-ACL (or even inter-firewall) rule 

anomalies, in our system, it can easily be achieved by 

simply re-using the RAR trees built for the diagnosis of 

intra-ACL (or intra-firewall) rule anomalies. Following 

the same example in Figure 1, let us assume that Figure 

5 only shows those rules in firewall G which manage 

the same flows from IP addresses in domain D2 

(140.134.30.*) to IP addresses in Domain D7 

(152.127.10.*) with service port numbered 80. If we 

want to do the diagnosis of inter-firewall rule 

anomalies between firewalls H and G, the way 

described in the following paragraph is utilized in our 

system to achieve the system scalability and flexibility. 

As network managers often administor, we can first 

do the intra-ACL anomaly diagnosis for rules inside 

firewall H and firewall G individually. As described in 

the previous subsection, this will accompany the 

construction of two RAR trees separately for the  

 

Figure 5. Portion of ACL rules for HTTP traffic in 

firewall G from D2 to D7 

diagnosis of intra-ACL rule anomalies within firewall 

H and G. Later, to obtain the diagnosis of inter-firewall 

rule anomalies between these two firewalls, a tree 

integration can be made by simply collecting the leave 

 nodes belonging to the same branch of the two 

individual RAR trees and putting them together under 

the same branch of a new RAR tree for inter-ACL rule 

anomaly diagnosis. Figure 6 shows the results of tree 

integration where the leave nodes of Firewall H are 

represented by white  and the leave nodes of Firewall 

G are represented by gray . Following the same logic 

described in Section 2.1 for the diagnosis of intra-ACL 

rule anomalies, the pair-wise comparisons for the 

diagnosis of inter-ACL rule anomalies would merely 

be conducted for those rules which are under the same 



792 Journal of Internet Technology Volume 20 (2019) No.3 

 

branch of the integrated RAR tree for inter-ACL rule 

anomaly diagnosis since only the IP address spaces of 

those rules have the possibilities to intersect in the 

address matrix block indicated by the branch of the 

integrated RAR tree. 

 

Figure 6. The RAR tree for the Inter-ACL rule anomaly diagnosis between firewalls H and G 

As a result, two dominating advantages can be 

obtained by the introduction of our RAR tree: 

(1) Unlike the existing approaches [4, 6], in our 

system, the local diagnosis results can be fully and 

easily reused where the RAR trees built for intra-ACL 

rule anomaly diagnosis can be easily integrated for the 

use of the inter-ACL rule anomaly diagnosis. In the 

case of Figure 6, our system only has to check those 

rules which are enclosed by five rectangles for inter-

ACL rule anomalies. That is, only 7 FSM-based pair-

wise comparisons for inter-ACL rule anomalies (i.e., 

H.21 and G.72, H.7 and G.1, H.7 and G.28, H.22 and 

G.72, H.39 and G.72, H.40 and G.72, and H.40 and 

G.79) should be made by using our RAR tree-based 

approach. Comparing with the traditional pair-wise-

based solution in [4] which needs 9*5=45 (number of 

rules in Firewall H * number of rules in Firewall G for 

traffic from D2 to D7) inter-ACL rule anomaly 

comparisons, our system makes a huge saving of about 

84% time-consuming comparisons for inter-ACL rule 

anomaly check-ups in this case. 

(2) By simple integration of RAR trees for intra-

ACL rule anomaly diagnosis, it can be seen that our 

system can easily deal with the diagnosis of the inter-

ACL rule anomalies among a large number of firewalls 

in an enterprise-level network. It represents our RAR 

tree-based diagnosis has superior scalability of being 

up against for network expansion. In contrast, it is 

hard for those approaches [4, 6] which heavily depend 

on packet classification-like approach or rule pair-wise 

comparison to attain to this goal since the data 

structures and the diagnosis results of the intra-ACL 

rule anomaly diagnosis can not be integrated or re-used 

to facilitate the inter-ACL rule anomaly diagnosis. In 

addition, another thing which should be noticed is that 

it is quite easy to provoke a substantial change on the 

associated data structure(s) of those approaches when a 

rule update (e.g., a rule insertion or deletion) is needed 

[8]. Such “clean-slate” approaches would do much 

more efforts on the re-building of data structures for 

the inter-ACL rule anomaly diagnosis. As a result, low 

system expansibility and scalability is incurred. 

3 Anomaly Diagnosis with ARAR Tree 

In spite of great improvement on diagnosis 

performance, the major problem with our RAR tree-

based method is that, for users, it is quite difficult to 

choose an appropriate value of A (i.e., the size of 

fundamental blocks) beforehand to minimumize the 

pair-waise comparisons needed in different conditions 

[9]. This would dramatically deduce the usability of the 

system so that improvements are imperative. In 

addition, among the anomalies proposed in [4], it can 

be found that those anomalies in which the filtering 

spaces of two conflicting rules (i.e., two rules with 

opposite actions; one is ‘accept’ and the other is ‘deny’) 

have intersections or overlaps can have chance to creat 

security inconsistency or flaws in reality. The two 

findings mentioned above motivate the creation of the 

new version of our system – the ARAR (Adaptive 

RAR) tree-based diagnosis mechanism. 

3.1 Discovery of Intra-ACL Rule Anomalies 

To have an insight of our ARAR tree-based 

diagnosis mechanism, another ACL rule set shown in 

Figure 7 is used where those filtering rules for HTTP 

service are configured in firewall H in Figure 1, for the 



Towards a Usable Anomaly Diagnosis System among Internet Firewalls’ Rules 793 

 

routing path from network domain D2 to domain D7 

(the dotted line in Figure 1). In this version of our 

system, the IP address ranges of the source network 

domain and destination network domain of a 

designated routing path are employed again as two 

axes to form a rectangle traffic plane; later, with the 

fields of <source_IP> and <destination_IP>, the IP 

address space of each ACL filtering rule can be 

depicted as a smaller rectangle and put on the proper 

location of this traffic plane (shown Figure 8). 

 
Firewall H, Port 80 

Name Order Source IP Address Destination IP Address Action 

R1 1 192.168.0.128~192.168.0.223 192.168.1.64~192.168.1.95 accept 

R2 5 192.168.0.160~192.168.0.223 192.168.1.0~192.168.1.95 deny 

R3 7 192.168.0.128~192.168.0.159 192.168.1.0~192.168.1.95 deny 

R4 21 192.168.0.0~192.168.0.63 192.168.1.0~192.168.1.223 accept 

R5 22 192.168.0.32~192.168.0.63 192.168.1.128~192.168.1.223 deny 

R6 39 192.168.0.32~192.168.0.127 192.168.1.128~192.168.1.159 deny 

R7 40 192.168.0.96~192.168.0.127 192.168.1.128~192.168.1.223 accept 

Figure 7. Another rule set for HTTP traffic from D2 to 

D7 in firewall G 

R4

R5

R7

R6

R1
R2

R3

S
IP

D
IP

(192.168.0.*)

(192.168.1.*)

 

Figure 8. Two-dimensional traffic filtering plane for 

the rule set in Figure 7 

Referring to the coding-tree data structures widely 

used in image/video compression [10], the traffic plane 

will be split recursively and reverse-exponentially 

(from Figure 9 to Figure 11) until a split block finds (1) 

there is no rule filtering space within it (e.g., Quadrant 

labeled by 11 in Figure 9), (2) there is only one rule 

filtering space within it (e.g., Quadrant labeled by 00 in 

Figure 9), or (3) there are more than two rule filtering 

spaces within it and the split block is exactly the same 

as those rule filtering spaces (e.g., Quadrant labeled by 

a binary string 110011 and highlighted by a circle in 

Figure 11; the split block is fully equal to the filtering 

spaces of R4 and R5 at that place), rather than splitting 

the traffic plane into a matrix which consists of fixed-

sized smaller blocks as our RAR tree-based mechanism 

does. 

R4

R5

R7

R6

R1

R2

R3

S
IP

D
IP

0 1

0

1 11

1000

01

 

Figure 9. Traffic plane after 1st splitting 

R4

R5

R7

R6

R1

R2

R3

S
IP

D
IP

0 1

0

1 11

101100

0111

0110

0101

0100

1010

1001

1000

 

Figure 10. Traffic plane after 2nd splitting 

R4

R5

R7

R6

R1

R2

R3

S
IP

D
IP

0 1

0

1 11

101100

0111

0110

0101

0100

1010100011

1001

 

Figure 11. Traffic plane after 3rd splitting 

 

 

 

 



794 Journal of Internet Technology Volume 20 (2019) No.3 

 

After that, the address space of a filtering rule can be 

recorded in our ARAR tree in the form of 

― ― ―...― ― , where  contains the IP 

address ranges of the source network domain and 

destination network domain of a designated routing 

path,  is used to indicate the split block(s) spanned by 

the address space of the rule,  shows the label (or the 

order) of the rule. By dealing with each rule in this 

fashion, the ARAR tree depicting the structural 

configuration of Figure 11 can be created as Figure 12. 

From Figure 12, we can find that there are nine 

branches containing more than one  leaves and 

highlighted by red rectangles, which indicates the IP 

address spaces of those rules under these branches 

intersect with one another and hence incur intra-ACL 

rule anomalies. Later, we simply have to do the 

checking for the type of rule anomlies on those rules, 

instead of the time-consuming pair-wise rule 

comparisons for anomaly check-ups which are needed 

in our RAR tree-based system and the system 

developed in [1]. 

Root

D2

D7

０

０ １

１

０

０

０ １

１

０ １

R4 ０

０ １

１

０ １

０

０ １

１

０ １

０

０ １

０

０ １

１

０ １

０

０ １

１

０ １

０

０ １

R3 R2 R3 R2 R4 R4

R7

: Accept rule

: Deny rule

R1

R2

R1

R2

R1

R3

R2

1st Split

2nd Split

3rd Split

R4 R4

R5

R6

R7

R6R6

R7

R6R4

R5

０

０ １

１

０ １ 4th Split

R4

R5

R6

R4

R5

R6

R4R4

 

Figure 12. The corresponding ARAR tree of Figure 11 

The key of success to our ARAR tree–based 

diagnosis mechanism is the use of recursive splitting 

on the traffic plane. The following highlights and 

summerizes how the two-dimenional traffic plance is 

split: 

Step 1: Get the largest SIP and DIP from the ACL rule 

set for a specific serivce (e.g., port 80). Input them 

separately to generateRSV() (shown in Figure 13) to 

acquire the initial regional horizontal and vertical 

Regional Split Vales (RSVs). 

 

Algorithm generateRSV (max_IP) 

==========================================

Input: max_IP // max SIP or DIP 

Output: initRSV // initial RSV 

 

Begin 

    While (max_IP & (max_IP - 1)) 

         max_IP & (max_IP - 1); 

return max_IP 

End 

Figure 13. Pseudo Code of generateRSV() 

Step 2: Split the 2-dimensional traffic plance by 

utilizing the two RSVs and build the corresponding 

ARAR tree. 

Step 3: Check if there is a branch where there are more 

than one leave node under the branch with different 

filtering area sizes. If the answer is yes, go to Step 4; 

otherwise, go to Step 5. 

Step 4: Halve the two RSVs, respectively, and then use 

them to adjust the two new RSVs for splitting the 

region indicated by the branch (like Figure 10 and 

Figure 11). Go to Step 2. 

Step 5: Splitting stops. Check which types of 

anomalies occur. If two leaves of rules under a branch 

with different actions (i.e., one is accept and the other 

is deny), it is correlated/shadowing anomaly. If two 

leaves of rules under a branch with the same actions, 

redundant anomaly occurs in that region indicated by 

the branch. 

Let’s give a simple example to show how 



Towards a Usable Anomaly Diagnosis System among Internet Firewalls’ Rules 795 

 

generateRSV() can figure out the initial RSVs. 

Recalling from the example in Figure 7, the max SIP is 

192.168.0.223 and max DIP is 192.168.1.223. Input the 

the two values into the generateRSV(), we get two 

RSVs (128.0.0.0, 128.0.0.0). It means that, at the first 

round, the traffic plane would be segmented into four 

quadrants, just like Figure 9. 

3.2 Discovery of Inter-ACL Rule Anomalies 

To isolate the inter-ACL (or, in general, inter-

firewall) rule anomalies, in our approach, it can easily 

be done by simply re-using the ARAR trees built for 

the diagnosis of intra-ACL (or intra-firewall) rule 

anomalies. We can first do the intra-ACL anomaly 

diagnosis for rules inside two designated 

ACLs/firewalls individually, which can bring to the 

construction of two ARAR trees separately for the 

diagnosis of intra-ACL rule anomalies. Later, to obtain 

the diagnosis of inter-ACL (or inter-firewall) rule 

anomalies between these two firewalls, tree integration 

can be accomplished by adjusting the trees, collecting 

the leave  nodes belonging to the same branch of the 

two individual ARAR trees, and putting them together 

under the same branch of a new ARAR tree for inter-

ACL rule anomaly diagnosis. Later, following the 

same logic in our diagnosis for intra-ACL rule 

anomalies, the checking on anomaly types for the 

diagnosis of inter-ACL rule anomalies would be 

conducted only for those rules which are under the 

same branch of the integrated ARAR tree for inter-

ACL rule anomaly diagnosis. 

For a clear understanding of the integration process 

of two individual ARAR tree, Figure 14 and Figure 15 

are created as the traffic places configured in firewall C 

and Firewall H, respectively, for the the HTTP traffic 

from network domain D2 to D7 in Fig. 1, where Figure 

16 shows the integrated ARAR tree for the diagnosis of 

inter-ACL rule anomaly diagnosis between these two 

firewalls. 

R1
R2

S
IP

D
IP

0 1

0

1

10

01

Firewall C

00

11

 

Figure 14. Traffic plane for HTTP traffic from D2 to 

D7 in firewall C  

R1

S
IP

D
IP

0 1

0

1 11

00

R2

10

01

Firewall G

 

Figure 15. Traffic plane for HTTP traffic from D2 to 

D7 in firewall H 

Root

D2

D7

: Accept rule

: Deny rule

1

0

0

０ １

０

０ １

C.1

C.2

C.1

C.2

1st Split

2nd Split

3rd Split

4th Split

0

０

０

０ １

０

１

0

０ １

０

１

C.1H.1 H.1

H.2

H.1

1

１

H.2

1

１

１

０ １

C.2

H.2

C.2

１

０ １

C.2C.2

 

Figure 16. Integrated ARAR tree for Figure 14 and 

Figure 15 

Algorithm in Figure 17 shows the integration 

process of two individual ARAR trees for Inter-ACL 

rule anomaly diagnosis. As an example, the area in 

Figure 16 highlighted by a rectangle complies with the 

case 4 of the algorithm in Figure 17. As for the time 

complexity of the algorithm, it is highly related to the 

height of the ARAR tree, which can be represented as 

O(log2 (max(DIP, SIP))). 

 

 

Algorithm ARAR_Tree_Integration (T1, T2) 

======================================= 

Input: Two ARAR trees, pointed by T1, T2 

Output: A new ARAR tree, pointed by Tnew 

 

Begin 

    if node(T1) is null and node(T2) is null 

         then stop; 

else if node(T1) is not null but node(T2) is null 

         then node(Tnew) is node(T1);  // case 1 

    else if node(T1) is null but node(T2) is not null 

         then node(Tnew) is node(T2);  // case 2 

    else if node(T1) is leaf and node(T2) is leaf 



796 Journal of Internet Technology Volume 20 (2019) No.3 

 

         then node(Tnew) is node(T1) + node(T2);  // case 3

    else if node(T1) is leaf but node(T2) is not leaf 

         then create 4 branches for node(T1):  // case 4 

node(T1)-0-0-leaf, node(T1)-0-0-leaf,  

node(T1)-0-0-leaf, and node(T1)-0-0-leaf 

else node(T1) is not leaf but node(T2) is leaf 

         then create 4 branches for node(T2):  // case 5 

node(T2)-0-0-leaf, node(T2)-0-0-leaf,  

node(T2)-0-0-leaf, and node(T2)-0-0-leaf 

     

    // (else) case 6: both node(T1) and node(T2) are 

// neither null nor a leaf, i.e., a branch 

    Contine the tree traversal using BFS/DFS down 

to tree T1 as well as T2 simutaneouly, and run the 

    ARAR_Tree_Integration( ) on T1’s and T2’s 

corresponding nodes 

End 

Figure 17. Pseudo code for the integration of  two 

ARAR trees 

4 Diagnosis Visualization and System 

Performance Evaluation 

Visual data analysis assists in perceiving patterns, 

trends, and exceptions in even the most complex data 

sources where visualization allows audience to identify 

concepts and relationships that they had not previously 

realized [11]. For the reason, the system prototype of 

our work has been developed and completed on the 

basis of our two tree-based diganosis mechanisms as 

well as visualized approach. Portions of the ACL 

configurations on the routers/firewalls in our campus 

network is put to use as the reference of the input of 

our system implementation. Figure 18 to Figure 21 

showcase the system diagnosis results for the ACL rule 

configurations in our experimental network. Please 

notice that the implementation/visualization of our 

logical network topology is not described here since it 

is beyond the scope of this paper. In the upcoming 

future, we plan to integrate some well-known network 

management system, e.g., HP OpenView, to replace 

our current monitoring subsystem for a more complete 

system implementation. 

 

Figure 18. Intra-ACL anomalies on firewalls C, G, and H 

 

Figure 19. Insight of intra-ACL anomalies in firewall G 

 

Figure 20. Inter-ACL anomalies between firewall H 

and firewall G 

 

Figure 21. Insight of inter-ACL anomalies between 

firewall H and firewall G 

To obtain the diagnosis results, users can first launch 

our Firewall Anomaly Diagnosis System (Figure 18) 

and the network topology is accompanied and shows 

up. Later, as in Figure 18, the user clicks the “Single 

Firewall Diagnosis” option on the window and our 

system would report that there are intra-ACL rule 

anomalies existing in firewalls C, G, and H. The 

network manager can click any of these three blinking 

icons on the network topology window to pop up the 

Intra-Anomaly View for a detailed look-up dedicated 

for the clicked firewall. In Figure 19, firewall G is 

clicked and the Intra-Anomaly View window is 

launched. The network manager can move the mouse 

cursor on top of the iconic circle of a rule to get the 



Towards a Usable Anomaly Diagnosis System among Internet Firewalls’ Rules 797 

 

anomaly relationship between the pointed rule and the 

others (Figure 19 shows the anomaly relationship for 

the rule numbered 6). Meanwhile, a text window pops 

up aside to show the textual configuration of these 

rules. 

Likewise, users may select the “Multi-Firewall 

Diagnosis” option and click any two designed firewalls 

for the inspection of inter-ACL rule anomalies between 

them. Figure 20 shows if we first click firewall H and 

then firewall G on the network topology window for 

inter-ACL anomaly diagnosis, then there will be a 

directed link incident on these two iconic firewalls 

where the link orignates from the firewall H and is 

destined for Firewall G. Figure 21 shows the inter-

ACL anomalies between these two firewalls which are 

displayed in our Inter-Anomaly View window. In 

Figure 21, the user can use the upper left panel to 

select which categories of inter-ACL anomalies he 

prefers to observe for a clearer view on the diagnosis 

results. Of course, the user can clink on any link 

indicating an inter-ACL anomaly between these two 

firewalls and the corresponding detailed configurations 

of the paired rules will show up at the right side of the 

window to allow the user realize contents of the rules 

causing the anomaly. 

A comprehensive set of experiments had been 

conducted in our lab’s networking environment to 

obtain the performance evaluation [9], where the ACL 

rules were constructed in a random fashion referring to 

[12], i.e., the IP range of each rule is generated on a 

random basis. The experimental results show our two 

diagnosis mechanisms are fully superior to that of [1], 

which needs a substantial amount of pair-wise rule 

comparisons to do anomaly diagnosis. Figure 22 and 

Figure 23 show the performance comparisons among 

our ARAR-tree-based system, the RAR-tree-based 

system, and the FSM-based diagnosis mechanism [1], 

where our RAR-tree-based system splits the traffic 

plane into fixed-sized smaller blocks (A is the size of 

blocks) and, in the case of Figure 22, rules have a 

larger size (and smaller size in Figure 23) of filtering 

area/space than A. It can be found that ARAR tree can 

always give us dramatic performance on rule anomaly 

diagnosis. As for diagnosis with FSM [1], the system 

execution time will grow exponentially with the 

growth of the number of rules such that we can not 

properly draw the growth line of its daignosis 

performance along with the other two systems in 

Figure 22 and Figure 23. 

Among the diagnosis performance shown in Figure 

22 and Figure 23, one another thing is worth noting: 

How do we chose the proper size of A (i.e. the size of 

split blocks) with our RAR tree-based mechanism 

while conducting diagnosis? In Figure 22, it can be 

found that diagnosis wih smaller split block sizes 

results in worse performance because the setting of 

larger split block sizes causes few fragments during 

RAR tree contstruction where rules have larger  

 

Figure 22. Diagnosis performance with larger rule 

filtering area 

 

Figure 23. Diagnosis performance with smaller rule 

filtering area 

filtering space. As a contrast, Figure 23 shows our 

RAR tree-based diagnosis with smaller split block 

sizes results in better performance where rules have a 

smaller filtering space. Considering the configuration 

uncertainty of rule filtering space, it is hard to choose a 

proper value of A prior to diagnosis to acquire better 

performance if our RAR tree-based mechanism is 

employed. It is the reason that our ARAR tree-based 

diagnosis version is developed. 

As a result, in effectiveness, both of our tree-based 

systems are developed on the basis of National 

Institute of Standards & Technology (NIST) Special 

Publication 800-192 [13], which are derived from [1]. 

Comparing with the dagnosis method proposed by [1] 

in which a FSM-based pairwise rule comparison is 

employed, our two systems purge those uncessary 

comparisons between two rules which have no 

intersections with each other on filtering effects. 

Performance evaluations prove that our systems are far 

more effieient than [1] is. 

Meanwhile, our two developed systems do the rule 

anomaly diagnosis at no expense of scalability. By re-

using the individual local diagnosis results, our 

systems can effortlessly accomodate rule anomaly 

diagnosis among multiple firewalls, which can hardly 

be done at ease by any of the currently developed 

systems. As for usability, plenty of well-known tools 

with various visualized methodlogies have been 



798 Journal of Internet Technology Volume 20 (2019) No.3 

 

launched. Still, nowadays, none of them are deployed 

in reality [14], in which our work is also cited. To date, 

a prototype system developed with the collaboration 

with D-Link Co., Taiwan and based on our developed 

diagnosis mechanisms went live since early July this 

year, to facilitate the configuration and management of 

firewalls in our campus network. 

5 Conclusion and Future Work 

With implementations of the RAR tree as well as 

ARAR tree, both of our diagnosis mechanisms for 

firewall rule anomalies can meet the planned 

requirements: Effectiveness, efficiency, scalability, and 

usability. Shortening the time needed for the diagnosis 

of rule anomalies inside/among firewalls means 

reducing the possibilities of the loss of company 

estates, caused by network attacks. This is very 

important for those systems which run on-line and 

need speedy responses regularly with their users, e.g., 

on-line banking or online shopping. They tolerate no 

room for a second service break, leading to prompt and 

correct firewalls configuration in response to various 

threats coming from Internet. 

Although we get a noticeable achievement on our 

system development, as the next steps, more interesting 

ingredients and plenty of technical challenges are in 

front of us, and expected to be delved into to complete 

our diagnosis system and meet the upcoming demands 

[15], e.g., migrating the current mechanism(s) to IPv6 

networking environment, adding inspection functions 

for behavior mismatching among firewalls, developing 

next-version of systems for stateful firewall rules, and 

take port configuration/information into account. 

Meanwhile, a new data structure named E-ARAR 

(Enhanced ARAR) Tree and associated algorithms are 

devised [16] and tried to address the re-splitting issue 

during tree integration for inter-ACL rule anomaly 

diagnosis. 

Acknowledgments 

This work is supported by MOST, R.O.C., under 

contract MOST-104-2221-E-035-023. 

Remark 

This manusript is mainly revised and augmented 

from the versions of TANET 2010 as well as NCS 

2013, Taiwan (both in Chinese). 

References 

[1] A. X. Liu, A. R. Khakpour, J. W. Hulst, Z. Ge, D. Pei, J. 

Wang, Firewall Fingerprinting and Denial of Firewalling 

Attacks, IEEE Transactions on Information Forensics and 

Security, Vol. 12, No. 7, pp. 1699-1712, July, 2017. 

[2] E. Al-Shaer, J. Lobo, L. Kalger, Policies for Distributed 

Systems and Networks, IEEE Press, 2008. 

[3] T. Wong, On the Usability of Firewall Configuration, The 5th 

Symposium on Usable Privacy and Security, Pittsburgh, PA, 

2008, pp. 180-185. 

[4] E. Al-Shaer, H. Hamed, R. Boutaba, M. Hasan, Conflict 

Classification and Analysis of Distributed Firewall Policies, 

IEEE Journal on Selected Areas in Communications, Vol. 23, 

No. 10, pp. 2069-2084, October, 2005. 

[5] C.-S. Chao, A Visualized Internet Firewall Policy Validation 

System, The 10th IEEE/IEICE Asia-Pacific Network 

Operations and Management Symposium, Sapporo, Japan, 

2007, pp. 364-374. 

[6] Y. Yin, Y. Katayama, N. Takahashi, Detection of Conflicts 

Caused by a Combinations of Filters Based on Spatial 

Relationships, Journal of Information Processing Society of 

Japan, Vol. 49, No. 2, pp. 3121-3135, December, 2008. 

[7] Y. Yin, R. S. Bhuvaneswaran, Y. Katayama, N. Takahashi, 

Implementation of Packet Filter Configurations Anomaly 

Detection System with SIERRA, The 7th International 

Conference on Information, Communication and Signal 

Processing, Bejing China, 2005, pp. 467–480. 

[8] C.-S. Chao, M.-H. Yu, R.-Y. Pan, A RAR Tree-Based 

Diagnosis System for Rule Anomalies among Network 

Firewalls, The 15th Taiwan Academic Network Symposium 

(TANET 2010), Taiwan, 2010, Session A2, No. 3. 

[9] C.-S. Chao, C.-T. Chiu, An Adaptive RAR Tree-Based 

Diagnosis System for Rule Anomalies and Behavior 

Mismatching among Firewalls, The 36th National Computer 

Symposium (NCS 2013), Taiwan, 2013, Session 3, No. 20. 

[10] K. Sayood, Introduction to Data Compression, 3rd Ed., 

Elsevier, 2006. 

[11]H. Shiravi, A. Shiravi, A. A. Ghorbani, A Survey of 

Visualization Systems for Network Security, IEEE 

Transaction on Visualization and Computer Graphics, Vol. 

18, No. 8, pp. 1313-1329, August, 2012. 

[12]T. Samak, A. El-Atawy, E. Al-Shaer, Towards Network 

Security Policy Generation for Configuration for 

Configuration Analysis and Testing, The 2nd ACM Workshop 

on Assurable and Usable Security Configuration (SafeConfig’ 

09), New York, NY, 2009, pp. 13-18. 

[13] NIST. SP. 800-192, Verification and Test Methods for Access 

Control Policies/Models, http://nvlpubs.nist.gov/nistpubs/ 

SpecialPublications/NIST.SP.800-192.pdf, 2017. 

[14] V. Artem, I. Leonardo, M. Leonardo, L. Stefan, Systematic 

Literature Review on Usability of Firewall Configuration, 

ACM Computing Survey, Vol. 50, Issue 6, No. 87, January 

2018. 

[15] E. Al-Shaer, Automated Firewall Analytics: Design, 

Configuration and Optimization, Springer, 2014. 

[16] C.-S. Chao, H.-Y. Lin, An Efficient Anomaly Diagnosis 

Mechanism for Stateful Firewall Rules, The 40th National 

Computer Symposium (NCS 2017), Hualien, Taiwan, 2017. 

 



Towards a Usable Anomaly Diagnosis System among Internet Firewalls’ Rules 799 

 

Biographies 

Chi-Shih Chao currently is an 

associated professor at the 

Communications Engineering Dept. of 

Feng Chia University, Taiwan. His 

research interests include network 

security, network fault management, 

high-speed networks, and wireless 

LANs. Dr. Chao received the Annual Best Paper 

Awards from Taiwan TANet in 2015 and IMP in 2016, 

respectively. He also serves for plenty of relevant 

conferences, journals, and industrial committees. In 

addition, he is a member of IEEE and Phi-Tau-Phi. 

 

Stephen J. H. Yang is the Vice 

President of Asia University, Taiwan. 

He is also associated with the National 

Central University as the Distinguished 

Professor of Department of Computer 

Science & Information Engineering. 

He received his Ph.D. degree in 

Electrical Engineering & Computer Science from the 

University of Illinois at Chicago in 1995. He has 

published over 60 SSCI/SCI journal papers, his 

research interests include big data, learning analytics, 

artificial intelligence, educational data mining, and 

MOOCs. He received the Outstanding Research Award 

from Ministry of Science & Technology (2010) and 

Distinguished Service Medal from Ministry of 

Education (2015).  



800 Journal of Internet Technology Volume 20 (2019) No.3 

 

 



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (Japan Color 2001 Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages false
  /CreateJDFFile false
  /CreateJobTicket true
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness false
  /PreserveHalftoneInfo true
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Preserve
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects true
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHT <FEFF005B683964DA300C005000440046002800310032003000300064007000690029300D005D0020>
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
    <<
      /AddBleedMarks true
      /AddColorBars false
      /AddCropMarks true
      /AddPageInfo true
      /AddRegMarks false
      /BleedOffset [
        8.503940
        8.503940
        8.503940
        8.503940
      ]
      /ConvertColors /NoConversion
      /DestinationProfileName (sRGB IEC61966-2.1)
      /DestinationProfileSelector /NA
      /Downsample16BitImages true
      /FlattenerPreset <<
        /ClipComplexRegions true
        /ConvertStrokesToOutlines false
        /ConvertTextToOutlines false
        /GradientResolution 400
        /LineArtTextResolution 1200
        /PresetName <FEFF005B9AD889E367905EA6005D>
        /PresetSelector /HighResolution
        /RasterVectorBalance 1
      >>
      /FormElements true
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles true
      /MarksOffset 0
      /MarksWeight 0.283460
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PageMarksFile /JapaneseWithCircle
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /LeaveUntagged
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [1200 1200]
  /PageSize [612.000 792.000]
>> setpagedevice


